x86.c 139 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <trace/events/kvm.h>
  45. #define CREATE_TRACE_POINTS
  46. #include "trace.h"
  47. #include <asm/debugreg.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <asm/mtrr.h>
  51. #include <asm/mce.h>
  52. #include <asm/i387.h>
  53. #include <asm/xcr.h>
  54. #define MAX_IO_MSRS 256
  55. #define CR0_RESERVED_BITS \
  56. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  57. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  58. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  59. #define CR4_RESERVED_BITS \
  60. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  61. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  62. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  63. | X86_CR4_OSXSAVE \
  64. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  65. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  66. #define KVM_MAX_MCE_BANKS 32
  67. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  68. /* EFER defaults:
  69. * - enable syscall per default because its emulated by KVM
  70. * - enable LME and LMA per default on 64 bit KVM
  71. */
  72. #ifdef CONFIG_X86_64
  73. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  74. #else
  75. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  76. #endif
  77. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  78. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  79. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  80. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  81. struct kvm_cpuid_entry2 __user *entries);
  82. struct kvm_x86_ops *kvm_x86_ops;
  83. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  84. int ignore_msrs = 0;
  85. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  86. #define KVM_NR_SHARED_MSRS 16
  87. struct kvm_shared_msrs_global {
  88. int nr;
  89. u32 msrs[KVM_NR_SHARED_MSRS];
  90. };
  91. struct kvm_shared_msrs {
  92. struct user_return_notifier urn;
  93. bool registered;
  94. struct kvm_shared_msr_values {
  95. u64 host;
  96. u64 curr;
  97. } values[KVM_NR_SHARED_MSRS];
  98. };
  99. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  100. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  101. struct kvm_stats_debugfs_item debugfs_entries[] = {
  102. { "pf_fixed", VCPU_STAT(pf_fixed) },
  103. { "pf_guest", VCPU_STAT(pf_guest) },
  104. { "tlb_flush", VCPU_STAT(tlb_flush) },
  105. { "invlpg", VCPU_STAT(invlpg) },
  106. { "exits", VCPU_STAT(exits) },
  107. { "io_exits", VCPU_STAT(io_exits) },
  108. { "mmio_exits", VCPU_STAT(mmio_exits) },
  109. { "signal_exits", VCPU_STAT(signal_exits) },
  110. { "irq_window", VCPU_STAT(irq_window_exits) },
  111. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  112. { "halt_exits", VCPU_STAT(halt_exits) },
  113. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  114. { "hypercalls", VCPU_STAT(hypercalls) },
  115. { "request_irq", VCPU_STAT(request_irq_exits) },
  116. { "irq_exits", VCPU_STAT(irq_exits) },
  117. { "host_state_reload", VCPU_STAT(host_state_reload) },
  118. { "efer_reload", VCPU_STAT(efer_reload) },
  119. { "fpu_reload", VCPU_STAT(fpu_reload) },
  120. { "insn_emulation", VCPU_STAT(insn_emulation) },
  121. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  122. { "irq_injections", VCPU_STAT(irq_injections) },
  123. { "nmi_injections", VCPU_STAT(nmi_injections) },
  124. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  125. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  126. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  127. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  128. { "mmu_flooded", VM_STAT(mmu_flooded) },
  129. { "mmu_recycled", VM_STAT(mmu_recycled) },
  130. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  131. { "mmu_unsync", VM_STAT(mmu_unsync) },
  132. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  133. { "largepages", VM_STAT(lpages) },
  134. { NULL }
  135. };
  136. u64 __read_mostly host_xcr0;
  137. static inline u32 bit(int bitno)
  138. {
  139. return 1 << (bitno & 31);
  140. }
  141. static void kvm_on_user_return(struct user_return_notifier *urn)
  142. {
  143. unsigned slot;
  144. struct kvm_shared_msrs *locals
  145. = container_of(urn, struct kvm_shared_msrs, urn);
  146. struct kvm_shared_msr_values *values;
  147. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  148. values = &locals->values[slot];
  149. if (values->host != values->curr) {
  150. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  151. values->curr = values->host;
  152. }
  153. }
  154. locals->registered = false;
  155. user_return_notifier_unregister(urn);
  156. }
  157. static void shared_msr_update(unsigned slot, u32 msr)
  158. {
  159. struct kvm_shared_msrs *smsr;
  160. u64 value;
  161. smsr = &__get_cpu_var(shared_msrs);
  162. /* only read, and nobody should modify it at this time,
  163. * so don't need lock */
  164. if (slot >= shared_msrs_global.nr) {
  165. printk(KERN_ERR "kvm: invalid MSR slot!");
  166. return;
  167. }
  168. rdmsrl_safe(msr, &value);
  169. smsr->values[slot].host = value;
  170. smsr->values[slot].curr = value;
  171. }
  172. void kvm_define_shared_msr(unsigned slot, u32 msr)
  173. {
  174. if (slot >= shared_msrs_global.nr)
  175. shared_msrs_global.nr = slot + 1;
  176. shared_msrs_global.msrs[slot] = msr;
  177. /* we need ensured the shared_msr_global have been updated */
  178. smp_wmb();
  179. }
  180. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  181. static void kvm_shared_msr_cpu_online(void)
  182. {
  183. unsigned i;
  184. for (i = 0; i < shared_msrs_global.nr; ++i)
  185. shared_msr_update(i, shared_msrs_global.msrs[i]);
  186. }
  187. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  188. {
  189. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  190. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  191. return;
  192. smsr->values[slot].curr = value;
  193. wrmsrl(shared_msrs_global.msrs[slot], value);
  194. if (!smsr->registered) {
  195. smsr->urn.on_user_return = kvm_on_user_return;
  196. user_return_notifier_register(&smsr->urn);
  197. smsr->registered = true;
  198. }
  199. }
  200. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  201. static void drop_user_return_notifiers(void *ignore)
  202. {
  203. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  204. if (smsr->registered)
  205. kvm_on_user_return(&smsr->urn);
  206. }
  207. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  208. {
  209. if (irqchip_in_kernel(vcpu->kvm))
  210. return vcpu->arch.apic_base;
  211. else
  212. return vcpu->arch.apic_base;
  213. }
  214. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  215. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  216. {
  217. /* TODO: reserve bits check */
  218. if (irqchip_in_kernel(vcpu->kvm))
  219. kvm_lapic_set_base(vcpu, data);
  220. else
  221. vcpu->arch.apic_base = data;
  222. }
  223. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  224. #define EXCPT_BENIGN 0
  225. #define EXCPT_CONTRIBUTORY 1
  226. #define EXCPT_PF 2
  227. static int exception_class(int vector)
  228. {
  229. switch (vector) {
  230. case PF_VECTOR:
  231. return EXCPT_PF;
  232. case DE_VECTOR:
  233. case TS_VECTOR:
  234. case NP_VECTOR:
  235. case SS_VECTOR:
  236. case GP_VECTOR:
  237. return EXCPT_CONTRIBUTORY;
  238. default:
  239. break;
  240. }
  241. return EXCPT_BENIGN;
  242. }
  243. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  244. unsigned nr, bool has_error, u32 error_code,
  245. bool reinject)
  246. {
  247. u32 prev_nr;
  248. int class1, class2;
  249. if (!vcpu->arch.exception.pending) {
  250. queue:
  251. vcpu->arch.exception.pending = true;
  252. vcpu->arch.exception.has_error_code = has_error;
  253. vcpu->arch.exception.nr = nr;
  254. vcpu->arch.exception.error_code = error_code;
  255. vcpu->arch.exception.reinject = reinject;
  256. return;
  257. }
  258. /* to check exception */
  259. prev_nr = vcpu->arch.exception.nr;
  260. if (prev_nr == DF_VECTOR) {
  261. /* triple fault -> shutdown */
  262. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  263. return;
  264. }
  265. class1 = exception_class(prev_nr);
  266. class2 = exception_class(nr);
  267. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  268. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  269. /* generate double fault per SDM Table 5-5 */
  270. vcpu->arch.exception.pending = true;
  271. vcpu->arch.exception.has_error_code = true;
  272. vcpu->arch.exception.nr = DF_VECTOR;
  273. vcpu->arch.exception.error_code = 0;
  274. } else
  275. /* replace previous exception with a new one in a hope
  276. that instruction re-execution will regenerate lost
  277. exception */
  278. goto queue;
  279. }
  280. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  281. {
  282. kvm_multiple_exception(vcpu, nr, false, 0, false);
  283. }
  284. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  285. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  286. {
  287. kvm_multiple_exception(vcpu, nr, false, 0, true);
  288. }
  289. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  290. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  291. u32 error_code)
  292. {
  293. ++vcpu->stat.pf_guest;
  294. vcpu->arch.cr2 = addr;
  295. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  296. }
  297. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  298. {
  299. vcpu->arch.nmi_pending = 1;
  300. }
  301. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  302. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  303. {
  304. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  305. }
  306. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  307. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  308. {
  309. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  310. }
  311. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  312. /*
  313. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  314. * a #GP and return false.
  315. */
  316. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  317. {
  318. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  319. return true;
  320. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  321. return false;
  322. }
  323. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  324. /*
  325. * Load the pae pdptrs. Return true is they are all valid.
  326. */
  327. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  328. {
  329. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  330. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  331. int i;
  332. int ret;
  333. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  334. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  335. offset * sizeof(u64), sizeof(pdpte));
  336. if (ret < 0) {
  337. ret = 0;
  338. goto out;
  339. }
  340. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  341. if (is_present_gpte(pdpte[i]) &&
  342. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  343. ret = 0;
  344. goto out;
  345. }
  346. }
  347. ret = 1;
  348. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  349. __set_bit(VCPU_EXREG_PDPTR,
  350. (unsigned long *)&vcpu->arch.regs_avail);
  351. __set_bit(VCPU_EXREG_PDPTR,
  352. (unsigned long *)&vcpu->arch.regs_dirty);
  353. out:
  354. return ret;
  355. }
  356. EXPORT_SYMBOL_GPL(load_pdptrs);
  357. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  358. {
  359. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  360. bool changed = true;
  361. int r;
  362. if (is_long_mode(vcpu) || !is_pae(vcpu))
  363. return false;
  364. if (!test_bit(VCPU_EXREG_PDPTR,
  365. (unsigned long *)&vcpu->arch.regs_avail))
  366. return true;
  367. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  368. if (r < 0)
  369. goto out;
  370. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  371. out:
  372. return changed;
  373. }
  374. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  375. {
  376. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  377. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  378. X86_CR0_CD | X86_CR0_NW;
  379. cr0 |= X86_CR0_ET;
  380. #ifdef CONFIG_X86_64
  381. if (cr0 & 0xffffffff00000000UL)
  382. return 1;
  383. #endif
  384. cr0 &= ~CR0_RESERVED_BITS;
  385. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  386. return 1;
  387. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  388. return 1;
  389. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  390. #ifdef CONFIG_X86_64
  391. if ((vcpu->arch.efer & EFER_LME)) {
  392. int cs_db, cs_l;
  393. if (!is_pae(vcpu))
  394. return 1;
  395. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  396. if (cs_l)
  397. return 1;
  398. } else
  399. #endif
  400. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
  401. return 1;
  402. }
  403. kvm_x86_ops->set_cr0(vcpu, cr0);
  404. if ((cr0 ^ old_cr0) & update_bits)
  405. kvm_mmu_reset_context(vcpu);
  406. return 0;
  407. }
  408. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  409. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  410. {
  411. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  412. }
  413. EXPORT_SYMBOL_GPL(kvm_lmsw);
  414. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  415. {
  416. u64 xcr0;
  417. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  418. if (index != XCR_XFEATURE_ENABLED_MASK)
  419. return 1;
  420. xcr0 = xcr;
  421. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  422. return 1;
  423. if (!(xcr0 & XSTATE_FP))
  424. return 1;
  425. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  426. return 1;
  427. if (xcr0 & ~host_xcr0)
  428. return 1;
  429. vcpu->arch.xcr0 = xcr0;
  430. vcpu->guest_xcr0_loaded = 0;
  431. return 0;
  432. }
  433. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  434. {
  435. if (__kvm_set_xcr(vcpu, index, xcr)) {
  436. kvm_inject_gp(vcpu, 0);
  437. return 1;
  438. }
  439. return 0;
  440. }
  441. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  442. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  443. {
  444. struct kvm_cpuid_entry2 *best;
  445. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  446. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  447. }
  448. static void update_cpuid(struct kvm_vcpu *vcpu)
  449. {
  450. struct kvm_cpuid_entry2 *best;
  451. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  452. if (!best)
  453. return;
  454. /* Update OSXSAVE bit */
  455. if (cpu_has_xsave && best->function == 0x1) {
  456. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  457. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  458. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  459. }
  460. }
  461. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  462. {
  463. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  464. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  465. if (cr4 & CR4_RESERVED_BITS)
  466. return 1;
  467. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  468. return 1;
  469. if (is_long_mode(vcpu)) {
  470. if (!(cr4 & X86_CR4_PAE))
  471. return 1;
  472. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  473. && ((cr4 ^ old_cr4) & pdptr_bits)
  474. && !load_pdptrs(vcpu, vcpu->arch.cr3))
  475. return 1;
  476. if (cr4 & X86_CR4_VMXE)
  477. return 1;
  478. kvm_x86_ops->set_cr4(vcpu, cr4);
  479. if ((cr4 ^ old_cr4) & pdptr_bits)
  480. kvm_mmu_reset_context(vcpu);
  481. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  482. update_cpuid(vcpu);
  483. return 0;
  484. }
  485. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  486. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  487. {
  488. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  489. kvm_mmu_sync_roots(vcpu);
  490. kvm_mmu_flush_tlb(vcpu);
  491. return 0;
  492. }
  493. if (is_long_mode(vcpu)) {
  494. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  495. return 1;
  496. } else {
  497. if (is_pae(vcpu)) {
  498. if (cr3 & CR3_PAE_RESERVED_BITS)
  499. return 1;
  500. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
  501. return 1;
  502. }
  503. /*
  504. * We don't check reserved bits in nonpae mode, because
  505. * this isn't enforced, and VMware depends on this.
  506. */
  507. }
  508. /*
  509. * Does the new cr3 value map to physical memory? (Note, we
  510. * catch an invalid cr3 even in real-mode, because it would
  511. * cause trouble later on when we turn on paging anyway.)
  512. *
  513. * A real CPU would silently accept an invalid cr3 and would
  514. * attempt to use it - with largely undefined (and often hard
  515. * to debug) behavior on the guest side.
  516. */
  517. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  518. return 1;
  519. vcpu->arch.cr3 = cr3;
  520. vcpu->arch.mmu.new_cr3(vcpu);
  521. return 0;
  522. }
  523. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  524. int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  525. {
  526. if (cr8 & CR8_RESERVED_BITS)
  527. return 1;
  528. if (irqchip_in_kernel(vcpu->kvm))
  529. kvm_lapic_set_tpr(vcpu, cr8);
  530. else
  531. vcpu->arch.cr8 = cr8;
  532. return 0;
  533. }
  534. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  535. {
  536. if (__kvm_set_cr8(vcpu, cr8))
  537. kvm_inject_gp(vcpu, 0);
  538. }
  539. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  540. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  541. {
  542. if (irqchip_in_kernel(vcpu->kvm))
  543. return kvm_lapic_get_cr8(vcpu);
  544. else
  545. return vcpu->arch.cr8;
  546. }
  547. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  548. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  549. {
  550. switch (dr) {
  551. case 0 ... 3:
  552. vcpu->arch.db[dr] = val;
  553. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  554. vcpu->arch.eff_db[dr] = val;
  555. break;
  556. case 4:
  557. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  558. return 1; /* #UD */
  559. /* fall through */
  560. case 6:
  561. if (val & 0xffffffff00000000ULL)
  562. return -1; /* #GP */
  563. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  564. break;
  565. case 5:
  566. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  567. return 1; /* #UD */
  568. /* fall through */
  569. default: /* 7 */
  570. if (val & 0xffffffff00000000ULL)
  571. return -1; /* #GP */
  572. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  573. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  574. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  575. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  576. }
  577. break;
  578. }
  579. return 0;
  580. }
  581. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  582. {
  583. int res;
  584. res = __kvm_set_dr(vcpu, dr, val);
  585. if (res > 0)
  586. kvm_queue_exception(vcpu, UD_VECTOR);
  587. else if (res < 0)
  588. kvm_inject_gp(vcpu, 0);
  589. return res;
  590. }
  591. EXPORT_SYMBOL_GPL(kvm_set_dr);
  592. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  593. {
  594. switch (dr) {
  595. case 0 ... 3:
  596. *val = vcpu->arch.db[dr];
  597. break;
  598. case 4:
  599. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  600. return 1;
  601. /* fall through */
  602. case 6:
  603. *val = vcpu->arch.dr6;
  604. break;
  605. case 5:
  606. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  607. return 1;
  608. /* fall through */
  609. default: /* 7 */
  610. *val = vcpu->arch.dr7;
  611. break;
  612. }
  613. return 0;
  614. }
  615. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  616. {
  617. if (_kvm_get_dr(vcpu, dr, val)) {
  618. kvm_queue_exception(vcpu, UD_VECTOR);
  619. return 1;
  620. }
  621. return 0;
  622. }
  623. EXPORT_SYMBOL_GPL(kvm_get_dr);
  624. /*
  625. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  626. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  627. *
  628. * This list is modified at module load time to reflect the
  629. * capabilities of the host cpu. This capabilities test skips MSRs that are
  630. * kvm-specific. Those are put in the beginning of the list.
  631. */
  632. #define KVM_SAVE_MSRS_BEGIN 7
  633. static u32 msrs_to_save[] = {
  634. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  635. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  636. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  637. HV_X64_MSR_APIC_ASSIST_PAGE,
  638. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  639. MSR_K6_STAR,
  640. #ifdef CONFIG_X86_64
  641. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  642. #endif
  643. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  644. };
  645. static unsigned num_msrs_to_save;
  646. static u32 emulated_msrs[] = {
  647. MSR_IA32_MISC_ENABLE,
  648. };
  649. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  650. {
  651. u64 old_efer = vcpu->arch.efer;
  652. if (efer & efer_reserved_bits)
  653. return 1;
  654. if (is_paging(vcpu)
  655. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  656. return 1;
  657. if (efer & EFER_FFXSR) {
  658. struct kvm_cpuid_entry2 *feat;
  659. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  660. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  661. return 1;
  662. }
  663. if (efer & EFER_SVME) {
  664. struct kvm_cpuid_entry2 *feat;
  665. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  666. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  667. return 1;
  668. }
  669. efer &= ~EFER_LMA;
  670. efer |= vcpu->arch.efer & EFER_LMA;
  671. kvm_x86_ops->set_efer(vcpu, efer);
  672. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  673. kvm_mmu_reset_context(vcpu);
  674. /* Update reserved bits */
  675. if ((efer ^ old_efer) & EFER_NX)
  676. kvm_mmu_reset_context(vcpu);
  677. return 0;
  678. }
  679. void kvm_enable_efer_bits(u64 mask)
  680. {
  681. efer_reserved_bits &= ~mask;
  682. }
  683. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  684. /*
  685. * Writes msr value into into the appropriate "register".
  686. * Returns 0 on success, non-0 otherwise.
  687. * Assumes vcpu_load() was already called.
