smp.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/smp.h>
  23. #include <linux/seq_file.h>
  24. #include <linux/irq.h>
  25. #include <linux/percpu.h>
  26. #include <linux/clockchips.h>
  27. #include <linux/completion.h>
  28. #include <linux/atomic.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/cpu.h>
  31. #include <asm/cputype.h>
  32. #include <asm/exception.h>
  33. #include <asm/idmap.h>
  34. #include <asm/topology.h>
  35. #include <asm/mmu_context.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/processor.h>
  39. #include <asm/sections.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/ptrace.h>
  42. #include <asm/localtimer.h>
  43. #include <asm/smp_plat.h>
  44. /*
  45. * as from 2.5, kernels no longer have an init_tasks structure
  46. * so we need some other way of telling a new secondary core
  47. * where to place its SVC stack
  48. */
  49. struct secondary_data secondary_data;
  50. enum ipi_msg_type {
  51. IPI_TIMER = 2,
  52. IPI_RESCHEDULE,
  53. IPI_CALL_FUNC,
  54. IPI_CALL_FUNC_SINGLE,
  55. IPI_CPU_STOP,
  56. };
  57. int __cpuinit __cpu_up(unsigned int cpu)
  58. {
  59. struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
  60. struct task_struct *idle = ci->idle;
  61. int ret;
  62. /*
  63. * Spawn a new process manually, if not already done.
  64. * Grab a pointer to its task struct so we can mess with it
  65. */
  66. if (!idle) {
  67. idle = fork_idle(cpu);
  68. if (IS_ERR(idle)) {
  69. printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
  70. return PTR_ERR(idle);
  71. }
  72. ci->idle = idle;
  73. } else {
  74. /*
  75. * Since this idle thread is being re-used, call
  76. * init_idle() to reinitialize the thread structure.
  77. */
  78. init_idle(idle, cpu);
  79. }
  80. /*
  81. * We need to tell the secondary core where to find
  82. * its stack and the page tables.
  83. */
  84. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  85. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  86. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  87. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  88. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  89. /*
  90. * Now bring the CPU into our world.
  91. */
  92. ret = boot_secondary(cpu, idle);
  93. if (ret == 0) {
  94. unsigned long timeout;
  95. /*
  96. * CPU was successfully started, wait for it
  97. * to come online or time out.
  98. */
  99. timeout = jiffies + HZ;
  100. while (time_before(jiffies, timeout)) {
  101. if (cpu_online(cpu))
  102. break;
  103. udelay(10);
  104. barrier();
  105. }
  106. if (!cpu_online(cpu)) {
  107. pr_crit("CPU%u: failed to come online\n", cpu);
  108. ret = -EIO;
  109. }
  110. } else {
  111. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  112. }
  113. secondary_data.stack = NULL;
  114. secondary_data.pgdir = 0;
  115. return ret;
  116. }
  117. #ifdef CONFIG_HOTPLUG_CPU
  118. static void percpu_timer_stop(void);
  119. /*
  120. * __cpu_disable runs on the processor to be shutdown.
  121. */
  122. int __cpu_disable(void)
  123. {
  124. unsigned int cpu = smp_processor_id();
  125. struct task_struct *p;
  126. int ret;
  127. ret = platform_cpu_disable(cpu);
  128. if (ret)
  129. return ret;
  130. /*
  131. * Take this CPU offline. Once we clear this, we can't return,
  132. * and we must not schedule until we're ready to give up the cpu.
  133. */
  134. set_cpu_online(cpu, false);
  135. /*
  136. * OK - migrate IRQs away from this CPU
  137. */
  138. migrate_irqs();
  139. /*
  140. * Stop the local timer for this CPU.
  141. */
  142. percpu_timer_stop();
  143. /*
  144. * Flush user cache and TLB mappings, and then remove this CPU
  145. * from the vm mask set of all processes.
