cciss.c 125 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512
  1. /*
  2. * Disk Array driver for HP Smart Array controllers.
  3. * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  17. * 02111-1307, USA.
  18. *
  19. * Questions/Comments/Bugfixes to iss_storagedev@hp.com
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/types.h>
  25. #include <linux/pci.h>
  26. #include <linux/kernel.h>
  27. #include <linux/slab.h>
  28. #include <linux/smp_lock.h>
  29. #include <linux/delay.h>
  30. #include <linux/major.h>
  31. #include <linux/fs.h>
  32. #include <linux/bio.h>
  33. #include <linux/blkpg.h>
  34. #include <linux/timer.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/seq_file.h>
  37. #include <linux/init.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/hdreg.h>
  40. #include <linux/spinlock.h>
  41. #include <linux/compat.h>
  42. #include <linux/mutex.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/io.h>
  45. #include <linux/dma-mapping.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/genhd.h>
  48. #include <linux/completion.h>
  49. #include <scsi/scsi.h>
  50. #include <scsi/sg.h>
  51. #include <scsi/scsi_ioctl.h>
  52. #include <linux/cdrom.h>
  53. #include <linux/scatterlist.h>
  54. #include <linux/kthread.h>
  55. #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
  56. #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
  57. #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
  58. /* Embedded module documentation macros - see modules.h */
  59. MODULE_AUTHOR("Hewlett-Packard Company");
  60. MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
  61. MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
  62. " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
  63. " Smart Array G2 Series SAS/SATA Controllers");
  64. MODULE_VERSION("3.6.20");
  65. MODULE_LICENSE("GPL");
  66. #include "cciss_cmd.h"
  67. #include "cciss.h"
  68. #include <linux/cciss_ioctl.h>
  69. /* define the PCI info for the cards we can control */
  70. static const struct pci_device_id cciss_pci_device_id[] = {
  71. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
  72. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
  73. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
  74. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
  75. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
  76. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
  77. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
  78. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
  79. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
  80. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
  81. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
  82. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
  83. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
  84. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
  85. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
  86. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
  87. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
  88. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
  89. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
  90. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
  91. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
  92. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
  93. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
  94. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
  95. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
  96. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
  97. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
  98. {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
  99. PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
  100. {0,}
  101. };
  102. MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
  103. /* board_id = Subsystem Device ID & Vendor ID
  104. * product = Marketing Name for the board
  105. * access = Address of the struct of function pointers
  106. */
  107. static struct board_type products[] = {
  108. {0x40700E11, "Smart Array 5300", &SA5_access},
  109. {0x40800E11, "Smart Array 5i", &SA5B_access},
  110. {0x40820E11, "Smart Array 532", &SA5B_access},
  111. {0x40830E11, "Smart Array 5312", &SA5B_access},
  112. {0x409A0E11, "Smart Array 641", &SA5_access},
  113. {0x409B0E11, "Smart Array 642", &SA5_access},
  114. {0x409C0E11, "Smart Array 6400", &SA5_access},
  115. {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
  116. {0x40910E11, "Smart Array 6i", &SA5_access},
  117. {0x3225103C, "Smart Array P600", &SA5_access},
  118. {0x3223103C, "Smart Array P800", &SA5_access},
  119. {0x3234103C, "Smart Array P400", &SA5_access},
  120. {0x3235103C, "Smart Array P400i", &SA5_access},
  121. {0x3211103C, "Smart Array E200i", &SA5_access},
  122. {0x3212103C, "Smart Array E200", &SA5_access},
  123. {0x3213103C, "Smart Array E200i", &SA5_access},
  124. {0x3214103C, "Smart Array E200i", &SA5_access},
  125. {0x3215103C, "Smart Array E200i", &SA5_access},
  126. {0x3237103C, "Smart Array E500", &SA5_access},
  127. {0x323D103C, "Smart Array P700m", &SA5_access},
  128. {0x3241103C, "Smart Array P212", &SA5_access},
  129. {0x3243103C, "Smart Array P410", &SA5_access},
  130. {0x3245103C, "Smart Array P410i", &SA5_access},
  131. {0x3247103C, "Smart Array P411", &SA5_access},
  132. {0x3249103C, "Smart Array P812", &SA5_access},
  133. {0x324A103C, "Smart Array P712m", &SA5_access},
  134. {0x324B103C, "Smart Array P711m", &SA5_access},
  135. {0xFFFF103C, "Unknown Smart Array", &SA5_access},
  136. };
  137. /* How long to wait (in milliseconds) for board to go into simple mode */
  138. #define MAX_CONFIG_WAIT 30000
  139. #define MAX_IOCTL_CONFIG_WAIT 1000
  140. /*define how many times we will try a command because of bus resets */
  141. #define MAX_CMD_RETRIES 3
  142. #define MAX_CTLR 32
  143. /* Originally cciss driver only supports 8 major numbers */
  144. #define MAX_CTLR_ORIG 8
  145. static ctlr_info_t *hba[MAX_CTLR];
  146. static struct task_struct *cciss_scan_thread;
  147. static DEFINE_MUTEX(scan_mutex);
  148. static LIST_HEAD(scan_q);
  149. static void do_cciss_request(struct request_queue *q);
  150. static irqreturn_t do_cciss_intr(int irq, void *dev_id);
  151. static int cciss_open(struct block_device *bdev, fmode_t mode);
  152. static int cciss_release(struct gendisk *disk, fmode_t mode);
  153. static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
  154. unsigned int cmd, unsigned long arg);
  155. static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
  156. static int cciss_revalidate(struct gendisk *disk);
  157. static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
  158. static int deregister_disk(ctlr_info_t *h, int drv_index,
  159. int clear_all, int via_ioctl);
  160. static void cciss_read_capacity(int ctlr, int logvol, int withirq,
  161. sector_t *total_size, unsigned int *block_size);
  162. static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
  163. sector_t *total_size, unsigned int *block_size);
  164. static void cciss_geometry_inquiry(int ctlr, int logvol,
  165. int withirq, sector_t total_size,
  166. unsigned int block_size, InquiryData_struct *inq_buff,
  167. drive_info_struct *drv);
  168. static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
  169. __u32);
  170. static void start_io(ctlr_info_t *h);
  171. static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
  172. __u8 page_code, unsigned char *scsi3addr, int cmd_type);
  173. static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
  174. __u8 page_code, unsigned char scsi3addr[],
  175. int cmd_type);
  176. static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
  177. int attempt_retry);
  178. static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
  179. static void fail_all_cmds(unsigned long ctlr);
  180. static int add_to_scan_list(struct ctlr_info *h);
  181. static int scan_thread(void *data);
  182. static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
  183. static void cciss_hba_release(struct device *dev);
  184. static void cciss_device_release(struct device *dev);
  185. static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
  186. #ifdef CONFIG_PROC_FS
  187. static void cciss_procinit(int i);
  188. #else
  189. static void cciss_procinit(int i)
  190. {
  191. }
  192. #endif /* CONFIG_PROC_FS */
  193. #ifdef CONFIG_COMPAT
  194. static int cciss_compat_ioctl(struct block_device *, fmode_t,
  195. unsigned, unsigned long);
  196. #endif
  197. static const struct block_device_operations cciss_fops = {
  198. .owner = THIS_MODULE,
  199. .open = cciss_open,
  200. .release = cciss_release,
  201. .locked_ioctl = cciss_ioctl,
  202. .getgeo = cciss_getgeo,
  203. #ifdef CONFIG_COMPAT
  204. .compat_ioctl = cciss_compat_ioctl,
  205. #endif
  206. .revalidate_disk = cciss_revalidate,
  207. };
  208. /*
  209. * Enqueuing and dequeuing functions for cmdlists.
  210. */
  211. static inline void addQ(struct hlist_head *list, CommandList_struct *c)
  212. {
  213. hlist_add_head(&c->list, list);
  214. }
  215. static inline void removeQ(CommandList_struct *c)
  216. {
  217. /*
  218. * After kexec/dump some commands might still
  219. * be in flight, which the firmware will try
  220. * to complete. Resetting the firmware doesn't work
  221. * with old fw revisions, so we have to mark
  222. * them off as 'stale' to prevent the driver from
  223. * falling over.
  224. */
  225. if (WARN_ON(hlist_unhashed(&c->list))) {
  226. c->cmd_type = CMD_MSG_STALE;
  227. return;
  228. }
  229. hlist_del_init(&c->list);
  230. }
  231. #include "cciss_scsi.c" /* For SCSI tape support */
  232. #define RAID_UNKNOWN 6
  233. #ifdef CONFIG_PROC_FS
  234. /*
  235. * Report information about this controller.
  236. */
  237. #define ENG_GIG 1000000000
  238. #define ENG_GIG_FACTOR (ENG_GIG/512)
  239. #define ENGAGE_SCSI "engage scsi"
  240. static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
  241. "UNKNOWN"
  242. };
  243. static struct proc_dir_entry *proc_cciss;
  244. static void cciss_seq_show_header(struct seq_file *seq)
  245. {
  246. ctlr_info_t *h = seq->private;
  247. seq_printf(seq, "%s: HP %s Controller\n"
  248. "Board ID: 0x%08lx\n"
  249. "Firmware Version: %c%c%c%c\n"
  250. "IRQ: %d\n"
  251. "Logical drives: %d\n"
  252. "Current Q depth: %d\n"
  253. "Current # commands on controller: %d\n"
  254. "Max Q depth since init: %d\n"
  255. "Max # commands on controller since init: %d\n"
  256. "Max SG entries since init: %d\n",
  257. h->devname,
  258. h->product_name,
  259. (unsigned long)h->board_id,
  260. h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
  261. h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
  262. h->num_luns,
  263. h->Qdepth, h->commands_outstanding,
  264. h->maxQsinceinit, h->max_outstanding, h->maxSG);
  265. #ifdef CONFIG_CISS_SCSI_TAPE
  266. cciss_seq_tape_report(seq, h->ctlr);
  267. #endif /* CONFIG_CISS_SCSI_TAPE */
  268. }
  269. static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
  270. {
  271. ctlr_info_t *h = seq->private;
  272. unsigned ctlr = h->ctlr;
  273. unsigned long flags;
  274. /* prevent displaying bogus info during configuration
  275. * or deconfiguration of a logical volume
  276. */
  277. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  278. if (h->busy_configuring) {
  279. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  280. return ERR_PTR(-EBUSY);
  281. }
  282. h->busy_configuring = 1;
  283. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  284. if (*pos == 0)
  285. cciss_seq_show_header(seq);
  286. return pos;
  287. }
  288. static int cciss_seq_show(struct seq_file *seq, void *v)
  289. {
  290. sector_t vol_sz, vol_sz_frac;
  291. ctlr_info_t *h = seq->private;
  292. unsigned ctlr = h->ctlr;
  293. loff_t *pos = v;
  294. drive_info_struct *drv = &h->drv[*pos];
  295. if (*pos > h->highest_lun)
  296. return 0;
  297. if (drv->heads == 0)
  298. return 0;
  299. vol_sz = drv->nr_blocks;
  300. vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
  301. vol_sz_frac *= 100;
  302. sector_div(vol_sz_frac, ENG_GIG_FACTOR);
  303. if (drv->raid_level > 5)
  304. drv->raid_level = RAID_UNKNOWN;
  305. seq_printf(seq, "cciss/c%dd%d:"
  306. "\t%4u.%02uGB\tRAID %s\n",
  307. ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
  308. raid_label[drv->raid_level]);
  309. return 0;
  310. }
  311. static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  312. {
  313. ctlr_info_t *h = seq->private;
  314. if (*pos > h->highest_lun)
  315. return NULL;
  316. *pos += 1;
  317. return pos;
  318. }
  319. static void cciss_seq_stop(struct seq_file *seq, void *v)
  320. {
  321. ctlr_info_t *h = seq->private;
  322. /* Only reset h->busy_configuring if we succeeded in setting
  323. * it during cciss_seq_start. */
  324. if (v == ERR_PTR(-EBUSY))
  325. return;
  326. h->busy_configuring = 0;
  327. }
  328. static const struct seq_operations cciss_seq_ops = {
  329. .start = cciss_seq_start,
  330. .show = cciss_seq_show,
  331. .next = cciss_seq_next,
  332. .stop = cciss_seq_stop,
  333. };
  334. static int cciss_seq_open(struct inode *inode, struct file *file)
  335. {
  336. int ret = seq_open(file, &cciss_seq_ops);
  337. struct seq_file *seq = file->private_data;
  338. if (!ret)
  339. seq->private = PDE(inode)->data;
  340. return ret;
  341. }
  342. static ssize_t
  343. cciss_proc_write(struct file *file, const char __user *buf,
  344. size_t length, loff_t *ppos)
  345. {
  346. int err;
  347. char *buffer;
  348. #ifndef CONFIG_CISS_SCSI_TAPE