  688. */
  689. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  690. {
  691. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  692. }
  693. /*
  694. * Adapt set_msr() to msr_io()'s calling convention
  695. */
  696. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  697. {
  698. return kvm_set_msr(vcpu, index, *data);
  699. }
  700. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  701. {
  702. int version;
  703. int r;
  704. struct pvclock_wall_clock wc;
  705. struct timespec boot;
  706. if (!wall_clock)
  707. return;
  708. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  709. if (r)
  710. return;
  711. if (version & 1)
  712. ++version; /* first time write, random junk */
  713. ++version;
  714. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  715. /*
  716. * The guest calculates current wall clock time by adding
  717. * system time (updated by kvm_write_guest_time below) to the
  718. * wall clock specified here. guest system time equals host
  719. * system time for us, thus we must fill in host boot time here.
  720. */
  721. getboottime(&boot);
  722. wc.sec = boot.tv_sec;
  723. wc.nsec = boot.tv_nsec;
  724. wc.version = version;
  725. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  726. version++;
  727. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  728. }
  729. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  730. {
  731. uint32_t quotient, remainder;
  732. /* Don't try to replace with do_div(), this one calculates
  733. * "(dividend << 32) / divisor" */
  734. __asm__ ( "divl %4"
  735. : "=a" (quotient), "=d" (remainder)
  736. : "0" (0), "1" (dividend), "r" (divisor) );
  737. return quotient;
  738. }
  739. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  740. {
  741. uint64_t nsecs = 1000000000LL;
  742. int32_t shift = 0;
  743. uint64_t tps64;
  744. uint32_t tps32;
  745. tps64 = tsc_khz * 1000LL;
  746. while (tps64 > nsecs*2) {
  747. tps64 >>= 1;
  748. shift--;
  749. }
  750. tps32 = (uint32_t)tps64;
  751. while (tps32 <= (uint32_t)nsecs) {
  752. tps32 <<= 1;
  753. shift++;
  754. }
  755. hv_clock->tsc_shift = shift;
  756. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  757. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  758. __func__, tsc_khz, hv_clock->tsc_shift,
  759. hv_clock->tsc_to_system_mul);
  760. }
  761. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  762. static void kvm_write_guest_time(struct kvm_vcpu *v)
  763. {
  764. struct timespec ts;
  765. unsigned long flags;
  766. struct kvm_vcpu_arch *vcpu = &v->arch;
  767. void *shared_kaddr;
  768. unsigned long this_tsc_khz;
  769. if ((!vcpu->time_page))
  770. return;
  771. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  772. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  773. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  774. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  775. }
  776. put_cpu_var(cpu_tsc_khz);
  777. /* Keep irq disabled to prevent changes to the clock */
  778. local_irq_save(flags);
  779. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  780. ktime_get_ts(&ts);
  781. monotonic_to_bootbased(&ts);
  782. local_irq_restore(flags);
  783. /* With all the info we got, fill in the values */
  784. vcpu->hv_clock.system_time = ts.tv_nsec +
  785. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  786. vcpu->hv_clock.flags = 0;
  787. /*
  788. * The interface expects us to write an even number signaling that the
  789. * update is finished. Since the guest won't see the intermediate
  790. * state, we just increase by 2 at the end.
  791. */
  792. vcpu->hv_clock.version += 2;
  793. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  794. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  795. sizeof(vcpu->hv_clock));
  796. kunmap_atomic(shared_kaddr, KM_USER0);
  797. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  798. }
  799. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  800. {
  801. struct kvm_vcpu_arch *vcpu = &v->arch;
  802. if (!vcpu->time_page)
  803. return 0;
  804. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  805. return 1;
  806. }
  807. static bool msr_mtrr_valid(unsigned msr)
  808. {
  809. switch (msr) {
  810. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  811. case MSR_MTRRfix64K_00000:
  812. case MSR_MTRRfix16K_80000:
  813. case MSR_MTRRfix16K_A0000:
  814. case MSR_MTRRfix4K_C0000:
  815. case MSR_MTRRfix4K_C8000:
  816. case MSR_MTRRfix4K_D0000:
  817. case MSR_MTRRfix4K_D8000:
  818. case MSR_MTRRfix4K_E0000:
  819. case MSR_MTRRfix4K_E8000:
  820. case MSR_MTRRfix4K_F0000:
  821. case MSR_MTRRfix4K_F8000:
  822. case MSR_MTRRdefType:
  823. case MSR_IA32_CR_PAT:
  824. return true;
  825. case 0x2f8:
  826. return true;
  827. }
  828. return false;
  829. }
  830. static bool valid_pat_type(unsigned t)
  831. {
  832. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  833. }
  834. static bool valid_mtrr_type(unsigned t)
  835. {
  836. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  837. }
  838. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  839. {
  840. int i;
  841. if (!msr_mtrr_valid(msr))
  842. return false;
  843. if (msr == MSR_IA32_CR_PAT) {
  844. for (i = 0; i < 8; i++)
  845. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  846. return false;
  847. return true;
  848. } else if (msr == MSR_MTRRdefType) {
  849. if (data & ~0xcff)
  850. return false;
  851. return valid_mtrr_type(data & 0xff);
  852. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  853. for (i = 0; i < 8 ; i++)
  854. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  855. return false;
  856. return true;
  857. }
  858. /* variable MTRRs */
  859. return valid_mtrr_type(data & 0xff);
  860. }
  861. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  862. {
  863. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  864. if (!mtrr_valid(vcpu, msr, data))
  865. return 1;
  866. if (msr == MSR_MTRRdefType) {
  867. vcpu->arch.mtrr_state.def_type = data;
  868. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  869. } else if (msr == MSR_MTRRfix64K_00000)
  870. p[0] = data;
  871. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  872. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  873. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  874. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  875. else if (msr == MSR_IA32_CR_PAT)
  876. vcpu->arch.pat = data;
  877. else { /* Variable MTRRs */
  878. int idx, is_mtrr_mask;
  879. u64 *pt;
  880. idx = (msr - 0x200) / 2;
  881. is_mtrr_mask = msr - 0x200 - 2 * idx;
  882. if (!is_mtrr_mask)
  883. pt =
  884. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  885. else
  886. pt =
  887. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  888. *pt = data;
  889. }
  890. kvm_mmu_reset_context(vcpu);
  891. return 0;
  892. }
  893. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  894. {
  895. u64 mcg_cap = vcpu->arch.mcg_cap;
  896. unsigned bank_num = mcg_cap & 0xff;
  897. switch (msr) {
  898. case MSR_IA32_MCG_STATUS:
  899. vcpu->arch.mcg_status = data;
  900. break;
  901. case MSR_IA32_MCG_CTL:
  902. if (!(mcg_cap & MCG_CTL_P))
  903. return 1;
  904. if (data != 0 && data != ~(u64)0)
  905. return -1;
  906. vcpu->arch.mcg_ctl = data;
  907. break;
  908. default:
  909. if (msr >= MSR_IA32_MC0_CTL &&
  910. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  911. u32 offset = msr - MSR_IA32_MC0_CTL;
  912. /* only 0 or all 1s can be written to IA32_MCi_CTL
  913. * some Linux kernels though clear bit 10 in bank 4 to
  914. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  915. * this to avoid an uncatched #GP in the guest
  916. */
  917. if ((offset & 0x3) == 0 &&
  918. data != 0 && (data | (1 << 10)) != ~(u64)0)
  919. return -1;
  920. vcpu->arch.mce_banks[offset] = data;
  921. break;
  922. }
  923. return 1;
  924. }
  925. return 0;
  926. }
  927. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  928. {
  929. struct kvm *kvm = vcpu->kvm;
  930. int lm = is_long_mode(vcpu);
  931. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  932. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  933. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  934. : kvm->arch.xen_hvm_config.blob_size_32;
  935. u32 page_num = data & ~PAGE_MASK;
  936. u64 page_addr = data & PAGE_MASK;
  937. u8 *page;
  938. int r;
  939. r = -E2BIG;
  940. if (page_num >= blob_size)
  941. goto out;
  942. r = -ENOMEM;
  943. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  944. if (!page)
  945. goto out;
  946. r = -EFAULT;
  947. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  948. goto out_free;
  949. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  950. goto out_free;
  951. r = 0;
  952. out_free:
  953. kfree(page);
  954. out:
  955. return r;
  956. }
  957. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  958. {
  959. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  960. }
  961. static bool kvm_hv_msr_partition_wide(u32 msr)
  962. {
  963. bool r = false;
  964. switch (msr) {
  965. case HV_X64_MSR_GUEST_OS_ID:
  966. case HV_X64_MSR_HYPERCALL:
  967. r = true;
  968. break;
  969. }
  970. return r;
  971. }
  972. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  973. {
  974. struct kvm *kvm = vcpu->kvm;
  975. switch (msr) {
  976. case HV_X64_MSR_GUEST_OS_ID:
  977. kvm->arch.hv_guest_os_id = data;
  978. /* setting guest os id to zero disables hypercall page */
  979. if (!kvm->arch.hv_guest_os_id)
  980. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  981. break;
  982. case HV_X64_MSR_HYPERCALL: {
  983. u64 gfn;
  984. unsigned long addr;
  985. u8 instructions[4];
  986. /* if guest os id is not set hypercall should remain disabled */
  987. if (!kvm->arch.hv_guest_os_id)
  988. break;
  989. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  990. kvm->arch.hv_hypercall = data;
  991. break;
  992. }
  993. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  994. addr = gfn_to_hva(kvm, gfn);
  995. if (kvm_is_error_hva(addr))
  996. return 1;
  997. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  998. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  999. if (copy_to_user((void __user *)addr, instructions, 4))
  1000. return 1;
  1001. kvm->arch.hv_hypercall = data;
  1002. break;
  1003. }
  1004. default:
  1005. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1006. "data 0x%llx\n", msr, data);
  1007. return 1;
  1008. }
  1009. return 0;
  1010. }
  1011. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1012. {
  1013. switch (msr) {
  1014. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1015. unsigned long addr;
  1016. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1017. vcpu->arch.hv_vapic = data;
  1018. break;
  1019. }
  1020. addr = gfn_to_hva(vcpu->kvm, data >>
  1021. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1022. if (kvm_is_error_hva(addr))
  1023. return 1;
  1024. if (clear_user((void __user *)addr, PAGE_SIZE))
  1025. return 1;
  1026. vcpu->arch.hv_vapic = data;
  1027. break;
  1028. }
  1029. case HV_X64_MSR_EOI:
  1030. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1031. case HV_X64_MSR_ICR:
  1032. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1033. case HV_X64_MSR_TPR:
  1034. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1035. default:
  1036. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1037. "data 0x%llx\n", msr, data);
  1038. return 1;
  1039. }
  1040. return 0;
  1041. }
  1042. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1043. {
  1044. switch (msr) {
  1045. case MSR_EFER:
  1046. return set_efer(vcpu, data);
  1047. case MSR_K7_HWCR:
  1048. data &= ~(u64)0x40; /* ignore flush filter disable */
  1049. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1050. if (data != 0) {
  1051. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1052. data);
  1053. return 1;
  1054. }
  1055. break;
  1056. case MSR_FAM10H_MMIO_CONF_BASE:
  1057. if (data != 0) {
  1058. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1059. "0x%llx\n", data);
  1060. return 1;
  1061. }
  1062. break;
  1063. case MSR_AMD64_NB_CFG:
  1064. break;
  1065. case MSR_IA32_DEBUGCTLMSR:
  1066. if (!data) {
  1067. /* We support the non-activated case already */
  1068. break;
  1069. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1070. /* Values other than LBR and BTF are vendor-specific,
  1071. thus reserved and should throw a #GP */
  1072. return 1;
  1073. }
  1074. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1075. __func__, data);
  1076. break;
  1077. case MSR_IA32_UCODE_REV:
  1078. case MSR_IA32_UCODE_WRITE:
  1079. case MSR_VM_HSAVE_PA:
  1080. case MSR_AMD64_PATCH_LOADER:
  1081. break;
  1082. case 0x200 ... 0x2ff:
  1083. return set_msr_mtrr(vcpu, msr, data);
  1084. case MSR_IA32_APICBASE:
  1085. kvm_set_apic_base(vcpu, data);
  1086. break;
  1087. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1088. return kvm_x2apic_msr_write(vcpu, msr, data);
  1089. case MSR_IA32_MISC_ENABLE:
  1090. vcpu->arch.ia32_misc_enable_msr = data;
  1091. break;
  1092. case MSR_KVM_WALL_CLOCK_NEW:
  1093. case MSR_KVM_WALL_CLOCK:
  1094. vcpu->kvm->arch.wall_clock = data;
  1095. kvm_write_wall_clock(vcpu->kvm, data);
  1096. break;
  1097. case MSR_KVM_SYSTEM_TIME_NEW:
  1098. case MSR_KVM_SYSTEM_TIME: {
  1099. if (vcpu->arch.time_page) {
  1100. kvm_release_page_dirty(vcpu->arch.time_page);
  1101. vcpu->arch.time_page = NULL;
  1102. }
  1103. vcpu->arch.time = data;
  1104. /* we verify if the enable bit is set... */
  1105. if (!(data & 1))
  1106. break;
  1107. /* ...but clean it before doing the actual write */
  1108. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1109. vcpu->arch.time_page =
  1110. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1111. if (is_error_page(vcpu->arch.time_page)) {
  1112. kvm_release_page_clean(vcpu->arch.time_page);
  1113. vcpu->arch.time_page = NULL;
  1114. }
  1115. kvm_request_guest_time_update(vcpu);
  1116. break;
  1117. }
  1118. case MSR_IA32_MCG_CTL:
  1119. case MSR_IA32_MCG_STATUS:
  1120. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1121. return set_msr_mce(vcpu, msr, data);
  1122. /* Performance counters are not protected by a CPUID bit,
  1123. * so we should check all of them in the generic path for the sake of
  1124. * cross vendor migration.
  1125. * Writing a zero into the event select MSRs disables them,
  1126. * which we perfectly emulate ;-). Any other value should be at least
  1127. * reported, some guests depend on them.
  1128. */
  1129. case MSR_P6_EVNTSEL0:
  1130. case MSR_P6_EVNTSEL1:
  1131. case MSR_K7_EVNTSEL0:
  1132. case MSR_K7_EVNTSEL1:
  1133. case MSR_K7_EVNTSEL2:
  1134. case MSR_K7_EVNTSEL3:
  1135. if (data != 0)
  1136. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1137. "0x%x data 0x%llx\n", msr, data);
  1138. break;
  1139. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1140. * so we ignore writes to make it happy.
  1141. */
  1142. case MSR_P6_PERFCTR0:
  1143. case MSR_P6_PERFCTR1:
  1144. case MSR_K7_PERFCTR0:
  1145. case MSR_K7_PERFCTR1:
  1146. case MSR_K7_PERFCTR2:
  1147. case MSR_K7_PERFCTR3:
  1148. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1149. "0x%x data 0x%llx\n", msr, data);
  1150. break;
  1151. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1152. if (kvm_hv_msr_partition_wide(msr)) {
  1153. int r;
  1154. mutex_lock(&vcpu->kvm->lock);
  1155. r = set_msr_hyperv_pw(vcpu, msr, data);
  1156. mutex_unlock(&vcpu->kvm->lock);
  1157. return r;
  1158. } else
  1159. return set_msr_hyperv(vcpu, msr, data);
  1160. break;
  1161. default:
  1162. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1163. return xen_hvm_config(vcpu, data);
  1164. if (!ignore_msrs) {
  1165. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1166. msr, data);
  1167. return 1;
  1168. } else {
  1169. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1170. msr, data);
  1171. break;
  1172. }
  1173. }
  1174. return 0;
  1175. }
  1176. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1177. /*
  1178. * Reads an msr value (of 'msr_index') into 'pdata'.
  1179. * Returns 0 on success, non-0 otherwise.
  1180. * Assumes vcpu_load() was already called.
  1181. */
  1182. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1183. {
  1184. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1185. }
  1186. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1187. {
  1188. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1189. if (!msr_mtrr_valid(msr))
  1190. return 1;
  1191. if (msr == MSR_MTRRdefType)
  1192. *pdata = vcpu->arch.mtrr_state.def_type +
  1193. (vcpu->arch.mtrr_state.enabled << 10);
  1194. else if (msr == MSR_MTRRfix64K_00000)
  1195. *pdata = p[0];
  1196. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1197. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1198. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1199. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1200. else if (msr == MSR_IA32_CR_PAT)
  1201. *pdata = vcpu->arch.pat;
  1202. else { /* Variable MTRRs */
  1203. int idx, is_mtrr_mask;
  1204. u64 *pt;
  1205. idx = (msr - 0x200) / 2;
  1206. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1207. if (!is_mtrr_mask)
  1208. pt =
  1209. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1210. else
  1211. pt =
  1212. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1213. *pdata = *pt;
  1214. }
  1215. return 0;
  1216. }
  1217. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1218. {
  1219. u64 data;
  1220. u64 mcg_cap = vcpu->arch.mcg_cap;
  1221. unsigned bank_num = mcg_cap & 0xff;
  1222. switch (msr) {
  1223. case MSR_IA32_P5_MC_ADDR:
  1224. case MSR_IA32_P5_MC_TYPE:
  1225. data = 0;
  1226. break;
  1227. case MSR_IA32_MCG_CAP:
  1228. data = vcpu->arch.mcg_cap;
  1229. break;
  1230. case MSR_IA32_MCG_CTL:
  1231. if (!(mcg_cap & MCG_CTL_P))
  1232. return 1;
  1233. data = vcpu->arch.mcg_ctl;
  1234. break;
  1235. case MSR_IA32_MCG_STATUS:
  1236. data = vcpu->arch.mcg_status;
  1237. break;
  1238. default:
  1239. if (msr >= MSR_IA32_MC0_CTL &&
  1240. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1241. u32 offset = msr - MSR_IA32_MC0_CTL;
  1242. data = vcpu->arch.mce_banks[offset];
  1243. break;
  1244. }
  1245. return 1;
  1246. }
  1247. *pdata = data;
  1248. return 0;
  1249. }
  1250. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1251. {
  1252. u64 data = 0;
  1253. struct kvm *kvm = vcpu->kvm;
  1254. switch (msr) {
  1255. case HV_X64_MSR_GUEST_OS_ID:
  1256. data = kvm->arch.hv_guest_os_id;
  1257. break;
  1258. case HV_X64_MSR_HYPERCALL:
  1259. data = kvm->arch.hv_hypercall;
  1260. break;
  1261. default:
  1262. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1263. return 1;
  1264. }
  1265. *pdata = data;
  1266. return 0;
  1267. }
  1268. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1269. {
  1270. u64 data = 0;
  1271. switch (msr) {
  1272. case HV_X64_MSR_VP_INDEX: {
  1273. int r;
  1274. struct kvm_vcpu *v;
  1275. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1276. if (v == vcpu)
  1277. data = r;
  1278. break;
  1279. }
  1280. case HV_X64_MSR_EOI:
  1281. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1282. case HV_X64_MSR_ICR:
  1283. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1284. case HV_X64_MSR_TPR:
  1285. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1286. default:
  1287. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1288. return 1;
  1289. }
  1290. *pdata = data;
  1291. return 0;
  1292. }
  1293. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1294. {
  1295. u64 data;
  1296. switch (msr) {
  1297. case MSR_IA32_PLATFORM_ID:
  1298. case MSR_IA32_UCODE_REV:
  1299. case MSR_IA32_EBL_CR_POWERON:
  1300. case MSR_IA32_DEBUGCTLMSR:
  1301. case MSR_IA32_LASTBRANCHFROMIP:
  1302. case MSR_IA32_LASTBRANCHTOIP:
  1303. case MSR_IA32_LASTINTFROMIP:
  1304. case MSR_IA32_LASTINTTOIP:
  1305. case MSR_K8_SYSCFG:
  1306. case MSR_K7_HWCR:
  1307. case MSR_VM_HSAVE_PA:
  1308. case MSR_P6_PERFCTR0:
  1309. case MSR_P6_PERFCTR1:
  1310. case MSR_P6_EVNTSEL0:
  1311. case MSR_P6_EVNTSEL1:
  1312. case MSR_K7_EVNTSEL0:
  1313. case MSR_K7_PERFCTR0:
  1314. case MSR_K8_INT_PENDING_MSG:
  1315. case MSR_AMD64_NB_CFG:
  1316. case MSR_FAM10H_MMIO_CONF_BASE:
  1317. data = 0;
  1318. break;
  1319. case MSR_MTRRcap:
  1320. data = 0x500 | KVM_NR_VAR_MTRR;
  1321. break;
  1322. case 0x200 ... 0x2ff:
  1323. return get_msr_mtrr(vcpu, msr, pdata);
  1324. case 0xcd: /* fsb frequency */
  1325. data = 3;
  1326. break;
  1327. case MSR_IA32_APICBASE:
  1328. data = kvm_get_apic_base(vcpu);
  1329. break;
  1330. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1331. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1332. break;
  1333. case MSR_IA32_MISC_ENABLE:
  1334. data = vcpu->arch.ia32_misc_enable_msr;
  1335. break;
  1336. case MSR_IA32_PERF_STATUS:
  1337. /* TSC increment by tick */
  1338. data = 1000ULL;
  1339. /* CPU multiplier */
  1340. data |= (((uint64_t)4ULL) << 40);
  1341. break;
  1342. case MSR_EFER:
  1343. data = vcpu->arch.efer;
  1344. break;
  1345. case MSR_KVM_WALL_CLOCK:
  1346. case MSR_KVM_WALL_CLOCK_NEW:
  1347. data = vcpu->kvm->arch.wall_clock;
  1348. break;
  1349. case MSR_KVM_SYSTEM_TIME:
  1350. case MSR_KVM_SYSTEM_TIME_NEW:
  1351. data = vcpu->arch.time;
  1352. break;
  1353. case MSR_IA32_P5_MC_ADDR:
  1354. case MSR_IA32_P5_MC_TYPE:
  1355. case MSR_IA32_MCG_CAP:
  1356. case MSR_IA32_MCG_CTL:
  1357. case MSR_IA32_MCG_STATUS:
  1358. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1359. return get_msr_mce(vcpu, msr, pdata);
  1360. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1361. if (kvm_hv_msr_partition_wide(msr)) {
  1362. int r;
  1363. mutex_lock(&vcpu->kvm->lock);
  1364. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1365. mutex_unlock(&vcpu->kvm->lock);
  1366. return r;
  1367. } else
  1368. return get_msr_hyperv(vcpu, msr, pdata);
  1369. break;
  1370. default:
  1371. if (!ignore_msrs) {
  1372. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1373. return 1;
  1374. } else {
  1375. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1376. data = 0;
  1377. }
  1378. break;
  1379. }
  1380. *pdata = data;
  1381. return 0;
  1382. }
  1383. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1384. /*
  1385. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1386. *
  1387. * @return number of msrs set successfully.
