coproc.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  4. * Christoffer Dall <c.dall@virtualopensystems.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/mm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/uaccess.h>
  22. #include <asm/kvm_arm.h>
  23. #include <asm/kvm_host.h>
  24. #include <asm/kvm_emulate.h>
  25. #include <asm/kvm_coproc.h>
  26. #include <asm/cacheflush.h>
  27. #include <asm/cputype.h>
  28. #include <trace/events/kvm.h>
  29. #include <asm/vfp.h>
  30. #include "../vfp/vfpinstr.h"
  31. #include "trace.h"
  32. #include "coproc.h"
  33. /******************************************************************************
  34. * Co-processor emulation
  35. *****************************************************************************/
  36. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  37. static u32 cache_levels;
  38. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  39. #define CSSELR_MAX 12
  40. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  41. {
  42. kvm_inject_undefined(vcpu);
  43. return 1;
  44. }
  45. int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  46. {
  47. /*
  48. * We can get here, if the host has been built without VFPv3 support,
  49. * but the guest attempted a floating point operation.
  50. */
  51. kvm_inject_undefined(vcpu);
  52. return 1;
  53. }
  54. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  55. {
  56. kvm_inject_undefined(vcpu);
  57. return 1;
  58. }
  59. int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  60. {
  61. kvm_inject_undefined(vcpu);
  62. return 1;
  63. }
  64. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  65. {
  66. /*
  67. * Compute guest MPIDR. We build a virtual cluster out of the
  68. * vcpu_id, but we read the 'U' bit from the underlying
  69. * hardware directly.
  70. */
  71. vcpu->arch.cp15[c0_MPIDR] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
  72. ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
  73. (vcpu->vcpu_id & 3));
  74. }
  75. /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
  76. static bool access_actlr(struct kvm_vcpu *vcpu,
  77. const struct coproc_params *p,
  78. const struct coproc_reg *r)
  79. {
  80. if (p->is_write)
  81. return ignore_write(vcpu, p);
  82. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
  83. return true;
  84. }
  85. /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
  86. static bool access_cbar(struct kvm_vcpu *vcpu,
  87. const struct coproc_params *p,
  88. const struct coproc_reg *r)
  89. {
  90. if (p->is_write)
  91. return write_to_read_only(vcpu, p);
  92. return read_zero(vcpu, p);
  93. }
  94. /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
  95. static bool access_l2ctlr(struct kvm_vcpu *vcpu,
  96. const struct coproc_params *p,
  97. const struct coproc_reg *r)
  98. {
  99. if (p->is_write)
  100. return ignore_write(vcpu, p);
  101. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
  102. return true;
  103. }
  104. static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  105. {
  106. u32 l2ctlr, ncores;
  107. asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
  108. l2ctlr &= ~(3 << 24);
  109. ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
  110. l2ctlr |= (ncores & 3) << 24;
  111. vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
  112. }
  113. static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  114. {
  115. u32 actlr;
  116. /* ACTLR contains SMP bit: make sure you create all cpus first! */
  117. asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
  118. /* Make the SMP bit consistent with the guest configuration */
  119. if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
  120. actlr |= 1U << 6;
  121. else
  122. actlr &= ~(1U << 6);
  123. vcpu->arch.cp15[c1_ACTLR] = actlr;
  124. }
  125. /*
  126. * TRM entries: A7:4.3.50, A15:4.3.49
  127. * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
  128. */
  129. static bool access_l2ectlr(struct kvm_vcpu *vcpu,
  130. const struct coproc_params *p,
  131. const struct coproc_reg *r)
  132. {
  133. if (p->is_write)
  134. return ignore_write(vcpu, p);
  135. *vcpu_reg(vcpu, p->Rt1) = 0;
  136. return true;
  137. }
  138. /* See note at ARM ARM B1.14.4 */
  139. static bool access_dcsw(struct kvm_vcpu *vcpu,
  140. const struct coproc_params *p,
  141. const struct coproc_reg *r)
  142. {
  143. unsigned long val;
  144. int cpu;
  145. if (!p->is_write)
  146. return read_from_write_only(vcpu, p);
  147. cpu = get_cpu();
  148. cpumask_setall(&vcpu->arch.require_dcache_flush);
  149. cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
  150. /* If we were already preempted, take the long way around */
  151. if (cpu != vcpu->arch.last_pcpu) {
  152. flush_cache_all();
  153. goto done;
  154. }
  155. val = *vcpu_reg(vcpu, p->Rt1);
  156. switch (p->CRm) {
  157. case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
  158. case 14: /* DCCISW */
  159. asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
  160. break;
  161. case 10: /* DCCSW */
  162. asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
  163. break;
  164. }
  165. done:
  166. put_cpu();
  167. return true;
  168. }
  169. /*
  170. * We could trap ID_DFR0 and tell the guest we don't support performance
  171. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  172. * NAKed, so it will read the PMCR anyway.