  349. return -EINVAL;
  350. #endif
  351. if (!buf || length > PAGE_SIZE - 1)
  352. return -EINVAL;
  353. buffer = (char *)__get_free_page(GFP_KERNEL);
  354. if (!buffer)
  355. return -ENOMEM;
  356. err = -EFAULT;
  357. if (copy_from_user(buffer, buf, length))
  358. goto out;
  359. buffer[length] = '\0';
  360. #ifdef CONFIG_CISS_SCSI_TAPE
  361. if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
  362. struct seq_file *seq = file->private_data;
  363. ctlr_info_t *h = seq->private;
  364. int rc;
  365. rc = cciss_engage_scsi(h->ctlr);
  366. if (rc != 0)
  367. err = -rc;
  368. else
  369. err = length;
  370. } else
  371. #endif /* CONFIG_CISS_SCSI_TAPE */
  372. err = -EINVAL;
  373. /* might be nice to have "disengage" too, but it's not
  374. safely possible. (only 1 module use count, lock issues.) */
  375. out:
  376. free_page((unsigned long)buffer);
  377. return err;
  378. }
  379. static struct file_operations cciss_proc_fops = {
  380. .owner = THIS_MODULE,
  381. .open = cciss_seq_open,
  382. .read = seq_read,
  383. .llseek = seq_lseek,
  384. .release = seq_release,
  385. .write = cciss_proc_write,
  386. };
  387. static void __devinit cciss_procinit(int i)
  388. {
  389. struct proc_dir_entry *pde;
  390. if (proc_cciss == NULL)
  391. proc_cciss = proc_mkdir("driver/cciss", NULL);
  392. if (!proc_cciss)
  393. return;
  394. pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
  395. S_IROTH, proc_cciss,
  396. &cciss_proc_fops, hba[i]);
  397. }
  398. #endif /* CONFIG_PROC_FS */
  399. #define MAX_PRODUCT_NAME_LEN 19
  400. #define to_hba(n) container_of(n, struct ctlr_info, dev)
  401. static ssize_t host_store_rescan(struct device *dev,
  402. struct device_attribute *attr,
  403. const char *buf, size_t count)
  404. {
  405. struct ctlr_info *h = to_hba(dev);
  406. add_to_scan_list(h);
  407. wake_up_process(cciss_scan_thread);
  408. wait_for_completion_interruptible(&h->scan_wait);
  409. return count;
  410. }
  411. DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
  412. static ssize_t dev_show_unique_id(struct device *dev,
  413. struct device_attribute *attr,
  414. char *buf)
  415. {
  416. drive_info_struct *drv = dev_get_drvdata(dev);
  417. struct ctlr_info *h = to_hba(drv->dev->parent);
  418. __u8 sn[16];
  419. unsigned long flags;
  420. int ret = 0;
  421. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  422. if (h->busy_configuring)
  423. ret = -EBUSY;
  424. else
  425. memcpy(sn, drv->serial_no, sizeof(sn));
  426. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  427. if (ret)
  428. return ret;
  429. else
  430. return snprintf(buf, 16 * 2 + 2,
  431. "%02X%02X%02X%02X%02X%02X%02X%02X"
  432. "%02X%02X%02X%02X%02X%02X%02X%02X\n",
  433. sn[0], sn[1], sn[2], sn[3],
  434. sn[4], sn[5], sn[6], sn[7],
  435. sn[8], sn[9], sn[10], sn[11],
  436. sn[12], sn[13], sn[14], sn[15]);
  437. }
  438. DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
  439. static ssize_t dev_show_vendor(struct device *dev,
  440. struct device_attribute *attr,
  441. char *buf)
  442. {
  443. drive_info_struct *drv = dev_get_drvdata(dev);
  444. struct ctlr_info *h = to_hba(drv->dev->parent);
  445. char vendor[VENDOR_LEN + 1];
  446. unsigned long flags;
  447. int ret = 0;
  448. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  449. if (h->busy_configuring)
  450. ret = -EBUSY;
  451. else
  452. memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
  453. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  454. if (ret)
  455. return ret;
  456. else
  457. return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
  458. }
  459. DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
  460. static ssize_t dev_show_model(struct device *dev,
  461. struct device_attribute *attr,
  462. char *buf)
  463. {
  464. drive_info_struct *drv = dev_get_drvdata(dev);
  465. struct ctlr_info *h = to_hba(drv->dev->parent);
  466. char model[MODEL_LEN + 1];
  467. unsigned long flags;
  468. int ret = 0;
  469. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  470. if (h->busy_configuring)
  471. ret = -EBUSY;
  472. else
  473. memcpy(model, drv->model, MODEL_LEN + 1);
  474. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  475. if (ret)
  476. return ret;
  477. else
  478. return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
  479. }
  480. DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
  481. static ssize_t dev_show_rev(struct device *dev,
  482. struct device_attribute *attr,
  483. char *buf)
  484. {
  485. drive_info_struct *drv = dev_get_drvdata(dev);
  486. struct ctlr_info *h = to_hba(drv->dev->parent);
  487. char rev[REV_LEN + 1];
  488. unsigned long flags;
  489. int ret = 0;
  490. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  491. if (h->busy_configuring)
  492. ret = -EBUSY;
  493. else
  494. memcpy(rev, drv->rev, REV_LEN + 1);
  495. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  496. if (ret)
  497. return ret;
  498. else
  499. return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
  500. }
  501. DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
  502. static struct attribute *cciss_host_attrs[] = {
  503. &dev_attr_rescan.attr,
  504. NULL
  505. };
  506. static struct attribute_group cciss_host_attr_group = {
  507. .attrs = cciss_host_attrs,
  508. };
  509. static struct attribute_group *cciss_host_attr_groups[] = {
  510. &cciss_host_attr_group,
  511. NULL
  512. };
  513. static struct device_type cciss_host_type = {
  514. .name = "cciss_host",
  515. .groups = cciss_host_attr_groups,
  516. .release = cciss_hba_release,
  517. };
  518. static struct attribute *cciss_dev_attrs[] = {
  519. &dev_attr_unique_id.attr,
  520. &dev_attr_model.attr,
  521. &dev_attr_vendor.attr,
  522. &dev_attr_rev.attr,
  523. NULL
  524. };
  525. static struct attribute_group cciss_dev_attr_group = {
  526. .attrs = cciss_dev_attrs,
  527. };
  528. static const struct attribute_group *cciss_dev_attr_groups[] = {
  529. &cciss_dev_attr_group,
  530. NULL
  531. };
  532. static struct device_type cciss_dev_type = {
  533. .name = "cciss_device",
  534. .groups = cciss_dev_attr_groups,
  535. .release = cciss_device_release,
  536. };
  537. static struct bus_type cciss_bus_type = {
  538. .name = "cciss",
  539. };
  540. /*
  541. * cciss_hba_release is called when the reference count
  542. * of h->dev goes to zero.
  543. */
  544. static void cciss_hba_release(struct device *dev)
  545. {
  546. /*
  547. * nothing to do, but need this to avoid a warning
  548. * about not having a release handler from lib/kref.c.
  549. */
  550. }
  551. /*
  552. * Initialize sysfs entry for each controller. This sets up and registers
  553. * the 'cciss#' directory for each individual controller under
  554. * /sys/bus/pci/devices/<dev>/.
  555. */
  556. static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
  557. {
  558. device_initialize(&h->dev);
  559. h->dev.type = &cciss_host_type;
  560. h->dev.bus = &cciss_bus_type;
  561. dev_set_name(&h->dev, "%s", h->devname);
  562. h->dev.parent = &h->pdev->dev;
  563. return device_add(&h->dev);
  564. }
  565. /*
  566. * Remove sysfs entries for an hba.
  567. */
  568. static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
  569. {
  570. device_del(&h->dev);
  571. put_device(&h->dev); /* final put. */
  572. }
  573. /* cciss_device_release is called when the reference count
  574. * of h->drv[x].dev goes to zero.
  575. */
  576. static void cciss_device_release(struct device *dev)
  577. {
  578. kfree(dev);
  579. }
  580. /*
  581. * Initialize sysfs for each logical drive. This sets up and registers
  582. * the 'c#d#' directory for each individual logical drive under
  583. * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
  584. * /sys/block/cciss!c#d# to this entry.
  585. */
  586. static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
  587. int drv_index)
  588. {
  589. struct device *dev;
  590. /* Special case for c*d0, we only create it once. */
  591. if (drv_index == 0 && h->drv[drv_index].dev != NULL)
  592. return 0;
  593. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  594. if (!dev)
  595. return -ENOMEM;
  596. device_initialize(dev);
  597. dev->type = &cciss_dev_type;
  598. dev->bus = &cciss_bus_type;
  599. dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
  600. dev->parent = &h->dev;
  601. h->drv[drv_index].dev = dev;
  602. dev_set_drvdata(dev, &h->drv[drv_index]);
  603. return device_add(dev);
  604. }
  605. /*
  606. * Remove sysfs entries for a logical drive.
  607. */
  608. static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
  609. int ctlr_exiting)
  610. {
  611. struct device *dev = h->drv[drv_index].dev;
  612. /* special case for c*d0, we only destroy it on controller exit */
  613. if (drv_index == 0 && !ctlr_exiting)
  614. return;
  615. device_del(dev);
  616. put_device(dev); /* the "final" put. */
  617. h->drv[drv_index].dev = NULL;
  618. }
  619. /*
  620. * For operations that cannot sleep, a command block is allocated at init,
  621. * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
  622. * which ones are free or in use. For operations that can wait for kmalloc
  623. * to possible sleep, this routine can be called with get_from_pool set to 0.
  624. * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
  625. */
  626. static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
  627. {
  628. CommandList_struct *c;
  629. int i;
  630. u64bit temp64;
  631. dma_addr_t cmd_dma_handle, err_dma_handle;
  632. if (!get_from_pool) {
  633. c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
  634. sizeof(CommandList_struct), &cmd_dma_handle);
  635. if (c == NULL)
  636. return NULL;
  637. memset(c, 0, sizeof(CommandList_struct));
  638. c->cmdindex = -1;
  639. c->err_info = (ErrorInfo_struct *)
  640. pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
  641. &err_dma_handle);
  642. if (c->err_info == NULL) {
  643. pci_free_consistent(h->pdev,
  644. sizeof(CommandList_struct), c, cmd_dma_handle);
  645. return NULL;
  646. }
  647. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  648. } else { /* get it out of the controllers pool */
  649. do {
  650. i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
  651. if (i == h->nr_cmds)
  652. return NULL;
  653. } while (test_and_set_bit
  654. (i & (BITS_PER_LONG - 1),
  655. h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
  656. #ifdef CCISS_DEBUG
  657. printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
  658. #endif
  659. c = h->cmd_pool + i;
  660. memset(c, 0, sizeof(CommandList_struct));
  661. cmd_dma_handle = h->cmd_pool_dhandle
  662. + i * sizeof(CommandList_struct);
  663. c->err_info = h->errinfo_pool + i;
  664. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  665. err_dma_handle = h->errinfo_pool_dhandle
  666. + i * sizeof(ErrorInfo_struct);
  667. h->nr_allocs++;
  668. c->cmdindex = i;
  669. }
  670. INIT_HLIST_NODE(&c->list);
  671. c->busaddr = (__u32) cmd_dma_handle;
  672. temp64.val = (__u64) err_dma_handle;
  673. c->ErrDesc.Addr.lower = temp64.val32.lower;
  674. c->ErrDesc.Addr.upper = temp64.val32.upper;
  675. c->ErrDesc.Len = sizeof(ErrorInfo_struct);
  676. c->ctlr = h->ctlr;
  677. return c;
  678. }
  679. /*
  680. * Frees a command block that was previously allocated with cmd_alloc().
  681. */
  682. static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
  683. {
  684. int i;
  685. u64bit temp64;
  686. if (!got_from_pool) {
  687. temp64.val32.lower = c->ErrDesc.Addr.lower;
  688. temp64.val32.upper = c->ErrDesc.Addr.upper;
  689. pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
  690. c->err_info, (dma_addr_t) temp64.val);
  691. pci_free_consistent(h->pdev, sizeof(CommandList_struct),
  692. c, (dma_addr_t) c->busaddr);
  693. } else {
  694. i = c - h->cmd_pool;
  695. clear_bit(i & (BITS_PER_LONG - 1),
  696. h->cmd_pool_bits + (i / BITS_PER_LONG));
  697. h->nr_frees++;
  698. }
  699. }
  700. static inline ctlr_info_t *get_host(struct gendisk *disk)
  701. {
  702. return disk->queue->queuedata;
  703. }
  704. static inline drive_info_struct *get_drv(struct gendisk *disk)
  705. {
  706. return disk->private_data;
  707. }
  708. /*
  709. * Open. Make sure the device is really there.
  710. */
  711. static int cciss_open(struct block_device *bdev, fmode_t mode)
  712. {
  713. ctlr_info_t *host = get_host(bdev->bd_disk);
  714. drive_info_struct *drv = get_drv(bdev->bd_disk);
  715. #ifdef CCISS_DEBUG
  716. printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
  717. #endif /* CCISS_DEBUG */
  718. if (host->busy_initializing || drv->busy_configuring)
  719. return -EBUSY;
  720. /*
  721. * Root is allowed to open raw volume zero even if it's not configured
  722. * so array config can still work. Root is also allowed to open any
  723. * volume that has a LUN ID, so it can issue IOCTL to reread the
  724. * disk information. I don't think I really like this
  725. * but I'm already using way to many device nodes to claim another one
  726. * for "raw controller".
  727. */
  728. if (drv->heads == 0) {
  729. if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
  730. /* if not node 0 make sure it is a partition = 0 */
  731. if (MINOR(bdev->bd_dev) & 0x0f) {
  732. return -ENXIO;
  733. /* if it is, make sure we have a LUN ID */
  734. } else if (drv->LunID == 0) {
  735. return -ENXIO;
  736. }
  737. }
  738. if (!capable(CAP_SYS_ADMIN))
  739. return -EPERM;
  740. }
  741. drv->usage_count++;
  742. host->usage_count++;
  743. return 0;
  744. }
  745. /*
  746. * Close. Sync first.
