perf_event.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702
  1. /*
  2. * Performance events x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10. * Copyright (C) 2009 Google, Inc., Stephane Eranian
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/capability.h>
  16. #include <linux/notifier.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/module.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/sched.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/highmem.h>
  24. #include <linux/cpu.h>
  25. #include <linux/bitops.h>
  26. #include <asm/apic.h>
  27. #include <asm/stacktrace.h>
  28. #include <asm/nmi.h>
  29. static u64 perf_event_mask __read_mostly;
  30. /* The maximal number of PEBS events: */
  31. #define MAX_PEBS_EVENTS 4
  32. /* The size of a BTS record in bytes: */
  33. #define BTS_RECORD_SIZE 24
  34. /* The size of a per-cpu BTS buffer in bytes: */
  35. #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
  36. /* The BTS overflow threshold in bytes from the end of the buffer: */
  37. #define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
  38. /*
  39. * Bits in the debugctlmsr controlling branch tracing.
  40. */
  41. #define X86_DEBUGCTL_TR (1 << 6)
  42. #define X86_DEBUGCTL_BTS (1 << 7)
  43. #define X86_DEBUGCTL_BTINT (1 << 8)
  44. #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
  45. #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
  46. /*
  47. * A debug store configuration.
  48. *
  49. * We only support architectures that use 64bit fields.
  50. */
  51. struct debug_store {
  52. u64 bts_buffer_base;
  53. u64 bts_index;
  54. u64 bts_absolute_maximum;
  55. u64 bts_interrupt_threshold;
  56. u64 pebs_buffer_base;
  57. u64 pebs_index;
  58. u64 pebs_absolute_maximum;
  59. u64 pebs_interrupt_threshold;
  60. u64 pebs_event_reset[MAX_PEBS_EVENTS];
  61. };
  62. struct event_constraint {
  63. union {
  64. unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  65. u64 idxmsk64;
  66. };
  67. u64 code;
  68. u64 cmask;
  69. int weight;
  70. };
  71. struct amd_nb {
  72. int nb_id; /* NorthBridge id */
  73. int refcnt; /* reference count */
  74. struct perf_event *owners[X86_PMC_IDX_MAX];
  75. struct event_constraint event_constraints[X86_PMC_IDX_MAX];
  76. };
  77. struct cpu_hw_events {
  78. struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
  79. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  80. unsigned long interrupts;
  81. int enabled;
  82. struct debug_store *ds;
  83. int n_events;
  84. int n_added;
  85. int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
  86. u64 tags[X86_PMC_IDX_MAX];
  87. struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
  88. struct amd_nb *amd_nb;
  89. };
  90. #define __EVENT_CONSTRAINT(c, n, m, w) {\
  91. { .idxmsk64 = (n) }, \
  92. .code = (c), \
  93. .cmask = (m), \
  94. .weight = (w), \
  95. }
  96. #define EVENT_CONSTRAINT(c, n, m) \
  97. __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
  98. #define INTEL_EVENT_CONSTRAINT(c, n) \
  99. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
  100. #define FIXED_EVENT_CONSTRAINT(c, n) \
  101. EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
  102. #define EVENT_CONSTRAINT_END \
  103. EVENT_CONSTRAINT(0, 0, 0)
  104. #define for_each_event_constraint(e, c) \
  105. for ((e) = (c); (e)->cmask; (e)++)
  106. /*
  107. * struct x86_pmu - generic x86 pmu
  108. */
  109. struct x86_pmu {
  110. const char *name;
  111. int version;
  112. int (*handle_irq)(struct pt_regs *);
  113. void (*disable_all)(void);
  114. void (*enable_all)(void);
  115. void (*enable)(struct hw_perf_event *, int);
  116. void (*disable)(struct hw_perf_event *, int);
  117. unsigned eventsel;
  118. unsigned perfctr;
  119. u64 (*event_map)(int);
  120. u64 (*raw_event)(u64);
  121. int max_events;
  122. int num_events;
  123. int num_events_fixed;
  124. int event_bits;
  125. u64 event_mask;
  126. int apic;
  127. u64 max_period;
  128. u64 intel_ctrl;
  129. void (*enable_bts)(u64 config);
  130. void (*disable_bts)(void);
  131. struct event_constraint *
  132. (*get_event_constraints)(struct cpu_hw_events *cpuc,
  133. struct perf_event *event);
  134. void (*put_event_constraints)(struct cpu_hw_events *cpuc,
  135. struct perf_event *event);
  136. struct event_constraint *event_constraints;
  137. };
  138. static struct x86_pmu x86_pmu __read_mostly;
  139. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  140. .enabled = 1,
  141. };
  142. static int x86_perf_event_set_period(struct perf_event *event,
  143. struct hw_perf_event *hwc, int idx);
  144. /*
  145. * Generalized hw caching related hw_event table, filled
  146. * in on a per model basis. A value of 0 means
  147. * 'not supported', -1 means 'hw_event makes no sense on
  148. * this CPU', any other value means the raw hw_event
  149. * ID.
  150. */
  151. #define C(x) PERF_COUNT_HW_CACHE_##x
  152. static u64 __read_mostly hw_cache_event_ids
  153. [PERF_COUNT_HW_CACHE_MAX]
  154. [PERF_COUNT_HW_CACHE_OP_MAX]
  155. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  156. /*
  157. * Propagate event elapsed time into the generic event.
  158. * Can only be executed on the CPU where the event is active.
  159. * Returns the delta events processed.
  160. */
  161. static u64
  162. x86_perf_event_update(struct perf_event *event,
  163. struct hw_perf_event *hwc, int idx)
  164. {
  165. int shift = 64 - x86_pmu.event_bits;
  166. u64 prev_raw_count, new_raw_count;
  167. s64 delta;
  168. if (idx == X86_PMC_IDX_FIXED_BTS)
  169. return 0;
  170. /*
  171. * Careful: an NMI might modify the previous event value.