  173. *
  174. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  175. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  176. * all PM registers, which doesn't crash the guest kernel at least.
  177. */
  178. static bool pm_fake(struct kvm_vcpu *vcpu,
  179. const struct coproc_params *p,
  180. const struct coproc_reg *r)
  181. {
  182. if (p->is_write)
  183. return ignore_write(vcpu, p);
  184. else
  185. return read_zero(vcpu, p);
  186. }
  187. #define access_pmcr pm_fake
  188. #define access_pmcntenset pm_fake
  189. #define access_pmcntenclr pm_fake
  190. #define access_pmovsr pm_fake
  191. #define access_pmselr pm_fake
  192. #define access_pmceid0 pm_fake
  193. #define access_pmceid1 pm_fake
  194. #define access_pmccntr pm_fake
  195. #define access_pmxevtyper pm_fake
  196. #define access_pmxevcntr pm_fake
  197. #define access_pmuserenr pm_fake
  198. #define access_pmintenset pm_fake
  199. #define access_pmintenclr pm_fake
  200. /* Architected CP15 registers.
  201. * CRn denotes the primary register number, but is copied to the CRm in the
  202. * user space API for 64-bit register access in line with the terminology used
  203. * in the ARM ARM.
  204. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
  205. * registers preceding 32-bit ones.
  206. */
  207. static const struct coproc_reg cp15_regs[] = {
  208. /* MPIDR: we use VMPIDR for guest access. */
  209. { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
  210. NULL, reset_mpidr, c0_MPIDR },
  211. /* CSSELR: swapped by interrupt.S. */
  212. { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
  213. NULL, reset_unknown, c0_CSSELR },
  214. /* ACTLR: trapped by HCR.TAC bit. */
  215. { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
  216. access_actlr, reset_actlr, c1_ACTLR },
  217. /* CPACR: swapped by interrupt.S. */
  218. { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
  219. NULL, reset_val, c1_CPACR, 0x00000000 },
  220. /* TTBR0/TTBR1: swapped by interrupt.S. */
  221. { CRm64( 2), Op1( 0), is64, NULL, reset_unknown64, c2_TTBR0 },
  222. { CRm64( 2), Op1( 1), is64, NULL, reset_unknown64, c2_TTBR1 },
  223. /* TTBCR: swapped by interrupt.S. */
  224. { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
  225. NULL, reset_val, c2_TTBCR, 0x00000000 },
  226. /* DACR: swapped by interrupt.S. */
  227. { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
  228. NULL, reset_unknown, c3_DACR },
  229. /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
  230. { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
  231. NULL, reset_unknown, c5_DFSR },
  232. { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
  233. NULL, reset_unknown, c5_IFSR },
  234. { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
  235. NULL, reset_unknown, c5_ADFSR },
  236. { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
  237. NULL, reset_unknown, c5_AIFSR },
  238. /* DFAR/IFAR: swapped by interrupt.S. */
  239. { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
  240. NULL, reset_unknown, c6_DFAR },
  241. { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
  242. NULL, reset_unknown, c6_IFAR },
  243. /* PAR swapped by interrupt.S */
  244. { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
  245. /*
  246. * DC{C,I,CI}SW operations:
  247. */
  248. { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
  249. { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
  250. { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
  251. /*
  252. * L2CTLR access (guest wants to know #CPUs).