  747. */
  748. static int cciss_release(struct gendisk *disk, fmode_t mode)
  749. {
  750. ctlr_info_t *host = get_host(disk);
  751. drive_info_struct *drv = get_drv(disk);
  752. #ifdef CCISS_DEBUG
  753. printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
  754. #endif /* CCISS_DEBUG */
  755. drv->usage_count--;
  756. host->usage_count--;
  757. return 0;
  758. }
  759. #ifdef CONFIG_COMPAT
  760. static int do_ioctl(struct block_device *bdev, fmode_t mode,
  761. unsigned cmd, unsigned long arg)
  762. {
  763. int ret;
  764. lock_kernel();
  765. ret = cciss_ioctl(bdev, mode, cmd, arg);
  766. unlock_kernel();
  767. return ret;
  768. }
  769. static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
  770. unsigned cmd, unsigned long arg);
  771. static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
  772. unsigned cmd, unsigned long arg);
  773. static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
  774. unsigned cmd, unsigned long arg)
  775. {
  776. switch (cmd) {
  777. case CCISS_GETPCIINFO:
  778. case CCISS_GETINTINFO:
  779. case CCISS_SETINTINFO:
  780. case CCISS_GETNODENAME:
  781. case CCISS_SETNODENAME:
  782. case CCISS_GETHEARTBEAT:
  783. case CCISS_GETBUSTYPES:
  784. case CCISS_GETFIRMVER:
  785. case CCISS_GETDRIVVER:
  786. case CCISS_REVALIDVOLS:
  787. case CCISS_DEREGDISK:
  788. case CCISS_REGNEWDISK:
  789. case CCISS_REGNEWD:
  790. case CCISS_RESCANDISK:
  791. case CCISS_GETLUNINFO:
  792. return do_ioctl(bdev, mode, cmd, arg);
  793. case CCISS_PASSTHRU32:
  794. return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
  795. case CCISS_BIG_PASSTHRU32:
  796. return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
  797. default:
  798. return -ENOIOCTLCMD;
  799. }
  800. }
  801. static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
  802. unsigned cmd, unsigned long arg)
  803. {
  804. IOCTL32_Command_struct __user *arg32 =
  805. (IOCTL32_Command_struct __user *) arg;
  806. IOCTL_Command_struct arg64;
  807. IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
  808. int err;
  809. u32 cp;
  810. err = 0;
  811. err |=
  812. copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  813. sizeof(arg64.LUN_info));
  814. err |=
  815. copy_from_user(&arg64.Request, &arg32->Request,
  816. sizeof(arg64.Request));
  817. err |=
  818. copy_from_user(&arg64.error_info, &arg32->error_info,
  819. sizeof(arg64.error_info));
  820. err |= get_user(arg64.buf_size, &arg32->buf_size);
  821. err |= get_user(cp, &arg32->buf);
  822. arg64.buf = compat_ptr(cp);
  823. err |= copy_to_user(p, &arg64, sizeof(arg64));
  824. if (err)
  825. return -EFAULT;
  826. err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
  827. if (err)
  828. return err;
  829. err |=
  830. copy_in_user(&arg32->error_info, &p->error_info,
  831. sizeof(arg32->error_info));
  832. if (err)
  833. return -EFAULT;
  834. return err;
  835. }
  836. static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
  837. unsigned cmd, unsigned long arg)
  838. {
  839. BIG_IOCTL32_Command_struct __user *arg32 =
  840. (BIG_IOCTL32_Command_struct __user *) arg;
  841. BIG_IOCTL_Command_struct arg64;
  842. BIG_IOCTL_Command_struct __user *p =
  843. compat_alloc_user_space(sizeof(arg64));
  844. int err;
  845. u32 cp;
  846. err = 0;
  847. err |=
  848. copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  849. sizeof(arg64.LUN_info));
  850. err |=
  851. copy_from_user(&arg64.Request, &arg32->Request,
  852. sizeof(arg64.Request));
  853. err |=
  854. copy_from_user(&arg64.error_info, &arg32->error_info,
  855. sizeof(arg64.error_info));
  856. err |= get_user(arg64.buf_size, &arg32->buf_size);
  857. err |= get_user(arg64.malloc_size, &arg32->malloc_size);
  858. err |= get_user(cp, &arg32->buf);
  859. arg64.buf = compat_ptr(cp);
  860. err |= copy_to_user(p, &arg64, sizeof(arg64));
  861. if (err)
  862. return -EFAULT;
  863. err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
  864. if (err)
  865. return err;
  866. err |=
  867. copy_in_user(&arg32->error_info, &p->error_info,
  868. sizeof(arg32->error_info));
  869. if (err)
  870. return -EFAULT;
  871. return err;
  872. }
  873. #endif
  874. static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  875. {
  876. drive_info_struct *drv = get_drv(bdev->bd_disk);
  877. if (!drv->cylinders)
  878. return -ENXIO;
  879. geo->heads = drv->heads;
  880. geo->sectors = drv->sectors;
  881. geo->cylinders = drv->cylinders;
  882. return 0;
  883. }
  884. static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
  885. {
  886. if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
  887. c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
  888. (void)check_for_unit_attention(host, c);
  889. }
  890. /*
  891. * ioctl
  892. */
  893. static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
  894. unsigned int cmd, unsigned long arg)
  895. {
  896. struct gendisk *disk = bdev->bd_disk;
  897. ctlr_info_t *host = get_host(disk);
  898. drive_info_struct *drv = get_drv(disk);
  899. int ctlr = host->ctlr;
  900. void __user *argp = (void __user *)arg;
  901. #ifdef CCISS_DEBUG
  902. printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
  903. #endif /* CCISS_DEBUG */
  904. switch (cmd) {
  905. case CCISS_GETPCIINFO:
  906. {
  907. cciss_pci_info_struct pciinfo;
  908. if (!arg)
  909. return -EINVAL;
  910. pciinfo.domain = pci_domain_nr(host->pdev->bus);
  911. pciinfo.bus = host->pdev->bus->number;
  912. pciinfo.dev_fn = host->pdev->devfn;
  913. pciinfo.board_id = host->board_id;
  914. if (copy_to_user
  915. (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
  916. return -EFAULT;
  917. return 0;
  918. }
  919. case CCISS_GETINTINFO:
  920. {
  921. cciss_coalint_struct intinfo;
  922. if (!arg)
  923. return -EINVAL;
  924. intinfo.delay =
  925. readl(&host->cfgtable->HostWrite.CoalIntDelay);
  926. intinfo.count =
  927. readl(&host->cfgtable->HostWrite.CoalIntCount);
  928. if (copy_to_user
  929. (argp, &intinfo, sizeof(cciss_coalint_struct)))
  930. return -EFAULT;
  931. return 0;
  932. }
  933. case CCISS_SETINTINFO:
  934. {
  935. cciss_coalint_struct intinfo;
  936. unsigned long flags;
  937. int i;
  938. if (!arg)
  939. return -EINVAL;
  940. if (!capable(CAP_SYS_ADMIN))
  941. return -EPERM;
  942. if (copy_from_user
  943. (&intinfo, argp, sizeof(cciss_coalint_struct)))
  944. return -EFAULT;
  945. if ((intinfo.delay == 0) && (intinfo.count == 0))
  946. {
  947. // printk("cciss_ioctl: delay and count cannot be 0\n");
  948. return -EINVAL;
  949. }
  950. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  951. /* Update the field, and then ring the doorbell */
  952. writel(intinfo.delay,
  953. &(host->cfgtable->HostWrite.CoalIntDelay));
  954. writel(intinfo.count,
  955. &(host->cfgtable->HostWrite.CoalIntCount));
  956. writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
  957. for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
  958. if (!(readl(host->vaddr + SA5_DOORBELL)
  959. & CFGTBL_ChangeReq))
  960. break;
  961. /* delay and try again */
  962. udelay(1000);
  963. }
  964. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  965. if (i >= MAX_IOCTL_CONFIG_WAIT)
  966. return -EAGAIN;
  967. return 0;
  968. }
  969. case CCISS_GETNODENAME:
  970. {
  971. NodeName_type NodeName;
  972. int i;
  973. if (!arg)
  974. return -EINVAL;
  975. for (i = 0; i < 16; i++)
  976. NodeName[i] =
  977. readb(&host->cfgtable->ServerName[i]);
  978. if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
  979. return -EFAULT;
  980. return 0;
  981. }
  982. case CCISS_SETNODENAME:
  983. {
  984. NodeName_type NodeName;
  985. unsigned long flags;
  986. int i;
  987. if (!arg)
  988. return -EINVAL;
  989. if (!capable(CAP_SYS_ADMIN))
  990. return -EPERM;
  991. if (copy_from_user
  992. (NodeName, argp, sizeof(NodeName_type)))
  993. return -EFAULT;
  994. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  995. /* Update the field, and then ring the doorbell */
  996. for (i = 0; i < 16; i++)
  997. writeb(NodeName[i],
  998. &host->cfgtable->ServerName[i]);
  999. writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
  1000. for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
  1001. if (!(readl(host->vaddr + SA5_DOORBELL)
  1002. & CFGTBL_ChangeReq))
  1003. break;
  1004. /* delay and try again */
  1005. udelay(1000);
  1006. }
  1007. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1008. if (i >= MAX_IOCTL_CONFIG_WAIT)
  1009. return -EAGAIN;
  1010. return 0;
  1011. }
  1012. case CCISS_GETHEARTBEAT:
  1013. {
  1014. Heartbeat_type heartbeat;
  1015. if (!arg)
  1016. return -EINVAL;
  1017. heartbeat = readl(&host->cfgtable->HeartBeat);
  1018. if (copy_to_user
  1019. (argp, &heartbeat, sizeof(Heartbeat_type)))
  1020. return -EFAULT;
  1021. return 0;
  1022. }
  1023. case CCISS_GETBUSTYPES:
  1024. {
  1025. BusTypes_type BusTypes;
  1026. if (!arg)
  1027. return -EINVAL;
  1028. BusTypes = readl(&host->cfgtable->BusTypes);
  1029. if (copy_to_user
  1030. (argp, &BusTypes, sizeof(BusTypes_type)))
  1031. return -EFAULT;
  1032. return 0;
  1033. }
  1034. case CCISS_GETFIRMVER:
  1035. {
  1036. FirmwareVer_type firmware;
  1037. if (!arg)
  1038. return -EINVAL;
  1039. memcpy(firmware, host->firm_ver, 4);
  1040. if (copy_to_user
  1041. (argp, firmware, sizeof(FirmwareVer_type)))
  1042. return -EFAULT;
  1043. return 0;
  1044. }
  1045. case CCISS_GETDRIVVER:
  1046. {
  1047. DriverVer_type DriverVer = DRIVER_VERSION;
  1048. if (!arg)
  1049. return -EINVAL;
  1050. if (copy_to_user
  1051. (argp, &DriverVer, sizeof(DriverVer_type)))
  1052. return -EFAULT;
  1053. return 0;
  1054. }
  1055. case CCISS_DEREGDISK:
  1056. case CCISS_REGNEWD:
  1057. case CCISS_REVALIDVOLS:
  1058. return rebuild_lun_table(host, 0, 1);
  1059. case CCISS_GETLUNINFO:{
  1060. LogvolInfo_struct luninfo;
  1061. luninfo.LunID = drv->LunID;
  1062. luninfo.num_opens = drv->usage_count;
  1063. luninfo.num_parts = 0;
  1064. if (copy_to_user(argp, &luninfo,
  1065. sizeof(LogvolInfo_struct)))
  1066. return -EFAULT;
  1067. return 0;
  1068. }
  1069. case CCISS_PASSTHRU:
  1070. {
  1071. IOCTL_Command_struct iocommand;
  1072. CommandList_struct *c;
  1073. char *buff = NULL;
  1074. u64bit temp64;
  1075. unsigned long flags;
  1076. DECLARE_COMPLETION_ONSTACK(wait);
  1077. if (!arg)
  1078. return -EINVAL;
  1079. if (!capable(CAP_SYS_RAWIO))
  1080. return -EPERM;
  1081. if (copy_from_user
  1082. (&iocommand, argp, sizeof(IOCTL_Command_struct)))
  1083. return -EFAULT;
  1084. if ((iocommand.buf_size < 1) &&
  1085. (iocommand.Request.Type.Direction != XFER_NONE)) {
  1086. return -EINVAL;
  1087. }
  1088. #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
  1089. /* Check kmalloc limits */
  1090. if (iocommand.buf_size > 128000)
  1091. return -EINVAL;
  1092. #endif
  1093. if (iocommand.buf_size > 0) {
  1094. buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
  1095. if (buff == NULL)
  1096. return -EFAULT;
  1097. }
  1098. if (iocommand.Request.Type.Direction == XFER_WRITE) {
  1099. /* Copy the data into the buffer we created */
  1100. if (copy_from_user
  1101. (buff, iocommand.buf, iocommand.buf_size)) {
  1102. kfree(buff);
  1103. return -EFAULT;
  1104. }
  1105. } else {
  1106. memset(buff, 0, iocommand.buf_size);
  1107. }
  1108. if ((c = cmd_alloc(host, 0)) == NULL) {
  1109. kfree(buff);
  1110. return -ENOMEM;
  1111. }
  1112. // Fill in the command type
  1113. c->cmd_type = CMD_IOCTL_PEND;
  1114. // Fill in Command Header
  1115. c->Header.ReplyQueue = 0; // unused in simple mode
  1116. if (iocommand.buf_size > 0) // buffer to fill
  1117. {
  1118. c->Header.SGList = 1;
  1119. c->Header.SGTotal = 1;
  1120. } else // no buffers to fill
  1121. {
  1122. c->Header.SGList = 0;
  1123. c->Header.SGTotal = 0;
  1124. }
  1125. c->Header.LUN = iocommand.LUN_info;
  1126. c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
  1127. // Fill in Request block
  1128. c->Request = iocommand.Request;
  1129. // Fill in the scatter gather information
  1130. if (iocommand.buf_size > 0) {
  1131. temp64.val = pci_map_single(host->pdev, buff,
  1132. iocommand.buf_size,
  1133. PCI_DMA_BIDIRECTIONAL);
  1134. c->SG[0].Addr.lower = temp64.val32.lower;
  1135. c->SG[0].Addr.upper = temp64.val32.upper;
  1136. c->SG[0].Len = iocommand.buf_size;
  1137. c->SG[0].Ext = 0; // we are not chaining
  1138. }
  1139. c->waiting = &wait;
  1140. /* Put the request on the tail of the request queue */
  1141. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1142. addQ(&host->reqQ, c);
  1143. host->Qdepth++;
  1144. start_io(host);
  1145. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1146. wait_for_completion(&wait);
  1147. /* unlock the buffers from DMA */
  1148. temp64.val32.lower = c->SG[0].Addr.lower;
  1149. temp64.val32.upper = c->SG[0].Addr.upper;
  1150. pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
  1151. iocommand.buf_size,
  1152. PCI_DMA_BIDIRECTIONAL);
  1153. check_ioctl_unit_attention(host, c);
  1154. /* Copy the error information out */
  1155. iocommand.error_info = *(c->err_info);
  1156. if (copy_to_user
  1157. (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
  1158. kfree(buff);