  1388. */
  1389. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1390. struct kvm_msr_entry *entries,
  1391. int (*do_msr)(struct kvm_vcpu *vcpu,
  1392. unsigned index, u64 *data))
  1393. {
  1394. int i, idx;
  1395. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1396. for (i = 0; i < msrs->nmsrs; ++i)
  1397. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1398. break;
  1399. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1400. return i;
  1401. }
  1402. /*
  1403. * Read or write a bunch of msrs. Parameters are user addresses.
  1404. *
  1405. * @return number of msrs set successfully.
  1406. */
  1407. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1408. int (*do_msr)(struct kvm_vcpu *vcpu,
  1409. unsigned index, u64 *data),
  1410. int writeback)
  1411. {
  1412. struct kvm_msrs msrs;
  1413. struct kvm_msr_entry *entries;
  1414. int r, n;
  1415. unsigned size;
  1416. r = -EFAULT;
  1417. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1418. goto out;
  1419. r = -E2BIG;
  1420. if (msrs.nmsrs >= MAX_IO_MSRS)
  1421. goto out;
  1422. r = -ENOMEM;
  1423. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1424. entries = kmalloc(size, GFP_KERNEL);
  1425. if (!entries)
  1426. goto out;
  1427. r = -EFAULT;
  1428. if (copy_from_user(entries, user_msrs->entries, size))
  1429. goto out_free;
  1430. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1431. if (r < 0)
  1432. goto out_free;
  1433. r = -EFAULT;
  1434. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1435. goto out_free;
  1436. r = n;
  1437. out_free:
  1438. kfree(entries);
  1439. out:
  1440. return r;
  1441. }
  1442. int kvm_dev_ioctl_check_extension(long ext)
  1443. {
  1444. int r;
  1445. switch (ext) {
  1446. case KVM_CAP_IRQCHIP:
  1447. case KVM_CAP_HLT:
  1448. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1449. case KVM_CAP_SET_TSS_ADDR:
  1450. case KVM_CAP_EXT_CPUID:
  1451. case KVM_CAP_CLOCKSOURCE:
  1452. case KVM_CAP_PIT:
  1453. case KVM_CAP_NOP_IO_DELAY:
  1454. case KVM_CAP_MP_STATE:
  1455. case KVM_CAP_SYNC_MMU:
  1456. case KVM_CAP_REINJECT_CONTROL:
  1457. case KVM_CAP_IRQ_INJECT_STATUS:
  1458. case KVM_CAP_ASSIGN_DEV_IRQ:
  1459. case KVM_CAP_IRQFD:
  1460. case KVM_CAP_IOEVENTFD:
  1461. case KVM_CAP_PIT2:
  1462. case KVM_CAP_PIT_STATE2:
  1463. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1464. case KVM_CAP_XEN_HVM:
  1465. case KVM_CAP_ADJUST_CLOCK:
  1466. case KVM_CAP_VCPU_EVENTS:
  1467. case KVM_CAP_HYPERV:
  1468. case KVM_CAP_HYPERV_VAPIC:
  1469. case KVM_CAP_HYPERV_SPIN:
  1470. case KVM_CAP_PCI_SEGMENT:
  1471. case KVM_CAP_DEBUGREGS:
  1472. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1473. case KVM_CAP_XSAVE:
  1474. r = 1;
  1475. break;
  1476. case KVM_CAP_COALESCED_MMIO:
  1477. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1478. break;
  1479. case KVM_CAP_VAPIC:
  1480. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1481. break;
  1482. case KVM_CAP_NR_VCPUS:
  1483. r = KVM_MAX_VCPUS;
  1484. break;
  1485. case KVM_CAP_NR_MEMSLOTS:
  1486. r = KVM_MEMORY_SLOTS;
  1487. break;
  1488. case KVM_CAP_PV_MMU: /* obsolete */
  1489. r = 0;
  1490. break;
  1491. case KVM_CAP_IOMMU:
  1492. r = iommu_found();
  1493. break;
  1494. case KVM_CAP_MCE:
  1495. r = KVM_MAX_MCE_BANKS;
  1496. break;
  1497. case KVM_CAP_XCRS:
  1498. r = cpu_has_xsave;
  1499. break;
  1500. default:
  1501. r = 0;
  1502. break;
  1503. }
  1504. return r;
  1505. }
  1506. long kvm_arch_dev_ioctl(struct file *filp,
  1507. unsigned int ioctl, unsigned long arg)
  1508. {
  1509. void __user *argp = (void __user *)arg;
  1510. long r;
  1511. switch (ioctl) {
  1512. case KVM_GET_MSR_INDEX_LIST: {
  1513. struct kvm_msr_list __user *user_msr_list = argp;
  1514. struct kvm_msr_list msr_list;
  1515. unsigned n;
  1516. r = -EFAULT;
  1517. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1518. goto out;
  1519. n = msr_list.nmsrs;
  1520. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1521. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1522. goto out;
  1523. r = -E2BIG;
  1524. if (n < msr_list.nmsrs)
  1525. goto out;
  1526. r = -EFAULT;
  1527. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1528. num_msrs_to_save * sizeof(u32)))
  1529. goto out;
  1530. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1531. &emulated_msrs,
  1532. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1533. goto out;
  1534. r = 0;
  1535. break;
  1536. }
  1537. case KVM_GET_SUPPORTED_CPUID: {
  1538. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1539. struct kvm_cpuid2 cpuid;
  1540. r = -EFAULT;
  1541. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1542. goto out;
  1543. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1544. cpuid_arg->entries);
  1545. if (r)
  1546. goto out;
  1547. r = -EFAULT;
  1548. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1549. goto out;
  1550. r = 0;
  1551. break;
  1552. }
  1553. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1554. u64 mce_cap;
  1555. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1556. r = -EFAULT;
  1557. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1558. goto out;
  1559. r = 0;
  1560. break;
  1561. }
  1562. default:
  1563. r = -EINVAL;
  1564. }
  1565. out:
  1566. return r;
  1567. }
  1568. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1569. {
  1570. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1571. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1572. unsigned long khz = cpufreq_quick_get(cpu);
  1573. if (!khz)
  1574. khz = tsc_khz;
  1575. per_cpu(cpu_tsc_khz, cpu) = khz;
  1576. }
  1577. kvm_request_guest_time_update(vcpu);
  1578. }
  1579. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1580. {
  1581. kvm_x86_ops->vcpu_put(vcpu);
  1582. kvm_put_guest_fpu(vcpu);
  1583. }
  1584. static int is_efer_nx(void)
  1585. {
  1586. unsigned long long efer = 0;
  1587. rdmsrl_safe(MSR_EFER, &efer);
  1588. return efer & EFER_NX;
  1589. }
  1590. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1591. {
  1592. int i;
  1593. struct kvm_cpuid_entry2 *e, *entry;
  1594. entry = NULL;
  1595. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1596. e = &vcpu->arch.cpuid_entries[i];
  1597. if (e->function == 0x80000001) {
  1598. entry = e;
  1599. break;
  1600. }
  1601. }
  1602. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1603. entry->edx &= ~(1 << 20);
  1604. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1605. }
  1606. }
  1607. /* when an old userspace process fills a new kernel module */
  1608. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1609. struct kvm_cpuid *cpuid,
  1610. struct kvm_cpuid_entry __user *entries)
  1611. {
  1612. int r, i;
  1613. struct kvm_cpuid_entry *cpuid_entries;
  1614. r = -E2BIG;
  1615. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1616. goto out;
  1617. r = -ENOMEM;
  1618. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1619. if (!cpuid_entries)
  1620. goto out;
  1621. r = -EFAULT;
  1622. if (copy_from_user(cpuid_entries, entries,
  1623. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1624. goto out_free;
  1625. for (i = 0; i < cpuid->nent; i++) {
  1626. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1627. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1628. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1629. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1630. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1631. vcpu->arch.cpuid_entries[i].index = 0;
  1632. vcpu->arch.cpuid_entries[i].flags = 0;
  1633. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1634. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1635. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1636. }
  1637. vcpu->arch.cpuid_nent = cpuid->nent;
  1638. cpuid_fix_nx_cap(vcpu);
  1639. r = 0;
  1640. kvm_apic_set_version(vcpu);
  1641. kvm_x86_ops->cpuid_update(vcpu);
  1642. update_cpuid(vcpu);
  1643. out_free:
  1644. vfree(cpuid_entries);
  1645. out:
  1646. return r;
  1647. }
  1648. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1649. struct kvm_cpuid2 *cpuid,
  1650. struct kvm_cpuid_entry2 __user *entries)
  1651. {
  1652. int r;
  1653. r = -E2BIG;
  1654. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1655. goto out;
  1656. r = -EFAULT;
  1657. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1658. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1659. goto out;
  1660. vcpu->arch.cpuid_nent = cpuid->nent;
  1661. kvm_apic_set_version(vcpu);
  1662. kvm_x86_ops->cpuid_update(vcpu);
  1663. update_cpuid(vcpu);
  1664. return 0;
  1665. out:
  1666. return r;
  1667. }
  1668. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1669. struct kvm_cpuid2 *cpuid,
  1670. struct kvm_cpuid_entry2 __user *entries)
  1671. {
  1672. int r;
  1673. r = -E2BIG;
  1674. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1675. goto out;
  1676. r = -EFAULT;
  1677. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1678. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1679. goto out;
  1680. return 0;
  1681. out:
  1682. cpuid->nent = vcpu->arch.cpuid_nent;
  1683. return r;
  1684. }
  1685. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1686. u32 index)
  1687. {
  1688. entry->function = function;
  1689. entry->index = index;
  1690. cpuid_count(entry->function, entry->index,
  1691. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1692. entry->flags = 0;
  1693. }
  1694. #define F(x) bit(X86_FEATURE_##x)
  1695. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1696. u32 index, int *nent, int maxnent)
  1697. {
  1698. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1699. #ifdef CONFIG_X86_64
  1700. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1701. ? F(GBPAGES) : 0;
  1702. unsigned f_lm = F(LM);
  1703. #else
  1704. unsigned f_gbpages = 0;
  1705. unsigned f_lm = 0;
  1706. #endif
  1707. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1708. /* cpuid 1.edx */
  1709. const u32 kvm_supported_word0_x86_features =
  1710. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1711. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1712. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1713. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1714. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1715. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1716. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1717. 0 /* HTT, TM, Reserved, PBE */;
  1718. /* cpuid 0x80000001.edx */
  1719. const u32 kvm_supported_word1_x86_features =
  1720. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1721. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1722. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1723. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1724. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1725. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1726. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1727. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1728. /* cpuid 1.ecx */
  1729. const u32 kvm_supported_word4_x86_features =
  1730. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1731. 0 /* DS-CPL, VMX, SMX, EST */ |
  1732. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1733. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1734. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1735. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1736. 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */;
  1737. /* cpuid 0x80000001.ecx */
  1738. const u32 kvm_supported_word6_x86_features =
  1739. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1740. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1741. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1742. 0 /* SKINIT */ | 0 /* WDT */;
  1743. /* all calls to cpuid_count() should be made on the same cpu */
  1744. get_cpu();
  1745. do_cpuid_1_ent(entry, function, index);
  1746. ++*nent;
  1747. switch (function) {
  1748. case 0:
  1749. entry->eax = min(entry->eax, (u32)0xd);
  1750. break;
  1751. case 1:
  1752. entry->edx &= kvm_supported_word0_x86_features;
  1753. entry->ecx &= kvm_supported_word4_x86_features;
  1754. /* we support x2apic emulation even if host does not support
  1755. * it since we emulate x2apic in software */
  1756. entry->ecx |= F(X2APIC);
  1757. break;
  1758. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1759. * may return different values. This forces us to get_cpu() before
  1760. * issuing the first command, and also to emulate this annoying behavior
  1761. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1762. case 2: {
  1763. int t, times = entry->eax & 0xff;
  1764. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1765. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1766. for (t = 1; t < times && *nent < maxnent; ++t) {
  1767. do_cpuid_1_ent(&entry[t], function, 0);
  1768. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1769. ++*nent;
  1770. }
  1771. break;
  1772. }
  1773. /* function 4 and 0xb have additional index. */
  1774. case 4: {
  1775. int i, cache_type;
  1776. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1777. /* read more entries until cache_type is zero */
  1778. for (i = 1; *nent < maxnent; ++i) {
  1779. cache_type = entry[i - 1].eax & 0x1f;
  1780. if (!cache_type)
  1781. break;
  1782. do_cpuid_1_ent(&entry[i], function, i);
  1783. entry[i].flags |=
  1784. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1785. ++*nent;
  1786. }
  1787. break;
  1788. }
  1789. case 0xb: {
  1790. int i, level_type;
  1791. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1792. /* read more entries until level_type is zero */
  1793. for (i = 1; *nent < maxnent; ++i) {
  1794. level_type = entry[i - 1].ecx & 0xff00;
  1795. if (!level_type)
  1796. break;
  1797. do_cpuid_1_ent(&entry[i], function, i);
  1798. entry[i].flags |=
  1799. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1800. ++*nent;
  1801. }
  1802. break;
  1803. }
  1804. case 0xd: {
  1805. int i;
  1806. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1807. for (i = 1; *nent < maxnent; ++i) {
  1808. if (entry[i - 1].eax == 0 && i != 2)
  1809. break;
  1810. do_cpuid_1_ent(&entry[i], function, i);
  1811. entry[i].flags |=
  1812. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1813. ++*nent;
  1814. }
  1815. break;
  1816. }
  1817. case KVM_CPUID_SIGNATURE: {
  1818. char signature[12] = "KVMKVMKVM\0\0";
  1819. u32 *sigptr = (u32 *)signature;
  1820. entry->eax = 0;
  1821. entry->ebx = sigptr[0];
  1822. entry->ecx = sigptr[1];
  1823. entry->edx = sigptr[2];
  1824. break;
  1825. }
  1826. case KVM_CPUID_FEATURES:
  1827. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  1828. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  1829. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  1830. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  1831. entry->ebx = 0;
  1832. entry->ecx = 0;
  1833. entry->edx = 0;
  1834. break;
  1835. case 0x80000000:
  1836. entry->eax = min(entry->eax, 0x8000001a);
  1837. break;
  1838. case 0x80000001:
  1839. entry->edx &= kvm_supported_word1_x86_features;
  1840. entry->ecx &= kvm_supported_word6_x86_features;
  1841. break;
  1842. }
  1843. kvm_x86_ops->set_supported_cpuid(function, entry);
  1844. put_cpu();
  1845. }
  1846. #undef F
  1847. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1848. struct kvm_cpuid_entry2 __user *entries)
  1849. {
  1850. struct kvm_cpuid_entry2 *cpuid_entries;
  1851. int limit, nent = 0, r = -E2BIG;
  1852. u32 func;
  1853. if (cpuid->nent < 1)
  1854. goto out;
  1855. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1856. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1857. r = -ENOMEM;
  1858. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1859. if (!cpuid_entries)
  1860. goto out;
  1861. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1862. limit = cpuid_entries[0].eax;
  1863. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1864. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1865. &nent, cpuid->nent);
  1866. r = -E2BIG;
  1867. if (nent >= cpuid->nent)
  1868. goto out_free;
  1869. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1870. limit = cpuid_entries[nent - 1].eax;
  1871. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1872. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1873. &nent, cpuid->nent);
  1874. r = -E2BIG;
  1875. if (nent >= cpuid->nent)
  1876. goto out_free;
  1877. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  1878. cpuid->nent);
  1879. r = -E2BIG;
  1880. if (nent >= cpuid->nent)
  1881. goto out_free;
  1882. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  1883. cpuid->nent);
  1884. r = -E2BIG;
  1885. if (nent >= cpuid->nent)
  1886. goto out_free;
  1887. r = -EFAULT;
  1888. if (copy_to_user(entries, cpuid_entries,
  1889. nent * sizeof(struct kvm_cpuid_entry2)))
  1890. goto out_free;
  1891. cpuid->nent = nent;
  1892. r = 0;
  1893. out_free:
  1894. vfree(cpuid_entries);
  1895. out:
  1896. return r;
  1897. }
  1898. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1899. struct kvm_lapic_state *s)
  1900. {
  1901. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1902. return 0;
  1903. }
  1904. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1905. struct kvm_lapic_state *s)
