perf_event.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/bitmap.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/kernel.h>
  16. #include <linux/export.h>
  17. #include <linux/perf_event.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/cputype.h>
  22. #include <asm/irq.h>
  23. #include <asm/irq_regs.h>
  24. #include <asm/pmu.h>
  25. #include <asm/stacktrace.h>
  26. /*
  27. * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
  28. * another platform that supports more, we need to increase this to be the
  29. * largest of all platforms.
  30. *
  31. * ARMv7 supports up to 32 events:
  32. * cycle counter CCNT + 31 events counters CNT0..30.
  33. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  34. */
  35. #define ARMPMU_MAX_HWEVENTS 32
  36. static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
  37. static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
  38. static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
  39. #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
  40. /* Set at runtime when we know what CPU type we are. */
  41. static struct arm_pmu *cpu_pmu;
  42. enum arm_perf_pmu_ids
  43. armpmu_get_pmu_id(void)
  44. {
  45. int id = -ENODEV;
  46. if (cpu_pmu != NULL)
  47. id = cpu_pmu->id;
  48. return id;
  49. }
  50. EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
  51. int perf_num_counters(void)
  52. {
  53. int max_events = 0;
  54. if (cpu_pmu != NULL)
  55. max_events = cpu_pmu->num_events;
  56. return max_events;
  57. }
  58. EXPORT_SYMBOL_GPL(perf_num_counters);
  59. #define HW_OP_UNSUPPORTED 0xFFFF
  60. #define C(_x) \
  61. PERF_COUNT_HW_CACHE_##_x
  62. #define CACHE_OP_UNSUPPORTED 0xFFFF
  63. static int
  64. armpmu_map_cache_event(const unsigned (*cache_map)
  65. [PERF_COUNT_HW_CACHE_MAX]
  66. [PERF_COUNT_HW_CACHE_OP_MAX]
  67. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  68. u64 config)
  69. {
  70. unsigned int cache_type, cache_op, cache_result, ret;
  71. cache_type = (config >> 0) & 0xff;
  72. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  73. return -EINVAL;
  74. cache_op = (config >> 8) & 0xff;
  75. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  76. return -EINVAL;
  77. cache_result = (config >> 16) & 0xff;
  78. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  79. return -EINVAL;
  80. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  81. if (ret == CACHE_OP_UNSUPPORTED)
  82. return -ENOENT;
  83. return ret;
  84. }
  85. static int
  86. armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  87. {
  88. int mapping = (*event_map)[config];
  89. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  90. }
  91. static int
  92. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  93. {
  94. return (int)(config & raw_event_mask);
  95. }
  96. static int map_cpu_event(struct perf_event *event,
  97. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  98. const unsigned (*cache_map)
  99. [PERF_COUNT_HW_CACHE_MAX]
  100. [PERF_COUNT_HW_CACHE_OP_MAX]
  101. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  102. u32 raw_event_mask)
  103. {
  104. u64 config = event->attr.config;
  105. switch (event->attr.type) {
  106. case PERF_TYPE_HARDWARE:
  107. return armpmu_map_event(event_map, config);
  108. case PERF_TYPE_HW_CACHE:
  109. return armpmu_map_cache_event(cache_map, config);
  110. case PERF_TYPE_RAW:
  111. return armpmu_map_raw_event(raw_event_mask, config);
  112. }
  113. return -ENOENT;
  114. }
  115. int
  116. armpmu_event_set_period(struct perf_event *event,
  117. struct hw_perf_event *hwc,
  118. int idx)
  119. {
  120. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  121. s64 left = local64_read(&hwc->period_left);
  122. s64 period = hwc->sample_period;
  123. int ret = 0;
  124. if (unlikely(left <= -period)) {
  125. left = period;
  126. local64_set(&hwc->period_left, left);
  127. hwc->last_period = period;
  128. ret = 1;
  129. }
  130. if (unlikely(left <= 0)) {
  131. left += period;