  253. */
  254. { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
  255. access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
  256. { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
  257. /*
  258. * Dummy performance monitor implementation.
  259. */
  260. { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
  261. { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
  262. { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
  263. { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
  264. { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
  265. { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
  266. { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
  267. { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
  268. { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
  269. { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
  270. { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
  271. { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
  272. { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
  273. /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
  274. { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
  275. NULL, reset_unknown, c10_PRRR},
  276. { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
  277. NULL, reset_unknown, c10_NMRR},
  278. /* VBAR: swapped by interrupt.S. */
  279. { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
  280. NULL, reset_val, c12_VBAR, 0x00000000 },
  281. /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
  282. { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
  283. NULL, reset_val, c13_CID, 0x00000000 },
  284. { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
  285. NULL, reset_unknown, c13_TID_URW },
  286. { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
  287. NULL, reset_unknown, c13_TID_URO },
  288. { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
  289. NULL, reset_unknown, c13_TID_PRIV },
  290. /* CNTKCTL: swapped by interrupt.S. */
  291. { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
  292. NULL, reset_val, c14_CNTKCTL, 0x00000000 },
  293. /* The Configuration Base Address Register. */
  294. { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
  295. };
  296. /* Target specific emulation tables */
  297. static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  298. void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
  299. {
  300. unsigned int i;
  301. for (i = 1; i < table->num; i++)
  302. BUG_ON(cmp_reg(&table->table[i-1],
  303. &table->table[i]) >= 0);
  304. target_tables[table->target] = table;
  305. }
  306. /* Get specific register table for this target. */
  307. static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
  308. {
  309. struct kvm_coproc_target_table *table;
  310. table = target_tables[target];
  311. *num = table->num;
  312. return table->table;
  313. }
  314. static const struct coproc_reg *find_reg(const struct coproc_params *params,
  315. const struct coproc_reg table[],
  316. unsigned int num)
  317. {
  318. unsigned int i;
  319. for (i = 0; i < num; i++) {
  320. const struct coproc_reg *r = &table[i];
  321. if (params->is_64bit != r->is_64)
  322. continue;
  323. if (params->CRn != r->CRn)
  324. continue;
  325. if (params->CRm != r->CRm)
  326. continue;
  327. if (params->Op1 != r->Op1)
  328. continue;
  329. if (params->Op2 != r->Op2)
  330. continue;
  331. return r;
  332. }
  333. return NULL;
  334. }
  335. static int emulate_cp15(struct kvm_vcpu *vcpu,
  336. const struct coproc_params *params)
  337. {
  338. size_t num;
  339. const struct coproc_reg *table, *r;
  340. trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
  341. params->CRm, params->Op2, params->is_write);
  342. table = get_target_table(vcpu->arch.target, &num);
  343. /* Search target-specific then generic table. */
  344. r = find_reg(params, table, num);
  345. if (!r)
  346. r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
  347. if (likely(r)) {
  348. /* If we don't have an accessor, we should never get here! */
  349. BUG_ON(!r->access);
  350. if (likely(r->access(vcpu, params, r))) {
  351. /* Skip instruction, since it was emulated */
  352. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  353. return 1;
  354. }
  355. /* If access function fails, it should complain. */
  356. } else {
  357. kvm_err("Unsupported guest CP15 access at: %08lx\n",
  358. *vcpu_pc(vcpu));
  359. print_cp_instr(params);