  1159. cmd_free(host, c, 0);
  1160. return -EFAULT;
  1161. }
  1162. if (iocommand.Request.Type.Direction == XFER_READ) {
  1163. /* Copy the data out of the buffer we created */
  1164. if (copy_to_user
  1165. (iocommand.buf, buff, iocommand.buf_size)) {
  1166. kfree(buff);
  1167. cmd_free(host, c, 0);
  1168. return -EFAULT;
  1169. }
  1170. }
  1171. kfree(buff);
  1172. cmd_free(host, c, 0);
  1173. return 0;
  1174. }
  1175. case CCISS_BIG_PASSTHRU:{
  1176. BIG_IOCTL_Command_struct *ioc;
  1177. CommandList_struct *c;
  1178. unsigned char **buff = NULL;
  1179. int *buff_size = NULL;
  1180. u64bit temp64;
  1181. unsigned long flags;
  1182. BYTE sg_used = 0;
  1183. int status = 0;
  1184. int i;
  1185. DECLARE_COMPLETION_ONSTACK(wait);
  1186. __u32 left;
  1187. __u32 sz;
  1188. BYTE __user *data_ptr;
  1189. if (!arg)
  1190. return -EINVAL;
  1191. if (!capable(CAP_SYS_RAWIO))
  1192. return -EPERM;
  1193. ioc = (BIG_IOCTL_Command_struct *)
  1194. kmalloc(sizeof(*ioc), GFP_KERNEL);
  1195. if (!ioc) {
  1196. status = -ENOMEM;
  1197. goto cleanup1;
  1198. }
  1199. if (copy_from_user(ioc, argp, sizeof(*ioc))) {
  1200. status = -EFAULT;
  1201. goto cleanup1;
  1202. }
  1203. if ((ioc->buf_size < 1) &&
  1204. (ioc->Request.Type.Direction != XFER_NONE)) {
  1205. status = -EINVAL;
  1206. goto cleanup1;
  1207. }
  1208. /* Check kmalloc limits using all SGs */
  1209. if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
  1210. status = -EINVAL;
  1211. goto cleanup1;
  1212. }
  1213. if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
  1214. status = -EINVAL;
  1215. goto cleanup1;
  1216. }
  1217. buff =
  1218. kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
  1219. if (!buff) {
  1220. status = -ENOMEM;
  1221. goto cleanup1;
  1222. }
  1223. buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
  1224. GFP_KERNEL);
  1225. if (!buff_size) {
  1226. status = -ENOMEM;
  1227. goto cleanup1;
  1228. }
  1229. left = ioc->buf_size;
  1230. data_ptr = ioc->buf;
  1231. while (left) {
  1232. sz = (left >
  1233. ioc->malloc_size) ? ioc->
  1234. malloc_size : left;
  1235. buff_size[sg_used] = sz;
  1236. buff[sg_used] = kmalloc(sz, GFP_KERNEL);
  1237. if (buff[sg_used] == NULL) {
  1238. status = -ENOMEM;
  1239. goto cleanup1;
  1240. }
  1241. if (ioc->Request.Type.Direction == XFER_WRITE) {
  1242. if (copy_from_user
  1243. (buff[sg_used], data_ptr, sz)) {
  1244. status = -EFAULT;
  1245. goto cleanup1;
  1246. }
  1247. } else {
  1248. memset(buff[sg_used], 0, sz);
  1249. }
  1250. left -= sz;
  1251. data_ptr += sz;
  1252. sg_used++;
  1253. }
  1254. if ((c = cmd_alloc(host, 0)) == NULL) {
  1255. status = -ENOMEM;
  1256. goto cleanup1;
  1257. }
  1258. c->cmd_type = CMD_IOCTL_PEND;
  1259. c->Header.ReplyQueue = 0;
  1260. if (ioc->buf_size > 0) {
  1261. c->Header.SGList = sg_used;
  1262. c->Header.SGTotal = sg_used;
  1263. } else {
  1264. c->Header.SGList = 0;
  1265. c->Header.SGTotal = 0;
  1266. }
  1267. c->Header.LUN = ioc->LUN_info;
  1268. c->Header.Tag.lower = c->busaddr;
  1269. c->Request = ioc->Request;
  1270. if (ioc->buf_size > 0) {
  1271. int i;
  1272. for (i = 0; i < sg_used; i++) {
  1273. temp64.val =
  1274. pci_map_single(host->pdev, buff[i],
  1275. buff_size[i],
  1276. PCI_DMA_BIDIRECTIONAL);
  1277. c->SG[i].Addr.lower =
  1278. temp64.val32.lower;
  1279. c->SG[i].Addr.upper =
  1280. temp64.val32.upper;
  1281. c->SG[i].Len = buff_size[i];
  1282. c->SG[i].Ext = 0; /* we are not chaining */
  1283. }
  1284. }
  1285. c->waiting = &wait;
  1286. /* Put the request on the tail of the request queue */
  1287. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1288. addQ(&host->reqQ, c);
  1289. host->Qdepth++;
  1290. start_io(host);
  1291. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1292. wait_for_completion(&wait);
  1293. /* unlock the buffers from DMA */
  1294. for (i = 0; i < sg_used; i++) {
  1295. temp64.val32.lower = c->SG[i].Addr.lower;
  1296. temp64.val32.upper = c->SG[i].Addr.upper;
  1297. pci_unmap_single(host->pdev,
  1298. (dma_addr_t) temp64.val, buff_size[i],
  1299. PCI_DMA_BIDIRECTIONAL);
  1300. }
  1301. check_ioctl_unit_attention(host, c);
  1302. /* Copy the error information out */
  1303. ioc->error_info = *(c->err_info);
  1304. if (copy_to_user(argp, ioc, sizeof(*ioc))) {
  1305. cmd_free(host, c, 0);
  1306. status = -EFAULT;
  1307. goto cleanup1;
  1308. }
  1309. if (ioc->Request.Type.Direction == XFER_READ) {
  1310. /* Copy the data out of the buffer we created */
  1311. BYTE __user *ptr = ioc->buf;
  1312. for (i = 0; i < sg_used; i++) {
  1313. if (copy_to_user
  1314. (ptr, buff[i], buff_size[i])) {
  1315. cmd_free(host, c, 0);
  1316. status = -EFAULT;
  1317. goto cleanup1;
  1318. }
  1319. ptr += buff_size[i];
  1320. }
  1321. }
  1322. cmd_free(host, c, 0);
  1323. status = 0;
  1324. cleanup1:
  1325. if (buff) {
  1326. for (i = 0; i < sg_used; i++)
  1327. kfree(buff[i]);
  1328. kfree(buff);
  1329. }
  1330. kfree(buff_size);
  1331. kfree(ioc);
  1332. return status;
  1333. }
  1334. /* scsi_cmd_ioctl handles these, below, though some are not */
  1335. /* very meaningful for cciss. SG_IO is the main one people want. */
  1336. case SG_GET_VERSION_NUM:
  1337. case SG_SET_TIMEOUT:
  1338. case SG_GET_TIMEOUT:
  1339. case SG_GET_RESERVED_SIZE:
  1340. case SG_SET_RESERVED_SIZE:
  1341. case SG_EMULATED_HOST:
  1342. case SG_IO:
  1343. case SCSI_IOCTL_SEND_COMMAND:
  1344. return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
  1345. /* scsi_cmd_ioctl would normally handle these, below, but */
  1346. /* they aren't a good fit for cciss, as CD-ROMs are */
  1347. /* not supported, and we don't have any bus/target/lun */
  1348. /* which we present to the kernel. */
  1349. case CDROM_SEND_PACKET:
  1350. case CDROMCLOSETRAY:
  1351. case CDROMEJECT:
  1352. case SCSI_IOCTL_GET_IDLUN:
  1353. case SCSI_IOCTL_GET_BUS_NUMBER:
  1354. default:
  1355. return -ENOTTY;
  1356. }
  1357. }
  1358. static void cciss_check_queues(ctlr_info_t *h)
  1359. {
  1360. int start_queue = h->next_to_run;
  1361. int i;
  1362. /* check to see if we have maxed out the number of commands that can
  1363. * be placed on the queue. If so then exit. We do this check here
  1364. * in case the interrupt we serviced was from an ioctl and did not
  1365. * free any new commands.
  1366. */
  1367. if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
  1368. return;
  1369. /* We have room on the queue for more commands. Now we need to queue
  1370. * them up. We will also keep track of the next queue to run so
  1371. * that every queue gets a chance to be started first.
  1372. */
  1373. for (i = 0; i < h->highest_lun + 1; i++) {
  1374. int curr_queue = (start_queue + i) % (h->highest_lun + 1);
  1375. /* make sure the disk has been added and the drive is real
  1376. * because this can be called from the middle of init_one.
  1377. */
  1378. if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
  1379. continue;
  1380. blk_start_queue(h->gendisk[curr_queue]->queue);
  1381. /* check to see if we have maxed out the number of commands
  1382. * that can be placed on the queue.
  1383. */
  1384. if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
  1385. if (curr_queue == start_queue) {
  1386. h->next_to_run =
  1387. (start_queue + 1) % (h->highest_lun + 1);
  1388. break;
  1389. } else {
  1390. h->next_to_run = curr_queue;
  1391. break;
  1392. }
  1393. }
  1394. }
  1395. }
  1396. static void cciss_softirq_done(struct request *rq)
  1397. {
  1398. CommandList_struct *cmd = rq->completion_data;
  1399. ctlr_info_t *h = hba[cmd->ctlr];
  1400. unsigned long flags;
  1401. u64bit temp64;
  1402. int i, ddir;
  1403. if (cmd->Request.Type.Direction == XFER_READ)
  1404. ddir = PCI_DMA_FROMDEVICE;
  1405. else
  1406. ddir = PCI_DMA_TODEVICE;
  1407. /* command did not need to be retried */
  1408. /* unmap the DMA mapping for all the scatter gather elements */
  1409. for (i = 0; i < cmd->Header.SGList; i++) {
  1410. temp64.val32.lower = cmd->SG[i].Addr.lower;
  1411. temp64.val32.upper = cmd->SG[i].Addr.upper;
  1412. pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
  1413. }
  1414. #ifdef CCISS_DEBUG
  1415. printk("Done with %p\n", rq);
  1416. #endif /* CCISS_DEBUG */
  1417. /* set the residual count for pc requests */
  1418. if (blk_pc_request(rq))
  1419. rq->resid_len = cmd->err_info->ResidualCnt;
  1420. blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
  1421. spin_lock_irqsave(&h->lock, flags);
  1422. cmd_free(h, cmd, 1);
  1423. cciss_check_queues(h);
  1424. spin_unlock_irqrestore(&h->lock, flags);
  1425. }
  1426. static void log_unit_to_scsi3addr(ctlr_info_t *h, unsigned char scsi3addr[],
  1427. uint32_t log_unit)
  1428. {
  1429. log_unit = h->drv[log_unit].LunID & 0x03fff;
  1430. memset(&scsi3addr[4], 0, 4);
  1431. memcpy(&scsi3addr[0], &log_unit, 4);
  1432. scsi3addr[3] |= 0x40;
  1433. }
  1434. /* This function gets the SCSI vendor, model, and revision of a logical drive
  1435. * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
  1436. * they cannot be read.
  1437. */
  1438. static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
  1439. char *vendor, char *model, char *rev)
  1440. {
  1441. int rc;
  1442. InquiryData_struct *inq_buf;
  1443. unsigned char scsi3addr[8];
  1444. *vendor = '\0';
  1445. *model = '\0';
  1446. *rev = '\0';
  1447. inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  1448. if (!inq_buf)
  1449. return;
  1450. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  1451. if (withirq)
  1452. rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
  1453. sizeof(InquiryData_struct), 0,
  1454. scsi3addr, TYPE_CMD);
  1455. else
  1456. rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
  1457. sizeof(InquiryData_struct), 0,
  1458. scsi3addr, TYPE_CMD);
  1459. if (rc == IO_OK) {
  1460. memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
  1461. vendor[VENDOR_LEN] = '\0';
  1462. memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
  1463. model[MODEL_LEN] = '\0';
  1464. memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
  1465. rev[REV_LEN] = '\0';
  1466. }
  1467. kfree(inq_buf);
  1468. return;
  1469. }
  1470. /* This function gets the serial number of a logical drive via
  1471. * inquiry page 0x83. Serial no. is 16 bytes. If the serial
  1472. * number cannot be had, for whatever reason, 16 bytes of 0xff
  1473. * are returned instead.
  1474. */
  1475. static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
  1476. unsigned char *serial_no, int buflen)
  1477. {
  1478. #define PAGE_83_INQ_BYTES 64
  1479. int rc;
  1480. unsigned char *buf;
  1481. unsigned char scsi3addr[8];
  1482. if (buflen > 16)
  1483. buflen = 16;
  1484. memset(serial_no, 0xff, buflen);
  1485. buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
  1486. if (!buf)
  1487. return;
  1488. memset(serial_no, 0, buflen);
  1489. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  1490. if (withirq)
  1491. rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
  1492. PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
  1493. else
  1494. rc = sendcmd(CISS_INQUIRY, ctlr, buf,
  1495. PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
  1496. if (rc == IO_OK)
  1497. memcpy(serial_no, &buf[8], buflen);
  1498. kfree(buf);
  1499. return;
  1500. }
  1501. /*
  1502. * cciss_add_disk sets up the block device queue for a logical drive
  1503. */
  1504. static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
  1505. int drv_index)
  1506. {
  1507. disk->queue = blk_init_queue(do_cciss_request, &h->lock);
  1508. if (!disk->queue)
  1509. goto init_queue_failure;
  1510. sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
  1511. disk->major = h->major;
  1512. disk->first_minor = drv_index << NWD_SHIFT;
  1513. disk->fops = &cciss_fops;
  1514. if (h->drv[drv_index].dev == NULL) {
  1515. if (cciss_create_ld_sysfs_entry(h, drv_index))
  1516. goto cleanup_queue;
  1517. }
  1518. disk->private_data = &h->drv[drv_index];
  1519. disk->driverfs_dev = h->drv[drv_index].dev;
  1520. /* Set up queue information */
  1521. blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
  1522. /* This is a hardware imposed limit. */
  1523. blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
  1524. /* This is a limit in the driver and could be eliminated. */
  1525. blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
  1526. blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
  1527. blk_queue_softirq_done(disk->queue, cciss_softirq_done);
  1528. disk->queue->queuedata = h;
  1529. blk_queue_logical_block_size(disk->queue,
  1530. h->drv[drv_index].block_size);
  1531. /* Make sure all queue data is written out before */
  1532. /* setting h->drv[drv_index].queue, as setting this */
  1533. /* allows the interrupt handler to start the queue */
  1534. wmb();
  1535. h->drv[drv_index].queue = disk->queue;
  1536. add_disk(disk);
  1537. return 0;
  1538. cleanup_queue:
  1539. blk_cleanup_queue(disk->queue);
  1540. disk->queue = NULL;
  1541. init_queue_failure:
  1542. return -1;
  1543. }
  1544. /* This function will check the usage_count of the drive to be updated/added.