  132. local64_set(&hwc->period_left, left);
  133. hwc->last_period = period;
  134. ret = 1;
  135. }
  136. if (left > (s64)armpmu->max_period)
  137. left = armpmu->max_period;
  138. local64_set(&hwc->prev_count, (u64)-left);
  139. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  140. perf_event_update_userpage(event);
  141. return ret;
  142. }
  143. u64
  144. armpmu_event_update(struct perf_event *event,
  145. struct hw_perf_event *hwc,
  146. int idx, int overflow)
  147. {
  148. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  149. u64 delta, prev_raw_count, new_raw_count;
  150. again:
  151. prev_raw_count = local64_read(&hwc->prev_count);
  152. new_raw_count = armpmu->read_counter(idx);
  153. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  154. new_raw_count) != prev_raw_count)
  155. goto again;
  156. new_raw_count &= armpmu->max_period;
  157. prev_raw_count &= armpmu->max_period;
  158. if (overflow)
  159. delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
  160. else
  161. delta = new_raw_count - prev_raw_count;
  162. local64_add(delta, &event->count);
  163. local64_sub(delta, &hwc->period_left);
  164. return new_raw_count;
  165. }
  166. static void
  167. armpmu_read(struct perf_event *event)
  168. {
  169. struct hw_perf_event *hwc = &event->hw;
  170. /* Don't read disabled counters! */
  171. if (hwc->idx < 0)
  172. return;
  173. armpmu_event_update(event, hwc, hwc->idx, 0);
  174. }
  175. static void
  176. armpmu_stop(struct perf_event *event, int flags)
  177. {
  178. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  179. struct hw_perf_event *hwc = &event->hw;
  180. /*
  181. * ARM pmu always has to update the counter, so ignore
  182. * PERF_EF_UPDATE, see comments in armpmu_start().
  183. */
  184. if (!(hwc->state & PERF_HES_STOPPED)) {
  185. armpmu->disable(hwc, hwc->idx);
  186. barrier(); /* why? */
  187. armpmu_event_update(event, hwc, hwc->idx, 0);
  188. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  189. }
  190. }
  191. static void
  192. armpmu_start(struct perf_event *event, int flags)
  193. {
  194. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  195. struct hw_perf_event *hwc = &event->hw;
  196. /*
  197. * ARM pmu always has to reprogram the period, so ignore
  198. * PERF_EF_RELOAD, see the comment below.
  199. */
  200. if (flags & PERF_EF_RELOAD)
  201. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  202. hwc->state = 0;
  203. /*
  204. * Set the period again. Some counters can't be stopped, so when we
  205. * were stopped we simply disabled the IRQ source and the counter
  206. * may have been left counting. If we don't do this step then we may
  207. * get an interrupt too soon or *way* too late if the overflow has
  208. * happened since disabling.
  209. */
  210. armpmu_event_set_period(event, hwc, hwc->idx);
  211. armpmu->enable(hwc, hwc->idx);
  212. }
  213. static void
  214. armpmu_del(struct perf_event *event, int flags)
  215. {
  216. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  217. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  218. struct hw_perf_event *hwc = &event->hw;
  219. int idx = hwc->idx;
  220. WARN_ON(idx < 0);
  221. armpmu_stop(event, PERF_EF_UPDATE);
  222. hw_events->events[idx] = NULL;
  223. clear_bit(idx, hw_events->used_mask);
  224. perf_event_update_userpage(event);
  225. }
  226. static int
  227. armpmu_add(struct perf_event *event, int flags)
  228. {
  229. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  230. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  231. struct hw_perf_event *hwc = &event->hw;
  232. int idx;
  233. int err = 0;
  234. perf_pmu_disable(event->pmu);
  235. /* If we don't have a space for the counter then finish early. */
  236. idx = armpmu->get_event_idx(hw_events, hwc);
  237. if (idx < 0) {
  238. err = idx;
  239. goto out;
  240. }
  241. /*
  242. * If there is an event in the counter we are going to use then make
  243. * sure it is disabled.
