platsmp.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196
  1. /* linux/arch/arm/mach-exynos4/platsmp.c
  2. *
  3. * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * Cloned from linux/arch/arm/mach-vexpress/platsmp.c
  7. *
  8. * Copyright (C) 2002 ARM Ltd.
  9. * All Rights Reserved
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License version 2 as
  13. * published by the Free Software Foundation.
  14. */
  15. #include <linux/init.h>
  16. #include <linux/errno.h>
  17. #include <linux/delay.h>
  18. #include <linux/device.h>
  19. #include <linux/jiffies.h>
  20. #include <linux/smp.h>
  21. #include <linux/io.h>
  22. #include <asm/cacheflush.h>
  23. #include <asm/hardware/gic.h>
  24. #include <asm/smp_scu.h>
  25. #include <mach/hardware.h>
  26. #include <mach/regs-clock.h>
  27. #include <mach/regs-pmu.h>
  28. #include <plat/cpu.h>
  29. extern void exynos4_secondary_startup(void);
  30. #define CPU1_BOOT_REG (samsung_rev() == EXYNOS4210_REV_1_1 ? \
  31. S5P_INFORM5 : S5P_VA_SYSRAM)
  32. /*
  33. * control for which core is the next to come out of the secondary
  34. * boot "holding pen"
  35. */
  36. volatile int __cpuinitdata pen_release = -1;
  37. /*
  38. * Write pen_release in a way that is guaranteed to be visible to all
  39. * observers, irrespective of whether they're taking part in coherency
  40. * or not. This is necessary for the hotplug code to work reliably.
  41. */
  42. static void write_pen_release(int val)
  43. {
  44. pen_release = val;
  45. smp_wmb();
  46. __cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release));
  47. outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1));
  48. }
  49. static void __iomem *scu_base_addr(void)
  50. {
  51. return (void __iomem *)(S5P_VA_SCU);
  52. }
  53. static DEFINE_SPINLOCK(boot_lock);
  54. void __cpuinit platform_secondary_init(unsigned int cpu)
  55. {
  56. /*
  57. * if any interrupts are already enabled for the primary
  58. * core (e.g. timer irq), then they will not have been enabled
  59. * for us: do so
  60. */
  61. gic_secondary_init(0);
  62. /*
  63. * let the primary processor know we're out of the
  64. * pen, then head off into the C entry point
  65. */
  66. write_pen_release(-1);
  67. /*
  68. * Synchronise with the boot thread.
  69. */
  70. spin_lock(&boot_lock);
  71. spin_unlock(&boot_lock);
  72. }
  73. int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
  74. {
  75. unsigned long timeout;
  76. /*
  77. * Set synchronisation state between this boot processor
  78. * and the secondary one
  79. */
  80. spin_lock(&boot_lock);
  81. /*
  82. * The secondary processor is waiting to be released from
  83. * the holding pen - release it, then wait for it to flag
  84. * that it has been released by resetting pen_release.
  85. *
  86. * Note that "pen_release" is the hardware CPU ID, whereas
  87. * "cpu" is Linux's internal ID.
  88. */
  89. write_pen_release(cpu_logical_map(cpu));
  90. if (!(__raw_readl(S5P_ARM_CORE1_STATUS) & S5P_CORE_LOCAL_PWR_EN)) {
  91. __raw_writel(S5P_CORE_LOCAL_PWR_EN,
  92. S5P_ARM_CORE1_CONFIGURATION);
  93. timeout = 10;
  94. /* wait max 10 ms until cpu1 is on */
  95. while ((__raw_readl(S5P_ARM_CORE1_STATUS)
  96. & S5P_CORE_LOCAL_PWR_EN) != S5P_CORE_LOCAL_PWR_EN) {
  97. if (timeout-- == 0)
  98. break;
  99. mdelay(1);
  100. }
  101. if (timeout == 0) {
  102. printk(KERN_ERR "cpu1 power enable failed");
  103. spin_unlock(&boot_lock);
  104. return -ETIMEDOUT;
  105. }
  106. }
  107. /*
  108. * Send the secondary CPU a soft interrupt, thereby causing
  109. * the boot monitor to read the system wide flags register,
  110. * and branch to the address found there.
  111. */
  112. timeout = jiffies + (1 * HZ);
  113. while (time_before(jiffies, timeout)) {
  114. smp_rmb();
  115. __raw_writel(virt_to_phys(exynos4_secondary_startup),
  116. CPU1_BOOT_REG);
  117. gic_raise_softirq(cpumask_of(cpu), 1);
  118. if (pen_release == -1)
  119. break;
  120. udelay(10);
  121. }
  122. /*
  123. * now the secondary core is starting up let it run its
  124. * calibrations, then wait for it to finish
  125. */
  126. spin_unlock(&boot_lock);
  127. return pen_release != -1 ? -ENOSYS : 0;
  128. }
  129. /*
  130. * Initialise the CPU possible map early - this describes the CPUs
  131. * which may be present or become present in the system.
  132. */
  133. void __init smp_init_cpus(void)
  134. {
  135. void __iomem *scu_base = scu_base_addr();
  136. unsigned int i, ncores;
  137. ncores = scu_base ? scu_get_core_count(scu_base) : 1;
  138. /* sanity check */
  139. if (ncores > nr_cpu_ids) {
  140. pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
  141. ncores, nr_cpu_ids);
  142. ncores = nr_cpu_ids;
  143. }
  144. for (i = 0; i < ncores; i++)
  145. set_cpu_possible(i, true);
  146. set_smp_cross_call(gic_raise_softirq);
  147. }
  148. void __init platform_smp_prepare_cpus(unsigned int max_cpus)
  149. {
  150. scu_enable(scu_base_addr());
  151. /*
  152. * Write the address of secondary startup into the
  153. * system-wide flags register. The boot monitor waits
  154. * until it receives a soft interrupt, and then the
  155. * secondary CPU branches to this address.
  156. */
  157. __raw_writel(virt_to_phys(exynos4_secondary_startup),
  158. CPU1_BOOT_REG);
  159. }