  1545. * If the usage_count is zero and it is a heretofore unknown drive, or,
  1546. * the drive's capacity, geometry, or serial number has changed,
  1547. * then the drive information will be updated and the disk will be
  1548. * re-registered with the kernel. If these conditions don't hold,
  1549. * then it will be left alone for the next reboot. The exception to this
  1550. * is disk 0 which will always be left registered with the kernel since it
  1551. * is also the controller node. Any changes to disk 0 will show up on
  1552. * the next reboot.
  1553. */
  1554. static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
  1555. int via_ioctl)
  1556. {
  1557. ctlr_info_t *h = hba[ctlr];
  1558. struct gendisk *disk;
  1559. InquiryData_struct *inq_buff = NULL;
  1560. unsigned int block_size;
  1561. sector_t total_size;
  1562. unsigned long flags = 0;
  1563. int ret = 0;
  1564. drive_info_struct *drvinfo;
  1565. /* Get information about the disk and modify the driver structure */
  1566. inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  1567. drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
  1568. if (inq_buff == NULL || drvinfo == NULL)
  1569. goto mem_msg;
  1570. /* testing to see if 16-byte CDBs are already being used */
  1571. if (h->cciss_read == CCISS_READ_16) {
  1572. cciss_read_capacity_16(h->ctlr, drv_index, 1,
  1573. &total_size, &block_size);
  1574. } else {
  1575. cciss_read_capacity(ctlr, drv_index, 1,
  1576. &total_size, &block_size);
  1577. /* if read_capacity returns all F's this volume is >2TB */
  1578. /* in size so we switch to 16-byte CDB's for all */
  1579. /* read/write ops */
  1580. if (total_size == 0xFFFFFFFFULL) {
  1581. cciss_read_capacity_16(ctlr, drv_index, 1,
  1582. &total_size, &block_size);
  1583. h->cciss_read = CCISS_READ_16;
  1584. h->cciss_write = CCISS_WRITE_16;
  1585. } else {
  1586. h->cciss_read = CCISS_READ_10;
  1587. h->cciss_write = CCISS_WRITE_10;
  1588. }
  1589. }
  1590. cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
  1591. inq_buff, drvinfo);
  1592. drvinfo->block_size = block_size;
  1593. drvinfo->nr_blocks = total_size + 1;
  1594. cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
  1595. drvinfo->model, drvinfo->rev);
  1596. cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
  1597. sizeof(drvinfo->serial_no));
  1598. /* Is it the same disk we already know, and nothing's changed? */
  1599. if (h->drv[drv_index].raid_level != -1 &&
  1600. ((memcmp(drvinfo->serial_no,
  1601. h->drv[drv_index].serial_no, 16) == 0) &&
  1602. drvinfo->block_size == h->drv[drv_index].block_size &&
  1603. drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
  1604. drvinfo->heads == h->drv[drv_index].heads &&
  1605. drvinfo->sectors == h->drv[drv_index].sectors &&
  1606. drvinfo->cylinders == h->drv[drv_index].cylinders))
  1607. /* The disk is unchanged, nothing to update */
  1608. goto freeret;
  1609. /* If we get here it's not the same disk, or something's changed,
  1610. * so we need to * deregister it, and re-register it, if it's not
  1611. * in use.
  1612. * If the disk already exists then deregister it before proceeding
  1613. * (unless it's the first disk (for the controller node).
  1614. */
  1615. if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
  1616. printk(KERN_WARNING "disk %d has changed.\n", drv_index);
  1617. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1618. h->drv[drv_index].busy_configuring = 1;
  1619. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1620. /* deregister_disk sets h->drv[drv_index].queue = NULL
  1621. * which keeps the interrupt handler from starting
  1622. * the queue.
  1623. */
  1624. ret = deregister_disk(h, drv_index, 0, via_ioctl);
  1625. h->drv[drv_index].busy_configuring = 0;
  1626. }
  1627. /* If the disk is in use return */
  1628. if (ret)
  1629. goto freeret;
  1630. /* Save the new information from cciss_geometry_inquiry
  1631. * and serial number inquiry.
  1632. */
  1633. h->drv[drv_index].block_size = drvinfo->block_size;
  1634. h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
  1635. h->drv[drv_index].heads = drvinfo->heads;
  1636. h->drv[drv_index].sectors = drvinfo->sectors;
  1637. h->drv[drv_index].cylinders = drvinfo->cylinders;
  1638. h->drv[drv_index].raid_level = drvinfo->raid_level;
  1639. memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
  1640. memcpy(h->drv[drv_index].vendor, drvinfo->vendor, VENDOR_LEN + 1);
  1641. memcpy(h->drv[drv_index].model, drvinfo->model, MODEL_LEN + 1);
  1642. memcpy(h->drv[drv_index].rev, drvinfo->rev, REV_LEN + 1);
  1643. ++h->num_luns;
  1644. disk = h->gendisk[drv_index];
  1645. set_capacity(disk, h->drv[drv_index].nr_blocks);
  1646. /* If it's not disk 0 (drv_index != 0)
  1647. * or if it was disk 0, but there was previously
  1648. * no actual corresponding configured logical drive
  1649. * (raid_leve == -1) then we want to update the
  1650. * logical drive's information.
  1651. */
  1652. if (drv_index || first_time) {
  1653. if (cciss_add_disk(h, disk, drv_index) != 0) {
  1654. cciss_free_gendisk(h, drv_index);
  1655. printk(KERN_WARNING "cciss:%d could not update "
  1656. "disk %d\n", h->ctlr, drv_index);
  1657. --h->num_luns;
  1658. }
  1659. }
  1660. freeret:
  1661. kfree(inq_buff);
  1662. kfree(drvinfo);
  1663. return;
  1664. mem_msg:
  1665. printk(KERN_ERR "cciss: out of memory\n");
  1666. goto freeret;
  1667. }
  1668. /* This function will find the first index of the controllers drive array
  1669. * that has a -1 for the raid_level and will return that index. This is
  1670. * where new drives will be added. If the index to be returned is greater
  1671. * than the highest_lun index for the controller then highest_lun is set
  1672. * to this new index. If there are no available indexes then -1 is returned.
  1673. * "controller_node" is used to know if this is a real logical drive, or just
  1674. * the controller node, which determines if this counts towards highest_lun.
  1675. */
  1676. static int cciss_find_free_drive_index(int ctlr, int controller_node)
  1677. {
  1678. int i;
  1679. for (i = 0; i < CISS_MAX_LUN; i++) {
  1680. if (hba[ctlr]->drv[i].raid_level == -1) {
  1681. if (i > hba[ctlr]->highest_lun)
  1682. if (!controller_node)
  1683. hba[ctlr]->highest_lun = i;
  1684. return i;
  1685. }
  1686. }
  1687. return -1;
  1688. }
  1689. static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
  1690. {
  1691. put_disk(h->gendisk[drv_index]);
  1692. h->gendisk[drv_index] = NULL;
  1693. }
  1694. /* cciss_add_gendisk finds a free hba[]->drv structure
  1695. * and allocates a gendisk if needed, and sets the lunid
  1696. * in the drvinfo structure. It returns the index into
  1697. * the ->drv[] array, or -1 if none are free.
  1698. * is_controller_node indicates whether highest_lun should
  1699. * count this disk, or if it's only being added to provide
  1700. * a means to talk to the controller in case no logical
  1701. * drives have yet been configured.
  1702. */
  1703. static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
  1704. {
  1705. int drv_index;
  1706. drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
  1707. if (drv_index == -1)
  1708. return -1;
  1709. /*Check if the gendisk needs to be allocated */
  1710. if (!h->gendisk[drv_index]) {
  1711. h->gendisk[drv_index] =
  1712. alloc_disk(1 << NWD_SHIFT);
  1713. if (!h->gendisk[drv_index]) {
  1714. printk(KERN_ERR "cciss%d: could not "
  1715. "allocate a new disk %d\n",
  1716. h->ctlr, drv_index);
  1717. return -1;
  1718. }
  1719. }
  1720. h->drv[drv_index].LunID = lunid;
  1721. if (h->drv[drv_index].dev == NULL) {
  1722. if (cciss_create_ld_sysfs_entry(h, drv_index))
  1723. goto err_free_disk;
  1724. }
  1725. /* Don't need to mark this busy because nobody */
  1726. /* else knows about this disk yet to contend */
  1727. /* for access to it. */
  1728. h->drv[drv_index].busy_configuring = 0;
  1729. wmb();
  1730. return drv_index;
  1731. err_free_disk:
  1732. cciss_free_gendisk(h, drv_index);
  1733. return -1;
  1734. }
  1735. /* This is for the special case of a controller which
  1736. * has no logical drives. In this case, we still need
  1737. * to register a disk so the controller can be accessed
  1738. * by the Array Config Utility.
  1739. */
  1740. static void cciss_add_controller_node(ctlr_info_t *h)
  1741. {
  1742. struct gendisk *disk;
  1743. int drv_index;
  1744. if (h->gendisk[0] != NULL) /* already did this? Then bail. */
  1745. return;
  1746. drv_index = cciss_add_gendisk(h, 0, 1);
  1747. if (drv_index == -1)
  1748. goto error;
  1749. h->drv[drv_index].block_size = 512;
  1750. h->drv[drv_index].nr_blocks = 0;
  1751. h->drv[drv_index].heads = 0;
  1752. h->drv[drv_index].sectors = 0;
  1753. h->drv[drv_index].cylinders = 0;
  1754. h->drv[drv_index].raid_level = -1;
  1755. memset(h->drv[drv_index].serial_no, 0, 16);
  1756. disk = h->gendisk[drv_index];
  1757. if (cciss_add_disk(h, disk, drv_index) == 0)
  1758. return;
  1759. cciss_free_gendisk(h, drv_index);
  1760. error:
  1761. printk(KERN_WARNING "cciss%d: could not "
  1762. "add disk 0.\n", h->ctlr);
  1763. return;
  1764. }
  1765. /* This function will add and remove logical drives from the Logical
  1766. * drive array of the controller and maintain persistency of ordering
  1767. * so that mount points are preserved until the next reboot. This allows
  1768. * for the removal of logical drives in the middle of the drive array
  1769. * without a re-ordering of those drives.
  1770. * INPUT
  1771. * h = The controller to perform the operations on
  1772. */
  1773. static int rebuild_lun_table(ctlr_info_t *h, int first_time,
  1774. int via_ioctl)
  1775. {
  1776. int ctlr = h->ctlr;
  1777. int num_luns;
  1778. ReportLunData_struct *ld_buff = NULL;
  1779. int return_code;
  1780. int listlength = 0;
  1781. int i;
  1782. int drv_found;
  1783. int drv_index = 0;
  1784. __u32 lunid = 0;
  1785. unsigned long flags;
  1786. if (!capable(CAP_SYS_RAWIO))
  1787. return -EPERM;
  1788. /* Set busy_configuring flag for this operation */
  1789. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1790. if (h->busy_configuring) {
  1791. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1792. return -EBUSY;
  1793. }
  1794. h->busy_configuring = 1;
  1795. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1796. ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
  1797. if (ld_buff == NULL)
  1798. goto mem_msg;
  1799. return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
  1800. sizeof(ReportLunData_struct),
  1801. 0, CTLR_LUNID, TYPE_CMD);
  1802. if (return_code == IO_OK)
  1803. listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
  1804. else { /* reading number of logical volumes failed */
  1805. printk(KERN_WARNING "cciss: report logical volume"
  1806. " command failed\n");
  1807. listlength = 0;
  1808. goto freeret;
  1809. }
  1810. num_luns = listlength / 8; /* 8 bytes per entry */
  1811. if (num_luns > CISS_MAX_LUN) {
  1812. num_luns = CISS_MAX_LUN;
  1813. printk(KERN_WARNING "cciss: more luns configured"
  1814. " on controller than can be handled by"
  1815. " this driver.\n");
  1816. }
  1817. if (num_luns == 0)
  1818. cciss_add_controller_node(h);
  1819. /* Compare controller drive array to driver's drive array
  1820. * to see if any drives are missing on the controller due
  1821. * to action of Array Config Utility (user deletes drive)
  1822. * and deregister logical drives which have disappeared.
  1823. */
  1824. for (i = 0; i <= h->highest_lun; i++) {
  1825. int j;
  1826. drv_found = 0;
  1827. /* skip holes in the array from already deleted drives */
  1828. if (h->drv[i].raid_level == -1)
  1829. continue;
  1830. for (j = 0; j < num_luns; j++) {
  1831. memcpy(&lunid, &ld_buff->LUN[j][0], 4);
  1832. lunid = le32_to_cpu(lunid);
  1833. if (h->drv[i].LunID == lunid) {
  1834. drv_found = 1;
  1835. break;
  1836. }
  1837. }
  1838. if (!drv_found) {
  1839. /* Deregister it from the OS, it's gone. */
  1840. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1841. h->drv[i].busy_configuring = 1;
  1842. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1843. return_code = deregister_disk(h, i, 1, via_ioctl);
  1844. h->drv[i].busy_configuring = 0;
  1845. }
  1846. }
  1847. /* Compare controller drive array to driver's drive array.
  1848. * Check for updates in the drive information and any new drives
  1849. * on the controller due to ACU adding logical drives, or changing
  1850. * a logical drive's size, etc. Reregister any new/changed drives
  1851. */
  1852. for (i = 0; i < num_luns; i++) {
  1853. int j;
  1854. drv_found = 0;
  1855. memcpy(&lunid, &ld_buff->LUN[i][0], 4);
  1856. lunid = le32_to_cpu(lunid);
  1857. /* Find if the LUN is already in the drive array
  1858. * of the driver. If so then update its info
  1859. * if not in use. If it does not exist then find
  1860. * the first free index and add it.
  1861. */
  1862. for (j = 0; j <= h->highest_lun; j++) {
  1863. if (h->drv[j].raid_level != -1 &&
  1864. h->drv[j].LunID == lunid) {
  1865. drv_index = j;
  1866. drv_found = 1;
  1867. break;
  1868. }
  1869. }
  1870. /* check if the drive was found already in the array */
  1871. if (!drv_found) {
  1872. drv_index = cciss_add_gendisk(h, lunid, 0);
  1873. if (drv_index == -1)
  1874. goto freeret;
  1875. }
  1876. cciss_update_drive_info(ctlr, drv_index, first_time,
  1877. via_ioctl);
  1878. } /* end for */
  1879. freeret:
  1880. kfree(ld_buff);
  1881. h->busy_configuring = 0;
  1882. /* We return -1 here to tell the ACU that we have registered/updated
  1883. * all of the drives that we can and to keep it from calling us
  1884. * additional times.