  244. */
  245. event->hw.idx = idx;
  246. armpmu->disable(hwc, idx);
  247. hw_events->events[idx] = event;
  248. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  249. if (flags & PERF_EF_START)
  250. armpmu_start(event, PERF_EF_RELOAD);
  251. /* Propagate our changes to the userspace mapping. */
  252. perf_event_update_userpage(event);
  253. out:
  254. perf_pmu_enable(event->pmu);
  255. return err;
  256. }
  257. static int
  258. validate_event(struct pmu_hw_events *hw_events,
  259. struct perf_event *event)
  260. {
  261. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  262. struct hw_perf_event fake_event = event->hw;
  263. struct pmu *leader_pmu = event->group_leader->pmu;
  264. if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
  265. return 1;
  266. return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
  267. }
  268. static int
  269. validate_group(struct perf_event *event)
  270. {
  271. struct perf_event *sibling, *leader = event->group_leader;
  272. struct pmu_hw_events fake_pmu;
  273. DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
  274. /*
  275. * Initialise the fake PMU. We only need to populate the
  276. * used_mask for the purposes of validation.
  277. */
  278. memset(fake_used_mask, 0, sizeof(fake_used_mask));
  279. fake_pmu.used_mask = fake_used_mask;
  280. if (!validate_event(&fake_pmu, leader))
  281. return -EINVAL;
  282. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  283. if (!validate_event(&fake_pmu, sibling))
  284. return -EINVAL;
  285. }
  286. if (!validate_event(&fake_pmu, event))
  287. return -EINVAL;
  288. return 0;
  289. }
  290. static irqreturn_t armpmu_platform_irq(int irq, void *dev)
  291. {
  292. struct arm_pmu *armpmu = (struct arm_pmu *) dev;
  293. struct platform_device *plat_device = armpmu->plat_device;
  294. struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
  295. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  296. }
  297. static void
  298. armpmu_release_hardware(struct arm_pmu *armpmu)
  299. {
  300. int i, irq, irqs;
  301. struct platform_device *pmu_device = armpmu->plat_device;
  302. struct arm_pmu_platdata *plat =
  303. dev_get_platdata(&pmu_device->dev);
  304. irqs = min(pmu_device->num_resources, num_possible_cpus());
  305. for (i = 0; i < irqs; ++i) {
  306. if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
  307. continue;
  308. irq = platform_get_irq(pmu_device, i);
  309. if (irq >= 0) {
  310. if (plat && plat->disable_irq)
  311. plat->disable_irq(irq);
  312. free_irq(irq, armpmu);
  313. }
  314. }
  315. release_pmu(armpmu->type);
  316. }
  317. static int
  318. armpmu_reserve_hardware(struct arm_pmu *armpmu)
  319. {
  320. struct arm_pmu_platdata *plat;
  321. irq_handler_t handle_irq;
  322. int i, err, irq, irqs;
  323. struct platform_device *pmu_device = armpmu->plat_device;
  324. if (!pmu_device)
  325. return -ENODEV;
  326. err = reserve_pmu(armpmu->type);
  327. if (err) {
  328. pr_warning("unable to reserve pmu\n");
  329. return err;
  330. }
  331. plat = dev_get_platdata(&pmu_device->dev);
  332. if (plat && plat->handle_irq)
  333. handle_irq = armpmu_platform_irq;
  334. else
  335. handle_irq = armpmu->handle_irq;
  336. irqs = min(pmu_device->num_resources, num_possible_cpus());
  337. if (irqs < 1) {
  338. pr_err("no irqs for PMUs defined\n");
  339. return -ENODEV;
  340. }
  341. for (i = 0; i < irqs; ++i) {
  342. err = 0;
  343. irq = platform_get_irq(pmu_device, i);
  344. if (irq < 0)
  345. continue;
  346. /*
  347. * If we have a single PMU interrupt that we can't shift,
  348. * assume that we're running on a uniprocessor machine and
  349. * continue. Otherwise, continue without this interrupt.