  146. */
  147. flush_cache_all();
  148. local_flush_tlb_all();
  149. read_lock(&tasklist_lock);
  150. for_each_process(p) {
  151. if (p->mm)
  152. cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
  153. }
  154. read_unlock(&tasklist_lock);
  155. return 0;
  156. }
  157. static DECLARE_COMPLETION(cpu_died);
  158. /*
  159. * called on the thread which is asking for a CPU to be shutdown -
  160. * waits until shutdown has completed, or it is timed out.
  161. */
  162. void __cpu_die(unsigned int cpu)
  163. {
  164. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  165. pr_err("CPU%u: cpu didn't die\n", cpu);
  166. return;
  167. }
  168. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  169. if (!platform_cpu_kill(cpu))
  170. printk("CPU%u: unable to kill\n", cpu);
  171. }
  172. /*
  173. * Called from the idle thread for the CPU which has been shutdown.
  174. *
  175. * Note that we disable IRQs here, but do not re-enable them
  176. * before returning to the caller. This is also the behaviour
  177. * of the other hotplug-cpu capable cores, so presumably coming
  178. * out of idle fixes this.
  179. */
  180. void __ref cpu_die(void)
  181. {
  182. unsigned int cpu = smp_processor_id();
  183. idle_task_exit();
  184. local_irq_disable();
  185. mb();
  186. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  187. complete(&cpu_died);
  188. /*
  189. * actual CPU shutdown procedure is at least platform (if not
  190. * CPU) specific.
  191. */
  192. platform_cpu_die(cpu);
  193. /*
  194. * Do not return to the idle loop - jump back to the secondary
  195. * cpu initialisation. There's some initialisation which needs
  196. * to be repeated to undo the effects of taking the CPU offline.
  197. */
  198. __asm__("mov sp, %0\n"
  199. " mov fp, #0\n"
  200. " b secondary_start_kernel"
  201. :
  202. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  203. }
  204. #endif /* CONFIG_HOTPLUG_CPU */
  205. int __cpu_logical_map[NR_CPUS];
  206. void __init smp_setup_processor_id(void)
  207. {
  208. int i;
  209. u32 cpu = is_smp() ? read_cpuid_mpidr() & 0xff : 0;
  210. cpu_logical_map(0) = cpu;
  211. for (i = 1; i < NR_CPUS; ++i)
  212. cpu_logical_map(i) = i == cpu ? 0 : i;
  213. printk(KERN_INFO "Booting Linux on physical CPU %d\n", cpu);
  214. }
  215. /*
  216. * Called by both boot and secondaries to move global data into
  217. * per-processor storage.
  218. */
  219. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  220. {
  221. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  222. cpu_info->loops_per_jiffy = loops_per_jiffy;
  223. store_cpu_topology(cpuid);
  224. }
  225. /*
  226. * This is the secondary CPU boot entry. We're using this CPUs
  227. * idle thread stack, but a set of temporary page tables.
  228. */
  229. asmlinkage void __cpuinit secondary_start_kernel(void)
  230. {
  231. struct mm_struct *mm = &init_mm;
  232. unsigned int cpu = smp_processor_id();
  233. printk("CPU%u: Booted secondary processor\n", cpu);
  234. /*
  235. * All kernel threads share the same mm context; grab a
  236. * reference and switch to it.
  237. */
  238. atomic_inc(&mm->mm_count);
  239. current->active_mm = mm;
  240. cpumask_set_cpu(cpu, mm_cpumask(mm));
  241. cpu_switch_mm(mm->pgd, mm);
  242. enter_lazy_tlb(mm, current);
  243. local_flush_tlb_all();
  244. cpu_init();
  245. preempt_disable();
  246. trace_hardirqs_off();
  247. /*
  248. * Give the platform a chance to do its own initialisation.
  249. */
  250. platform_secondary_init(cpu);
  251. notify_cpu_starting(cpu);
  252. calibrate_delay();
  253. smp_store_cpu_info(cpu);
  254. /*
  255. * OK, now it's safe to let the boot CPU continue. Wait for
  256. * the CPU migration code to notice that the CPU is online
  257. * before we continue.
  258. */
  259. set_cpu_online(cpu, true);
  260. /*
  261. * Setup the percpu timer for this CPU.