  172. *
  173. * Our tactic to handle this is to first atomically read and
  174. * exchange a new raw count - then add that new-prev delta
  175. * count to the generic event atomically:
  176. */
  177. again:
  178. prev_raw_count = atomic64_read(&hwc->prev_count);
  179. rdmsrl(hwc->event_base + idx, new_raw_count);
  180. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  181. new_raw_count) != prev_raw_count)
  182. goto again;
  183. /*
  184. * Now we have the new raw value and have updated the prev
  185. * timestamp already. We can now calculate the elapsed delta
  186. * (event-)time and add that to the generic event.
  187. *
  188. * Careful, not all hw sign-extends above the physical width
  189. * of the count.
  190. */
  191. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  192. delta >>= shift;
  193. atomic64_add(delta, &event->count);
  194. atomic64_sub(delta, &hwc->period_left);
  195. return new_raw_count;
  196. }
  197. static atomic_t active_events;
  198. static DEFINE_MUTEX(pmc_reserve_mutex);
  199. static bool reserve_pmc_hardware(void)
  200. {
  201. #ifdef CONFIG_X86_LOCAL_APIC
  202. int i;
  203. if (nmi_watchdog == NMI_LOCAL_APIC)
  204. disable_lapic_nmi_watchdog();
  205. for (i = 0; i < x86_pmu.num_events; i++) {
  206. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  207. goto perfctr_fail;
  208. }
  209. for (i = 0; i < x86_pmu.num_events; i++) {
  210. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  211. goto eventsel_fail;
  212. }
  213. #endif
  214. return true;
  215. #ifdef CONFIG_X86_LOCAL_APIC
  216. eventsel_fail:
  217. for (i--; i >= 0; i--)
  218. release_evntsel_nmi(x86_pmu.eventsel + i);
  219. i = x86_pmu.num_events;
  220. perfctr_fail:
  221. for (i--; i >= 0; i--)
  222. release_perfctr_nmi(x86_pmu.perfctr + i);
  223. if (nmi_watchdog == NMI_LOCAL_APIC)
  224. enable_lapic_nmi_watchdog();
  225. return false;
  226. #endif
  227. }
  228. static void release_pmc_hardware(void)
  229. {
  230. #ifdef CONFIG_X86_LOCAL_APIC
  231. int i;
  232. for (i = 0; i < x86_pmu.num_events; i++) {
  233. release_perfctr_nmi(x86_pmu.perfctr + i);
  234. release_evntsel_nmi(x86_pmu.eventsel + i);
  235. }
  236. if (nmi_watchdog == NMI_LOCAL_APIC)
  237. enable_lapic_nmi_watchdog();
  238. #endif
  239. }
  240. static inline bool bts_available(void)
  241. {
  242. return x86_pmu.enable_bts != NULL;
  243. }
  244. static inline void init_debug_store_on_cpu(int cpu)
  245. {
  246. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  247. if (!ds)
  248. return;
  249. wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
  250. (u32)((u64)(unsigned long)ds),
  251. (u32)((u64)(unsigned long)ds >> 32));
  252. }
  253. static inline void fini_debug_store_on_cpu(int cpu)
  254. {
  255. if (!per_cpu(cpu_hw_events, cpu).ds)
  256. return;
  257. wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
  258. }
  259. static void release_bts_hardware(void)
  260. {
  261. int cpu;
  262. if (!bts_available())
  263. return;
  264. get_online_cpus();
  265. for_each_online_cpu(cpu)
  266. fini_debug_store_on_cpu(cpu);
  267. for_each_possible_cpu(cpu) {
  268. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  269. if (!ds)
  270. continue;
  271. per_cpu(cpu_hw_events, cpu).ds = NULL;
  272. kfree((void *)(unsigned long)ds->bts_buffer_base);
  273. kfree(ds);
  274. }
  275. put_online_cpus();
  276. }
  277. static int reserve_bts_hardware(void)
  278. {
  279. int cpu, err = 0;
  280. if (!bts_available())
  281. return 0;
  282. get_online_cpus();
  283. for_each_possible_cpu(cpu) {
  284. struct debug_store *ds;
  285. void *buffer;
  286. err = -ENOMEM;
  287. buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
  288. if (unlikely(!buffer))
  289. break;
  290. ds = kzalloc(sizeof(*ds), GFP_KERNEL);
  291. if (unlikely(!ds)) {
  292. kfree(buffer);
  293. break;
  294. }
  295. ds->bts_buffer_base = (u64)(unsigned long)buffer;
  296. ds->bts_index = ds->bts_buffer_base;
  297. ds->bts_absolute_maximum =
  298. ds->bts_buffer_base + BTS_BUFFER_SIZE;
  299. ds->bts_interrupt_threshold =
  300. ds->bts_absolute_maximum - BTS_OVFL_TH;
  301. per_cpu(cpu_hw_events, cpu).ds = ds;
  302. err = 0;
  303. }
  304. if (err)
  305. release_bts_hardware();
  306. else {
  307. for_each_online_cpu(cpu)
  308. init_debug_store_on_cpu(cpu);
  309. }
  310. put_online_cpus();
  311. return err;
  312. }
  313. static void hw_perf_event_destroy(struct perf_event *event)
  314. {
  315. if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
  316. release_pmc_hardware();
  317. release_bts_hardware();
  318. mutex_unlock(&pmc_reserve_mutex);
  319. }
  320. }
  321. static inline int x86_pmu_initialized(void)
  322. {
  323. return x86_pmu.handle_irq != NULL;
  324. }
  325. static inline int
  326. set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
  327. {
  328. unsigned int cache_type, cache_op, cache_result;
  329. u64 config, val;
  330. config = attr->config;
  331. cache_type = (config >> 0) & 0xff;
  332. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  333. return -EINVAL;
  334. cache_op = (config >> 8) & 0xff;
  335. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  336. return -EINVAL;
  337. cache_result = (config >> 16) & 0xff;
  338. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  339. return -EINVAL;
  340. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  341. if (val == 0)
  342. return -ENOENT;
  343. if (val == -1)
  344. return -EINVAL;
  345. hwc->config |= val;
  346. return 0;
  347. }
  348. /*
  349. * Setup the hardware configuration for a given attr_type
  350. */
  351. static int __hw_perf_event_init(struct perf_event *event)
  352. {
  353. struct perf_event_attr *attr = &event->attr;
  354. struct hw_perf_event *hwc = &event->hw;
  355. u64 config;
  356. int err;
  357. if (!x86_pmu_initialized())
  358. return -ENODEV;
  359. err = 0;
  360. if (!atomic_inc_not_zero(&active_events)) {
  361. mutex_lock(&pmc_reserve_mutex);
  362. if (atomic_read(&active_events) == 0) {
  363. if (!reserve_pmc_hardware())
  364. err = -EBUSY;
  365. else
  366. err = reserve_bts_hardware();
  367. }
  368. if (!err)
  369. atomic_inc(&active_events);
  370. mutex_unlock(&pmc_reserve_mutex);
  371. }
  372. if (err)
  373. return err;
  374. event->destroy = hw_perf_event_destroy;
  375. /*
  376. * Generate PMC IRQs:
  377. * (keep 'enabled' bit clear for now)
  378. */
  379. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  380. hwc->idx = -1;
  381. hwc->last_cpu = -1;
  382. hwc->last_tag = ~0ULL;
  383. /*
  384. * Count user and OS events unless requested not to.