  350. */
  351. if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
  352. pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
  353. irq, i);
  354. continue;
  355. }
  356. err = request_irq(irq, handle_irq,
  357. IRQF_DISABLED | IRQF_NOBALANCING,
  358. "arm-pmu", armpmu);
  359. if (err) {
  360. pr_err("unable to request IRQ%d for ARM PMU counters\n",
  361. irq);
  362. armpmu_release_hardware(armpmu);
  363. return err;
  364. } else if (plat && plat->enable_irq)
  365. plat->enable_irq(irq);
  366. cpumask_set_cpu(i, &armpmu->active_irqs);
  367. }
  368. return 0;
  369. }
  370. static void
  371. hw_perf_event_destroy(struct perf_event *event)
  372. {
  373. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  374. atomic_t *active_events = &armpmu->active_events;
  375. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  376. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  377. armpmu_release_hardware(armpmu);
  378. mutex_unlock(pmu_reserve_mutex);
  379. }
  380. }
  381. static int
  382. event_requires_mode_exclusion(struct perf_event_attr *attr)
  383. {
  384. return attr->exclude_idle || attr->exclude_user ||
  385. attr->exclude_kernel || attr->exclude_hv;
  386. }
  387. static int
  388. __hw_perf_event_init(struct perf_event *event)
  389. {
  390. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  391. struct hw_perf_event *hwc = &event->hw;
  392. int mapping, err;
  393. mapping = armpmu->map_event(event);
  394. if (mapping < 0) {
  395. pr_debug("event %x:%llx not supported\n", event->attr.type,
  396. event->attr.config);
  397. return mapping;
  398. }
  399. /*
  400. * We don't assign an index until we actually place the event onto
  401. * hardware. Use -1 to signify that we haven't decided where to put it
  402. * yet. For SMP systems, each core has it's own PMU so we can't do any
  403. * clever allocation or constraints checking at this point.
  404. */
  405. hwc->idx = -1;
  406. hwc->config_base = 0;
  407. hwc->config = 0;
  408. hwc->event_base = 0;
  409. /*
  410. * Check whether we need to exclude the counter from certain modes.
  411. */
  412. if ((!armpmu->set_event_filter ||
  413. armpmu->set_event_filter(hwc, &event->attr)) &&
  414. event_requires_mode_exclusion(&event->attr)) {
  415. pr_debug("ARM performance counters do not support "
  416. "mode exclusion\n");
  417. return -EPERM;
  418. }
  419. /*
  420. * Store the event encoding into the config_base field.
  421. */
  422. hwc->config_base |= (unsigned long)mapping;
  423. if (!hwc->sample_period) {
  424. hwc->sample_period = armpmu->max_period;
  425. hwc->last_period = hwc->sample_period;
  426. local64_set(&hwc->period_left, hwc->sample_period);
  427. }
  428. err = 0;
  429. if (event->group_leader != event) {
  430. err = validate_group(event);
  431. if (err)
  432. return -EINVAL;
  433. }
  434. return err;
  435. }
  436. static int armpmu_event_init(struct perf_event *event)
  437. {
  438. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  439. int err = 0;
  440. atomic_t *active_events = &armpmu->active_events;
  441. if (armpmu->map_event(event) == -ENOENT)
  442. return -ENOENT;
  443. event->destroy = hw_perf_event_destroy;
  444. if (!atomic_inc_not_zero(active_events)) {
  445. mutex_lock(&armpmu->reserve_mutex);
  446. if (atomic_read(active_events) == 0)
  447. err = armpmu_reserve_hardware(armpmu);
  448. if (!err)
  449. atomic_inc(active_events);
  450. mutex_unlock(&armpmu->reserve_mutex);
  451. }
  452. if (err)
  453. return err;
  454. err = __hw_perf_event_init(event);
  455. if (err)
  456. hw_perf_event_destroy(event);
  457. return err;
  458. }
  459. static void armpmu_enable(struct pmu *pmu)
  460. {
  461. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  462. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  463. int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
  464. if (enabled)
  465. armpmu->start();
  466. }
  467. static void armpmu_disable(struct pmu *pmu)
  468. {
  469. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  470. armpmu->stop();
  471. }
  472. static void __init armpmu_init(struct arm_pmu *armpmu)
  473. {
  474. atomic_set(&armpmu->active_events, 0);
  475. mutex_init(&armpmu->reserve_mutex);
  476. armpmu->pmu = (struct pmu) {
  477. .pmu_enable = armpmu_enable,
  478. .pmu_disable = armpmu_disable,
  479. .event_init = armpmu_event_init,
  480. .add = armpmu_add,
  481. .del = armpmu_del,
  482. .start = armpmu_start,
  483. .stop = armpmu_stop,
  484. .read = armpmu_read,
  485. };
  486. }
  487. int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
  488. {
  489. armpmu_init(armpmu);
  490. return perf_pmu_register(&armpmu->pmu, name, type);
  491. }
  492. /* Include the PMU-specific implementations. */
  493. #include "perf_event_xscale.c"
  494. #include "perf_event_v6.c"
  495. #include "perf_event_v7.c"
  496. /*
  497. * Ensure the PMU has sane values out of reset.