  1906. {
  1907. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1908. kvm_apic_post_state_restore(vcpu);
  1909. update_cr8_intercept(vcpu);
  1910. return 0;
  1911. }
  1912. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1913. struct kvm_interrupt *irq)
  1914. {
  1915. if (irq->irq < 0 || irq->irq >= 256)
  1916. return -EINVAL;
  1917. if (irqchip_in_kernel(vcpu->kvm))
  1918. return -ENXIO;
  1919. kvm_queue_interrupt(vcpu, irq->irq, false);
  1920. return 0;
  1921. }
  1922. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1923. {
  1924. kvm_inject_nmi(vcpu);
  1925. return 0;
  1926. }
  1927. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1928. struct kvm_tpr_access_ctl *tac)
  1929. {
  1930. if (tac->flags)
  1931. return -EINVAL;
  1932. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1933. return 0;
  1934. }
  1935. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1936. u64 mcg_cap)
  1937. {
  1938. int r;
  1939. unsigned bank_num = mcg_cap & 0xff, bank;
  1940. r = -EINVAL;
  1941. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1942. goto out;
  1943. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1944. goto out;
  1945. r = 0;
  1946. vcpu->arch.mcg_cap = mcg_cap;
  1947. /* Init IA32_MCG_CTL to all 1s */
  1948. if (mcg_cap & MCG_CTL_P)
  1949. vcpu->arch.mcg_ctl = ~(u64)0;
  1950. /* Init IA32_MCi_CTL to all 1s */
  1951. for (bank = 0; bank < bank_num; bank++)
  1952. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1953. out:
  1954. return r;
  1955. }
  1956. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1957. struct kvm_x86_mce *mce)
  1958. {
  1959. u64 mcg_cap = vcpu->arch.mcg_cap;
  1960. unsigned bank_num = mcg_cap & 0xff;
  1961. u64 *banks = vcpu->arch.mce_banks;
  1962. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1963. return -EINVAL;
  1964. /*
  1965. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1966. * reporting is disabled
  1967. */
  1968. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1969. vcpu->arch.mcg_ctl != ~(u64)0)
  1970. return 0;
  1971. banks += 4 * mce->bank;
  1972. /*
  1973. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1974. * reporting is disabled for the bank
  1975. */
  1976. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1977. return 0;
  1978. if (mce->status & MCI_STATUS_UC) {
  1979. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1980. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  1981. printk(KERN_DEBUG "kvm: set_mce: "
  1982. "injects mce exception while "
  1983. "previous one is in progress!\n");
  1984. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1985. return 0;
  1986. }
  1987. if (banks[1] & MCI_STATUS_VAL)
  1988. mce->status |= MCI_STATUS_OVER;
  1989. banks[2] = mce->addr;
  1990. banks[3] = mce->misc;
  1991. vcpu->arch.mcg_status = mce->mcg_status;
  1992. banks[1] = mce->status;
  1993. kvm_queue_exception(vcpu, MC_VECTOR);
  1994. } else if (!(banks[1] & MCI_STATUS_VAL)
  1995. || !(banks[1] & MCI_STATUS_UC)) {
  1996. if (banks[1] & MCI_STATUS_VAL)
  1997. mce->status |= MCI_STATUS_OVER;
  1998. banks[2] = mce->addr;
  1999. banks[3] = mce->misc;
  2000. banks[1] = mce->status;
  2001. } else
  2002. banks[1] |= MCI_STATUS_OVER;
  2003. return 0;
  2004. }
  2005. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2006. struct kvm_vcpu_events *events)
  2007. {
  2008. events->exception.injected =
  2009. vcpu->arch.exception.pending &&
  2010. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2011. events->exception.nr = vcpu->arch.exception.nr;
  2012. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2013. events->exception.error_code = vcpu->arch.exception.error_code;
  2014. events->interrupt.injected =
  2015. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2016. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2017. events->interrupt.soft = 0;
  2018. events->interrupt.shadow =
  2019. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2020. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2021. events->nmi.injected = vcpu->arch.nmi_injected;
  2022. events->nmi.pending = vcpu->arch.nmi_pending;
  2023. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2024. events->sipi_vector = vcpu->arch.sipi_vector;
  2025. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2026. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2027. | KVM_VCPUEVENT_VALID_SHADOW);
  2028. }
  2029. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2030. struct kvm_vcpu_events *events)
  2031. {
  2032. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2033. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2034. | KVM_VCPUEVENT_VALID_SHADOW))
  2035. return -EINVAL;
  2036. vcpu->arch.exception.pending = events->exception.injected;
  2037. vcpu->arch.exception.nr = events->exception.nr;
  2038. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2039. vcpu->arch.exception.error_code = events->exception.error_code;
  2040. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2041. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2042. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2043. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  2044. kvm_pic_clear_isr_ack(vcpu->kvm);
  2045. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2046. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2047. events->interrupt.shadow);
  2048. vcpu->arch.nmi_injected = events->nmi.injected;
  2049. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2050. vcpu->arch.nmi_pending = events->nmi.pending;
  2051. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2052. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2053. vcpu->arch.sipi_vector = events->sipi_vector;
  2054. return 0;
  2055. }
  2056. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2057. struct kvm_debugregs *dbgregs)
  2058. {
  2059. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2060. dbgregs->dr6 = vcpu->arch.dr6;
  2061. dbgregs->dr7 = vcpu->arch.dr7;
  2062. dbgregs->flags = 0;
  2063. }
  2064. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2065. struct kvm_debugregs *dbgregs)
  2066. {
  2067. if (dbgregs->flags)
  2068. return -EINVAL;
  2069. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2070. vcpu->arch.dr6 = dbgregs->dr6;
  2071. vcpu->arch.dr7 = dbgregs->dr7;
  2072. return 0;
  2073. }
  2074. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2075. struct kvm_xsave *guest_xsave)
  2076. {
  2077. if (cpu_has_xsave)
  2078. memcpy(guest_xsave->region,
  2079. &vcpu->arch.guest_fpu.state->xsave,
  2080. sizeof(struct xsave_struct));
  2081. else {
  2082. memcpy(guest_xsave->region,
  2083. &vcpu->arch.guest_fpu.state->fxsave,
  2084. sizeof(struct i387_fxsave_struct));
  2085. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2086. XSTATE_FPSSE;
  2087. }
  2088. }
  2089. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2090. struct kvm_xsave *guest_xsave)
  2091. {
  2092. u64 xstate_bv =
  2093. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2094. if (cpu_has_xsave)
  2095. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2096. guest_xsave->region, sizeof(struct xsave_struct));
  2097. else {
  2098. if (xstate_bv & ~XSTATE_FPSSE)
  2099. return -EINVAL;
  2100. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2101. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2102. }
  2103. return 0;
  2104. }
  2105. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2106. struct kvm_xcrs *guest_xcrs)
  2107. {
  2108. if (!cpu_has_xsave) {
  2109. guest_xcrs->nr_xcrs = 0;
  2110. return;
  2111. }
  2112. guest_xcrs->nr_xcrs = 1;
  2113. guest_xcrs->flags = 0;
  2114. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2115. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2116. }
  2117. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2118. struct kvm_xcrs *guest_xcrs)
  2119. {
  2120. int i, r = 0;
  2121. if (!cpu_has_xsave)
  2122. return -EINVAL;
  2123. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2124. return -EINVAL;
  2125. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2126. /* Only support XCR0 currently */
  2127. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2128. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2129. guest_xcrs->xcrs[0].value);
  2130. break;
  2131. }
  2132. if (r)
  2133. r = -EINVAL;
  2134. return r;
  2135. }
  2136. long kvm_arch_vcpu_ioctl(struct file *filp,
  2137. unsigned int ioctl, unsigned long arg)
  2138. {
  2139. struct kvm_vcpu *vcpu = filp->private_data;
  2140. void __user *argp = (void __user *)arg;
  2141. int r;
  2142. struct kvm_lapic_state *lapic = NULL;
  2143. switch (ioctl) {
  2144. case KVM_GET_LAPIC: {
  2145. r = -EINVAL;
  2146. if (!vcpu->arch.apic)
  2147. goto out;
  2148. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2149. r = -ENOMEM;
  2150. if (!lapic)
  2151. goto out;
  2152. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  2153. if (r)
  2154. goto out;
  2155. r = -EFAULT;
  2156. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  2157. goto out;
  2158. r = 0;
  2159. break;
  2160. }
  2161. case KVM_SET_LAPIC: {
  2162. r = -EINVAL;
  2163. if (!vcpu->arch.apic)
  2164. goto out;
  2165. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2166. r = -ENOMEM;
  2167. if (!lapic)
  2168. goto out;
  2169. r = -EFAULT;
  2170. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  2171. goto out;
  2172. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  2173. if (r)
  2174. goto out;
  2175. r = 0;
  2176. break;
  2177. }
  2178. case KVM_INTERRUPT: {
  2179. struct kvm_interrupt irq;
  2180. r = -EFAULT;
  2181. if (copy_from_user(&irq, argp, sizeof irq))
  2182. goto out;
  2183. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2184. if (r)
  2185. goto out;
  2186. r = 0;
  2187. break;
  2188. }
  2189. case KVM_NMI: {
  2190. r = kvm_vcpu_ioctl_nmi(vcpu);
  2191. if (r)
  2192. goto out;
  2193. r = 0;
  2194. break;
  2195. }
  2196. case KVM_SET_CPUID: {
  2197. struct kvm_cpuid __user *cpuid_arg = argp;
  2198. struct kvm_cpuid cpuid;
  2199. r = -EFAULT;
  2200. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2201. goto out;
  2202. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2203. if (r)
  2204. goto out;
  2205. break;
  2206. }
  2207. case KVM_SET_CPUID2: {
  2208. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2209. struct kvm_cpuid2 cpuid;
  2210. r = -EFAULT;
  2211. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2212. goto out;
  2213. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2214. cpuid_arg->entries);
  2215. if (r)
  2216. goto out;
  2217. break;
  2218. }
  2219. case KVM_GET_CPUID2: {
  2220. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2221. struct kvm_cpuid2 cpuid;
  2222. r = -EFAULT;
  2223. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2224. goto out;
  2225. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2226. cpuid_arg->entries);
  2227. if (r)
  2228. goto out;
  2229. r = -EFAULT;
  2230. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2231. goto out;
  2232. r = 0;
  2233. break;
  2234. }
  2235. case KVM_GET_MSRS:
  2236. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2237. break;
  2238. case KVM_SET_MSRS:
  2239. r = msr_io(vcpu, argp, do_set_msr, 0);
  2240. break;
  2241. case KVM_TPR_ACCESS_REPORTING: {
  2242. struct kvm_tpr_access_ctl tac;
  2243. r = -EFAULT;
  2244. if (copy_from_user(&tac, argp, sizeof tac))
  2245. goto out;
  2246. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2247. if (r)
  2248. goto out;
  2249. r = -EFAULT;
  2250. if (copy_to_user(argp, &tac, sizeof tac))
  2251. goto out;
  2252. r = 0;
  2253. break;
  2254. };
  2255. case KVM_SET_VAPIC_ADDR: {
  2256. struct kvm_vapic_addr va;
  2257. r = -EINVAL;
  2258. if (!irqchip_in_kernel(vcpu->kvm))
  2259. goto out;
  2260. r = -EFAULT;
  2261. if (copy_from_user(&va, argp, sizeof va))
  2262. goto out;
  2263. r = 0;
  2264. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2265. break;
  2266. }
  2267. case KVM_X86_SETUP_MCE: {
  2268. u64 mcg_cap;
  2269. r = -EFAULT;
  2270. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2271. goto out;
  2272. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2273. break;
  2274. }
  2275. case KVM_X86_SET_MCE: {
  2276. struct kvm_x86_mce mce;
  2277. r = -EFAULT;
  2278. if (copy_from_user(&mce, argp, sizeof mce))
  2279. goto out;
  2280. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2281. break;
  2282. }
  2283. case KVM_GET_VCPU_EVENTS: {
  2284. struct kvm_vcpu_events events;
  2285. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2286. r = -EFAULT;
  2287. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2288. break;
  2289. r = 0;
  2290. break;
  2291. }
  2292. case KVM_SET_VCPU_EVENTS: {
  2293. struct kvm_vcpu_events events;
  2294. r = -EFAULT;
  2295. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2296. break;
  2297. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2298. break;
  2299. }
  2300. case KVM_GET_DEBUGREGS: {
  2301. struct kvm_debugregs dbgregs;
  2302. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2303. r = -EFAULT;
  2304. if (copy_to_user(argp, &dbgregs,
  2305. sizeof(struct kvm_debugregs)))
  2306. break;
  2307. r = 0;
  2308. break;
  2309. }
  2310. case KVM_SET_DEBUGREGS: {
  2311. struct kvm_debugregs dbgregs;
  2312. r = -EFAULT;
  2313. if (copy_from_user(&dbgregs, argp,
  2314. sizeof(struct kvm_debugregs)))
  2315. break;
  2316. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2317. break;
  2318. }
  2319. case KVM_GET_XSAVE: {
  2320. struct kvm_xsave *xsave;
  2321. xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2322. r = -ENOMEM;
  2323. if (!xsave)
  2324. break;
  2325. kvm_vcpu_ioctl_x86_get_xsave(vcpu, xsave);
  2326. r = -EFAULT;
  2327. if (copy_to_user(argp, xsave, sizeof(struct kvm_xsave)))
  2328. break;
  2329. r = 0;
  2330. break;
  2331. }
  2332. case KVM_SET_XSAVE: {
  2333. struct kvm_xsave *xsave;
  2334. xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2335. r = -ENOMEM;
  2336. if (!xsave)
  2337. break;
  2338. r = -EFAULT;
  2339. if (copy_from_user(xsave, argp, sizeof(struct kvm_xsave)))
  2340. break;
  2341. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, xsave);
  2342. break;
  2343. }
  2344. case KVM_GET_XCRS: {
  2345. struct kvm_xcrs *xcrs;
  2346. xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2347. r = -ENOMEM;
  2348. if (!xcrs)
  2349. break;
  2350. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, xcrs);
  2351. r = -EFAULT;
  2352. if (copy_to_user(argp, xcrs,
  2353. sizeof(struct kvm_xcrs)))
  2354. break;
  2355. r = 0;
  2356. break;
  2357. }
  2358. case KVM_SET_XCRS: {
  2359. struct kvm_xcrs *xcrs;
  2360. xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2361. r = -ENOMEM;
  2362. if (!xcrs)
  2363. break;
  2364. r = -EFAULT;
  2365. if (copy_from_user(xcrs, argp,
  2366. sizeof(struct kvm_xcrs)))
  2367. break;
  2368. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, xcrs);
  2369. break;
  2370. }
  2371. default:
  2372. r = -EINVAL;
  2373. }
  2374. out:
  2375. kfree(lapic);
  2376. return r;
  2377. }
  2378. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2379. {
  2380. int ret;
  2381. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2382. return -1;
  2383. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2384. return ret;
  2385. }
  2386. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2387. u64 ident_addr)
  2388. {
  2389. kvm->arch.ept_identity_map_addr = ident_addr;
  2390. return 0;
  2391. }
  2392. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2393. u32 kvm_nr_mmu_pages)
  2394. {
  2395. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2396. return -EINVAL;
  2397. mutex_lock(&kvm->slots_lock);
  2398. spin_lock(&kvm->mmu_lock);
  2399. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2400. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2401. spin_unlock(&kvm->mmu_lock);
  2402. mutex_unlock(&kvm->slots_lock);
  2403. return 0;
  2404. }
  2405. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2406. {
  2407. return kvm->arch.n_alloc_mmu_pages;
  2408. }
  2409. gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
  2410. {
  2411. int i;
  2412. struct kvm_mem_alias *alias;
  2413. struct kvm_mem_aliases *aliases;
  2414. aliases = kvm_aliases(kvm);
  2415. for (i = 0; i < aliases->naliases; ++i) {
  2416. alias = &aliases->aliases[i];
  2417. if (alias->flags & KVM_ALIAS_INVALID)
  2418. continue;
  2419. if (gfn >= alias->base_gfn
  2420. && gfn < alias->base_gfn + alias->npages)
  2421. return alias->target_gfn + gfn - alias->base_gfn;
  2422. }
  2423. return gfn;
  2424. }
  2425. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  2426. {
  2427. int i;
  2428. struct kvm_mem_alias *alias;
  2429. struct kvm_mem_aliases *aliases;
  2430. aliases = kvm_aliases(kvm);
  2431. for (i = 0; i < aliases->naliases; ++i) {
  2432. alias = &aliases->aliases[i];
  2433. if (gfn >= alias->base_gfn
  2434. && gfn < alias->base_gfn + alias->npages)
  2435. return alias->target_gfn + gfn - alias->base_gfn;
  2436. }
  2437. return gfn;
  2438. }
  2439. /*
  2440. * Set a new alias region. Aliases map a portion of physical memory into
  2441. * another portion. This is useful for memory windows, for example the PC
  2442. * VGA region.