  385. */
  386. if (!attr->exclude_user)
  387. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  388. if (!attr->exclude_kernel)
  389. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  390. if (!hwc->sample_period) {
  391. hwc->sample_period = x86_pmu.max_period;
  392. hwc->last_period = hwc->sample_period;
  393. atomic64_set(&hwc->period_left, hwc->sample_period);
  394. } else {
  395. /*
  396. * If we have a PMU initialized but no APIC
  397. * interrupts, we cannot sample hardware
  398. * events (user-space has to fall back and
  399. * sample via a hrtimer based software event):
  400. */
  401. if (!x86_pmu.apic)
  402. return -EOPNOTSUPP;
  403. }
  404. /*
  405. * Raw hw_event type provide the config in the hw_event structure
  406. */
  407. if (attr->type == PERF_TYPE_RAW) {
  408. hwc->config |= x86_pmu.raw_event(attr->config);
  409. if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
  410. perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  411. return -EACCES;
  412. return 0;
  413. }
  414. if (attr->type == PERF_TYPE_HW_CACHE)
  415. return set_ext_hw_attr(hwc, attr);
  416. if (attr->config >= x86_pmu.max_events)
  417. return -EINVAL;
  418. /*
  419. * The generic map:
  420. */
  421. config = x86_pmu.event_map(attr->config);
  422. if (config == 0)
  423. return -ENOENT;
  424. if (config == -1LL)
  425. return -EINVAL;
  426. /*
  427. * Branch tracing:
  428. */
  429. if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
  430. (hwc->sample_period == 1)) {
  431. /* BTS is not supported by this architecture. */
  432. if (!bts_available())
  433. return -EOPNOTSUPP;
  434. /* BTS is currently only allowed for user-mode. */
  435. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  436. return -EOPNOTSUPP;
  437. }
  438. hwc->config |= config;
  439. return 0;
  440. }
  441. static void x86_pmu_disable_all(void)
  442. {
  443. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  444. int idx;
  445. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  446. u64 val;
  447. if (!test_bit(idx, cpuc->active_mask))
  448. continue;
  449. rdmsrl(x86_pmu.eventsel + idx, val);
  450. if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
  451. continue;
  452. val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  453. wrmsrl(x86_pmu.eventsel + idx, val);
  454. }
  455. }
  456. void hw_perf_disable(void)
  457. {
  458. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  459. if (!x86_pmu_initialized())
  460. return;
  461. if (!cpuc->enabled)
  462. return;
  463. cpuc->n_added = 0;
  464. cpuc->enabled = 0;
  465. barrier();
  466. x86_pmu.disable_all();
  467. }
  468. static void x86_pmu_enable_all(void)
  469. {
  470. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  471. int idx;
  472. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  473. struct perf_event *event = cpuc->events[idx];
  474. u64 val;
  475. if (!test_bit(idx, cpuc->active_mask))
  476. continue;
  477. val = event->hw.config;
  478. val |= ARCH_PERFMON_EVENTSEL_ENABLE;
  479. wrmsrl(x86_pmu.eventsel + idx, val);
  480. }
  481. }
  482. static const struct pmu pmu;
  483. static inline int is_x86_event(struct perf_event *event)
  484. {
  485. return event->pmu == &pmu;
  486. }
  487. static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
  488. {
  489. struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
  490. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  491. int i, j, w, wmax, num = 0;
  492. struct hw_perf_event *hwc;
  493. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  494. for (i = 0; i < n; i++) {
  495. c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
  496. constraints[i] = c;
  497. }
  498. /*
  499. * fastpath, try to reuse previous register
  500. */
  501. for (i = 0; i < n; i++) {
  502. hwc = &cpuc->event_list[i]->hw;
  503. c = constraints[i];
  504. /* never assigned */
  505. if (hwc->idx == -1)
  506. break;
  507. /* constraint still honored */
  508. if (!test_bit(hwc->idx, c->idxmsk))
  509. break;
  510. /* not already used */
  511. if (test_bit(hwc->idx, used_mask))
  512. break;
  513. set_bit(hwc->idx, used_mask);
  514. if (assign)
  515. assign[i] = hwc->idx;
  516. }
  517. if (i == n)
  518. goto done;
  519. /*
  520. * begin slow path
  521. */
  522. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  523. /*
  524. * weight = number of possible counters
  525. *
  526. * 1 = most constrained, only works on one counter
  527. * wmax = least constrained, works on any counter
  528. *
  529. * assign events to counters starting with most
  530. * constrained events.