  498. * This requires SMP to be available, so exists as a separate initcall.
  499. */
  500. static int __init
  501. cpu_pmu_reset(void)
  502. {
  503. if (cpu_pmu && cpu_pmu->reset)
  504. return on_each_cpu(cpu_pmu->reset, NULL, 1);
  505. return 0;
  506. }
  507. arch_initcall(cpu_pmu_reset);
  508. /*
  509. * PMU platform driver and devicetree bindings.
  510. */
  511. static struct of_device_id armpmu_of_device_ids[] = {
  512. {.compatible = "arm,cortex-a9-pmu"},
  513. {.compatible = "arm,cortex-a8-pmu"},
  514. {.compatible = "arm,arm1136-pmu"},
  515. {.compatible = "arm,arm1176-pmu"},
  516. {},
  517. };
  518. static struct platform_device_id armpmu_plat_device_ids[] = {
  519. {.name = "arm-pmu"},
  520. {},
  521. };
  522. static int __devinit armpmu_device_probe(struct platform_device *pdev)
  523. {
  524. if (!cpu_pmu)
  525. return -ENODEV;
  526. cpu_pmu->plat_device = pdev;
  527. return 0;
  528. }
  529. static struct platform_driver armpmu_driver = {
  530. .driver = {
  531. .name = "arm-pmu",
  532. .of_match_table = armpmu_of_device_ids,
  533. },
  534. .probe = armpmu_device_probe,
  535. .id_table = armpmu_plat_device_ids,
  536. };
  537. static int __init register_pmu_driver(void)
  538. {
  539. return platform_driver_register(&armpmu_driver);
  540. }
  541. device_initcall(register_pmu_driver);
  542. static struct pmu_hw_events *armpmu_get_cpu_events(void)
  543. {
  544. return &__get_cpu_var(cpu_hw_events);
  545. }
  546. static void __init cpu_pmu_init(struct arm_pmu *armpmu)
  547. {
  548. int cpu;
  549. for_each_possible_cpu(cpu) {
  550. struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
  551. events->events = per_cpu(hw_events, cpu);
  552. events->used_mask = per_cpu(used_mask, cpu);
  553. raw_spin_lock_init(&events->pmu_lock);
  554. }
  555. armpmu->get_hw_events = armpmu_get_cpu_events;
  556. armpmu->type = ARM_PMU_DEVICE_CPU;
  557. }
  558. /*
  559. * CPU PMU identification and registration.