  1885. */
  1886. return -1;
  1887. mem_msg:
  1888. printk(KERN_ERR "cciss: out of memory\n");
  1889. h->busy_configuring = 0;
  1890. goto freeret;
  1891. }
  1892. static void cciss_clear_drive_info(drive_info_struct *drive_info)
  1893. {
  1894. /* zero out the disk size info */
  1895. drive_info->nr_blocks = 0;
  1896. drive_info->block_size = 0;
  1897. drive_info->heads = 0;
  1898. drive_info->sectors = 0;
  1899. drive_info->cylinders = 0;
  1900. drive_info->raid_level = -1;
  1901. memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
  1902. memset(drive_info->model, 0, sizeof(drive_info->model));
  1903. memset(drive_info->rev, 0, sizeof(drive_info->rev));
  1904. memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
  1905. /*
  1906. * don't clear the LUNID though, we need to remember which
  1907. * one this one is.
  1908. */
  1909. }
  1910. /* This function will deregister the disk and it's queue from the
  1911. * kernel. It must be called with the controller lock held and the
  1912. * drv structures busy_configuring flag set. It's parameters are:
  1913. *
  1914. * disk = This is the disk to be deregistered
  1915. * drv = This is the drive_info_struct associated with the disk to be
  1916. * deregistered. It contains information about the disk used
  1917. * by the driver.
  1918. * clear_all = This flag determines whether or not the disk information
  1919. * is going to be completely cleared out and the highest_lun
  1920. * reset. Sometimes we want to clear out information about
  1921. * the disk in preparation for re-adding it. In this case
  1922. * the highest_lun should be left unchanged and the LunID
  1923. * should not be cleared.
  1924. * via_ioctl
  1925. * This indicates whether we've reached this path via ioctl.
  1926. * This affects the maximum usage count allowed for c0d0 to be messed with.
  1927. * If this path is reached via ioctl(), then the max_usage_count will
  1928. * be 1, as the process calling ioctl() has got to have the device open.
  1929. * If we get here via sysfs, then the max usage count will be zero.
  1930. */
  1931. static int deregister_disk(ctlr_info_t *h, int drv_index,
  1932. int clear_all, int via_ioctl)
  1933. {
  1934. int i;
  1935. struct gendisk *disk;
  1936. drive_info_struct *drv;
  1937. if (!capable(CAP_SYS_RAWIO))
  1938. return -EPERM;
  1939. drv = &h->drv[drv_index];
  1940. disk = h->gendisk[drv_index];
  1941. /* make sure logical volume is NOT is use */
  1942. if (clear_all || (h->gendisk[0] == disk)) {
  1943. if (drv->usage_count > via_ioctl)
  1944. return -EBUSY;
  1945. } else if (drv->usage_count > 0)
  1946. return -EBUSY;
  1947. /* invalidate the devices and deregister the disk. If it is disk
  1948. * zero do not deregister it but just zero out it's values. This
  1949. * allows us to delete disk zero but keep the controller registered.
  1950. */
  1951. if (h->gendisk[0] != disk) {
  1952. struct request_queue *q = disk->queue;
  1953. if (disk->flags & GENHD_FL_UP) {
  1954. cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
  1955. del_gendisk(disk);
  1956. }
  1957. if (q) {
  1958. blk_cleanup_queue(q);
  1959. /* Set drv->queue to NULL so that we do not try
  1960. * to call blk_start_queue on this queue in the
  1961. * interrupt handler
  1962. */
  1963. drv->queue = NULL;
  1964. }
  1965. /* If clear_all is set then we are deleting the logical
  1966. * drive, not just refreshing its info. For drives
  1967. * other than disk 0 we will call put_disk. We do not
  1968. * do this for disk 0 as we need it to be able to
  1969. * configure the controller.
  1970. */
  1971. if (clear_all){
  1972. /* This isn't pretty, but we need to find the
  1973. * disk in our array and NULL our the pointer.
  1974. * This is so that we will call alloc_disk if
  1975. * this index is used again later.
  1976. */
  1977. for (i=0; i < CISS_MAX_LUN; i++){
  1978. if (h->gendisk[i] == disk) {
  1979. h->gendisk[i] = NULL;
  1980. break;
  1981. }
  1982. }
  1983. put_disk(disk);
  1984. }
  1985. } else {
  1986. set_capacity(disk, 0);
  1987. }
  1988. --h->num_luns;
  1989. cciss_clear_drive_info(drv);
  1990. if (clear_all) {
  1991. /* check to see if it was the last disk */
  1992. if (drv == h->drv + h->highest_lun) {
  1993. /* if so, find the new hightest lun */
  1994. int i, newhighest = -1;
  1995. for (i = 0; i <= h->highest_lun; i++) {
  1996. /* if the disk has size > 0, it is available */
  1997. if (h->drv[i].heads)
  1998. newhighest = i;
  1999. }
  2000. h->highest_lun = newhighest;
  2001. }
  2002. drv->LunID = 0;
  2003. }
  2004. return 0;
  2005. }
  2006. static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
  2007. size_t size, __u8 page_code, unsigned char *scsi3addr,
  2008. int cmd_type)
  2009. {
  2010. ctlr_info_t *h = hba[ctlr];
  2011. u64bit buff_dma_handle;
  2012. int status = IO_OK;
  2013. c->cmd_type = CMD_IOCTL_PEND;
  2014. c->Header.ReplyQueue = 0;
  2015. if (buff != NULL) {
  2016. c->Header.SGList = 1;
  2017. c->Header.SGTotal = 1;
  2018. } else {
  2019. c->Header.SGList = 0;
  2020. c->Header.SGTotal = 0;
  2021. }
  2022. c->Header.Tag.lower = c->busaddr;
  2023. memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
  2024. c->Request.Type.Type = cmd_type;
  2025. if (cmd_type == TYPE_CMD) {
  2026. switch (cmd) {
  2027. case CISS_INQUIRY:
  2028. /* are we trying to read a vital product page */
  2029. if (page_code != 0) {
  2030. c->Request.CDB[1] = 0x01;
  2031. c->Request.CDB[2] = page_code;
  2032. }
  2033. c->Request.CDBLen = 6;
  2034. c->Request.Type.Attribute = ATTR_SIMPLE;
  2035. c->Request.Type.Direction = XFER_READ;
  2036. c->Request.Timeout = 0;
  2037. c->Request.CDB[0] = CISS_INQUIRY;
  2038. c->Request.CDB[4] = size & 0xFF;
  2039. break;
  2040. case CISS_REPORT_LOG:
  2041. case CISS_REPORT_PHYS:
  2042. /* Talking to controller so It's a physical command
  2043. mode = 00 target = 0. Nothing to write.
  2044. */
  2045. c->Request.CDBLen = 12;
  2046. c->Request.Type.Attribute = ATTR_SIMPLE;
  2047. c->Request.Type.Direction = XFER_READ;
  2048. c->Request.Timeout = 0;
  2049. c->Request.CDB[0] = cmd;
  2050. c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
  2051. c->Request.CDB[7] = (size >> 16) & 0xFF;
  2052. c->Request.CDB[8] = (size >> 8) & 0xFF;
  2053. c->Request.CDB[9] = size & 0xFF;
  2054. break;
  2055. case CCISS_READ_CAPACITY:
  2056. c->Request.CDBLen = 10;
  2057. c->Request.Type.Attribute = ATTR_SIMPLE;
  2058. c->Request.Type.Direction = XFER_READ;
  2059. c->Request.Timeout = 0;
  2060. c->Request.CDB[0] = cmd;
  2061. break;
  2062. case CCISS_READ_CAPACITY_16:
  2063. c->Request.CDBLen = 16;
  2064. c->Request.Type.Attribute = ATTR_SIMPLE;
  2065. c->Request.Type.Direction = XFER_READ;
  2066. c->Request.Timeout = 0;
  2067. c->Request.CDB[0] = cmd;
  2068. c->Request.CDB[1] = 0x10;
  2069. c->Request.CDB[10] = (size >> 24) & 0xFF;
  2070. c->Request.CDB[11] = (size >> 16) & 0xFF;
  2071. c->Request.CDB[12] = (size >> 8) & 0xFF;
  2072. c->Request.CDB[13] = size & 0xFF;
  2073. c->Request.Timeout = 0;
  2074. c->Request.CDB[0] = cmd;
  2075. break;
  2076. case CCISS_CACHE_FLUSH:
  2077. c->Request.CDBLen = 12;
  2078. c->Request.Type.Attribute = ATTR_SIMPLE;
  2079. c->Request.Type.Direction = XFER_WRITE;
  2080. c->Request.Timeout = 0;
  2081. c->Request.CDB[0] = BMIC_WRITE;
  2082. c->Request.CDB[6] = BMIC_CACHE_FLUSH;
  2083. break;
  2084. case TEST_UNIT_READY:
  2085. c->Request.CDBLen = 6;
  2086. c->Request.Type.Attribute = ATTR_SIMPLE;
  2087. c->Request.Type.Direction = XFER_NONE;
  2088. c->Request.Timeout = 0;
  2089. break;
  2090. default:
  2091. printk(KERN_WARNING
  2092. "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
  2093. return IO_ERROR;
  2094. }
  2095. } else if (cmd_type == TYPE_MSG) {
  2096. switch (cmd) {
  2097. case 0: /* ABORT message */
  2098. c->Request.CDBLen = 12;
  2099. c->Request.Type.Attribute = ATTR_SIMPLE;
  2100. c->Request.Type.Direction = XFER_WRITE;
  2101. c->Request.Timeout = 0;
  2102. c->Request.CDB[0] = cmd; /* abort */
  2103. c->Request.CDB[1] = 0; /* abort a command */
  2104. /* buff contains the tag of the command to abort */
  2105. memcpy(&c->Request.CDB[4], buff, 8);
  2106. break;
  2107. case 1: /* RESET message */
  2108. c->Request.CDBLen = 16;
  2109. c->Request.Type.Attribute = ATTR_SIMPLE;
  2110. c->Request.Type.Direction = XFER_NONE;
  2111. c->Request.Timeout = 0;
  2112. memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
  2113. c->Request.CDB[0] = cmd; /* reset */
  2114. c->Request.CDB[1] = 0x03; /* reset a target */
  2115. break;
  2116. case 3: /* No-Op message */
  2117. c->Request.CDBLen = 1;
  2118. c->Request.Type.Attribute = ATTR_SIMPLE;
  2119. c->Request.Type.Direction = XFER_WRITE;
  2120. c->Request.Timeout = 0;
  2121. c->Request.CDB[0] = cmd;
  2122. break;
  2123. default:
  2124. printk(KERN_WARNING
  2125. "cciss%d: unknown message type %d\n", ctlr, cmd);
  2126. return IO_ERROR;
  2127. }
  2128. } else {
  2129. printk(KERN_WARNING
  2130. "cciss%d: unknown command type %d\n", ctlr, cmd_type);
  2131. return IO_ERROR;
  2132. }
  2133. /* Fill in the scatter gather information */
  2134. if (size > 0) {
  2135. buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
  2136. buff, size,
  2137. PCI_DMA_BIDIRECTIONAL);
  2138. c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
  2139. c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
  2140. c->SG[0].Len = size;
  2141. c->SG[0].Ext = 0; /* we are not chaining */
  2142. }
  2143. return status;
  2144. }
  2145. static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
  2146. {
  2147. switch (c->err_info->ScsiStatus) {
  2148. case SAM_STAT_GOOD:
  2149. return IO_OK;
  2150. case SAM_STAT_CHECK_CONDITION:
  2151. switch (0xf & c->err_info->SenseInfo[2]) {
  2152. case 0: return IO_OK; /* no sense */
  2153. case 1: return IO_OK; /* recovered error */
  2154. default:
  2155. printk(KERN_WARNING "cciss%d: cmd 0x%02x "
  2156. "check condition, sense key = 0x%02x\n",
  2157. h->ctlr, c->Request.CDB[0],
  2158. c->err_info->SenseInfo[2]);
  2159. }
  2160. break;
  2161. default:
  2162. printk(KERN_WARNING "cciss%d: cmd 0x%02x"
  2163. "scsi status = 0x%02x\n", h->ctlr,
  2164. c->Request.CDB[0], c->err_info->ScsiStatus);
  2165. break;
  2166. }
  2167. return IO_ERROR;
  2168. }
  2169. static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
  2170. {
  2171. int return_status = IO_OK;
  2172. if (c->err_info->CommandStatus == CMD_SUCCESS)
  2173. return IO_OK;
  2174. switch (c->err_info->CommandStatus) {
  2175. case CMD_TARGET_STATUS:
  2176. return_status = check_target_status(h, c);
  2177. break;
  2178. case CMD_DATA_UNDERRUN:
  2179. case CMD_DATA_OVERRUN:
  2180. /* expected for inquiry and report lun commands */
  2181. break;
  2182. case CMD_INVALID:
  2183. printk(KERN_WARNING "cciss: cmd 0x%02x is "
  2184. "reported invalid\n", c->Request.CDB[0]);
  2185. return_status = IO_ERROR;
  2186. break;
  2187. case CMD_PROTOCOL_ERR:
  2188. printk(KERN_WARNING "cciss: cmd 0x%02x has "
  2189. "protocol error \n", c->Request.CDB[0]);
  2190. return_status = IO_ERROR;
  2191. break;
  2192. case CMD_HARDWARE_ERR:
  2193. printk(KERN_WARNING "cciss: cmd 0x%02x had "
  2194. " hardware error\n", c->Request.CDB[0]);
  2195. return_status = IO_ERROR;
  2196. break;
  2197. case CMD_CONNECTION_LOST:
  2198. printk(KERN_WARNING "cciss: cmd 0x%02x had "
  2199. "connection lost\n", c->Request.CDB[0]);
  2200. return_status = IO_ERROR;
  2201. break;
  2202. case CMD_ABORTED:
  2203. printk(KERN_WARNING "cciss: cmd 0x%02x was "
  2204. "aborted\n", c->Request.CDB[0]);
  2205. return_status = IO_ERROR;
  2206. break;
  2207. case CMD_ABORT_FAILED:
  2208. printk(KERN_WARNING "cciss: cmd 0x%02x reports "
  2209. "abort failed\n", c->Request.CDB[0]);
  2210. return_status = IO_ERROR;
  2211. break;
  2212. case CMD_UNSOLICITED_ABORT:
  2213. printk(KERN_WARNING
  2214. "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
  2215. c->Request.CDB[0]);
  2216. return_status = IO_NEEDS_RETRY;
  2217. break;
  2218. default:
  2219. printk(KERN_WARNING "cciss: cmd 0x%02x returned "
  2220. "unknown status %x\n", c->Request.CDB[0],
  2221. c->err_info->CommandStatus);
  2222. return_status = IO_ERROR;
  2223. }
  2224. return return_status;
  2225. }
  2226. static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
  2227. int attempt_retry)
  2228. {
  2229. DECLARE_COMPLETION_ONSTACK(wait);
  2230. u64bit buff_dma_handle;
  2231. unsigned long flags;
  2232. int return_status = IO_OK;
  2233. resend_cmd2:
  2234. c->waiting = &wait;
  2235. /* Put the request on the tail of the queue and send it */
  2236. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  2237. addQ(&h->reqQ, c);
  2238. h->Qdepth++;
  2239. start_io(h);