  360. }
  361. kvm_inject_undefined(vcpu);
  362. return 1;
  363. }
  364. /**
  365. * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  366. * @vcpu: The VCPU pointer
  367. * @run: The kvm_run struct
  368. */
  369. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  370. {
  371. struct coproc_params params;
  372. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  373. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  374. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  375. params.is_64bit = true;
  376. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
  377. params.Op2 = 0;
  378. params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  379. params.CRn = 0;
  380. return emulate_cp15(vcpu, &params);
  381. }
  382. static void reset_coproc_regs(struct kvm_vcpu *vcpu,
  383. const struct coproc_reg *table, size_t num)
  384. {
  385. unsigned long i;
  386. for (i = 0; i < num; i++)
  387. if (table[i].reset)
  388. table[i].reset(vcpu, &table[i]);
  389. }
  390. /**
  391. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  392. * @vcpu: The VCPU pointer
  393. * @run: The kvm_run struct
  394. */
  395. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  396. {
  397. struct coproc_params params;
  398. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  399. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  400. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  401. params.is_64bit = false;
  402. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  403. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
  404. params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
  405. params.Rt2 = 0;
  406. return emulate_cp15(vcpu, &params);
  407. }
  408. /******************************************************************************
  409. * Userspace API
  410. *****************************************************************************/
  411. static bool index_to_params(u64 id, struct coproc_params *params)
  412. {
  413. switch (id & KVM_REG_SIZE_MASK) {
  414. case KVM_REG_SIZE_U32:
  415. /* Any unused index bits means it's not valid. */
  416. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  417. | KVM_REG_ARM_COPROC_MASK
  418. | KVM_REG_ARM_32_CRN_MASK
  419. | KVM_REG_ARM_CRM_MASK
  420. | KVM_REG_ARM_OPC1_MASK
  421. | KVM_REG_ARM_32_OPC2_MASK))
  422. return false;
  423. params->is_64bit = false;
  424. params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
  425. >> KVM_REG_ARM_32_CRN_SHIFT);
  426. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  427. >> KVM_REG_ARM_CRM_SHIFT);
  428. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  429. >> KVM_REG_ARM_OPC1_SHIFT);
  430. params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
  431. >> KVM_REG_ARM_32_OPC2_SHIFT);
  432. return true;
  433. case KVM_REG_SIZE_U64:
  434. /* Any unused index bits means it's not valid. */
  435. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  436. | KVM_REG_ARM_COPROC_MASK
  437. | KVM_REG_ARM_CRM_MASK
  438. | KVM_REG_ARM_OPC1_MASK))
  439. return false;
  440. params->is_64bit = true;
  441. /* CRm to CRn: see cp15_to_index for details */
  442. params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
  443. >> KVM_REG_ARM_CRM_SHIFT);
  444. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  445. >> KVM_REG_ARM_OPC1_SHIFT);
  446. params->Op2 = 0;
  447. params->CRm = 0;
  448. return true;
  449. default:
  450. return false;
  451. }
  452. }
  453. /* Decode an index value, and find the cp15 coproc_reg entry. */
  454. static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
  455. u64 id)
  456. {
  457. size_t num;
  458. const struct coproc_reg *table, *r;
  459. struct coproc_params params;
  460. /* We only do cp15 for now. */
  461. if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
  462. return NULL;
  463. if (!index_to_params(id, &params))
  464. return NULL;
  465. table = get_target_table(vcpu->arch.target, &num);
  466. r = find_reg(&params, table, num);
  467. if (!r)
  468. r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
  469. /* Not saved in the cp15 array? */
  470. if (r && !r->reg)
  471. r = NULL;
  472. return r;
  473. }
  474. /*
  475. * These are the invariant cp15 registers: we let the guest see the host
  476. * versions of these, so they're part of the guest state.
  477. *
  478. * A future CPU may provide a mechanism to present different values to
  479. * the guest, or a future kvm may trap them.