  560. */
  561. static int __init
  562. init_hw_perf_events(void)
  563. {
  564. unsigned long cpuid = read_cpuid_id();
  565. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  566. unsigned long part_number = (cpuid & 0xFFF0);
  567. /* ARM Ltd CPUs. */
  568. if (0x41 == implementor) {
  569. switch (part_number) {
  570. case 0xB360: /* ARM1136 */
  571. case 0xB560: /* ARM1156 */
  572. case 0xB760: /* ARM1176 */
  573. cpu_pmu = armv6pmu_init();
  574. break;
  575. case 0xB020: /* ARM11mpcore */
  576. cpu_pmu = armv6mpcore_pmu_init();
  577. break;
  578. case 0xC080: /* Cortex-A8 */
  579. cpu_pmu = armv7_a8_pmu_init();
  580. break;
  581. case 0xC090: /* Cortex-A9 */
  582. cpu_pmu = armv7_a9_pmu_init();
  583. break;
  584. case 0xC050: /* Cortex-A5 */
  585. cpu_pmu = armv7_a5_pmu_init();
  586. break;
  587. case 0xC0F0: /* Cortex-A15 */
  588. cpu_pmu = armv7_a15_pmu_init();
  589. break;
  590. }
  591. /* Intel CPUs [xscale]. */
  592. } else if (0x69 == implementor) {
  593. part_number = (cpuid >> 13) & 0x7;
  594. switch (part_number) {
  595. case 1:
  596. cpu_pmu = xscale1pmu_init();
  597. break;
  598. case 2:
  599. cpu_pmu = xscale2pmu_init();
  600. break;
  601. }
  602. }
  603. if (cpu_pmu) {
  604. pr_info("enabled with %s PMU driver, %d counters available\n",
  605. cpu_pmu->name, cpu_pmu->num_events);
  606. cpu_pmu_init(cpu_pmu);
  607. armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
  608. } else {
  609. pr_info("no hardware support available\n");
  610. }
  611. return 0;
  612. }
  613. early_initcall(init_hw_perf_events);
  614. /*
  615. * Callchain handling code.
  616. */
  617. /*
  618. * The registers we're interested in are at the end of the variable
  619. * length saved register structure. The fp points at the end of this
  620. * structure so the address of this struct is:
  621. * (struct frame_tail *)(xxx->fp)-1
  622. *
  623. * This code has been adapted from the ARM OProfile support.
  624. */
  625. struct frame_tail {
  626. struct frame_tail __user *fp;
  627. unsigned long sp;
  628. unsigned long lr;
  629. } __attribute__((packed));
  630. /*
  631. * Get the return address for a single stackframe and return a pointer to the
  632. * next frame tail.
  633. */
  634. static struct frame_tail __user *
  635. user_backtrace(struct frame_tail __user *tail,
  636. struct perf_callchain_entry *entry)
  637. {
  638. struct frame_tail buftail;
  639. /* Also check accessibility of one struct frame_tail beyond */
  640. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  641. return NULL;
  642. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  643. return NULL;
  644. perf_callchain_store(entry, buftail.lr);
  645. /*
  646. * Frame pointers should strictly progress back up the stack
  647. * (towards higher addresses).
  648. */
  649. if (tail + 1 >= buftail.fp)
  650. return NULL;
  651. return buftail.fp - 1;
  652. }
  653. void
  654. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  655. {
  656. struct frame_tail __user *tail;
  657. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  658. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  659. tail && !((unsigned long)tail & 0x3))
  660. tail = user_backtrace(tail, entry);
  661. }
  662. /*
  663. * Gets called by walk_stackframe() for every stackframe. This will be called
  664. * whist unwinding the stackframe and is like a subroutine return so we use
  665. * the PC.
  666. */
  667. static int
  668. callchain_trace(struct stackframe *fr,
  669. void *data)
  670. {
  671. struct perf_callchain_entry *entry = data;
  672. perf_callchain_store(entry, fr->pc);
  673. return 0;
  674. }
  675. void
  676. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  677. {
  678. struct stackframe fr;
  679. fr.fp = regs->ARM_fp;
  680. fr.sp = regs->ARM_sp;
  681. fr.lr = regs->ARM_lr;
  682. fr.pc = regs->ARM_pc;
  683. walk_stackframe(&fr, callchain_trace, entry);
  684. }