  262. */
  263. percpu_timer_setup();
  264. while (!cpu_active(cpu))
  265. cpu_relax();
  266. /*
  267. * cpu_active bit is set, so it's safe to enalbe interrupts
  268. * now.
  269. */
  270. local_irq_enable();
  271. local_fiq_enable();
  272. /*
  273. * OK, it's off to the idle thread for us
  274. */
  275. cpu_idle();
  276. }
  277. void __init smp_cpus_done(unsigned int max_cpus)
  278. {
  279. int cpu;
  280. unsigned long bogosum = 0;
  281. for_each_online_cpu(cpu)
  282. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  283. printk(KERN_INFO "SMP: Total of %d processors activated "
  284. "(%lu.%02lu BogoMIPS).\n",
  285. num_online_cpus(),
  286. bogosum / (500000/HZ),
  287. (bogosum / (5000/HZ)) % 100);
  288. }
  289. void __init smp_prepare_boot_cpu(void)
  290. {
  291. unsigned int cpu = smp_processor_id();
  292. per_cpu(cpu_data, cpu).idle = current;
  293. }
  294. void __init smp_prepare_cpus(unsigned int max_cpus)
  295. {
  296. unsigned int ncores = num_possible_cpus();
  297. init_cpu_topology();
  298. smp_store_cpu_info(smp_processor_id());
  299. /*
  300. * are we trying to boot more cores than exist?
  301. */
  302. if (max_cpus > ncores)
  303. max_cpus = ncores;
  304. if (ncores > 1 && max_cpus) {
  305. /*
  306. * Enable the local timer or broadcast device for the
  307. * boot CPU, but only if we have more than one CPU.
  308. */
  309. percpu_timer_setup();
  310. /*
  311. * Initialise the present map, which describes the set of CPUs
  312. * actually populated at the present time. A platform should
  313. * re-initialize the map in platform_smp_prepare_cpus() if
  314. * present != possible (e.g. physical hotplug).
  315. */
  316. init_cpu_present(&cpu_possible_map);
  317. /*
  318. * Initialise the SCU if there are more than one CPU
  319. * and let them know where to start.
  320. */
  321. platform_smp_prepare_cpus(max_cpus);
  322. }
  323. }
  324. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  325. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  326. {
  327. smp_cross_call = fn;
  328. }
  329. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  330. {
  331. smp_cross_call(mask, IPI_CALL_FUNC);
  332. }
  333. void arch_send_call_function_single_ipi(int cpu)
  334. {
  335. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  336. }
  337. static const char *ipi_types[NR_IPI] = {
  338. #define S(x,s) [x - IPI_TIMER] = s
  339. S(IPI_TIMER, "Timer broadcast interrupts"),
  340. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  341. S(IPI_CALL_FUNC, "Function call interrupts"),
  342. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  343. S(IPI_CPU_STOP, "CPU stop interrupts"),
  344. };
  345. void show_ipi_list(struct seq_file *p, int prec)
  346. {
  347. unsigned int cpu, i;
  348. for (i = 0; i < NR_IPI; i++) {
  349. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  350. for_each_present_cpu(cpu)
  351. seq_printf(p, "%10u ",
  352. __get_irq_stat(cpu, ipi_irqs[i]));
  353. seq_printf(p, " %s\n", ipi_types[i]);
  354. }
  355. }
  356. u64 smp_irq_stat_cpu(unsigned int cpu)
  357. {
  358. u64 sum = 0;
  359. int i;
  360. for (i = 0; i < NR_IPI; i++)
  361. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  362. return sum;
  363. }
  364. /*
  365. * Timer (local or broadcast) support
  366. */
  367. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  368. static void ipi_timer(void)
  369. {
  370. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  371. irq_enter();
  372. evt->event_handler(evt);
  373. irq_exit();
  374. }
  375. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  376. static void smp_timer_broadcast(const struct cpumask *mask)
  377. {
  378. smp_cross_call(mask, IPI_TIMER);
  379. }
  380. #else
  381. #define smp_timer_broadcast NULL
  382. #endif
  383. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  384. struct clock_event_device *evt)
  385. {
  386. }
  387. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  388. {
  389. evt->name = "dummy_timer";
  390. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  391. CLOCK_EVT_FEAT_PERIODIC |
  392. CLOCK_EVT_FEAT_DUMMY;
  393. evt->rating = 400;
  394. evt->mult = 1;
  395. evt->set_mode = broadcast_timer_set_mode;
  396. clockevents_register_device(evt);
  397. }
  398. void __cpuinit percpu_timer_setup(void)
  399. {
  400. unsigned int cpu = smp_processor_id();
  401. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  402. evt->cpumask = cpumask_of(cpu);
  403. evt->broadcast = smp_timer_broadcast;
  404. if (local_timer_setup(evt))
  405. broadcast_timer_setup(evt);
  406. }
  407. #ifdef CONFIG_HOTPLUG_CPU
  408. /*
  409. * The generic clock events code purposely does not stop the local timer
  410. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  411. * manually here.