  480. */
  481. /* Unfortunately, there's no register-argument for mrc, so generate. */
  482. #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
  483. static void get_##name(struct kvm_vcpu *v, \
  484. const struct coproc_reg *r) \
  485. { \
  486. u32 val; \
  487. \
  488. asm volatile("mrc p15, " __stringify(op1) \
  489. ", %0, c" __stringify(crn) \
  490. ", c" __stringify(crm) \
  491. ", " __stringify(op2) "\n" : "=r" (val)); \
  492. ((struct coproc_reg *)r)->val = val; \
  493. }
  494. FUNCTION_FOR32(0, 0, 0, 0, MIDR)
  495. FUNCTION_FOR32(0, 0, 0, 1, CTR)
  496. FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
  497. FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
  498. FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
  499. FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
  500. FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
  501. FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
  502. FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
  503. FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
  504. FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
  505. FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
  506. FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
  507. FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
  508. FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
  509. FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
  510. FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
  511. FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
  512. FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
  513. FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
  514. FUNCTION_FOR32(0, 0, 1, 7, AIDR)
  515. /* ->val is filled in by kvm_invariant_coproc_table_init() */
  516. static struct coproc_reg invariant_cp15[] = {
  517. { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
  518. { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
  519. { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
  520. { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
  521. { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
  522. { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
  523. { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
  524. { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
  525. { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
  526. { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
  527. { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
  528. { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
  529. { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
  530. { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
  531. { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
  532. { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
  533. { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
  534. { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
  535. { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
  536. { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
  537. { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
  538. };
  539. static int reg_from_user(void *val, const void __user *uaddr, u64 id)
  540. {
  541. /* This Just Works because we are little endian. */
  542. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  543. return -EFAULT;
  544. return 0;
  545. }
  546. static int reg_to_user(void __user *uaddr, const void *val, u64 id)
  547. {
  548. /* This Just Works because we are little endian. */
  549. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  550. return -EFAULT;
  551. return 0;
  552. }
  553. static int get_invariant_cp15(u64 id, void __user *uaddr)
  554. {
  555. struct coproc_params params;
  556. const struct coproc_reg *r;
  557. if (!index_to_params(id, &params))
  558. return -ENOENT;
  559. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  560. if (!r)
  561. return -ENOENT;
  562. return reg_to_user(uaddr, &r->val, id);
  563. }
  564. static int set_invariant_cp15(u64 id, void __user *uaddr)
  565. {
  566. struct coproc_params params;
  567. const struct coproc_reg *r;
  568. int err;
  569. u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
  570. if (!index_to_params(id, &params))
  571. return -ENOENT;
  572. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  573. if (!r)
  574. return -ENOENT;
  575. err = reg_from_user(&val, uaddr, id);
  576. if (err)
  577. return err;
  578. /* This is what we mean by invariant: you can't change it. */
  579. if (r->val != val)
  580. return -EINVAL;
  581. return 0;
  582. }
  583. static bool is_valid_cache(u32 val)
  584. {
  585. u32 level, ctype;
  586. if (val >= CSSELR_MAX)
  587. return -ENOENT;
  588. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  589. level = (val >> 1);