  2443. */
  2444. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  2445. struct kvm_memory_alias *alias)
  2446. {
  2447. int r, n;
  2448. struct kvm_mem_alias *p;
  2449. struct kvm_mem_aliases *aliases, *old_aliases;
  2450. r = -EINVAL;
  2451. /* General sanity checks */
  2452. if (alias->memory_size & (PAGE_SIZE - 1))
  2453. goto out;
  2454. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  2455. goto out;
  2456. if (alias->slot >= KVM_ALIAS_SLOTS)
  2457. goto out;
  2458. if (alias->guest_phys_addr + alias->memory_size
  2459. < alias->guest_phys_addr)
  2460. goto out;
  2461. if (alias->target_phys_addr + alias->memory_size
  2462. < alias->target_phys_addr)
  2463. goto out;
  2464. r = -ENOMEM;
  2465. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2466. if (!aliases)
  2467. goto out;
  2468. mutex_lock(&kvm->slots_lock);
  2469. /* invalidate any gfn reference in case of deletion/shrinking */
  2470. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2471. aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
  2472. old_aliases = kvm->arch.aliases;
  2473. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2474. synchronize_srcu_expedited(&kvm->srcu);
  2475. kvm_mmu_zap_all(kvm);
  2476. kfree(old_aliases);
  2477. r = -ENOMEM;
  2478. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2479. if (!aliases)
  2480. goto out_unlock;
  2481. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2482. p = &aliases->aliases[alias->slot];
  2483. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  2484. p->npages = alias->memory_size >> PAGE_SHIFT;
  2485. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  2486. p->flags &= ~(KVM_ALIAS_INVALID);
  2487. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  2488. if (aliases->aliases[n - 1].npages)
  2489. break;
  2490. aliases->naliases = n;
  2491. old_aliases = kvm->arch.aliases;
  2492. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2493. synchronize_srcu_expedited(&kvm->srcu);
  2494. kfree(old_aliases);
  2495. r = 0;
  2496. out_unlock:
  2497. mutex_unlock(&kvm->slots_lock);
  2498. out:
  2499. return r;
  2500. }
  2501. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2502. {
  2503. int r;
  2504. r = 0;
  2505. switch (chip->chip_id) {
  2506. case KVM_IRQCHIP_PIC_MASTER:
  2507. memcpy(&chip->chip.pic,
  2508. &pic_irqchip(kvm)->pics[0],
  2509. sizeof(struct kvm_pic_state));
  2510. break;
  2511. case KVM_IRQCHIP_PIC_SLAVE:
  2512. memcpy(&chip->chip.pic,
  2513. &pic_irqchip(kvm)->pics[1],
  2514. sizeof(struct kvm_pic_state));
  2515. break;
  2516. case KVM_IRQCHIP_IOAPIC:
  2517. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2518. break;
  2519. default:
  2520. r = -EINVAL;
  2521. break;
  2522. }
  2523. return r;
  2524. }
  2525. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2526. {
  2527. int r;
  2528. r = 0;
  2529. switch (chip->chip_id) {
  2530. case KVM_IRQCHIP_PIC_MASTER:
  2531. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2532. memcpy(&pic_irqchip(kvm)->pics[0],
  2533. &chip->chip.pic,
  2534. sizeof(struct kvm_pic_state));
  2535. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2536. break;
  2537. case KVM_IRQCHIP_PIC_SLAVE:
  2538. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2539. memcpy(&pic_irqchip(kvm)->pics[1],
  2540. &chip->chip.pic,
  2541. sizeof(struct kvm_pic_state));
  2542. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2543. break;
  2544. case KVM_IRQCHIP_IOAPIC:
  2545. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2546. break;
  2547. default:
  2548. r = -EINVAL;
  2549. break;
  2550. }
  2551. kvm_pic_update_irq(pic_irqchip(kvm));
  2552. return r;
  2553. }
  2554. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2555. {
  2556. int r = 0;
  2557. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2558. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2559. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2560. return r;
  2561. }
  2562. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2563. {
  2564. int r = 0;
  2565. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2566. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2567. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2568. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2569. return r;
  2570. }
  2571. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2572. {
  2573. int r = 0;
  2574. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2575. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2576. sizeof(ps->channels));
  2577. ps->flags = kvm->arch.vpit->pit_state.flags;
  2578. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2579. return r;
  2580. }
  2581. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2582. {
  2583. int r = 0, start = 0;
  2584. u32 prev_legacy, cur_legacy;
  2585. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2586. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2587. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2588. if (!prev_legacy && cur_legacy)
  2589. start = 1;
  2590. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2591. sizeof(kvm->arch.vpit->pit_state.channels));
  2592. kvm->arch.vpit->pit_state.flags = ps->flags;
  2593. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2594. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2595. return r;
  2596. }
  2597. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2598. struct kvm_reinject_control *control)
  2599. {
  2600. if (!kvm->arch.vpit)
  2601. return -ENXIO;
  2602. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2603. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2604. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2605. return 0;
  2606. }
  2607. /*
  2608. * Get (and clear) the dirty memory log for a memory slot.
  2609. */
  2610. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2611. struct kvm_dirty_log *log)
  2612. {
  2613. int r, i;
  2614. struct kvm_memory_slot *memslot;
  2615. unsigned long n;
  2616. unsigned long is_dirty = 0;
  2617. mutex_lock(&kvm->slots_lock);
  2618. r = -EINVAL;
  2619. if (log->slot >= KVM_MEMORY_SLOTS)
  2620. goto out;
  2621. memslot = &kvm->memslots->memslots[log->slot];
  2622. r = -ENOENT;
  2623. if (!memslot->dirty_bitmap)
  2624. goto out;
  2625. n = kvm_dirty_bitmap_bytes(memslot);
  2626. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2627. is_dirty = memslot->dirty_bitmap[i];
  2628. /* If nothing is dirty, don't bother messing with page tables. */
  2629. if (is_dirty) {
  2630. struct kvm_memslots *slots, *old_slots;
  2631. unsigned long *dirty_bitmap;
  2632. spin_lock(&kvm->mmu_lock);
  2633. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2634. spin_unlock(&kvm->mmu_lock);
  2635. r = -ENOMEM;
  2636. dirty_bitmap = vmalloc(n);
  2637. if (!dirty_bitmap)
  2638. goto out;
  2639. memset(dirty_bitmap, 0, n);
  2640. r = -ENOMEM;
  2641. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2642. if (!slots) {
  2643. vfree(dirty_bitmap);
  2644. goto out;
  2645. }
  2646. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2647. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2648. old_slots = kvm->memslots;
  2649. rcu_assign_pointer(kvm->memslots, slots);
  2650. synchronize_srcu_expedited(&kvm->srcu);
  2651. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2652. kfree(old_slots);
  2653. r = -EFAULT;
  2654. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
  2655. vfree(dirty_bitmap);
  2656. goto out;
  2657. }
  2658. vfree(dirty_bitmap);
  2659. } else {
  2660. r = -EFAULT;
  2661. if (clear_user(log->dirty_bitmap, n))
  2662. goto out;
  2663. }
  2664. r = 0;
  2665. out:
  2666. mutex_unlock(&kvm->slots_lock);
  2667. return r;
  2668. }
  2669. long kvm_arch_vm_ioctl(struct file *filp,
  2670. unsigned int ioctl, unsigned long arg)
  2671. {
  2672. struct kvm *kvm = filp->private_data;
  2673. void __user *argp = (void __user *)arg;
  2674. int r = -ENOTTY;
  2675. /*
  2676. * This union makes it completely explicit to gcc-3.x
  2677. * that these two variables' stack usage should be
  2678. * combined, not added together.
  2679. */
  2680. union {
  2681. struct kvm_pit_state ps;
  2682. struct kvm_pit_state2 ps2;
  2683. struct kvm_memory_alias alias;
  2684. struct kvm_pit_config pit_config;
  2685. } u;
  2686. switch (ioctl) {
  2687. case KVM_SET_TSS_ADDR:
  2688. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2689. if (r < 0)
  2690. goto out;
  2691. break;
  2692. case KVM_SET_IDENTITY_MAP_ADDR: {
  2693. u64 ident_addr;
  2694. r = -EFAULT;
  2695. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2696. goto out;
  2697. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2698. if (r < 0)
  2699. goto out;
  2700. break;
  2701. }
  2702. case KVM_SET_MEMORY_REGION: {
  2703. struct kvm_memory_region kvm_mem;
  2704. struct kvm_userspace_memory_region kvm_userspace_mem;
  2705. r = -EFAULT;
  2706. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2707. goto out;
  2708. kvm_userspace_mem.slot = kvm_mem.slot;
  2709. kvm_userspace_mem.flags = kvm_mem.flags;
  2710. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2711. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2712. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2713. if (r)
  2714. goto out;
  2715. break;
  2716. }
  2717. case KVM_SET_NR_MMU_PAGES:
  2718. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2719. if (r)
  2720. goto out;
  2721. break;
  2722. case KVM_GET_NR_MMU_PAGES:
  2723. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2724. break;
  2725. case KVM_SET_MEMORY_ALIAS:
  2726. r = -EFAULT;
  2727. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2728. goto out;
  2729. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2730. if (r)
  2731. goto out;
  2732. break;
  2733. case KVM_CREATE_IRQCHIP: {
  2734. struct kvm_pic *vpic;
  2735. mutex_lock(&kvm->lock);
  2736. r = -EEXIST;
  2737. if (kvm->arch.vpic)
  2738. goto create_irqchip_unlock;
  2739. r = -ENOMEM;
  2740. vpic = kvm_create_pic(kvm);
  2741. if (vpic) {
  2742. r = kvm_ioapic_init(kvm);
  2743. if (r) {
  2744. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2745. &vpic->dev);
  2746. kfree(vpic);
  2747. goto create_irqchip_unlock;
  2748. }
  2749. } else
  2750. goto create_irqchip_unlock;
  2751. smp_wmb();
  2752. kvm->arch.vpic = vpic;
  2753. smp_wmb();
  2754. r = kvm_setup_default_irq_routing(kvm);
  2755. if (r) {
  2756. mutex_lock(&kvm->irq_lock);
  2757. kvm_ioapic_destroy(kvm);
  2758. kvm_destroy_pic(kvm);
  2759. mutex_unlock(&kvm->irq_lock);
  2760. }
  2761. create_irqchip_unlock:
  2762. mutex_unlock(&kvm->lock);
  2763. break;
  2764. }
  2765. case KVM_CREATE_PIT:
  2766. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2767. goto create_pit;
  2768. case KVM_CREATE_PIT2:
  2769. r = -EFAULT;
  2770. if (copy_from_user(&u.pit_config, argp,
  2771. sizeof(struct kvm_pit_config)))
  2772. goto out;
  2773. create_pit:
  2774. mutex_lock(&kvm->slots_lock);
  2775. r = -EEXIST;
  2776. if (kvm->arch.vpit)
  2777. goto create_pit_unlock;
  2778. r = -ENOMEM;
  2779. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2780. if (kvm->arch.vpit)
  2781. r = 0;
  2782. create_pit_unlock:
  2783. mutex_unlock(&kvm->slots_lock);
  2784. break;
  2785. case KVM_IRQ_LINE_STATUS:
  2786. case KVM_IRQ_LINE: {
  2787. struct kvm_irq_level irq_event;
  2788. r = -EFAULT;
  2789. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2790. goto out;
  2791. r = -ENXIO;
  2792. if (irqchip_in_kernel(kvm)) {
  2793. __s32 status;
  2794. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2795. irq_event.irq, irq_event.level);
  2796. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2797. r = -EFAULT;
  2798. irq_event.status = status;
  2799. if (copy_to_user(argp, &irq_event,
  2800. sizeof irq_event))
  2801. goto out;
  2802. }
  2803. r = 0;
  2804. }
  2805. break;
  2806. }
  2807. case KVM_GET_IRQCHIP: {
  2808. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2809. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2810. r = -ENOMEM;
  2811. if (!chip)
  2812. goto out;
  2813. r = -EFAULT;
  2814. if (copy_from_user(chip, argp, sizeof *chip))
  2815. goto get_irqchip_out;
  2816. r = -ENXIO;
  2817. if (!irqchip_in_kernel(kvm))
  2818. goto get_irqchip_out;
  2819. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2820. if (r)
  2821. goto get_irqchip_out;
  2822. r = -EFAULT;
  2823. if (copy_to_user(argp, chip, sizeof *chip))
  2824. goto get_irqchip_out;
  2825. r = 0;
  2826. get_irqchip_out:
  2827. kfree(chip);
  2828. if (r)
  2829. goto out;
  2830. break;
  2831. }
  2832. case KVM_SET_IRQCHIP: {
  2833. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2834. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2835. r = -ENOMEM;
  2836. if (!chip)
  2837. goto out;
  2838. r = -EFAULT;
  2839. if (copy_from_user(chip, argp, sizeof *chip))
  2840. goto set_irqchip_out;
  2841. r = -ENXIO;
  2842. if (!irqchip_in_kernel(kvm))
  2843. goto set_irqchip_out;
  2844. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2845. if (r)
  2846. goto set_irqchip_out;
  2847. r = 0;
  2848. set_irqchip_out:
  2849. kfree(chip);
  2850. if (r)
  2851. goto out;
  2852. break;
  2853. }
  2854. case KVM_GET_PIT: {
  2855. r = -EFAULT;
  2856. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2857. goto out;
  2858. r = -ENXIO;
  2859. if (!kvm->arch.vpit)
  2860. goto out;
  2861. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2862. if (r)
  2863. goto out;
  2864. r = -EFAULT;
  2865. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2866. goto out;
  2867. r = 0;
  2868. break;
  2869. }
  2870. case KVM_SET_PIT: {
  2871. r = -EFAULT;
  2872. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2873. goto out;
  2874. r = -ENXIO;
  2875. if (!kvm->arch.vpit)
  2876. goto out;
  2877. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2878. if (r)
  2879. goto out;
  2880. r = 0;
  2881. break;
  2882. }
  2883. case KVM_GET_PIT2: {
  2884. r = -ENXIO;
  2885. if (!kvm->arch.vpit)
  2886. goto out;
  2887. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2888. if (r)
  2889. goto out;
  2890. r = -EFAULT;
  2891. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2892. goto out;
  2893. r = 0;
  2894. break;
  2895. }
  2896. case KVM_SET_PIT2: {
  2897. r = -EFAULT;
  2898. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2899. goto out;
  2900. r = -ENXIO;
  2901. if (!kvm->arch.vpit)
  2902. goto out;
  2903. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2904. if (r)
  2905. goto out;
  2906. r = 0;
  2907. break;
  2908. }
  2909. case KVM_REINJECT_CONTROL: {
  2910. struct kvm_reinject_control control;
  2911. r = -EFAULT;
  2912. if (copy_from_user(&control, argp, sizeof(control)))
  2913. goto out;
  2914. r = kvm_vm_ioctl_reinject(kvm, &control);
  2915. if (r)
  2916. goto out;
  2917. r = 0;
  2918. break;
  2919. }
  2920. case KVM_XEN_HVM_CONFIG: {
  2921. r = -EFAULT;
  2922. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2923. sizeof(struct kvm_xen_hvm_config)))
  2924. goto out;
  2925. r = -EINVAL;
  2926. if (kvm->arch.xen_hvm_config.flags)
  2927. goto out;
  2928. r = 0;
  2929. break;
  2930. }
  2931. case KVM_SET_CLOCK: {
  2932. struct timespec now;
  2933. struct kvm_clock_data user_ns;
  2934. u64 now_ns;
  2935. s64 delta;
  2936. r = -EFAULT;
  2937. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2938. goto out;
  2939. r = -EINVAL;
  2940. if (user_ns.flags)
  2941. goto out;
  2942. r = 0;
  2943. ktime_get_ts(&now);
  2944. now_ns = timespec_to_ns(&now);
  2945. delta = user_ns.clock - now_ns;
  2946. kvm->arch.kvmclock_offset = delta;
  2947. break;
  2948. }
  2949. case KVM_GET_CLOCK: {
  2950. struct timespec now;
  2951. struct kvm_clock_data user_ns;
  2952. u64 now_ns;
  2953. ktime_get_ts(&now);
  2954. now_ns = timespec_to_ns(&now);
  2955. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2956. user_ns.flags = 0;
  2957. r = -EFAULT;
  2958. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2959. goto out;
  2960. r = 0;
  2961. break;
  2962. }
  2963. default:
  2964. ;
  2965. }
  2966. out:
  2967. return r;
  2968. }
  2969. static void kvm_init_msr_list(void)
  2970. {
  2971. u32 dummy[2];
  2972. unsigned i, j;
  2973. /* skip the first msrs in the list. KVM-specific */
  2974. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2975. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2976. continue;
  2977. if (j < i)
  2978. msrs_to_save[j] = msrs_to_save[i];
  2979. j++;
  2980. }
  2981. num_msrs_to_save = j;
  2982. }
  2983. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2984. const void *v)
  2985. {
  2986. if (vcpu->arch.apic &&
  2987. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2988. return 0;
  2989. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2990. }
  2991. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2992. {
  2993. if (vcpu->arch.apic &&
  2994. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2995. return 0;
  2996. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2997. }
  2998. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2999. struct kvm_segment *var, int seg)
  3000. {
  3001. kvm_x86_ops->set_segment(vcpu, var, seg);
  3002. }
  3003. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3004. struct kvm_segment *var, int seg)
  3005. {
  3006. kvm_x86_ops->get_segment(vcpu, var, seg);
  3007. }
  3008. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3009. {
  3010. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3011. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  3012. }
  3013. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3014. {
  3015. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3016. access |= PFERR_FETCH_MASK;
  3017. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  3018. }
  3019. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3020. {
  3021. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3022. access |= PFERR_WRITE_MASK;
  3023. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  3024. }
  3025. /* uses this to access any guest's mapped memory without checking CPL */
  3026. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3027. {
  3028. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  3029. }
  3030. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3031. struct kvm_vcpu *vcpu, u32 access,
  3032. u32 *error)
  3033. {
  3034. void *data = val;
  3035. int r = X86EMUL_CONTINUE;
  3036. while (bytes) {
  3037. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  3038. unsigned offset = addr & (PAGE_SIZE-1);
  3039. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3040. int ret;
  3041. if (gpa == UNMAPPED_GVA) {
  3042. r = X86EMUL_PROPAGATE_FAULT;
  3043. goto out;
  3044. }
  3045. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3046. if (ret < 0) {
  3047. r = X86EMUL_IO_NEEDED;
  3048. goto out;
  3049. }
  3050. bytes -= toread;
  3051. data += toread;
  3052. addr += toread;
  3053. }
  3054. out:
  3055. return r;
  3056. }
  3057. /* used for instruction fetching */
  3058. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3059. struct kvm_vcpu *vcpu, u32 *error)
  3060. {
  3061. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3062. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3063. access | PFERR_FETCH_MASK, error);
  3064. }
  3065. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3066. struct kvm_vcpu *vcpu, u32 *error)
  3067. {
  3068. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3069. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3070. error);
  3071. }
  3072. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  3073. struct kvm_vcpu *vcpu, u32 *error)
  3074. {
  3075. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  3076. }
  3077. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  3078. unsigned int bytes,
  3079. struct kvm_vcpu *vcpu,
  3080. u32 *error)
  3081. {
  3082. void *data = val;
  3083. int r = X86EMUL_CONTINUE;
  3084. while (bytes) {
  3085. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
  3086. PFERR_WRITE_MASK, error);
  3087. unsigned offset = addr & (PAGE_SIZE-1);
  3088. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3089. int ret;
  3090. if (gpa == UNMAPPED_GVA) {
  3091. r = X86EMUL_PROPAGATE_FAULT;
  3092. goto out;
  3093. }
  3094. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3095. if (ret < 0) {
  3096. r = X86EMUL_IO_NEEDED;
  3097. goto out;
  3098. }
  3099. bytes -= towrite;
  3100. data += towrite;
  3101. addr += towrite;
  3102. }
  3103. out:
  3104. return r;
  3105. }
  3106. static int emulator_read_emulated(unsigned long addr,
  3107. void *val,
  3108. unsigned int bytes,
  3109. unsigned int *error_code,
  3110. struct kvm_vcpu *vcpu)
  3111. {
  3112. gpa_t gpa;
  3113. if (vcpu->mmio_read_completed) {
  3114. memcpy(val, vcpu->mmio_data, bytes);
  3115. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3116. vcpu->mmio_phys_addr, *(u64 *)val);
  3117. vcpu->mmio_read_completed = 0;
  3118. return X86EMUL_CONTINUE;
  3119. }
  3120. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
  3121. if (gpa == UNMAPPED_GVA)
  3122. return X86EMUL_PROPAGATE_FAULT;
  3123. /* For APIC access vmexit */
  3124. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3125. goto mmio;
  3126. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  3127. == X86EMUL_CONTINUE)
  3128. return X86EMUL_CONTINUE;
  3129. mmio:
  3130. /*
  3131. * Is this MMIO handled locally?
  3132. */
  3133. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3134. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3135. return X86EMUL_CONTINUE;
  3136. }
  3137. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3138. vcpu->mmio_needed = 1;
  3139. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3140. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3141. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3142. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3143. return X86EMUL_IO_NEEDED;
  3144. }
  3145. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3146. const void *val, int bytes)
  3147. {
  3148. int ret;
  3149. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3150. if (ret < 0)
  3151. return 0;
  3152. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3153. return 1;
  3154. }
  3155. static int emulator_write_emulated_onepage(unsigned long addr,
  3156. const void *val,
  3157. unsigned int bytes,
  3158. unsigned int *error_code,
  3159. struct kvm_vcpu *vcpu)
  3160. {
  3161. gpa_t gpa;
  3162. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
  3163. if (gpa == UNMAPPED_GVA)
  3164. return X86EMUL_PROPAGATE_FAULT;
  3165. /* For APIC access vmexit */
  3166. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3167. goto mmio;
  3168. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3169. return X86EMUL_CONTINUE;
  3170. mmio:
  3171. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3172. /*
  3173. * Is this MMIO handled locally?