  412. */
  413. static void percpu_timer_stop(void)
  414. {
  415. unsigned int cpu = smp_processor_id();
  416. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  417. local_timer_stop(evt);
  418. }
  419. #endif
  420. static DEFINE_RAW_SPINLOCK(stop_lock);
  421. /*
  422. * ipi_cpu_stop - handle IPI from smp_send_stop()
  423. */
  424. static void ipi_cpu_stop(unsigned int cpu)
  425. {
  426. if (system_state == SYSTEM_BOOTING ||
  427. system_state == SYSTEM_RUNNING) {
  428. raw_spin_lock(&stop_lock);
  429. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  430. dump_stack();
  431. raw_spin_unlock(&stop_lock);
  432. }
  433. set_cpu_online(cpu, false);
  434. local_fiq_disable();
  435. local_irq_disable();
  436. #ifdef CONFIG_HOTPLUG_CPU
  437. platform_cpu_kill(cpu);
  438. #endif
  439. while (1)
  440. cpu_relax();
  441. }
  442. /*
  443. * Main handler for inter-processor interrupts
  444. */
  445. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  446. {
  447. handle_IPI(ipinr, regs);
  448. }
  449. void handle_IPI(int ipinr, struct pt_regs *regs)
  450. {
  451. unsigned int cpu = smp_processor_id();
  452. struct pt_regs *old_regs = set_irq_regs(regs);
  453. if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
  454. __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
  455. switch (ipinr) {
  456. case IPI_TIMER:
  457. ipi_timer();
  458. break;
  459. case IPI_RESCHEDULE:
  460. scheduler_ipi();
  461. break;
  462. case IPI_CALL_FUNC:
  463. generic_smp_call_function_interrupt();
  464. break;
  465. case IPI_CALL_FUNC_SINGLE:
  466. generic_smp_call_function_single_interrupt();
  467. break;
  468. case IPI_CPU_STOP:
  469. ipi_cpu_stop(cpu);
  470. break;
  471. default:
  472. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  473. cpu, ipinr);
  474. break;
  475. }
  476. set_irq_regs(old_regs);
  477. }
  478. void smp_send_reschedule(int cpu)
  479. {
  480. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  481. }
  482. void smp_send_stop(void)
  483. {
  484. unsigned long timeout;
  485. if (num_online_cpus() > 1) {
  486. cpumask_t mask = cpu_online_map;
  487. cpu_clear(smp_processor_id(), mask);
  488. smp_cross_call(&mask, IPI_CPU_STOP);
  489. }
  490. /* Wait up to one second for other CPUs to stop */
  491. timeout = USEC_PER_SEC;
  492. while (num_online_cpus() > 1 && timeout--)
  493. udelay(1);
  494. if (num_online_cpus() > 1)
  495. pr_warning("SMP: failed to stop secondary CPUs\n");
  496. }
  497. /*
  498. * not supported here
  499. */
  500. int setup_profiling_timer(unsigned int multiplier)
  501. {
  502. return -EINVAL;
  503. }