  531. */
  532. wmax = x86_pmu.num_events;
  533. /*
  534. * when fixed event counters are present,
  535. * wmax is incremented by 1 to account
  536. * for one more choice
  537. */
  538. if (x86_pmu.num_events_fixed)
  539. wmax++;
  540. for (w = 1, num = n; num && w <= wmax; w++) {
  541. /* for each event */
  542. for (i = 0; num && i < n; i++) {
  543. c = constraints[i];
  544. hwc = &cpuc->event_list[i]->hw;
  545. if (c->weight != w)
  546. continue;
  547. for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
  548. if (!test_bit(j, used_mask))
  549. break;
  550. }
  551. if (j == X86_PMC_IDX_MAX)
  552. break;
  553. set_bit(j, used_mask);
  554. if (assign)
  555. assign[i] = j;
  556. num--;
  557. }
  558. }
  559. done:
  560. /*
  561. * scheduling failed or is just a simulation,
  562. * free resources if necessary
  563. */
  564. if (!assign || num) {
  565. for (i = 0; i < n; i++) {
  566. if (x86_pmu.put_event_constraints)
  567. x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
  568. }
  569. }
  570. return num ? -ENOSPC : 0;
  571. }
  572. /*
  573. * dogrp: true if must collect siblings events (group)
  574. * returns total number of events and error code
  575. */
  576. static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
  577. {
  578. struct perf_event *event;
  579. int n, max_count;
  580. max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
  581. /* current number of events already accepted */
  582. n = cpuc->n_events;
  583. if (is_x86_event(leader)) {
  584. if (n >= max_count)
  585. return -ENOSPC;
  586. cpuc->event_list[n] = leader;
  587. n++;
  588. }
  589. if (!dogrp)
  590. return n;
  591. list_for_each_entry(event, &leader->sibling_list, group_entry) {
  592. if (!is_x86_event(event) ||
  593. event->state <= PERF_EVENT_STATE_OFF)
  594. continue;
  595. if (n >= max_count)
  596. return -ENOSPC;
  597. cpuc->event_list[n] = event;
  598. n++;
  599. }
  600. return n;
  601. }
  602. static inline void x86_assign_hw_event(struct perf_event *event,
  603. struct cpu_hw_events *cpuc, int i)
  604. {
  605. struct hw_perf_event *hwc = &event->hw;
  606. hwc->idx = cpuc->assign[i];
  607. hwc->last_cpu = smp_processor_id();
  608. hwc->last_tag = ++cpuc->tags[i];
  609. if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
  610. hwc->config_base = 0;
  611. hwc->event_base = 0;
  612. } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
  613. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  614. /*
  615. * We set it so that event_base + idx in wrmsr/rdmsr maps to
  616. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  617. */
  618. hwc->event_base =
  619. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  620. } else {
  621. hwc->config_base = x86_pmu.eventsel;
  622. hwc->event_base = x86_pmu.perfctr;
  623. }
  624. }
  625. static inline int match_prev_assignment(struct hw_perf_event *hwc,
  626. struct cpu_hw_events *cpuc,
  627. int i)
  628. {
  629. return hwc->idx == cpuc->assign[i] &&
  630. hwc->last_cpu == smp_processor_id() &&
  631. hwc->last_tag == cpuc->tags[i];
  632. }
  633. static void x86_pmu_stop(struct perf_event *event);
  634. void hw_perf_enable(void)
  635. {
  636. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  637. struct perf_event *event;
  638. struct hw_perf_event *hwc;
  639. int i;
  640. if (!x86_pmu_initialized())
  641. return;
  642. if (cpuc->enabled)
  643. return;
  644. if (cpuc->n_added) {
  645. /*
  646. * apply assignment obtained either from
  647. * hw_perf_group_sched_in() or x86_pmu_enable()
  648. *
  649. * step1: save events moving to new counters
  650. * step2: reprogram moved events into new counters
  651. */
  652. for (i = 0; i < cpuc->n_events; i++) {
  653. event = cpuc->event_list[i];
  654. hwc = &event->hw;
  655. /*
  656. * we can avoid reprogramming counter if:
  657. * - assigned same counter as last time
  658. * - running on same CPU as last time
  659. * - no other event has used the counter since
  660. */
  661. if (hwc->idx == -1 ||
  662. match_prev_assignment(hwc, cpuc, i))
  663. continue;
  664. x86_pmu_stop(event);
  665. hwc->idx = -1;
  666. }
  667. for (i = 0; i < cpuc->n_events; i++) {
  668. event = cpuc->event_list[i];
  669. hwc = &event->hw;
  670. if (hwc->idx == -1) {
  671. x86_assign_hw_event(event, cpuc, i);
  672. x86_perf_event_set_period(event, hwc, hwc->idx);
  673. }
  674. /*
  675. * need to mark as active because x86_pmu_disable()
  676. * clear active_mask and events[] yet it preserves
  677. * idx
  678. */
  679. set_bit(hwc->idx, cpuc->active_mask);
  680. cpuc->events[hwc->idx] = event;
  681. x86_pmu.enable(hwc, hwc->idx);
  682. perf_event_update_userpage(event);
  683. }
  684. cpuc->n_added = 0;
  685. perf_events_lapic_init();
  686. }
  687. cpuc->enabled = 1;
  688. barrier();
  689. x86_pmu.enable_all();
  690. }
  691. static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
  692. {
  693. (void)checking_wrmsrl(hwc->config_base + idx,
  694. hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
  695. }
  696. static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx)
  697. {
  698. (void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
  699. }
  700. static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
  701. /*
  702. * Set the next IRQ period, based on the hwc->period_left value.