  3174. */
  3175. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3176. return X86EMUL_CONTINUE;
  3177. vcpu->mmio_needed = 1;
  3178. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3179. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3180. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3181. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3182. memcpy(vcpu->run->mmio.data, val, bytes);
  3183. return X86EMUL_CONTINUE;
  3184. }
  3185. int emulator_write_emulated(unsigned long addr,
  3186. const void *val,
  3187. unsigned int bytes,
  3188. unsigned int *error_code,
  3189. struct kvm_vcpu *vcpu)
  3190. {
  3191. /* Crossing a page boundary? */
  3192. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3193. int rc, now;
  3194. now = -addr & ~PAGE_MASK;
  3195. rc = emulator_write_emulated_onepage(addr, val, now, error_code,
  3196. vcpu);
  3197. if (rc != X86EMUL_CONTINUE)
  3198. return rc;
  3199. addr += now;
  3200. val += now;
  3201. bytes -= now;
  3202. }
  3203. return emulator_write_emulated_onepage(addr, val, bytes, error_code,
  3204. vcpu);
  3205. }
  3206. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3207. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3208. #ifdef CONFIG_X86_64
  3209. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3210. #else
  3211. # define CMPXCHG64(ptr, old, new) \
  3212. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3213. #endif
  3214. static int emulator_cmpxchg_emulated(unsigned long addr,
  3215. const void *old,
  3216. const void *new,
  3217. unsigned int bytes,
  3218. unsigned int *error_code,
  3219. struct kvm_vcpu *vcpu)
  3220. {
  3221. gpa_t gpa;
  3222. struct page *page;
  3223. char *kaddr;
  3224. bool exchanged;
  3225. /* guests cmpxchg8b have to be emulated atomically */
  3226. if (bytes > 8 || (bytes & (bytes - 1)))
  3227. goto emul_write;
  3228. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3229. if (gpa == UNMAPPED_GVA ||
  3230. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3231. goto emul_write;
  3232. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3233. goto emul_write;
  3234. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3235. kaddr = kmap_atomic(page, KM_USER0);
  3236. kaddr += offset_in_page(gpa);
  3237. switch (bytes) {
  3238. case 1:
  3239. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3240. break;
  3241. case 2:
  3242. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3243. break;
  3244. case 4:
  3245. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3246. break;
  3247. case 8:
  3248. exchanged = CMPXCHG64(kaddr, old, new);
  3249. break;
  3250. default:
  3251. BUG();
  3252. }
  3253. kunmap_atomic(kaddr, KM_USER0);
  3254. kvm_release_page_dirty(page);
  3255. if (!exchanged)
  3256. return X86EMUL_CMPXCHG_FAILED;
  3257. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3258. return X86EMUL_CONTINUE;
  3259. emul_write:
  3260. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3261. return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
  3262. }
  3263. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3264. {
  3265. /* TODO: String I/O for in kernel device */
  3266. int r;
  3267. if (vcpu->arch.pio.in)
  3268. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3269. vcpu->arch.pio.size, pd);
  3270. else
  3271. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3272. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3273. pd);
  3274. return r;
  3275. }
  3276. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3277. unsigned int count, struct kvm_vcpu *vcpu)
  3278. {
  3279. if (vcpu->arch.pio.count)
  3280. goto data_avail;
  3281. trace_kvm_pio(1, port, size, 1);
  3282. vcpu->arch.pio.port = port;
  3283. vcpu->arch.pio.in = 1;
  3284. vcpu->arch.pio.count = count;
  3285. vcpu->arch.pio.size = size;
  3286. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3287. data_avail:
  3288. memcpy(val, vcpu->arch.pio_data, size * count);
  3289. vcpu->arch.pio.count = 0;
  3290. return 1;
  3291. }
  3292. vcpu->run->exit_reason = KVM_EXIT_IO;
  3293. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3294. vcpu->run->io.size = size;
  3295. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3296. vcpu->run->io.count = count;
  3297. vcpu->run->io.port = port;
  3298. return 0;
  3299. }
  3300. static int emulator_pio_out_emulated(int size, unsigned short port,
  3301. const void *val, unsigned int count,
  3302. struct kvm_vcpu *vcpu)
  3303. {
  3304. trace_kvm_pio(0, port, size, 1);
  3305. vcpu->arch.pio.port = port;
  3306. vcpu->arch.pio.in = 0;
  3307. vcpu->arch.pio.count = count;
  3308. vcpu->arch.pio.size = size;
  3309. memcpy(vcpu->arch.pio_data, val, size * count);
  3310. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3311. vcpu->arch.pio.count = 0;
  3312. return 1;
  3313. }
  3314. vcpu->run->exit_reason = KVM_EXIT_IO;
  3315. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3316. vcpu->run->io.size = size;
  3317. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3318. vcpu->run->io.count = count;
  3319. vcpu->run->io.port = port;
  3320. return 0;
  3321. }
  3322. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3323. {
  3324. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3325. }
  3326. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3327. {
  3328. kvm_mmu_invlpg(vcpu, address);
  3329. return X86EMUL_CONTINUE;
  3330. }
  3331. int emulate_clts(struct kvm_vcpu *vcpu)
  3332. {
  3333. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3334. kvm_x86_ops->fpu_activate(vcpu);
  3335. return X86EMUL_CONTINUE;
  3336. }
  3337. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3338. {
  3339. return _kvm_get_dr(vcpu, dr, dest);
  3340. }
  3341. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3342. {
  3343. return __kvm_set_dr(vcpu, dr, value);
  3344. }
  3345. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3346. {
  3347. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3348. }
  3349. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3350. {
  3351. unsigned long value;
  3352. switch (cr) {
  3353. case 0:
  3354. value = kvm_read_cr0(vcpu);
  3355. break;
  3356. case 2:
  3357. value = vcpu->arch.cr2;
  3358. break;
  3359. case 3:
  3360. value = vcpu->arch.cr3;
  3361. break;
  3362. case 4:
  3363. value = kvm_read_cr4(vcpu);
  3364. break;
  3365. case 8:
  3366. value = kvm_get_cr8(vcpu);
  3367. break;
  3368. default:
  3369. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3370. return 0;
  3371. }
  3372. return value;
  3373. }
  3374. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3375. {
  3376. int res = 0;
  3377. switch (cr) {
  3378. case 0:
  3379. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3380. break;
  3381. case 2:
  3382. vcpu->arch.cr2 = val;
  3383. break;
  3384. case 3:
  3385. res = kvm_set_cr3(vcpu, val);
  3386. break;
  3387. case 4:
  3388. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3389. break;
  3390. case 8:
  3391. res = __kvm_set_cr8(vcpu, val & 0xfUL);
  3392. break;
  3393. default:
  3394. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3395. res = -1;
  3396. }
  3397. return res;
  3398. }
  3399. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3400. {
  3401. return kvm_x86_ops->get_cpl(vcpu);
  3402. }
  3403. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3404. {
  3405. kvm_x86_ops->get_gdt(vcpu, dt);
  3406. }
  3407. static unsigned long emulator_get_cached_segment_base(int seg,
  3408. struct kvm_vcpu *vcpu)
  3409. {
  3410. return get_segment_base(vcpu, seg);
  3411. }
  3412. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3413. struct kvm_vcpu *vcpu)
  3414. {
  3415. struct kvm_segment var;
  3416. kvm_get_segment(vcpu, &var, seg);
  3417. if (var.unusable)
  3418. return false;
  3419. if (var.g)
  3420. var.limit >>= 12;
  3421. set_desc_limit(desc, var.limit);
  3422. set_desc_base(desc, (unsigned long)var.base);
  3423. desc->type = var.type;
  3424. desc->s = var.s;
  3425. desc->dpl = var.dpl;
  3426. desc->p = var.present;
  3427. desc->avl = var.avl;
  3428. desc->l = var.l;
  3429. desc->d = var.db;
  3430. desc->g = var.g;
  3431. return true;
  3432. }
  3433. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3434. struct kvm_vcpu *vcpu)
  3435. {
  3436. struct kvm_segment var;
  3437. /* needed to preserve selector */
  3438. kvm_get_segment(vcpu, &var, seg);
  3439. var.base = get_desc_base(desc);
  3440. var.limit = get_desc_limit(desc);
  3441. if (desc->g)
  3442. var.limit = (var.limit << 12) | 0xfff;
  3443. var.type = desc->type;
  3444. var.present = desc->p;
  3445. var.dpl = desc->dpl;
  3446. var.db = desc->d;
  3447. var.s = desc->s;
  3448. var.l = desc->l;
  3449. var.g = desc->g;
  3450. var.avl = desc->avl;
  3451. var.present = desc->p;
  3452. var.unusable = !var.present;
  3453. var.padding = 0;
  3454. kvm_set_segment(vcpu, &var, seg);
  3455. return;
  3456. }
  3457. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3458. {
  3459. struct kvm_segment kvm_seg;
  3460. kvm_get_segment(vcpu, &kvm_seg, seg);
  3461. return kvm_seg.selector;
  3462. }
  3463. static void emulator_set_segment_selector(u16 sel, int seg,
  3464. struct kvm_vcpu *vcpu)
  3465. {
  3466. struct kvm_segment kvm_seg;
  3467. kvm_get_segment(vcpu, &kvm_seg, seg);
  3468. kvm_seg.selector = sel;
  3469. kvm_set_segment(vcpu, &kvm_seg, seg);
  3470. }
  3471. static struct x86_emulate_ops emulate_ops = {
  3472. .read_std = kvm_read_guest_virt_system,
  3473. .write_std = kvm_write_guest_virt_system,
  3474. .fetch = kvm_fetch_guest_virt,
  3475. .read_emulated = emulator_read_emulated,
  3476. .write_emulated = emulator_write_emulated,
  3477. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3478. .pio_in_emulated = emulator_pio_in_emulated,
  3479. .pio_out_emulated = emulator_pio_out_emulated,
  3480. .get_cached_descriptor = emulator_get_cached_descriptor,
  3481. .set_cached_descriptor = emulator_set_cached_descriptor,
  3482. .get_segment_selector = emulator_get_segment_selector,
  3483. .set_segment_selector = emulator_set_segment_selector,
  3484. .get_cached_segment_base = emulator_get_cached_segment_base,
  3485. .get_gdt = emulator_get_gdt,
  3486. .get_cr = emulator_get_cr,
  3487. .set_cr = emulator_set_cr,
  3488. .cpl = emulator_get_cpl,
  3489. .get_dr = emulator_get_dr,
  3490. .set_dr = emulator_set_dr,
  3491. .set_msr = kvm_set_msr,
  3492. .get_msr = kvm_get_msr,
  3493. };
  3494. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3495. {
  3496. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3497. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3498. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3499. vcpu->arch.regs_dirty = ~0;
  3500. }
  3501. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3502. {
  3503. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3504. /*
  3505. * an sti; sti; sequence only disable interrupts for the first
  3506. * instruction. So, if the last instruction, be it emulated or
  3507. * not, left the system with the INT_STI flag enabled, it
  3508. * means that the last instruction is an sti. We should not
  3509. * leave the flag on in this case. The same goes for mov ss
  3510. */
  3511. if (!(int_shadow & mask))
  3512. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3513. }
  3514. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3515. {
  3516. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3517. if (ctxt->exception == PF_VECTOR)
  3518. kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
  3519. else if (ctxt->error_code_valid)
  3520. kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
  3521. else
  3522. kvm_queue_exception(vcpu, ctxt->exception);
  3523. }
  3524. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3525. {
  3526. ++vcpu->stat.insn_emulation_fail;
  3527. trace_kvm_emulate_insn_failed(vcpu);
  3528. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3529. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3530. vcpu->run->internal.ndata = 0;
  3531. kvm_queue_exception(vcpu, UD_VECTOR);
  3532. return EMULATE_FAIL;
  3533. }
  3534. int emulate_instruction(struct kvm_vcpu *vcpu,
  3535. unsigned long cr2,
  3536. u16 error_code,
  3537. int emulation_type)
  3538. {
  3539. int r;
  3540. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3541. kvm_clear_exception_queue(vcpu);
  3542. vcpu->arch.mmio_fault_cr2 = cr2;
  3543. /*
  3544. * TODO: fix emulate.c to use guest_read/write_register
  3545. * instead of direct ->regs accesses, can save hundred cycles
  3546. * on Intel for instructions that don't read/change RSP, for
  3547. * for example.
  3548. */
  3549. cache_all_regs(vcpu);
  3550. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3551. int cs_db, cs_l;
  3552. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3553. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3554. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3555. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3556. vcpu->arch.emulate_ctxt.mode =
  3557. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3558. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3559. ? X86EMUL_MODE_VM86 : cs_l
  3560. ? X86EMUL_MODE_PROT64 : cs_db
  3561. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3562. memset(c, 0, sizeof(struct decode_cache));
  3563. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3564. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3565. vcpu->arch.emulate_ctxt.exception = -1;
  3566. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3567. trace_kvm_emulate_insn_start(vcpu);
  3568. /* Only allow emulation of specific instructions on #UD
  3569. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3570. if (emulation_type & EMULTYPE_TRAP_UD) {
  3571. if (!c->twobyte)
  3572. return EMULATE_FAIL;
  3573. switch (c->b) {
  3574. case 0x01: /* VMMCALL */
  3575. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3576. return EMULATE_FAIL;
  3577. break;
  3578. case 0x34: /* sysenter */
  3579. case 0x35: /* sysexit */
  3580. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3581. return EMULATE_FAIL;
  3582. break;
  3583. case 0x05: /* syscall */
  3584. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3585. return EMULATE_FAIL;
  3586. break;
  3587. default:
  3588. return EMULATE_FAIL;
  3589. }
  3590. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3591. return EMULATE_FAIL;
  3592. }
  3593. ++vcpu->stat.insn_emulation;
  3594. if (r) {
  3595. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3596. return EMULATE_DONE;
  3597. if (emulation_type & EMULTYPE_SKIP)
  3598. return EMULATE_FAIL;
  3599. return handle_emulation_failure(vcpu);
  3600. }
  3601. }
  3602. if (emulation_type & EMULTYPE_SKIP) {
  3603. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3604. return EMULATE_DONE;
  3605. }
  3606. /* this is needed for vmware backdor interface to work since it
  3607. changes registers values during IO operation */
  3608. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3609. restart:
  3610. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3611. if (r) { /* emulation failed */
  3612. /*
  3613. * if emulation was due to access to shadowed page table
  3614. * and it failed try to unshadow page and re-entetr the
  3615. * guest to let CPU execute the instruction.
  3616. */
  3617. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3618. return EMULATE_DONE;
  3619. return handle_emulation_failure(vcpu);
  3620. }
  3621. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3622. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3623. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3624. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3625. if (vcpu->arch.emulate_ctxt.exception >= 0) {
  3626. inject_emulated_exception(vcpu);
  3627. return EMULATE_DONE;
  3628. }
  3629. if (vcpu->arch.pio.count) {
  3630. if (!vcpu->arch.pio.in)
  3631. vcpu->arch.pio.count = 0;
  3632. return EMULATE_DO_MMIO;
  3633. }
  3634. if (vcpu->mmio_needed) {
  3635. if (vcpu->mmio_is_write)
  3636. vcpu->mmio_needed = 0;
  3637. return EMULATE_DO_MMIO;
  3638. }
  3639. if (vcpu->arch.emulate_ctxt.restart)
  3640. goto restart;
  3641. return EMULATE_DONE;
  3642. }
  3643. EXPORT_SYMBOL_GPL(emulate_instruction);
  3644. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3645. {
  3646. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3647. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3648. /* do not return to emulator after return from userspace */
  3649. vcpu->arch.pio.count = 0;
  3650. return ret;
  3651. }
  3652. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3653. static void bounce_off(void *info)
  3654. {
  3655. /* nothing */
  3656. }
  3657. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3658. void *data)
  3659. {
  3660. struct cpufreq_freqs *freq = data;
  3661. struct kvm *kvm;
  3662. struct kvm_vcpu *vcpu;
  3663. int i, send_ipi = 0;
  3664. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3665. return 0;
  3666. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3667. return 0;
  3668. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3669. spin_lock(&kvm_lock);
  3670. list_for_each_entry(kvm, &vm_list, vm_list) {
  3671. kvm_for_each_vcpu(i, vcpu, kvm) {
  3672. if (vcpu->cpu != freq->cpu)
  3673. continue;
  3674. if (!kvm_request_guest_time_update(vcpu))
  3675. continue;
  3676. if (vcpu->cpu != smp_processor_id())
  3677. send_ipi++;
  3678. }
  3679. }
  3680. spin_unlock(&kvm_lock);
  3681. if (freq->old < freq->new && send_ipi) {
  3682. /*
  3683. * We upscale the frequency. Must make the guest
  3684. * doesn't see old kvmclock values while running with
  3685. * the new frequency, otherwise we risk the guest sees
  3686. * time go backwards.
  3687. *
  3688. * In case we update the frequency for another cpu
  3689. * (which might be in guest context) send an interrupt
  3690. * to kick the cpu out of guest context. Next time
  3691. * guest context is entered kvmclock will be updated,
  3692. * so the guest will not see stale values.