  590. ctype = (cache_levels >> (level * 3)) & 7;
  591. switch (ctype) {
  592. case 0: /* No cache */
  593. return false;
  594. case 1: /* Instruction cache only */
  595. return (val & 1);
  596. case 2: /* Data cache only */
  597. case 4: /* Unified cache */
  598. return !(val & 1);
  599. case 3: /* Separate instruction and data caches */
  600. return true;
  601. default: /* Reserved: we can't know instruction or data. */
  602. return false;
  603. }
  604. }
  605. /* Which cache CCSIDR represents depends on CSSELR value. */
  606. static u32 get_ccsidr(u32 csselr)
  607. {
  608. u32 ccsidr;
  609. /* Make sure noone else changes CSSELR during this! */
  610. local_irq_disable();
  611. /* Put value into CSSELR */
  612. asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
  613. isb();
  614. /* Read result out of CCSIDR */
  615. asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
  616. local_irq_enable();
  617. return ccsidr;
  618. }
  619. static int demux_c15_get(u64 id, void __user *uaddr)
  620. {
  621. u32 val;
  622. u32 __user *uval = uaddr;
  623. /* Fail if we have unknown bits set. */
  624. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  625. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  626. return -ENOENT;
  627. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  628. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  629. if (KVM_REG_SIZE(id) != 4)
  630. return -ENOENT;
  631. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  632. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  633. if (!is_valid_cache(val))
  634. return -ENOENT;
  635. return put_user(get_ccsidr(val), uval);
  636. default:
  637. return -ENOENT;
  638. }
  639. }
  640. static int demux_c15_set(u64 id, void __user *uaddr)
  641. {
  642. u32 val, newval;
  643. u32 __user *uval = uaddr;
  644. /* Fail if we have unknown bits set. */
  645. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  646. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  647. return -ENOENT;
  648. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  649. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  650. if (KVM_REG_SIZE(id) != 4)
  651. return -ENOENT;
  652. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  653. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  654. if (!is_valid_cache(val))
  655. return -ENOENT;
  656. if (get_user(newval, uval))
  657. return -EFAULT;
  658. /* This is also invariant: you can't change it. */
  659. if (newval != get_ccsidr(val))
  660. return -EINVAL;
  661. return 0;
  662. default:
  663. return -ENOENT;
  664. }
  665. }
  666. #ifdef CONFIG_VFPv3
  667. static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
  668. KVM_REG_ARM_VFP_FPSCR,
  669. KVM_REG_ARM_VFP_FPINST,
  670. KVM_REG_ARM_VFP_FPINST2,
  671. KVM_REG_ARM_VFP_MVFR0,
  672. KVM_REG_ARM_VFP_MVFR1,
  673. KVM_REG_ARM_VFP_FPSID };
  674. static unsigned int num_fp_regs(void)
  675. {
  676. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
  677. return 32;
  678. else
  679. return 16;
  680. }
  681. static unsigned int num_vfp_regs(void)
  682. {
  683. /* Normal FP regs + control regs. */
  684. return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
  685. }
  686. static int copy_vfp_regids(u64 __user *uindices)
  687. {
  688. unsigned int i;
  689. const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
  690. const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
  691. for (i = 0; i < num_fp_regs(); i++) {
  692. if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
  693. uindices))
  694. return -EFAULT;
  695. uindices++;
  696. }
  697. for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
  698. if (put_user(u32reg | vfp_sysregs[i], uindices))
  699. return -EFAULT;
  700. uindices++;
  701. }
  702. return num_vfp_regs();
  703. }
  704. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  705. {
  706. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  707. u32 val;
  708. /* Fail if we have unknown bits set. */
  709. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  710. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  711. return -ENOENT;
  712. if (vfpid < num_fp_regs()) {
  713. if (KVM_REG_SIZE(id) != 8)
  714. return -ENOENT;
  715. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
  716. id);
  717. }
  718. /* FP control registers are all 32 bit. */
  719. if (KVM_REG_SIZE(id) != 4)
  720. return -ENOENT;
  721. switch (vfpid) {
  722. case KVM_REG_ARM_VFP_FPEXC:
  723. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
  724. case KVM_REG_ARM_VFP_FPSCR:
  725. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
  726. case KVM_REG_ARM_VFP_FPINST:
  727. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
  728. case KVM_REG_ARM_VFP_FPINST2:
  729. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
  730. case KVM_REG_ARM_VFP_MVFR0:
  731. val = fmrx(MVFR0);
  732. return reg_to_user(uaddr, &val, id);
  733. case KVM_REG_ARM_VFP_MVFR1:
  734. val = fmrx(MVFR1);
  735. return reg_to_user(uaddr, &val, id);
  736. case KVM_REG_ARM_VFP_FPSID:
  737. val = fmrx(FPSID);
  738. return reg_to_user(uaddr, &val, id);
  739. default:
  740. return -ENOENT;
  741. }
  742. }
  743. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  744. {
  745. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  746. u32 val;
  747. /* Fail if we have unknown bits set. */
  748. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  749. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  750. return -ENOENT;
  751. if (vfpid < num_fp_regs()) {
  752. if (KVM_REG_SIZE(id) != 8)
  753. return -ENOENT;
  754. return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
  755. uaddr, id);
  756. }
  757. /* FP control registers are all 32 bit. */
  758. if (KVM_REG_SIZE(id) != 4)
  759. return -ENOENT;
  760. switch (vfpid) {
  761. case KVM_REG_ARM_VFP_FPEXC:
  762. return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
  763. case KVM_REG_ARM_VFP_FPSCR:
  764. return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
  765. case KVM_REG_ARM_VFP_FPINST:
  766. return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
  767. case KVM_REG_ARM_VFP_FPINST2:
  768. return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
  769. /* These are invariant. */
  770. case KVM_REG_ARM_VFP_MVFR0:
  771. if (reg_from_user(&val, uaddr, id))
  772. return -EFAULT;
  773. if (val != fmrx(MVFR0))
  774. return -EINVAL;
  775. return 0;
  776. case KVM_REG_ARM_VFP_MVFR1:
  777. if (reg_from_user(&val, uaddr, id))
  778. return -EFAULT;
  779. if (val != fmrx(MVFR1))
  780. return -EINVAL;
  781. return 0;
  782. case KVM_REG_ARM_VFP_FPSID:
  783. if (reg_from_user(&val, uaddr, id))
  784. return -EFAULT;
  785. if (val != fmrx(FPSID))
  786. return -EINVAL;
  787. return 0;
  788. default:
  789. return -ENOENT;
  790. }
  791. }
  792. #else /* !CONFIG_VFPv3 */
  793. static unsigned int num_vfp_regs(void)
  794. {
  795. return 0;
  796. }
  797. static int copy_vfp_regids(u64 __user *uindices)
  798. {
  799. return 0;
  800. }
  801. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  802. {
  803. return -ENOENT;
  804. }
  805. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  806. {
  807. return -ENOENT;
  808. }
  809. #endif /* !CONFIG_VFPv3 */
  810. int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  811. {
  812. const struct coproc_reg *r;
  813. void __user *uaddr = (void __user *)(long)reg->addr;
  814. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  815. return demux_c15_get(reg->id, uaddr);
  816. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  817. return vfp_get_reg(vcpu, reg->id, uaddr);
  818. r = index_to_coproc_reg(vcpu, reg->id);
  819. if (!r)
  820. return get_invariant_cp15(reg->id, uaddr);
  821. /* Note: copies two regs if size is 64 bit. */
  822. return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
  823. }
  824. int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  825. {
  826. const struct coproc_reg *r;
  827. void __user *uaddr = (void __user *)(long)reg->addr;
  828. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  829. return demux_c15_set(reg->id, uaddr);
  830. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  831. return vfp_set_reg(vcpu, reg->id, uaddr);
  832. r = index_to_coproc_reg(vcpu, reg->id);
  833. if (!r)
  834. return set_invariant_cp15(reg->id, uaddr);
  835. /* Note: copies two regs if size is 64 bit */
  836. return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
  837. }
  838. static unsigned int num_demux_regs(void)
  839. {
  840. unsigned int i, count = 0;
  841. for (i = 0; i < CSSELR_MAX; i++)
  842. if (is_valid_cache(i))
  843. count++;
  844. return count;
  845. }
  846. static int write_demux_regids(u64 __user *uindices)
  847. {
  848. u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  849. unsigned int i;
  850. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  851. for (i = 0; i < CSSELR_MAX; i++) {
  852. if (!is_valid_cache(i))
  853. continue;
  854. if (put_user(val | i, uindices))
  855. return -EFAULT;
  856. uindices++;
  857. }
  858. return 0;
  859. }
  860. static u64 cp15_to_index(const struct coproc_reg *reg)
  861. {
  862. u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
  863. if (reg->is_64) {
  864. val |= KVM_REG_SIZE_U64;
  865. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  866. /*
  867. * CRn always denotes the primary coproc. reg. nr. for the
  868. * in-kernel representation, but the user space API uses the
  869. * CRm for the encoding, because it is modelled after the