  703. * To be called with the event disabled in hw:
  704. */
  705. static int
  706. x86_perf_event_set_period(struct perf_event *event,
  707. struct hw_perf_event *hwc, int idx)
  708. {
  709. s64 left = atomic64_read(&hwc->period_left);
  710. s64 period = hwc->sample_period;
  711. int err, ret = 0;
  712. if (idx == X86_PMC_IDX_FIXED_BTS)
  713. return 0;
  714. /*
  715. * If we are way outside a reasonable range then just skip forward:
  716. */
  717. if (unlikely(left <= -period)) {
  718. left = period;
  719. atomic64_set(&hwc->period_left, left);
  720. hwc->last_period = period;
  721. ret = 1;
  722. }
  723. if (unlikely(left <= 0)) {
  724. left += period;
  725. atomic64_set(&hwc->period_left, left);
  726. hwc->last_period = period;
  727. ret = 1;
  728. }
  729. /*
  730. * Quirk: certain CPUs dont like it if just 1 hw_event is left:
  731. */
  732. if (unlikely(left < 2))
  733. left = 2;
  734. if (left > x86_pmu.max_period)
  735. left = x86_pmu.max_period;
  736. per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
  737. /*
  738. * The hw event starts counting from this event offset,
  739. * mark it to be able to extra future deltas:
  740. */
  741. atomic64_set(&hwc->prev_count, (u64)-left);
  742. err = checking_wrmsrl(hwc->event_base + idx,
  743. (u64)(-left) & x86_pmu.event_mask);
  744. perf_event_update_userpage(event);
  745. return ret;
  746. }
  747. static void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
  748. {
  749. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  750. if (cpuc->enabled)
  751. __x86_pmu_enable_event(hwc, idx);
  752. }
  753. /*
  754. * activate a single event
  755. *
  756. * The event is added to the group of enabled events
  757. * but only if it can be scehduled with existing events.
  758. *
  759. * Called with PMU disabled. If successful and return value 1,
  760. * then guaranteed to call perf_enable() and hw_perf_enable()
  761. */
  762. static int x86_pmu_enable(struct perf_event *event)
  763. {
  764. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  765. struct hw_perf_event *hwc;
  766. int assign[X86_PMC_IDX_MAX];
  767. int n, n0, ret;
  768. hwc = &event->hw;
  769. n0 = cpuc->n_events;
  770. n = collect_events(cpuc, event, false);
  771. if (n < 0)
  772. return n;
  773. ret = x86_schedule_events(cpuc, n, assign);
  774. if (ret)
  775. return ret;
  776. /*
  777. * copy new assignment, now we know it is possible
  778. * will be used by hw_perf_enable()
  779. */
  780. memcpy(cpuc->assign, assign, n*sizeof(int));
  781. cpuc->n_events = n;
  782. cpuc->n_added = n - n0;
  783. return 0;
  784. }
  785. static int x86_pmu_start(struct perf_event *event)
  786. {
  787. struct hw_perf_event *hwc = &event->hw;
  788. if (hwc->idx == -1)
  789. return -EAGAIN;
  790. x86_perf_event_set_period(event, hwc, hwc->idx);
  791. x86_pmu.enable(hwc, hwc->idx);
  792. return 0;
  793. }
  794. static void x86_pmu_unthrottle(struct perf_event *event)
  795. {
  796. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  797. struct hw_perf_event *hwc = &event->hw;
  798. if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
  799. cpuc->events[hwc->idx] != event))
  800. return;
  801. x86_pmu.enable(hwc, hwc->idx);
  802. }
  803. void perf_event_print_debug(void)
  804. {
  805. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  806. struct cpu_hw_events *cpuc;
  807. unsigned long flags;
  808. int cpu, idx;
  809. if (!x86_pmu.num_events)
  810. return;
  811. local_irq_save(flags);
  812. cpu = smp_processor_id();
  813. cpuc = &per_cpu(cpu_hw_events, cpu);
  814. if (x86_pmu.version >= 2) {
  815. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  816. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  817. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  818. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  819. pr_info("\n");
  820. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  821. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  822. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  823. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  824. }
  825. pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
  826. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  827. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  828. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  829. prev_left = per_cpu(pmc_prev_left[idx], cpu);
  830. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  831. cpu, idx, pmc_ctrl);
  832. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  833. cpu, idx, pmc_count);
  834. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  835. cpu, idx, prev_left);
  836. }
  837. for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
  838. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  839. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  840. cpu, idx, pmc_count);
  841. }
  842. local_irq_restore(flags);
  843. }
  844. static void x86_pmu_stop(struct perf_event *event)
  845. {
  846. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  847. struct hw_perf_event *hwc = &event->hw;
  848. int idx = hwc->idx;
  849. /*
  850. * Must be done before we disable, otherwise the nmi handler
  851. * could reenable again:
  852. */
  853. clear_bit(idx, cpuc->active_mask);