  2240. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  2241. wait_for_completion(&wait);
  2242. if (c->err_info->CommandStatus == 0 || !attempt_retry)
  2243. goto command_done;
  2244. return_status = process_sendcmd_error(h, c);
  2245. if (return_status == IO_NEEDS_RETRY &&
  2246. c->retry_count < MAX_CMD_RETRIES) {
  2247. printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
  2248. c->Request.CDB[0]);
  2249. c->retry_count++;
  2250. /* erase the old error information */
  2251. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  2252. return_status = IO_OK;
  2253. INIT_COMPLETION(wait);
  2254. goto resend_cmd2;
  2255. }
  2256. command_done:
  2257. /* unlock the buffers from DMA */
  2258. buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
  2259. buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
  2260. pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
  2261. c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
  2262. return return_status;
  2263. }
  2264. static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
  2265. __u8 page_code, unsigned char scsi3addr[],
  2266. int cmd_type)
  2267. {
  2268. ctlr_info_t *h = hba[ctlr];
  2269. CommandList_struct *c;
  2270. int return_status;
  2271. c = cmd_alloc(h, 0);
  2272. if (!c)
  2273. return -ENOMEM;
  2274. return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
  2275. scsi3addr, cmd_type);
  2276. if (return_status == IO_OK)
  2277. return_status = sendcmd_withirq_core(h, c, 1);
  2278. cmd_free(h, c, 0);
  2279. return return_status;
  2280. }
  2281. static void cciss_geometry_inquiry(int ctlr, int logvol,
  2282. int withirq, sector_t total_size,
  2283. unsigned int block_size,
  2284. InquiryData_struct *inq_buff,
  2285. drive_info_struct *drv)
  2286. {
  2287. int return_code;
  2288. unsigned long t;
  2289. unsigned char scsi3addr[8];
  2290. memset(inq_buff, 0, sizeof(InquiryData_struct));
  2291. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2292. if (withirq)
  2293. return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
  2294. inq_buff, sizeof(*inq_buff),
  2295. 0xC1, scsi3addr, TYPE_CMD);
  2296. else
  2297. return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
  2298. sizeof(*inq_buff), 0xC1, scsi3addr,
  2299. TYPE_CMD);
  2300. if (return_code == IO_OK) {
  2301. if (inq_buff->data_byte[8] == 0xFF) {
  2302. printk(KERN_WARNING
  2303. "cciss: reading geometry failed, volume "
  2304. "does not support reading geometry\n");
  2305. drv->heads = 255;
  2306. drv->sectors = 32; // Sectors per track
  2307. drv->cylinders = total_size + 1;
  2308. drv->raid_level = RAID_UNKNOWN;
  2309. } else {
  2310. drv->heads = inq_buff->data_byte[6];
  2311. drv->sectors = inq_buff->data_byte[7];
  2312. drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
  2313. drv->cylinders += inq_buff->data_byte[5];
  2314. drv->raid_level = inq_buff->data_byte[8];
  2315. }
  2316. drv->block_size = block_size;
  2317. drv->nr_blocks = total_size + 1;
  2318. t = drv->heads * drv->sectors;
  2319. if (t > 1) {
  2320. sector_t real_size = total_size + 1;
  2321. unsigned long rem = sector_div(real_size, t);
  2322. if (rem)
  2323. real_size++;
  2324. drv->cylinders = real_size;
  2325. }
  2326. } else { /* Get geometry failed */
  2327. printk(KERN_WARNING "cciss: reading geometry failed\n");
  2328. }
  2329. printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
  2330. drv->heads, drv->sectors, drv->cylinders);
  2331. }
  2332. static void
  2333. cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
  2334. unsigned int *block_size)
  2335. {
  2336. ReadCapdata_struct *buf;
  2337. int return_code;
  2338. unsigned char scsi3addr[8];
  2339. buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
  2340. if (!buf) {
  2341. printk(KERN_WARNING "cciss: out of memory\n");
  2342. return;
  2343. }
  2344. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2345. if (withirq)
  2346. return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
  2347. ctlr, buf, sizeof(ReadCapdata_struct),
  2348. 0, scsi3addr, TYPE_CMD);
  2349. else
  2350. return_code = sendcmd(CCISS_READ_CAPACITY,
  2351. ctlr, buf, sizeof(ReadCapdata_struct),
  2352. 0, scsi3addr, TYPE_CMD);
  2353. if (return_code == IO_OK) {
  2354. *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
  2355. *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
  2356. } else { /* read capacity command failed */
  2357. printk(KERN_WARNING "cciss: read capacity failed\n");
  2358. *total_size = 0;
  2359. *block_size = BLOCK_SIZE;
  2360. }
  2361. if (*total_size != 0)
  2362. printk(KERN_INFO " blocks= %llu block_size= %d\n",
  2363. (unsigned long long)*total_size+1, *block_size);
  2364. kfree(buf);
  2365. }
  2366. static void
  2367. cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
  2368. {
  2369. ReadCapdata_struct_16 *buf;
  2370. int return_code;
  2371. unsigned char scsi3addr[8];
  2372. buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
  2373. if (!buf) {
  2374. printk(KERN_WARNING "cciss: out of memory\n");
  2375. return;
  2376. }
  2377. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2378. if (withirq) {
  2379. return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
  2380. ctlr, buf, sizeof(ReadCapdata_struct_16),
  2381. 0, scsi3addr, TYPE_CMD);
  2382. }
  2383. else {
  2384. return_code = sendcmd(CCISS_READ_CAPACITY_16,
  2385. ctlr, buf, sizeof(ReadCapdata_struct_16),
  2386. 0, scsi3addr, TYPE_CMD);
  2387. }
  2388. if (return_code == IO_OK) {
  2389. *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
  2390. *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
  2391. } else { /* read capacity command failed */
  2392. printk(KERN_WARNING "cciss: read capacity failed\n");
  2393. *total_size = 0;
  2394. *block_size = BLOCK_SIZE;
  2395. }
  2396. printk(KERN_INFO " blocks= %llu block_size= %d\n",
  2397. (unsigned long long)*total_size+1, *block_size);
  2398. kfree(buf);
  2399. }
  2400. static int cciss_revalidate(struct gendisk *disk)
  2401. {
  2402. ctlr_info_t *h = get_host(disk);
  2403. drive_info_struct *drv = get_drv(disk);
  2404. int logvol;
  2405. int FOUND = 0;
  2406. unsigned int block_size;
  2407. sector_t total_size;
  2408. InquiryData_struct *inq_buff = NULL;
  2409. for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
  2410. if (h->drv[logvol].LunID == drv->LunID) {
  2411. FOUND = 1;
  2412. break;
  2413. }
  2414. }
  2415. if (!FOUND)
  2416. return 1;
  2417. inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  2418. if (inq_buff == NULL) {
  2419. printk(KERN_WARNING "cciss: out of memory\n");
  2420. return 1;
  2421. }
  2422. if (h->cciss_read == CCISS_READ_10) {
  2423. cciss_read_capacity(h->ctlr, logvol, 1,
  2424. &total_size, &block_size);
  2425. } else {
  2426. cciss_read_capacity_16(h->ctlr, logvol, 1,
  2427. &total_size, &block_size);
  2428. }
  2429. cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
  2430. inq_buff, drv);
  2431. blk_queue_logical_block_size(drv->queue, drv->block_size);
  2432. set_capacity(disk, drv->nr_blocks);
  2433. kfree(inq_buff);
  2434. return 0;
  2435. }
  2436. /*
  2437. * Wait polling for a command to complete.
  2438. * The memory mapped FIFO is polled for the completion.
  2439. * Used only at init time, interrupts from the HBA are disabled.
  2440. */
  2441. static unsigned long pollcomplete(int ctlr)
  2442. {
  2443. unsigned long done;
  2444. int i;
  2445. /* Wait (up to 20 seconds) for a command to complete */
  2446. for (i = 20 * HZ; i > 0; i--) {
  2447. done = hba[ctlr]->access.command_completed(hba[ctlr]);
  2448. if (done == FIFO_EMPTY)
  2449. schedule_timeout_uninterruptible(1);
  2450. else
  2451. return done;
  2452. }
  2453. /* Invalid address to tell caller we ran out of time */
  2454. return 1;
  2455. }
  2456. /* Send command c to controller h and poll for it to complete.
  2457. * Turns interrupts off on the board. Used at driver init time
  2458. * and during SCSI error recovery.
  2459. */
  2460. static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
  2461. {
  2462. int i;
  2463. unsigned long complete;
  2464. int status = IO_ERROR;
  2465. u64bit buff_dma_handle;
  2466. resend_cmd1:
  2467. /* Disable interrupt on the board. */
  2468. h->access.set_intr_mask(h, CCISS_INTR_OFF);
  2469. /* Make sure there is room in the command FIFO */
  2470. /* Actually it should be completely empty at this time */
  2471. /* unless we are in here doing error handling for the scsi */
  2472. /* tape side of the driver. */
  2473. for (i = 200000; i > 0; i--) {
  2474. /* if fifo isn't full go */
  2475. if (!(h->access.fifo_full(h)))
  2476. break;
  2477. udelay(10);
  2478. printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
  2479. " waiting!\n", h->ctlr);
  2480. }
  2481. h->access.submit_command(h, c); /* Send the cmd */
  2482. do {
  2483. complete = pollcomplete(h->ctlr);
  2484. #ifdef CCISS_DEBUG
  2485. printk(KERN_DEBUG "cciss: command completed\n");
  2486. #endif /* CCISS_DEBUG */
  2487. if (complete == 1) {
  2488. printk(KERN_WARNING
  2489. "cciss cciss%d: SendCmd Timeout out, "
  2490. "No command list address returned!\n", h->ctlr);
  2491. status = IO_ERROR;
  2492. break;
  2493. }
  2494. /* Make sure it's the command we're expecting. */
  2495. if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
  2496. printk(KERN_WARNING "cciss%d: Unexpected command "
  2497. "completion.\n", h->ctlr);
  2498. continue;
  2499. }
  2500. /* It is our command. If no error, we're done. */
  2501. if (!(complete & CISS_ERROR_BIT)) {
  2502. status = IO_OK;
  2503. break;
  2504. }
  2505. /* There is an error... */
  2506. /* if data overrun or underun on Report command ignore it */
  2507. if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
  2508. (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
  2509. (c->Request.CDB[0] == CISS_INQUIRY)) &&
  2510. ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
  2511. (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
  2512. complete = c->busaddr;
  2513. status = IO_OK;
  2514. break;
  2515. }
  2516. if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
  2517. printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
  2518. h->ctlr, c);
  2519. if (c->retry_count < MAX_CMD_RETRIES) {
  2520. printk(KERN_WARNING "cciss%d: retrying %p\n",
  2521. h->ctlr, c);
  2522. c->retry_count++;
  2523. /* erase the old error information */
  2524. memset(c->err_info, 0, sizeof(c->err_info));
  2525. goto resend_cmd1;
  2526. }
  2527. printk(KERN_WARNING "cciss%d: retried %p too many "
  2528. "times\n", h->ctlr, c);
  2529. status = IO_ERROR;
  2530. break;
  2531. }
  2532. if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
  2533. printk(KERN_WARNING "cciss%d: command could not be "
  2534. "aborted.\n", h->ctlr);
  2535. status = IO_ERROR;
  2536. break;
  2537. }
  2538. if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
  2539. status = check_target_status(h, c);
  2540. break;
  2541. }
  2542. printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
  2543. printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
  2544. c->Request.CDB[0], c->err_info->CommandStatus);
  2545. status = IO_ERROR;
  2546. break;
  2547. } while (1);
  2548. /* unlock the data buffer from DMA */
  2549. buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
  2550. buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
  2551. pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
  2552. c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
  2553. return status;
  2554. }
  2555. /*
  2556. * Send a command to the controller, and wait for it to complete.
  2557. * Used at init time, and during SCSI error recovery.
  2558. */
  2559. static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
  2560. __u8 page_code, unsigned char *scsi3addr, int cmd_type)
  2561. {
  2562. CommandList_struct *c;
  2563. int status;
  2564. c = cmd_alloc(hba[ctlr], 1);
  2565. if (!c) {
  2566. printk(KERN_WARNING "cciss: unable to get memory");
  2567. return IO_ERROR;
  2568. }
  2569. status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
  2570. scsi3addr, cmd_type);
  2571. if (status == IO_OK)
  2572. status = sendcmd_core(hba[ctlr], c);
  2573. cmd_free(hba[ctlr], c, 1);
  2574. return status;
  2575. }
  2576. /*
  2577. * Map (physical) PCI mem into (virtual) kernel space
  2578. */
  2579. static void __iomem *remap_pci_mem(ulong base, ulong size)
  2580. {
  2581. ulong page_base = ((ulong) base) & PAGE_MASK;
  2582. ulong page_offs = ((ulong) base) - page_base;
  2583. void __iomem *page_remapped = ioremap(page_base, page_offs + size);
  2584. return page_remapped ? (page_remapped + page_offs) : NULL;
  2585. }
  2586. /*
  2587. * Takes jobs of the Q and sends them to the hardware, then puts it on
  2588. * the Q to wait for completion.