  870. * MRRC/MCRR instructions: see the ARM ARM rev. c page
  871. * B3-1445
  872. */
  873. val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
  874. } else {
  875. val |= KVM_REG_SIZE_U32;
  876. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  877. val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
  878. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  879. val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
  880. }
  881. return val;
  882. }
  883. static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
  884. {
  885. if (!*uind)
  886. return true;
  887. if (put_user(cp15_to_index(reg), *uind))
  888. return false;
  889. (*uind)++;
  890. return true;
  891. }
  892. /* Assumed ordered tables, see kvm_coproc_table_init. */
  893. static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
  894. {
  895. const struct coproc_reg *i1, *i2, *end1, *end2;
  896. unsigned int total = 0;
  897. size_t num;
  898. /* We check for duplicates here, to allow arch-specific overrides. */
  899. i1 = get_target_table(vcpu->arch.target, &num);
  900. end1 = i1 + num;
  901. i2 = cp15_regs;
  902. end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
  903. BUG_ON(i1 == end1 || i2 == end2);
  904. /* Walk carefully, as both tables may refer to the same register. */
  905. while (i1 || i2) {
  906. int cmp = cmp_reg(i1, i2);
  907. /* target-specific overrides generic entry. */
  908. if (cmp <= 0) {
  909. /* Ignore registers we trap but don't save. */
  910. if (i1->reg) {
  911. if (!copy_reg_to_user(i1, &uind))
  912. return -EFAULT;
  913. total++;
  914. }
  915. } else {
  916. /* Ignore registers we trap but don't save. */
  917. if (i2->reg) {
  918. if (!copy_reg_to_user(i2, &uind))
  919. return -EFAULT;
  920. total++;
  921. }
  922. }
  923. if (cmp <= 0 && ++i1 == end1)
  924. i1 = NULL;
  925. if (cmp >= 0 && ++i2 == end2)
  926. i2 = NULL;
  927. }
  928. return total;
  929. }
  930. unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
  931. {
  932. return ARRAY_SIZE(invariant_cp15)
  933. + num_demux_regs()
  934. + num_vfp_regs()
  935. + walk_cp15(vcpu, (u64 __user *)NULL);
  936. }
  937. int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  938. {
  939. unsigned int i;
  940. int err;
  941. /* Then give them all the invariant registers' indices. */
  942. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
  943. if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
  944. return -EFAULT;
  945. uindices++;
  946. }
  947. err = walk_cp15(vcpu, uindices);
  948. if (err < 0)
  949. return err;
  950. uindices += err;
  951. err = copy_vfp_regids(uindices);
  952. if (err < 0)
  953. return err;
  954. uindices += err;
  955. return write_demux_regids(uindices);
  956. }
  957. void kvm_coproc_table_init(void)
  958. {
  959. unsigned int i;
  960. /* Make sure tables are unique and in order. */
  961. for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
  962. BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
  963. /* We abuse the reset function to overwrite the table itself. */
  964. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
  965. invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
  966. /*
  967. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  968. *
  969. * If software reads the Cache Type fields from Ctype1
  970. * upwards, once it has seen a value of 0b000, no caches
  971. * exist at further-out levels of the hierarchy. So, for
  972. * example, if Ctype3 is the first Cache Type field with a
  973. * value of 0b000, the values of Ctype4 to Ctype7 must be
  974. * ignored.
  975. */
  976. asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
  977. for (i = 0; i < 7; i++)
  978. if (((cache_levels >> (i*3)) & 7) == 0)
  979. break;
  980. /* Clear all higher bits. */
  981. cache_levels &= (1 << (i*3))-1;
  982. }
  983. /**
  984. * kvm_reset_coprocs - sets cp15 registers to reset value
  985. * @vcpu: The VCPU pointer
  986. *
  987. * This function finds the right table above and sets the registers on the
  988. * virtual CPU struct to their architecturally defined reset values.
  989. */
  990. void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
  991. {
  992. size_t num;
  993. const struct coproc_reg *table;
  994. /* Catch someone adding a register without putting in reset entry. */
  995. memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
  996. /* Generic chip reset first (so target could override). */
  997. reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
  998. table = get_target_table(vcpu->arch.target, &num);
  999. reset_coproc_regs(vcpu, table, num);
  1000. for (num = 1; num < NR_CP15_REGS; num++)
  1001. if (vcpu->arch.cp15[num] == 0x42424242)
  1002. panic("Didn't reset vcpu->arch.cp15[%zi]", num);
  1003. }