  854. x86_pmu.disable(hwc, idx);
  855. /*
  856. * Drain the remaining delta count out of a event
  857. * that we are disabling:
  858. */
  859. x86_perf_event_update(event, hwc, idx);
  860. cpuc->events[idx] = NULL;
  861. }
  862. static void x86_pmu_disable(struct perf_event *event)
  863. {
  864. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  865. int i;
  866. x86_pmu_stop(event);
  867. for (i = 0; i < cpuc->n_events; i++) {
  868. if (event == cpuc->event_list[i]) {
  869. if (x86_pmu.put_event_constraints)
  870. x86_pmu.put_event_constraints(cpuc, event);
  871. while (++i < cpuc->n_events)
  872. cpuc->event_list[i-1] = cpuc->event_list[i];
  873. --cpuc->n_events;
  874. break;
  875. }
  876. }
  877. perf_event_update_userpage(event);
  878. }
  879. static int x86_pmu_handle_irq(struct pt_regs *regs)
  880. {
  881. struct perf_sample_data data;
  882. struct cpu_hw_events *cpuc;
  883. struct perf_event *event;
  884. struct hw_perf_event *hwc;
  885. int idx, handled = 0;
  886. u64 val;
  887. perf_sample_data_init(&data, 0);
  888. cpuc = &__get_cpu_var(cpu_hw_events);
  889. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  890. if (!test_bit(idx, cpuc->active_mask))
  891. continue;
  892. event = cpuc->events[idx];
  893. hwc = &event->hw;
  894. val = x86_perf_event_update(event, hwc, idx);
  895. if (val & (1ULL << (x86_pmu.event_bits - 1)))
  896. continue;
  897. /*
  898. * event overflow
  899. */
  900. handled = 1;
  901. data.period = event->hw.last_period;
  902. if (!x86_perf_event_set_period(event, hwc, idx))
  903. continue;
  904. if (perf_event_overflow(event, 1, &data, regs))
  905. x86_pmu.disable(hwc, idx);
  906. }
  907. if (handled)
  908. inc_irq_stat(apic_perf_irqs);
  909. return handled;
  910. }
  911. void smp_perf_pending_interrupt(struct pt_regs *regs)
  912. {
  913. irq_enter();
  914. ack_APIC_irq();
  915. inc_irq_stat(apic_pending_irqs);
  916. perf_event_do_pending();
  917. irq_exit();
  918. }
  919. void set_perf_event_pending(void)
  920. {
  921. #ifdef CONFIG_X86_LOCAL_APIC
  922. if (!x86_pmu.apic || !x86_pmu_initialized())
  923. return;
  924. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  925. #endif
  926. }
  927. void perf_events_lapic_init(void)
  928. {
  929. #ifdef CONFIG_X86_LOCAL_APIC
  930. if (!x86_pmu.apic || !x86_pmu_initialized())
  931. return;
  932. /*
  933. * Always use NMI for PMU
  934. */
  935. apic_write(APIC_LVTPC, APIC_DM_NMI);
  936. #endif
  937. }
  938. static int __kprobes
  939. perf_event_nmi_handler(struct notifier_block *self,
  940. unsigned long cmd, void *__args)
  941. {
  942. struct die_args *args = __args;
  943. struct pt_regs *regs;
  944. if (!atomic_read(&active_events))
  945. return NOTIFY_DONE;
  946. switch (cmd) {
  947. case DIE_NMI:
  948. case DIE_NMI_IPI:
  949. break;
  950. default:
  951. return NOTIFY_DONE;
  952. }
  953. regs = args->regs;
  954. #ifdef CONFIG_X86_LOCAL_APIC
  955. apic_write(APIC_LVTPC, APIC_DM_NMI);
  956. #endif
  957. /*
  958. * Can't rely on the handled return value to say it was our NMI, two
  959. * events could trigger 'simultaneously' raising two back-to-back NMIs.
  960. *
  961. * If the first NMI handles both, the latter will be empty and daze
  962. * the CPU.
  963. */
  964. x86_pmu.handle_irq(regs);
  965. return NOTIFY_STOP;
  966. }
  967. static __read_mostly struct notifier_block perf_event_nmi_notifier = {
  968. .notifier_call = perf_event_nmi_handler,
  969. .next = NULL,
  970. .priority = 1
  971. };
  972. static struct event_constraint unconstrained;
  973. static struct event_constraint emptyconstraint;
  974. static struct event_constraint *
  975. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  976. {
  977. struct event_constraint *c;
  978. if (x86_pmu.event_constraints) {
  979. for_each_event_constraint(c, x86_pmu.event_constraints) {
  980. if ((event->hw.config & c->cmask) == c->code)
  981. return c;
  982. }
  983. }
  984. return &unconstrained;
  985. }
  986. static int x86_event_sched_in(struct perf_event *event,
  987. struct perf_cpu_context *cpuctx)
  988. {
  989. int ret = 0;
  990. event->state = PERF_EVENT_STATE_ACTIVE;
  991. event->oncpu = smp_processor_id();
  992. event->tstamp_running += event->ctx->time - event->tstamp_stopped;
  993. if (!is_x86_event(event))
  994. ret = event->pmu->enable(event);
  995. if (!ret && !is_software_event(event))
  996. cpuctx->active_oncpu++;
  997. if (!ret && event->attr.exclusive)
  998. cpuctx->exclusive = 1;
  999. return ret;
  1000. }
  1001. static void x86_event_sched_out(struct perf_event *event,
  1002. struct perf_cpu_context *cpuctx)
  1003. {
  1004. event->state = PERF_EVENT_STATE_INACTIVE;
  1005. event->oncpu = -1;
  1006. if (!is_x86_event(event))
  1007. event->pmu->disable(event);
  1008. event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
  1009. if (!is_software_event(event))
  1010. cpuctx->active_oncpu--;
  1011. if (event->attr.exclusive || !cpuctx->active_oncpu)
  1012. cpuctx->exclusive = 0;
  1013. }
  1014. /*
  1015. * Called to enable a whole group of events.
  1016. * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
  1017. * Assumes the caller has disabled interrupts and has
  1018. * frozen the PMU with hw_perf_save_disable.