  3693. */
  3694. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3695. }
  3696. return 0;
  3697. }
  3698. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3699. .notifier_call = kvmclock_cpufreq_notifier
  3700. };
  3701. static void kvm_timer_init(void)
  3702. {
  3703. int cpu;
  3704. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3705. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3706. CPUFREQ_TRANSITION_NOTIFIER);
  3707. for_each_online_cpu(cpu) {
  3708. unsigned long khz = cpufreq_get(cpu);
  3709. if (!khz)
  3710. khz = tsc_khz;
  3711. per_cpu(cpu_tsc_khz, cpu) = khz;
  3712. }
  3713. } else {
  3714. for_each_possible_cpu(cpu)
  3715. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3716. }
  3717. }
  3718. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  3719. static int kvm_is_in_guest(void)
  3720. {
  3721. return percpu_read(current_vcpu) != NULL;
  3722. }
  3723. static int kvm_is_user_mode(void)
  3724. {
  3725. int user_mode = 3;
  3726. if (percpu_read(current_vcpu))
  3727. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  3728. return user_mode != 0;
  3729. }
  3730. static unsigned long kvm_get_guest_ip(void)
  3731. {
  3732. unsigned long ip = 0;
  3733. if (percpu_read(current_vcpu))
  3734. ip = kvm_rip_read(percpu_read(current_vcpu));
  3735. return ip;
  3736. }
  3737. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  3738. .is_in_guest = kvm_is_in_guest,
  3739. .is_user_mode = kvm_is_user_mode,
  3740. .get_guest_ip = kvm_get_guest_ip,
  3741. };
  3742. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  3743. {
  3744. percpu_write(current_vcpu, vcpu);
  3745. }
  3746. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  3747. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  3748. {
  3749. percpu_write(current_vcpu, NULL);
  3750. }
  3751. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  3752. int kvm_arch_init(void *opaque)
  3753. {
  3754. int r;
  3755. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3756. if (kvm_x86_ops) {
  3757. printk(KERN_ERR "kvm: already loaded the other module\n");
  3758. r = -EEXIST;
  3759. goto out;
  3760. }
  3761. if (!ops->cpu_has_kvm_support()) {
  3762. printk(KERN_ERR "kvm: no hardware support\n");
  3763. r = -EOPNOTSUPP;
  3764. goto out;
  3765. }
  3766. if (ops->disabled_by_bios()) {
  3767. printk(KERN_ERR "kvm: disabled by bios\n");
  3768. r = -EOPNOTSUPP;
  3769. goto out;
  3770. }
  3771. r = kvm_mmu_module_init();
  3772. if (r)
  3773. goto out;
  3774. kvm_init_msr_list();
  3775. kvm_x86_ops = ops;
  3776. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3777. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3778. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3779. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3780. kvm_timer_init();
  3781. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  3782. if (cpu_has_xsave)
  3783. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  3784. return 0;
  3785. out:
  3786. return r;
  3787. }
  3788. void kvm_arch_exit(void)
  3789. {
  3790. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  3791. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3792. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3793. CPUFREQ_TRANSITION_NOTIFIER);
  3794. kvm_x86_ops = NULL;
  3795. kvm_mmu_module_exit();
  3796. }
  3797. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3798. {
  3799. ++vcpu->stat.halt_exits;
  3800. if (irqchip_in_kernel(vcpu->kvm)) {
  3801. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3802. return 1;
  3803. } else {
  3804. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3805. return 0;
  3806. }
  3807. }
  3808. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3809. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3810. unsigned long a1)
  3811. {
  3812. if (is_long_mode(vcpu))
  3813. return a0;
  3814. else
  3815. return a0 | ((gpa_t)a1 << 32);
  3816. }
  3817. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3818. {
  3819. u64 param, ingpa, outgpa, ret;
  3820. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3821. bool fast, longmode;
  3822. int cs_db, cs_l;
  3823. /*
  3824. * hypercall generates UD from non zero cpl and real mode
  3825. * per HYPER-V spec
  3826. */
  3827. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3828. kvm_queue_exception(vcpu, UD_VECTOR);
  3829. return 0;
  3830. }
  3831. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3832. longmode = is_long_mode(vcpu) && cs_l == 1;
  3833. if (!longmode) {
  3834. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3835. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3836. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3837. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3838. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3839. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3840. }
  3841. #ifdef CONFIG_X86_64
  3842. else {
  3843. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3844. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3845. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3846. }
  3847. #endif
  3848. code = param & 0xffff;
  3849. fast = (param >> 16) & 0x1;
  3850. rep_cnt = (param >> 32) & 0xfff;
  3851. rep_idx = (param >> 48) & 0xfff;
  3852. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3853. switch (code) {
  3854. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3855. kvm_vcpu_on_spin(vcpu);
  3856. break;
  3857. default:
  3858. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3859. break;
  3860. }
  3861. ret = res | (((u64)rep_done & 0xfff) << 32);
  3862. if (longmode) {
  3863. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3864. } else {
  3865. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3866. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3867. }
  3868. return 1;
  3869. }
  3870. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3871. {
  3872. unsigned long nr, a0, a1, a2, a3, ret;
  3873. int r = 1;
  3874. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3875. return kvm_hv_hypercall(vcpu);
  3876. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3877. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3878. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3879. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3880. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3881. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3882. if (!is_long_mode(vcpu)) {
  3883. nr &= 0xFFFFFFFF;
  3884. a0 &= 0xFFFFFFFF;
  3885. a1 &= 0xFFFFFFFF;
  3886. a2 &= 0xFFFFFFFF;
  3887. a3 &= 0xFFFFFFFF;
  3888. }
  3889. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3890. ret = -KVM_EPERM;
  3891. goto out;
  3892. }
  3893. switch (nr) {
  3894. case KVM_HC_VAPIC_POLL_IRQ:
  3895. ret = 0;
  3896. break;
  3897. case KVM_HC_MMU_OP:
  3898. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3899. break;
  3900. default:
  3901. ret = -KVM_ENOSYS;
  3902. break;
  3903. }
  3904. out:
  3905. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3906. ++vcpu->stat.hypercalls;
  3907. return r;
  3908. }
  3909. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3910. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3911. {
  3912. char instruction[3];
  3913. unsigned long rip = kvm_rip_read(vcpu);
  3914. /*
  3915. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3916. * to ensure that the updated hypercall appears atomically across all
  3917. * VCPUs.
  3918. */
  3919. kvm_mmu_zap_all(vcpu->kvm);
  3920. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3921. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  3922. }
  3923. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3924. {
  3925. struct desc_ptr dt = { limit, base };
  3926. kvm_x86_ops->set_gdt(vcpu, &dt);
  3927. }
  3928. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3929. {
  3930. struct desc_ptr dt = { limit, base };
  3931. kvm_x86_ops->set_idt(vcpu, &dt);
  3932. }
  3933. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3934. {
  3935. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3936. int j, nent = vcpu->arch.cpuid_nent;
  3937. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3938. /* when no next entry is found, the current entry[i] is reselected */
  3939. for (j = i + 1; ; j = (j + 1) % nent) {
  3940. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3941. if (ej->function == e->function) {
  3942. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3943. return j;
  3944. }
  3945. }
  3946. return 0; /* silence gcc, even though control never reaches here */
  3947. }
  3948. /* find an entry with matching function, matching index (if needed), and that
  3949. * should be read next (if it's stateful) */
  3950. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3951. u32 function, u32 index)
  3952. {
  3953. if (e->function != function)
  3954. return 0;
  3955. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3956. return 0;
  3957. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3958. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3959. return 0;
  3960. return 1;
  3961. }
  3962. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3963. u32 function, u32 index)
  3964. {
  3965. int i;
  3966. struct kvm_cpuid_entry2 *best = NULL;
  3967. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3968. struct kvm_cpuid_entry2 *e;
  3969. e = &vcpu->arch.cpuid_entries[i];
  3970. if (is_matching_cpuid_entry(e, function, index)) {
  3971. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3972. move_to_next_stateful_cpuid_entry(vcpu, i);
  3973. best = e;
  3974. break;
  3975. }
  3976. /*
  3977. * Both basic or both extended?
  3978. */
  3979. if (((e->function ^ function) & 0x80000000) == 0)
  3980. if (!best || e->function > best->function)
  3981. best = e;
  3982. }
  3983. return best;
  3984. }
  3985. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3986. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3987. {
  3988. struct kvm_cpuid_entry2 *best;
  3989. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  3990. if (!best || best->eax < 0x80000008)
  3991. goto not_found;
  3992. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3993. if (best)
  3994. return best->eax & 0xff;
  3995. not_found:
  3996. return 36;
  3997. }
  3998. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3999. {
  4000. u32 function, index;
  4001. struct kvm_cpuid_entry2 *best;
  4002. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4003. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4004. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4005. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4006. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4007. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4008. best = kvm_find_cpuid_entry(vcpu, function, index);
  4009. if (best) {
  4010. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4011. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4012. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4013. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4014. }
  4015. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4016. trace_kvm_cpuid(function,
  4017. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4018. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4019. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4020. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4021. }
  4022. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4023. /*
  4024. * Check if userspace requested an interrupt window, and that the
  4025. * interrupt window is open.
  4026. *
  4027. * No need to exit to userspace if we already have an interrupt queued.
  4028. */
  4029. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4030. {
  4031. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4032. vcpu->run->request_interrupt_window &&
  4033. kvm_arch_interrupt_allowed(vcpu));
  4034. }
  4035. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4036. {
  4037. struct kvm_run *kvm_run = vcpu->run;
  4038. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4039. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4040. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4041. if (irqchip_in_kernel(vcpu->kvm))
  4042. kvm_run->ready_for_interrupt_injection = 1;
  4043. else
  4044. kvm_run->ready_for_interrupt_injection =
  4045. kvm_arch_interrupt_allowed(vcpu) &&
  4046. !kvm_cpu_has_interrupt(vcpu) &&
  4047. !kvm_event_needs_reinjection(vcpu);
  4048. }
  4049. static void vapic_enter(struct kvm_vcpu *vcpu)
  4050. {
  4051. struct kvm_lapic *apic = vcpu->arch.apic;
  4052. struct page *page;
  4053. if (!apic || !apic->vapic_addr)
  4054. return;
  4055. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4056. vcpu->arch.apic->vapic_page = page;
  4057. }
  4058. static void vapic_exit(struct kvm_vcpu *vcpu)
  4059. {
  4060. struct kvm_lapic *apic = vcpu->arch.apic;
  4061. int idx;
  4062. if (!apic || !apic->vapic_addr)
  4063. return;
  4064. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4065. kvm_release_page_dirty(apic->vapic_page);
  4066. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4067. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4068. }
  4069. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4070. {
  4071. int max_irr, tpr;
  4072. if (!kvm_x86_ops->update_cr8_intercept)
  4073. return;
  4074. if (!vcpu->arch.apic)
  4075. return;
  4076. if (!vcpu->arch.apic->vapic_addr)
  4077. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4078. else
  4079. max_irr = -1;
  4080. if (max_irr != -1)
  4081. max_irr >>= 4;
  4082. tpr = kvm_lapic_get_cr8(vcpu);
  4083. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4084. }
  4085. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4086. {
  4087. /* try to reinject previous events if any */
  4088. if (vcpu->arch.exception.pending) {
  4089. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4090. vcpu->arch.exception.has_error_code,
  4091. vcpu->arch.exception.error_code);
  4092. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4093. vcpu->arch.exception.has_error_code,
  4094. vcpu->arch.exception.error_code,
  4095. vcpu->arch.exception.reinject);
  4096. return;
  4097. }
  4098. if (vcpu->arch.nmi_injected) {
  4099. kvm_x86_ops->set_nmi(vcpu);
  4100. return;
  4101. }
  4102. if (vcpu->arch.interrupt.pending) {
  4103. kvm_x86_ops->set_irq(vcpu);
  4104. return;
  4105. }
  4106. /* try to inject new event if pending */
  4107. if (vcpu->arch.nmi_pending) {
  4108. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4109. vcpu->arch.nmi_pending = false;
  4110. vcpu->arch.nmi_injected = true;
  4111. kvm_x86_ops->set_nmi(vcpu);
  4112. }
  4113. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4114. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4115. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4116. false);
  4117. kvm_x86_ops->set_irq(vcpu);
  4118. }
  4119. }
  4120. }
  4121. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4122. {
  4123. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4124. !vcpu->guest_xcr0_loaded) {
  4125. /* kvm_set_xcr() also depends on this */
  4126. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4127. vcpu->guest_xcr0_loaded = 1;
  4128. }
  4129. }
  4130. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4131. {
  4132. if (vcpu->guest_xcr0_loaded) {
  4133. if (vcpu->arch.xcr0 != host_xcr0)
  4134. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4135. vcpu->guest_xcr0_loaded = 0;
  4136. }
  4137. }
  4138. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4139. {
  4140. int r;
  4141. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4142. vcpu->run->request_interrupt_window;
  4143. if (vcpu->requests)
  4144. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  4145. kvm_mmu_unload(vcpu);
  4146. r = kvm_mmu_reload(vcpu);
  4147. if (unlikely(r))
  4148. goto out;
  4149. if (vcpu->requests) {
  4150. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  4151. __kvm_migrate_timers(vcpu);
  4152. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  4153. kvm_write_guest_time(vcpu);
  4154. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  4155. kvm_mmu_sync_roots(vcpu);
  4156. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  4157. kvm_x86_ops->tlb_flush(vcpu);
  4158. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  4159. &vcpu->requests)) {
  4160. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4161. r = 0;
  4162. goto out;
  4163. }
  4164. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  4165. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4166. r = 0;
  4167. goto out;
  4168. }
  4169. if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
  4170. vcpu->fpu_active = 0;
  4171. kvm_x86_ops->fpu_deactivate(vcpu);
  4172. }
  4173. }
  4174. preempt_disable();
  4175. kvm_x86_ops->prepare_guest_switch(vcpu);
  4176. if (vcpu->fpu_active)
  4177. kvm_load_guest_fpu(vcpu);
  4178. kvm_load_guest_xcr0(vcpu);
  4179. atomic_set(&vcpu->guest_mode, 1);
  4180. smp_wmb();
  4181. local_irq_disable();
  4182. if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
  4183. || need_resched() || signal_pending(current)) {
  4184. atomic_set(&vcpu->guest_mode, 0);
  4185. smp_wmb();
  4186. local_irq_enable();
  4187. preempt_enable();
  4188. r = 1;
  4189. goto out;
  4190. }
  4191. inject_pending_event(vcpu);
  4192. /* enable NMI/IRQ window open exits if needed */
  4193. if (vcpu->arch.nmi_pending)
  4194. kvm_x86_ops->enable_nmi_window(vcpu);
  4195. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4196. kvm_x86_ops->enable_irq_window(vcpu);
  4197. if (kvm_lapic_enabled(vcpu)) {
  4198. update_cr8_intercept(vcpu);
  4199. kvm_lapic_sync_to_vapic(vcpu);
  4200. }
  4201. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4202. kvm_guest_enter();
  4203. if (unlikely(vcpu->arch.switch_db_regs)) {
  4204. set_debugreg(0, 7);
  4205. set_debugreg(vcpu->arch.eff_db[0], 0);
  4206. set_debugreg(vcpu->arch.eff_db[1], 1);
  4207. set_debugreg(vcpu->arch.eff_db[2], 2);
  4208. set_debugreg(vcpu->arch.eff_db[3], 3);
  4209. }
  4210. trace_kvm_entry(vcpu->vcpu_id);
  4211. kvm_x86_ops->run(vcpu);
  4212. /*
  4213. * If the guest has used debug registers, at least dr7
  4214. * will be disabled while returning to the host.
  4215. * If we don't have active breakpoints in the host, we don't
  4216. * care about the messed up debug address registers. But if
  4217. * we have some of them active, restore the old state.
  4218. */
  4219. if (hw_breakpoint_active())
  4220. hw_breakpoint_restore();
  4221. atomic_set(&vcpu->guest_mode, 0);
  4222. smp_wmb();
  4223. local_irq_enable();
  4224. ++vcpu->stat.exits;
  4225. /*
  4226. * We must have an instruction between local_irq_enable() and
  4227. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4228. * the interrupt shadow. The stat.exits increment will do nicely.
  4229. * But we need to prevent reordering, hence this barrier():
  4230. */
  4231. barrier();
  4232. kvm_guest_exit();
  4233. preempt_enable();
  4234. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4235. /*
  4236. * Profile KVM exit RIPs:
  4237. */
  4238. if (unlikely(prof_on == KVM_PROFILING)) {
  4239. unsigned long rip = kvm_rip_read(vcpu);
  4240. profile_hit(KVM_PROFILING, (void *)rip);
  4241. }
  4242. kvm_lapic_sync_from_vapic(vcpu);
  4243. r = kvm_x86_ops->handle_exit(vcpu);
  4244. out:
  4245. return r;
  4246. }
  4247. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4248. {
  4249. int r;
  4250. struct kvm *kvm = vcpu->kvm;
  4251. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4252. pr_debug("vcpu %d received sipi with vector # %x\n",
  4253. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4254. kvm_lapic_reset(vcpu);
  4255. r = kvm_arch_vcpu_reset(vcpu);
  4256. if (r)
  4257. return r;
  4258. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4259. }
  4260. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4261. vapic_enter(vcpu);
  4262. r = 1;
  4263. while (r > 0) {
  4264. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  4265. r = vcpu_enter_guest(vcpu);
  4266. else {
  4267. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4268. kvm_vcpu_block(vcpu);
  4269. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4270. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  4271. {
  4272. switch(vcpu->arch.mp_state) {
  4273. case KVM_MP_STATE_HALTED:
  4274. vcpu->arch.mp_state =
  4275. KVM_MP_STATE_RUNNABLE;
  4276. case KVM_MP_STATE_RUNNABLE:
  4277. break;
  4278. case KVM_MP_STATE_SIPI_RECEIVED:
  4279. default:
  4280. r = -EINTR;
  4281. break;
  4282. }
  4283. }
  4284. }
  4285. if (r <= 0)
  4286. break;
  4287. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4288. if (kvm_cpu_has_pending_timer(vcpu))
  4289. kvm_inject_pending_timer_irqs(vcpu);
  4290. if (dm_request_for_irq_injection(vcpu)) {
  4291. r = -EINTR;
  4292. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4293. ++vcpu->stat.request_irq_exits;
  4294. }
  4295. if (signal_pending(current)) {
  4296. r = -EINTR;
  4297. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4298. ++vcpu->stat.signal_exits;
  4299. }
  4300. if (need_resched()) {
  4301. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4302. kvm_resched(vcpu);
  4303. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4304. }
  4305. }
  4306. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4307. vapic_exit(vcpu);
  4308. return r;
  4309. }
  4310. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4311. {
  4312. int r;
  4313. sigset_t sigsaved;
  4314. if (vcpu->sigset_active)
  4315. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4316. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4317. kvm_vcpu_block(vcpu);
  4318. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4319. r = -EAGAIN;
  4320. goto out;
  4321. }
  4322. /* re-sync apic's tpr */
  4323. if (!irqchip_in_kernel(vcpu->kvm))
  4324. kvm_set_cr8(vcpu, kvm_run->cr8);
  4325. if (vcpu->arch.pio.count || vcpu->mmio_needed ||
  4326. vcpu->arch.emulate_ctxt.restart) {
  4327. if (vcpu->mmio_needed) {
  4328. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4329. vcpu->mmio_read_completed = 1;
  4330. vcpu->mmio_needed = 0;
  4331. }
  4332. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4333. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4334. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4335. if (r != EMULATE_DONE) {
  4336. r = 0;
  4337. goto out;
  4338. }
  4339. }
  4340. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4341. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4342. kvm_run->hypercall.ret);
  4343. r = __vcpu_run(vcpu);
  4344. out:
  4345. post_kvm_run_save(vcpu);
  4346. if (vcpu->sigset_active)
  4347. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4348. return r;
  4349. }
  4350. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4351. {
  4352. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4353. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4354. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4355. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4356. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4357. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4358. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4359. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4360. #ifdef CONFIG_X86_64
  4361. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4362. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4363. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4364. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4365. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4366. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4367. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4368. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4369. #endif
  4370. regs->rip = kvm_rip_read(vcpu);
  4371. regs->rflags = kvm_get_rflags(vcpu);
  4372. return 0;
  4373. }
  4374. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4375. {
  4376. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4377. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4378. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4379. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4380. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4381. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4382. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4383. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4384. #ifdef CONFIG_X86_64
  4385. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4386. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4387. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4388. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4389. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4390. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4391. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4392. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4393. #endif
  4394. kvm_rip_write(vcpu, regs->rip);
  4395. kvm_set_rflags(vcpu, regs->rflags);
  4396. vcpu->arch.exception.pending = false;
  4397. return 0;
  4398. }
  4399. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4400. {
  4401. struct kvm_segment cs;
  4402. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4403. *db = cs.db;
  4404. *l = cs.l;
  4405. }
  4406. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4407. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4408. struct kvm_sregs *sregs)
  4409. {
  4410. struct desc_ptr dt;
  4411. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4412. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4413. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4414. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4415. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4416. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4417. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4418. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4419. kvm_x86_ops->get_idt(vcpu, &dt);
  4420. sregs->idt.limit = dt.size;
  4421. sregs->idt.base = dt.address;
  4422. kvm_x86_ops->get_gdt(vcpu, &dt);
  4423. sregs->gdt.limit = dt.size;
  4424. sregs->gdt.base = dt.address;
  4425. sregs->cr0 = kvm_read_cr0(vcpu);
  4426. sregs->cr2 = vcpu->arch.cr2;
  4427. sregs->cr3 = vcpu->arch.cr3;
  4428. sregs->cr4 = kvm_read_cr4(vcpu);
  4429. sregs->cr8 = kvm_get_cr8(vcpu);
  4430. sregs->efer = vcpu->arch.efer;
  4431. sregs->apic_base = kvm_get_apic_base(vcpu);
  4432. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4433. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4434. set_bit(vcpu->arch.interrupt.nr,
  4435. (unsigned long *)sregs->interrupt_bitmap);
  4436. return 0;
  4437. }
  4438. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4439. struct kvm_mp_state *mp_state)
  4440. {
  4441. mp_state->mp_state = vcpu->arch.mp_state;
  4442. return 0;
  4443. }
  4444. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4445. struct kvm_mp_state *mp_state)
  4446. {
  4447. vcpu->arch.mp_state = mp_state->mp_state;
  4448. return 0;
  4449. }
  4450. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4451. bool has_error_code, u32 error_code)
  4452. {
  4453. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4454. int cs_db, cs_l, ret;
  4455. cache_all_regs(vcpu);
  4456. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4457. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  4458. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  4459. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  4460. vcpu->arch.emulate_ctxt.mode =
  4461. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  4462. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  4463. ? X86EMUL_MODE_VM86 : cs_l
  4464. ? X86EMUL_MODE_PROT64 : cs_db
  4465. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  4466. memset(c, 0, sizeof(struct decode_cache));
  4467. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  4468. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
  4469. tss_selector, reason, has_error_code,
  4470. error_code);
  4471. if (ret)
  4472. return EMULATE_FAIL;
  4473. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4474. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4475. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4476. return EMULATE_DONE;
  4477. }
  4478. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4479. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4480. struct kvm_sregs *sregs)
  4481. {
  4482. int mmu_reset_needed = 0;
  4483. int pending_vec, max_bits;
  4484. struct desc_ptr dt;
  4485. dt.size = sregs->idt.limit;
  4486. dt.address = sregs->idt.base;
  4487. kvm_x86_ops->set_idt(vcpu, &dt);
  4488. dt.size = sregs->gdt.limit;
  4489. dt.address = sregs->gdt.base;
  4490. kvm_x86_ops->set_gdt(vcpu, &dt);
  4491. vcpu->arch.cr2 = sregs->cr2;
  4492. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4493. vcpu->arch.cr3 = sregs->cr3;
  4494. kvm_set_cr8(vcpu, sregs->cr8);
  4495. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4496. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4497. kvm_set_apic_base(vcpu, sregs->apic_base);
  4498. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4499. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4500. vcpu->arch.cr0 = sregs->cr0;
  4501. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4502. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4503. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4504. load_pdptrs(vcpu, vcpu->arch.cr3);
  4505. mmu_reset_needed = 1;
  4506. }
  4507. if (mmu_reset_needed)
  4508. kvm_mmu_reset_context(vcpu);
  4509. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4510. pending_vec = find_first_bit(
  4511. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4512. if (pending_vec < max_bits) {
  4513. kvm_queue_interrupt(vcpu, pending_vec, false);
  4514. pr_debug("Set back pending irq %d\n", pending_vec);
  4515. if (irqchip_in_kernel(vcpu->kvm))
  4516. kvm_pic_clear_isr_ack(vcpu->kvm);
  4517. }
  4518. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4519. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4520. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4521. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4522. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4523. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4524. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4525. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4526. update_cr8_intercept(vcpu);
  4527. /* Older userspace won't unhalt the vcpu on reset. */
  4528. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4529. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4530. !is_protmode(vcpu))
  4531. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4532. return 0;
  4533. }
  4534. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4535. struct kvm_guest_debug *dbg)
  4536. {
  4537. unsigned long rflags;
  4538. int i, r;
  4539. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4540. r = -EBUSY;
  4541. if (vcpu->arch.exception.pending)
  4542. goto out;
  4543. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4544. kvm_queue_exception(vcpu, DB_VECTOR);
  4545. else
  4546. kvm_queue_exception(vcpu, BP_VECTOR);
  4547. }
  4548. /*
  4549. * Read rflags as long as potentially injected trace flags are still
  4550. * filtered out.