  1019. *
  1020. * called with PMU disabled. If successful and return value 1,
  1021. * then guaranteed to call perf_enable() and hw_perf_enable()
  1022. */
  1023. int hw_perf_group_sched_in(struct perf_event *leader,
  1024. struct perf_cpu_context *cpuctx,
  1025. struct perf_event_context *ctx)
  1026. {
  1027. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1028. struct perf_event *sub;
  1029. int assign[X86_PMC_IDX_MAX];
  1030. int n0, n1, ret;
  1031. /* n0 = total number of events */
  1032. n0 = collect_events(cpuc, leader, true);
  1033. if (n0 < 0)
  1034. return n0;
  1035. ret = x86_schedule_events(cpuc, n0, assign);
  1036. if (ret)
  1037. return ret;
  1038. ret = x86_event_sched_in(leader, cpuctx);
  1039. if (ret)
  1040. return ret;
  1041. n1 = 1;
  1042. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1043. if (sub->state > PERF_EVENT_STATE_OFF) {
  1044. ret = x86_event_sched_in(sub, cpuctx);
  1045. if (ret)
  1046. goto undo;
  1047. ++n1;
  1048. }
  1049. }
  1050. /*
  1051. * copy new assignment, now we know it is possible
  1052. * will be used by hw_perf_enable()
  1053. */
  1054. memcpy(cpuc->assign, assign, n0*sizeof(int));
  1055. cpuc->n_events = n0;
  1056. cpuc->n_added = n1;
  1057. ctx->nr_active += n1;
  1058. /*
  1059. * 1 means successful and events are active
  1060. * This is not quite true because we defer
  1061. * actual activation until hw_perf_enable() but
  1062. * this way we* ensure caller won't try to enable
  1063. * individual events
  1064. */
  1065. return 1;
  1066. undo:
  1067. x86_event_sched_out(leader, cpuctx);
  1068. n0 = 1;
  1069. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1070. if (sub->state == PERF_EVENT_STATE_ACTIVE) {
  1071. x86_event_sched_out(sub, cpuctx);
  1072. if (++n0 == n1)
  1073. break;
  1074. }
  1075. }
  1076. return ret;
  1077. }
  1078. #include "perf_event_amd.c"
  1079. #include "perf_event_p6.c"
  1080. #include "perf_event_intel.c"
  1081. static void __init pmu_check_apic(void)
  1082. {
  1083. if (cpu_has_apic)
  1084. return;
  1085. x86_pmu.apic = 0;
  1086. pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
  1087. pr_info("no hardware sampling interrupt available.\n");
  1088. }
  1089. void __init init_hw_perf_events(void)
  1090. {
  1091. struct event_constraint *c;
  1092. int err;
  1093. pr_info("Performance Events: ");
  1094. switch (boot_cpu_data.x86_vendor) {
  1095. case X86_VENDOR_INTEL:
  1096. err = intel_pmu_init();
  1097. break;
  1098. case X86_VENDOR_AMD:
  1099. err = amd_pmu_init();
  1100. break;
  1101. default:
  1102. return;
  1103. }
  1104. if (err != 0) {
  1105. pr_cont("no PMU driver, software events only.\n");
  1106. return;
  1107. }
  1108. pmu_check_apic();
  1109. pr_cont("%s PMU driver.\n", x86_pmu.name);
  1110. if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
  1111. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  1112. x86_pmu.num_events, X86_PMC_MAX_GENERIC);
  1113. x86_pmu.num_events = X86_PMC_MAX_GENERIC;
  1114. }
  1115. perf_event_mask = (1 << x86_pmu.num_events) - 1;
  1116. perf_max_events = x86_pmu.num_events;
  1117. if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
  1118. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  1119. x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
  1120. x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
  1121. }
  1122. perf_event_mask |=
  1123. ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
  1124. x86_pmu.intel_ctrl = perf_event_mask;
  1125. perf_events_lapic_init();
  1126. register_die_notifier(&perf_event_nmi_notifier);
  1127. unconstrained = (struct event_constraint)
  1128. __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
  1129. 0, x86_pmu.num_events);
  1130. if (x86_pmu.event_constraints) {
  1131. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1132. if (c->cmask != INTEL_ARCH_FIXED_MASK)
  1133. continue;
  1134. c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
  1135. c->weight += x86_pmu.num_events;
  1136. }
  1137. }
  1138. pr_info("... version: %d\n", x86_pmu.version);
  1139. pr_info("... bit width: %d\n", x86_pmu.event_bits);
  1140. pr_info("... generic registers: %d\n", x86_pmu.num_events);
  1141. pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
  1142. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1143. pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
  1144. pr_info("... event mask: %016Lx\n", perf_event_mask);
  1145. }
  1146. static inline void x86_pmu_read(struct perf_event *event)
  1147. {
  1148. x86_perf_event_update(event, &event->hw, event->hw.idx);
  1149. }
  1150. static const struct pmu pmu = {
  1151. .enable = x86_pmu_enable,
  1152. .disable = x86_pmu_disable,
  1153. .start = x86_pmu_start,
  1154. .stop = x86_pmu_stop,
  1155. .read = x86_pmu_read,
  1156. .unthrottle = x86_pmu_unthrottle,
  1157. };
  1158. /*
  1159. * validate a single event group
  1160. *
  1161. * validation include:
  1162. * - check events are compatible which each other
  1163. * - events do not compete for the same counter
  1164. * - number of events <= number of counters
  1165. *
  1166. * validation ensures the group can be loaded onto the
  1167. * PMU if it was the only group available.
  1168. */
  1169. static int validate_group(struct perf_event *event)
  1170. {
  1171. struct perf_event *leader = event->group_leader;
  1172. struct cpu_hw_events *fake_cpuc;
  1173. int ret, n;
  1174. ret = -ENOMEM;
  1175. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1176. if (!fake_cpuc)
  1177. goto out;
  1178. /*
  1179. * the event is not yet connected with its
  1180. * siblings therefore we must first collect
  1181. * existing siblings, then add the new event
  1182. * before we can simulate the scheduling
  1183. */
  1184. ret = -ENOSPC;
  1185. n = collect_events(fake_cpuc, leader, true);
  1186. if (n < 0)
  1187. goto out_free;
  1188. fake_cpuc->n_events = n;
  1189. n = collect_events(fake_cpuc, event, false);
  1190. if (n < 0)
  1191. goto out_free;
  1192. fake_cpuc->n_events = n;
  1193. ret = x86_schedule_events(fake_cpuc, n, NULL);
  1194. out_free:
  1195. kfree(fake_cpuc);
  1196. out:
  1197. return ret;
  1198. }
  1199. const struct pmu *hw_perf_event_init(struct perf_event *event)
  1200. {
  1201. const struct pmu *tmp;
  1202. int err;
  1203. err = __hw_perf_event_init(event);
  1204. if (!err) {
  1205. /*
  1206. * we temporarily connect event to its pmu
  1207. * such that validate_group() can classify
  1208. * it as an x86 event using is_x86_event()
  1209. */
  1210. tmp = event->pmu;
  1211. event->pmu = &pmu;
  1212. if (event->group_leader != event)
  1213. err = validate_group(event);
  1214. event->pmu = tmp;
  1215. }
  1216. if (err) {
  1217. if (event->destroy)
  1218. event->destroy(event);
  1219. return ERR_PTR(err);
  1220. }
  1221. return &pmu;
  1222. }
  1223. /*
  1224. * callchain support
  1225. */
  1226. static inline
  1227. void callchain_store(struct perf_callchain_entry *entry, u64 ip)
  1228. {
  1229. if (entry->nr < PERF_MAX_STACK_DEPTH)
  1230. entry->ip[entry->nr++] = ip;
  1231. }
  1232. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
  1233. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
  1234. static void
  1235. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  1236. {
  1237. /* Ignore warnings */
  1238. }
  1239. static void backtrace_warning(void *data, char *msg)
  1240. {
  1241. /* Ignore warnings */
  1242. }
  1243. static int backtrace_stack(void *data, char *name)
  1244. {
  1245. return 0;
  1246. }
  1247. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1248. {
  1249. struct perf_callchain_entry *entry = data;
  1250. if (reliable)
  1251. callchain_store(entry, addr);
  1252. }
  1253. static const struct stacktrace_ops backtrace_ops = {
  1254. .warning = backtrace_warning,
  1255. .warning_symbol = backtrace_warning_symbol,
  1256. .stack = backtrace_stack,
  1257. .address = backtrace_address,
  1258. .walk_stack = print_context_stack_bp,
  1259. };
  1260. #include "../dumpstack.h"
  1261. static void
  1262. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1263. {
  1264. callchain_store(entry, PERF_CONTEXT_KERNEL);
  1265. callchain_store(entry, regs->ip);
  1266. dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
  1267. }
  1268. /*
  1269. * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
  1270. */
  1271. static unsigned long
  1272. copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
  1273. {
  1274. unsigned long offset, addr = (unsigned long)from;
  1275. int type = in_nmi() ? KM_NMI : KM_IRQ0;
  1276. unsigned long size, len = 0;
  1277. struct page *page;
  1278. void *map;
  1279. int ret;
  1280. do {
  1281. ret = __get_user_pages_fast(addr, 1, 0, &page);
  1282. if (!ret)
  1283. break;
  1284. offset = addr & (PAGE_SIZE - 1);
  1285. size = min(PAGE_SIZE - offset, n - len);
  1286. map = kmap_atomic(page, type);
  1287. memcpy(to, map+offset, size);
  1288. kunmap_atomic(map, type);
  1289. put_page(page);
  1290. len += size;
  1291. to += size;
  1292. addr += size;
  1293. } while (len < n);
  1294. return len;
  1295. }
  1296. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  1297. {
  1298. unsigned long bytes;
  1299. bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
  1300. return bytes == sizeof(*frame);
  1301. }
  1302. static void
  1303. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1304. {
  1305. struct stack_frame frame;
  1306. const void __user *fp;
  1307. if (!user_mode(regs))
  1308. regs = task_pt_regs(current);
  1309. fp = (void __user *)regs->bp;
  1310. callchain_store(entry, PERF_CONTEXT_USER);
  1311. callchain_store(entry, regs->ip);
  1312. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1313. frame.next_frame = NULL;
  1314. frame.return_address = 0;
  1315. if (!copy_stack_frame(fp, &frame))
  1316. break;
  1317. if ((unsigned long)fp < regs->sp)
  1318. break;
  1319. callchain_store(entry, frame.return_address);
  1320. fp = frame.next_frame;
  1321. }
  1322. }
  1323. static void
  1324. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1325. {
  1326. int is_user;
  1327. if (!regs)
  1328. return;
  1329. is_user = user_mode(regs);
  1330. if (is_user && current->state != TASK_RUNNING)
  1331. return;
  1332. if (!is_user)
  1333. perf_callchain_kernel(regs, entry);
  1334. if (current->mm)
  1335. perf_callchain_user(regs, entry);
  1336. }
  1337. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1338. {
  1339. struct perf_callchain_entry *entry;
  1340. if (in_nmi())
  1341. entry = &__get_cpu_var(pmc_nmi_entry);
  1342. else
  1343. entry = &__get_cpu_var(pmc_irq_entry);
  1344. entry->nr = 0;
  1345. perf_do_callchain(regs, entry);
  1346. return entry;
  1347. }
  1348. void hw_perf_event_setup_online(int cpu)
  1349. {
  1350. init_debug_store_on_cpu(cpu);
  1351. switch (boot_cpu_data.x86_vendor) {
  1352. case X86_VENDOR_AMD:
  1353. amd_pmu_cpu_online(cpu);
  1354. break;
  1355. default:
  1356. return;
  1357. }
  1358. }
  1359. void hw_perf_event_setup_offline(int cpu)
  1360. {
  1361. init_debug_store_on_cpu(cpu);
  1362. switch (boot_cpu_data.x86_vendor) {
  1363. case X86_VENDOR_AMD:
  1364. amd_pmu_cpu_offline(cpu);
  1365. break;
  1366. default:
  1367. return;
  1368. }
  1369. }