  4551. */
  4552. rflags = kvm_get_rflags(vcpu);
  4553. vcpu->guest_debug = dbg->control;
  4554. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4555. vcpu->guest_debug = 0;
  4556. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4557. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4558. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4559. vcpu->arch.switch_db_regs =
  4560. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4561. } else {
  4562. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4563. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4564. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4565. }
  4566. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4567. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4568. get_segment_base(vcpu, VCPU_SREG_CS);
  4569. /*
  4570. * Trigger an rflags update that will inject or remove the trace
  4571. * flags.
  4572. */
  4573. kvm_set_rflags(vcpu, rflags);
  4574. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4575. r = 0;
  4576. out:
  4577. return r;
  4578. }
  4579. /*
  4580. * Translate a guest virtual address to a guest physical address.
  4581. */
  4582. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4583. struct kvm_translation *tr)
  4584. {
  4585. unsigned long vaddr = tr->linear_address;
  4586. gpa_t gpa;
  4587. int idx;
  4588. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4589. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4590. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4591. tr->physical_address = gpa;
  4592. tr->valid = gpa != UNMAPPED_GVA;
  4593. tr->writeable = 1;
  4594. tr->usermode = 0;
  4595. return 0;
  4596. }
  4597. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4598. {
  4599. struct i387_fxsave_struct *fxsave =
  4600. &vcpu->arch.guest_fpu.state->fxsave;
  4601. memcpy(fpu->fpr, fxsave->st_space, 128);
  4602. fpu->fcw = fxsave->cwd;
  4603. fpu->fsw = fxsave->swd;
  4604. fpu->ftwx = fxsave->twd;
  4605. fpu->last_opcode = fxsave->fop;
  4606. fpu->last_ip = fxsave->rip;
  4607. fpu->last_dp = fxsave->rdp;
  4608. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4609. return 0;
  4610. }
  4611. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4612. {
  4613. struct i387_fxsave_struct *fxsave =
  4614. &vcpu->arch.guest_fpu.state->fxsave;
  4615. memcpy(fxsave->st_space, fpu->fpr, 128);
  4616. fxsave->cwd = fpu->fcw;
  4617. fxsave->swd = fpu->fsw;
  4618. fxsave->twd = fpu->ftwx;
  4619. fxsave->fop = fpu->last_opcode;
  4620. fxsave->rip = fpu->last_ip;
  4621. fxsave->rdp = fpu->last_dp;
  4622. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4623. return 0;
  4624. }
  4625. int fx_init(struct kvm_vcpu *vcpu)
  4626. {
  4627. int err;
  4628. err = fpu_alloc(&vcpu->arch.guest_fpu);
  4629. if (err)
  4630. return err;
  4631. fpu_finit(&vcpu->arch.guest_fpu);
  4632. /*
  4633. * Ensure guest xcr0 is valid for loading
  4634. */
  4635. vcpu->arch.xcr0 = XSTATE_FP;
  4636. vcpu->arch.cr0 |= X86_CR0_ET;
  4637. return 0;
  4638. }
  4639. EXPORT_SYMBOL_GPL(fx_init);
  4640. static void fx_free(struct kvm_vcpu *vcpu)
  4641. {
  4642. fpu_free(&vcpu->arch.guest_fpu);
  4643. }
  4644. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4645. {
  4646. if (vcpu->guest_fpu_loaded)
  4647. return;
  4648. /*
  4649. * Restore all possible states in the guest,
  4650. * and assume host would use all available bits.
  4651. * Guest xcr0 would be loaded later.
  4652. */
  4653. kvm_put_guest_xcr0(vcpu);
  4654. vcpu->guest_fpu_loaded = 1;
  4655. unlazy_fpu(current);
  4656. fpu_restore_checking(&vcpu->arch.guest_fpu);
  4657. trace_kvm_fpu(1);
  4658. }
  4659. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4660. {
  4661. kvm_put_guest_xcr0(vcpu);
  4662. if (!vcpu->guest_fpu_loaded)
  4663. return;
  4664. vcpu->guest_fpu_loaded = 0;
  4665. fpu_save_init(&vcpu->arch.guest_fpu);
  4666. ++vcpu->stat.fpu_reload;
  4667. set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
  4668. trace_kvm_fpu(0);
  4669. }
  4670. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4671. {
  4672. if (vcpu->arch.time_page) {
  4673. kvm_release_page_dirty(vcpu->arch.time_page);
  4674. vcpu->arch.time_page = NULL;
  4675. }
  4676. fx_free(vcpu);
  4677. kvm_x86_ops->vcpu_free(vcpu);
  4678. }
  4679. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4680. unsigned int id)
  4681. {
  4682. return kvm_x86_ops->vcpu_create(kvm, id);
  4683. }
  4684. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4685. {
  4686. int r;
  4687. vcpu->arch.mtrr_state.have_fixed = 1;
  4688. vcpu_load(vcpu);
  4689. r = kvm_arch_vcpu_reset(vcpu);
  4690. if (r == 0)
  4691. r = kvm_mmu_setup(vcpu);
  4692. vcpu_put(vcpu);
  4693. if (r < 0)
  4694. goto free_vcpu;
  4695. return 0;
  4696. free_vcpu:
  4697. kvm_x86_ops->vcpu_free(vcpu);
  4698. return r;
  4699. }
  4700. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4701. {
  4702. vcpu_load(vcpu);
  4703. kvm_mmu_unload(vcpu);
  4704. vcpu_put(vcpu);
  4705. fx_free(vcpu);
  4706. kvm_x86_ops->vcpu_free(vcpu);
  4707. }
  4708. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4709. {
  4710. vcpu->arch.nmi_pending = false;
  4711. vcpu->arch.nmi_injected = false;
  4712. vcpu->arch.switch_db_regs = 0;
  4713. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4714. vcpu->arch.dr6 = DR6_FIXED_1;
  4715. vcpu->arch.dr7 = DR7_FIXED_1;
  4716. return kvm_x86_ops->vcpu_reset(vcpu);
  4717. }
  4718. int kvm_arch_hardware_enable(void *garbage)
  4719. {
  4720. /*
  4721. * Since this may be called from a hotplug notifcation,
  4722. * we can't get the CPU frequency directly.
  4723. */
  4724. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4725. int cpu = raw_smp_processor_id();
  4726. per_cpu(cpu_tsc_khz, cpu) = 0;
  4727. }
  4728. kvm_shared_msr_cpu_online();
  4729. return kvm_x86_ops->hardware_enable(garbage);
  4730. }
  4731. void kvm_arch_hardware_disable(void *garbage)
  4732. {
  4733. kvm_x86_ops->hardware_disable(garbage);
  4734. drop_user_return_notifiers(garbage);
  4735. }
  4736. int kvm_arch_hardware_setup(void)
  4737. {
  4738. return kvm_x86_ops->hardware_setup();
  4739. }
  4740. void kvm_arch_hardware_unsetup(void)
  4741. {
  4742. kvm_x86_ops->hardware_unsetup();
  4743. }
  4744. void kvm_arch_check_processor_compat(void *rtn)
  4745. {
  4746. kvm_x86_ops->check_processor_compatibility(rtn);
  4747. }
  4748. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4749. {
  4750. struct page *page;
  4751. struct kvm *kvm;
  4752. int r;
  4753. BUG_ON(vcpu->kvm == NULL);
  4754. kvm = vcpu->kvm;
  4755. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4756. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4757. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4758. else
  4759. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4760. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4761. if (!page) {
  4762. r = -ENOMEM;
  4763. goto fail;
  4764. }
  4765. vcpu->arch.pio_data = page_address(page);
  4766. r = kvm_mmu_create(vcpu);
  4767. if (r < 0)
  4768. goto fail_free_pio_data;
  4769. if (irqchip_in_kernel(kvm)) {
  4770. r = kvm_create_lapic(vcpu);
  4771. if (r < 0)
  4772. goto fail_mmu_destroy;
  4773. }
  4774. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4775. GFP_KERNEL);
  4776. if (!vcpu->arch.mce_banks) {
  4777. r = -ENOMEM;
  4778. goto fail_free_lapic;
  4779. }
  4780. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4781. return 0;
  4782. fail_free_lapic:
  4783. kvm_free_lapic(vcpu);
  4784. fail_mmu_destroy:
  4785. kvm_mmu_destroy(vcpu);
  4786. fail_free_pio_data:
  4787. free_page((unsigned long)vcpu->arch.pio_data);
  4788. fail:
  4789. return r;
  4790. }
  4791. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4792. {
  4793. int idx;
  4794. kfree(vcpu->arch.mce_banks);
  4795. kvm_free_lapic(vcpu);
  4796. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4797. kvm_mmu_destroy(vcpu);
  4798. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4799. free_page((unsigned long)vcpu->arch.pio_data);
  4800. }
  4801. struct kvm *kvm_arch_create_vm(void)
  4802. {
  4803. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4804. if (!kvm)
  4805. return ERR_PTR(-ENOMEM);
  4806. kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  4807. if (!kvm->arch.aliases) {
  4808. kfree(kvm);
  4809. return ERR_PTR(-ENOMEM);
  4810. }
  4811. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4812. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4813. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4814. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4815. rdtscll(kvm->arch.vm_init_tsc);
  4816. return kvm;
  4817. }
  4818. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4819. {
  4820. vcpu_load(vcpu);
  4821. kvm_mmu_unload(vcpu);
  4822. vcpu_put(vcpu);
  4823. }
  4824. static void kvm_free_vcpus(struct kvm *kvm)
  4825. {
  4826. unsigned int i;
  4827. struct kvm_vcpu *vcpu;
  4828. /*
  4829. * Unpin any mmu pages first.
  4830. */
  4831. kvm_for_each_vcpu(i, vcpu, kvm)
  4832. kvm_unload_vcpu_mmu(vcpu);
  4833. kvm_for_each_vcpu(i, vcpu, kvm)
  4834. kvm_arch_vcpu_free(vcpu);
  4835. mutex_lock(&kvm->lock);
  4836. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4837. kvm->vcpus[i] = NULL;
  4838. atomic_set(&kvm->online_vcpus, 0);
  4839. mutex_unlock(&kvm->lock);
  4840. }
  4841. void kvm_arch_sync_events(struct kvm *kvm)
  4842. {
  4843. kvm_free_all_assigned_devices(kvm);
  4844. }
  4845. void kvm_arch_destroy_vm(struct kvm *kvm)
  4846. {
  4847. kvm_iommu_unmap_guest(kvm);
  4848. kvm_free_pit(kvm);
  4849. kfree(kvm->arch.vpic);
  4850. kfree(kvm->arch.vioapic);
  4851. kvm_free_vcpus(kvm);
  4852. kvm_free_physmem(kvm);
  4853. if (kvm->arch.apic_access_page)
  4854. put_page(kvm->arch.apic_access_page);
  4855. if (kvm->arch.ept_identity_pagetable)
  4856. put_page(kvm->arch.ept_identity_pagetable);
  4857. cleanup_srcu_struct(&kvm->srcu);
  4858. kfree(kvm->arch.aliases);
  4859. kfree(kvm);
  4860. }
  4861. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4862. struct kvm_memory_slot *memslot,
  4863. struct kvm_memory_slot old,
  4864. struct kvm_userspace_memory_region *mem,
  4865. int user_alloc)
  4866. {
  4867. int npages = memslot->npages;
  4868. /*To keep backward compatibility with older userspace,
  4869. *x86 needs to hanlde !user_alloc case.
  4870. */
  4871. if (!user_alloc) {
  4872. if (npages && !old.rmap) {
  4873. unsigned long userspace_addr;
  4874. down_write(&current->mm->mmap_sem);
  4875. userspace_addr = do_mmap(NULL, 0,
  4876. npages * PAGE_SIZE,
  4877. PROT_READ | PROT_WRITE,
  4878. MAP_PRIVATE | MAP_ANONYMOUS,
  4879. 0);
  4880. up_write(&current->mm->mmap_sem);
  4881. if (IS_ERR((void *)userspace_addr))
  4882. return PTR_ERR((void *)userspace_addr);
  4883. memslot->userspace_addr = userspace_addr;
  4884. }
  4885. }
  4886. return 0;
  4887. }
  4888. void kvm_arch_commit_memory_region(struct kvm *kvm,
  4889. struct kvm_userspace_memory_region *mem,
  4890. struct kvm_memory_slot old,
  4891. int user_alloc)
  4892. {
  4893. int npages = mem->memory_size >> PAGE_SHIFT;
  4894. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  4895. int ret;
  4896. down_write(&current->mm->mmap_sem);
  4897. ret = do_munmap(current->mm, old.userspace_addr,
  4898. old.npages * PAGE_SIZE);
  4899. up_write(&current->mm->mmap_sem);
  4900. if (ret < 0)
  4901. printk(KERN_WARNING
  4902. "kvm_vm_ioctl_set_memory_region: "
  4903. "failed to munmap memory\n");
  4904. }
  4905. spin_lock(&kvm->mmu_lock);
  4906. if (!kvm->arch.n_requested_mmu_pages) {
  4907. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4908. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4909. }
  4910. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4911. spin_unlock(&kvm->mmu_lock);
  4912. }
  4913. void kvm_arch_flush_shadow(struct kvm *kvm)
  4914. {
  4915. kvm_mmu_zap_all(kvm);
  4916. kvm_reload_remote_mmus(kvm);
  4917. }
  4918. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4919. {
  4920. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4921. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4922. || vcpu->arch.nmi_pending ||
  4923. (kvm_arch_interrupt_allowed(vcpu) &&
  4924. kvm_cpu_has_interrupt(vcpu));
  4925. }
  4926. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4927. {
  4928. int me;
  4929. int cpu = vcpu->cpu;
  4930. if (waitqueue_active(&vcpu->wq)) {
  4931. wake_up_interruptible(&vcpu->wq);
  4932. ++vcpu->stat.halt_wakeup;
  4933. }
  4934. me = get_cpu();
  4935. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4936. if (atomic_xchg(&vcpu->guest_mode, 0))
  4937. smp_send_reschedule(cpu);
  4938. put_cpu();
  4939. }
  4940. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4941. {
  4942. return kvm_x86_ops->interrupt_allowed(vcpu);
  4943. }
  4944. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  4945. {
  4946. unsigned long current_rip = kvm_rip_read(vcpu) +
  4947. get_segment_base(vcpu, VCPU_SREG_CS);
  4948. return current_rip == linear_rip;
  4949. }
  4950. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  4951. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4952. {
  4953. unsigned long rflags;
  4954. rflags = kvm_x86_ops->get_rflags(vcpu);
  4955. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4956. rflags &= ~X86_EFLAGS_TF;
  4957. return rflags;
  4958. }
  4959. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4960. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4961. {
  4962. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4963. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  4964. rflags |= X86_EFLAGS_TF;
  4965. kvm_x86_ops->set_rflags(vcpu, rflags);
  4966. }
  4967. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4968. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4969. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4970. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4971. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4972. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4973. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4974. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4975. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4976. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4977. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4978. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  4979. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);