  2589. */
  2590. static void start_io(ctlr_info_t *h)
  2591. {
  2592. CommandList_struct *c;
  2593. while (!hlist_empty(&h->reqQ)) {
  2594. c = hlist_entry(h->reqQ.first, CommandList_struct, list);
  2595. /* can't do anything if fifo is full */
  2596. if ((h->access.fifo_full(h))) {
  2597. printk(KERN_WARNING "cciss: fifo full\n");
  2598. break;
  2599. }
  2600. /* Get the first entry from the Request Q */
  2601. removeQ(c);
  2602. h->Qdepth--;
  2603. /* Tell the controller execute command */
  2604. h->access.submit_command(h, c);
  2605. /* Put job onto the completed Q */
  2606. addQ(&h->cmpQ, c);
  2607. }
  2608. }
  2609. /* Assumes that CCISS_LOCK(h->ctlr) is held. */
  2610. /* Zeros out the error record and then resends the command back */
  2611. /* to the controller */
  2612. static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
  2613. {
  2614. /* erase the old error information */
  2615. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  2616. /* add it to software queue and then send it to the controller */
  2617. addQ(&h->reqQ, c);
  2618. h->Qdepth++;
  2619. if (h->Qdepth > h->maxQsinceinit)
  2620. h->maxQsinceinit = h->Qdepth;
  2621. start_io(h);
  2622. }
  2623. static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
  2624. unsigned int msg_byte, unsigned int host_byte,
  2625. unsigned int driver_byte)
  2626. {
  2627. /* inverse of macros in scsi.h */
  2628. return (scsi_status_byte & 0xff) |
  2629. ((msg_byte & 0xff) << 8) |
  2630. ((host_byte & 0xff) << 16) |
  2631. ((driver_byte & 0xff) << 24);
  2632. }
  2633. static inline int evaluate_target_status(ctlr_info_t *h,
  2634. CommandList_struct *cmd, int *retry_cmd)
  2635. {
  2636. unsigned char sense_key;
  2637. unsigned char status_byte, msg_byte, host_byte, driver_byte;
  2638. int error_value;
  2639. *retry_cmd = 0;
  2640. /* If we get in here, it means we got "target status", that is, scsi status */
  2641. status_byte = cmd->err_info->ScsiStatus;
  2642. driver_byte = DRIVER_OK;
  2643. msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
  2644. if (blk_pc_request(cmd->rq))
  2645. host_byte = DID_PASSTHROUGH;
  2646. else
  2647. host_byte = DID_OK;
  2648. error_value = make_status_bytes(status_byte, msg_byte,
  2649. host_byte, driver_byte);
  2650. if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
  2651. if (!blk_pc_request(cmd->rq))
  2652. printk(KERN_WARNING "cciss: cmd %p "
  2653. "has SCSI Status 0x%x\n",
  2654. cmd, cmd->err_info->ScsiStatus);
  2655. return error_value;
  2656. }
  2657. /* check the sense key */
  2658. sense_key = 0xf & cmd->err_info->SenseInfo[2];
  2659. /* no status or recovered error */
  2660. if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
  2661. error_value = 0;
  2662. if (check_for_unit_attention(h, cmd)) {
  2663. *retry_cmd = !blk_pc_request(cmd->rq);
  2664. return 0;
  2665. }
  2666. if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
  2667. if (error_value != 0)
  2668. printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
  2669. " sense key = 0x%x\n", cmd, sense_key);
  2670. return error_value;
  2671. }
  2672. /* SG_IO or similar, copy sense data back */
  2673. if (cmd->rq->sense) {
  2674. if (cmd->rq->sense_len > cmd->err_info->SenseLen)
  2675. cmd->rq->sense_len = cmd->err_info->SenseLen;
  2676. memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
  2677. cmd->rq->sense_len);
  2678. } else
  2679. cmd->rq->sense_len = 0;
  2680. return error_value;
  2681. }
  2682. /* checks the status of the job and calls complete buffers to mark all
  2683. * buffers for the completed job. Note that this function does not need
  2684. * to hold the hba/queue lock.
  2685. */
  2686. static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
  2687. int timeout)
  2688. {
  2689. int retry_cmd = 0;
  2690. struct request *rq = cmd->rq;
  2691. rq->errors = 0;
  2692. if (timeout)
  2693. rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
  2694. if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
  2695. goto after_error_processing;
  2696. switch (cmd->err_info->CommandStatus) {
  2697. case CMD_TARGET_STATUS:
  2698. rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
  2699. break;
  2700. case CMD_DATA_UNDERRUN:
  2701. if (blk_fs_request(cmd->rq)) {
  2702. printk(KERN_WARNING "cciss: cmd %p has"
  2703. " completed with data underrun "
  2704. "reported\n", cmd);
  2705. cmd->rq->resid_len = cmd->err_info->ResidualCnt;
  2706. }
  2707. break;
  2708. case CMD_DATA_OVERRUN:
  2709. if (blk_fs_request(cmd->rq))
  2710. printk(KERN_WARNING "cciss: cmd %p has"
  2711. " completed with data overrun "
  2712. "reported\n", cmd);
  2713. break;
  2714. case CMD_INVALID:
  2715. printk(KERN_WARNING "cciss: cmd %p is "
  2716. "reported invalid\n", cmd);
  2717. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2718. cmd->err_info->CommandStatus, DRIVER_OK,
  2719. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2720. break;
  2721. case CMD_PROTOCOL_ERR:
  2722. printk(KERN_WARNING "cciss: cmd %p has "
  2723. "protocol error \n", cmd);
  2724. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2725. cmd->err_info->CommandStatus, DRIVER_OK,
  2726. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2727. break;
  2728. case CMD_HARDWARE_ERR:
  2729. printk(KERN_WARNING "cciss: cmd %p had "
  2730. " hardware error\n", cmd);
  2731. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2732. cmd->err_info->CommandStatus, DRIVER_OK,
  2733. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2734. break;
  2735. case CMD_CONNECTION_LOST:
  2736. printk(KERN_WARNING "cciss: cmd %p had "
  2737. "connection lost\n", cmd);
  2738. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2739. cmd->err_info->CommandStatus, DRIVER_OK,
  2740. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2741. break;
  2742. case CMD_ABORTED:
  2743. printk(KERN_WARNING "cciss: cmd %p was "
  2744. "aborted\n", cmd);
  2745. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2746. cmd->err_info->CommandStatus, DRIVER_OK,
  2747. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
  2748. break;
  2749. case CMD_ABORT_FAILED:
  2750. printk(KERN_WARNING "cciss: cmd %p reports "
  2751. "abort failed\n", cmd);
  2752. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2753. cmd->err_info->CommandStatus, DRIVER_OK,
  2754. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2755. break;
  2756. case CMD_UNSOLICITED_ABORT:
  2757. printk(KERN_WARNING "cciss%d: unsolicited "
  2758. "abort %p\n", h->ctlr, cmd);
  2759. if (cmd->retry_count < MAX_CMD_RETRIES) {
  2760. retry_cmd = 1;
  2761. printk(KERN_WARNING
  2762. "cciss%d: retrying %p\n", h->ctlr, cmd);
  2763. cmd->retry_count++;
  2764. } else
  2765. printk(KERN_WARNING
  2766. "cciss%d: %p retried too "
  2767. "many times\n", h->ctlr, cmd);
  2768. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2769. cmd->err_info->CommandStatus, DRIVER_OK,
  2770. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
  2771. break;
  2772. case CMD_TIMEOUT:
  2773. printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
  2774. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2775. cmd->err_info->CommandStatus, DRIVER_OK,
  2776. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2777. break;
  2778. default:
  2779. printk(KERN_WARNING "cciss: cmd %p returned "
  2780. "unknown status %x\n", cmd,
  2781. cmd->err_info->CommandStatus);
  2782. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2783. cmd->err_info->CommandStatus, DRIVER_OK,
  2784. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2785. }
  2786. after_error_processing:
  2787. /* We need to return this command */
  2788. if (retry_cmd) {
  2789. resend_cciss_cmd(h, cmd);
  2790. return;
  2791. }
  2792. cmd->rq->completion_data = cmd;
  2793. blk_complete_request(cmd->rq);
  2794. }
  2795. /*
  2796. * Get a request and submit it to the controller.
  2797. */
  2798. static void do_cciss_request(struct request_queue *q)
  2799. {
  2800. ctlr_info_t *h = q->queuedata;
  2801. CommandList_struct *c;
  2802. sector_t start_blk;
  2803. int seg;
  2804. struct request *creq;
  2805. u64bit temp64;
  2806. struct scatterlist tmp_sg[MAXSGENTRIES];
  2807. drive_info_struct *drv;
  2808. int i, dir;
  2809. /* We call start_io here in case there is a command waiting on the
  2810. * queue that has not been sent.
  2811. */
  2812. if (blk_queue_plugged(q))
  2813. goto startio;
  2814. queue:
  2815. creq = blk_peek_request(q);
  2816. if (!creq)
  2817. goto startio;
  2818. BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
  2819. if ((c = cmd_alloc(h, 1)) == NULL)
  2820. goto full;
  2821. blk_start_request(creq);
  2822. spin_unlock_irq(q->queue_lock);
  2823. c->cmd_type = CMD_RWREQ;
  2824. c->rq = creq;
  2825. /* fill in the request */
  2826. drv = creq->rq_disk->private_data;
  2827. c->Header.ReplyQueue = 0; // unused in simple mode
  2828. /* got command from pool, so use the command block index instead */
  2829. /* for direct lookups. */
  2830. /* The first 2 bits are reserved for controller error reporting. */
  2831. c->Header.Tag.lower = (c->cmdindex << 3);
  2832. c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
  2833. c->Header.LUN.LogDev.VolId = drv->LunID;
  2834. c->Header.LUN.LogDev.Mode = 1;
  2835. c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
  2836. c->Request.Type.Type = TYPE_CMD; // It is a command.
  2837. c->Request.Type.Attribute = ATTR_SIMPLE;
  2838. c->Request.Type.Direction =
  2839. (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
  2840. c->Request.Timeout = 0; // Don't time out
  2841. c->Request.CDB[0] =
  2842. (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
  2843. start_blk = blk_rq_pos(creq);
  2844. #ifdef CCISS_DEBUG
  2845. printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
  2846. (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
  2847. #endif /* CCISS_DEBUG */
  2848. sg_init_table(tmp_sg, MAXSGENTRIES);
  2849. seg = blk_rq_map_sg(q, creq, tmp_sg);
  2850. /* get the DMA records for the setup */
  2851. if (c->Request.Type.Direction == XFER_READ)
  2852. dir = PCI_DMA_FROMDEVICE;
  2853. else
  2854. dir = PCI_DMA_TODEVICE;
  2855. for (i = 0; i < seg; i++) {
  2856. c->SG[i].Len = tmp_sg[i].length;
  2857. temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
  2858. tmp_sg[i].offset,
  2859. tmp_sg[i].length, dir);
  2860. c->SG[i].Addr.lower = temp64.val32.lower;
  2861. c->SG[i].Addr.upper = temp64.val32.upper;
  2862. c->SG[i].Ext = 0; // we are not chaining
  2863. }
  2864. /* track how many SG entries we are using */
  2865. if (seg > h->maxSG)
  2866. h->maxSG = seg;
  2867. #ifdef CCISS_DEBUG
  2868. printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
  2869. blk_rq_sectors(creq), seg);
  2870. #endif /* CCISS_DEBUG */
  2871. c->Header.SGList = c->Header.SGTotal = seg;
  2872. if (likely(blk_fs_request(creq))) {
  2873. if(h->cciss_read == CCISS_READ_10) {
  2874. c->Request.CDB[1] = 0;
  2875. c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
  2876. c->Request.CDB[3] = (start_blk >> 16) & 0xff;
  2877. c->Request.CDB[4] = (start_blk >> 8) & 0xff;
  2878. c->Request.CDB[5] = start_blk & 0xff;
  2879. c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
  2880. c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
  2881. c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
  2882. c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
  2883. } else {
  2884. u32 upper32 = upper_32_bits(start_blk);
  2885. c->Request.CDBLen = 16;
  2886. c->Request.CDB[1]= 0;
  2887. c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
  2888. c->Request.CDB[3]= (upper32 >> 16) & 0xff;
  2889. c->Request.CDB[4]= (upper32 >> 8) & 0xff;
  2890. c->Request.CDB[5]= upper32 & 0xff;
  2891. c->Request.CDB[6]= (start_blk >> 24) & 0xff;
  2892. c->Request.CDB[7]= (start_blk >> 16) & 0xff;
  2893. c->Request.CDB[8]= (start_blk >> 8) & 0xff;
  2894. c->Request.CDB[9]= start_blk & 0xff;
  2895. c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
  2896. c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
  2897. c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
  2898. c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
  2899. c->Request.CDB[14] = c->Request.CDB[15] = 0;
  2900. }
  2901. } else if (blk_pc_request(creq)) {
  2902. c->Request.CDBLen = creq->cmd_len;
  2903. memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
  2904. } else {
  2905. printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
  2906. BUG();
  2907. }
  2908. spin_lock_irq(q->queue_lock);
  2909. addQ(&h->reqQ, c);
  2910. h->Qdepth++;
  2911. if (h->Qdepth > h->maxQsinceinit)
  2912. h->maxQsinceinit = h->Qdepth;
  2913. goto queue;
  2914. full:
  2915. blk_stop_queue(q);
  2916. startio:
  2917. /* We will already have the driver lock here so not need
  2918. * to lock it.
  2919. */
  2920. start_io(h);
  2921. }
  2922. static inline unsigned long get_next_completion(ctlr_info_t *h)
  2923. {
  2924. return h->access.command_completed(h);
  2925. }
  2926. static inline int interrupt_pending(ctlr_info_t *h)
  2927. {
  2928. return h->access.intr_pending(h);
  2929. }
  2930. static inline long interrupt_not_for_us(ctlr_info_t *h)
  2931. {
  2932. return (((h->access.intr_pending(h) == 0) ||
  2933. (h->interrupts_enabled == 0)));
  2934. }
  2935. static irqreturn_t do_cciss_intr(int irq, void *dev_id)
  2936. {
  2937. ctlr_info_t *h = dev_id;
  2938. CommandList_struct *c;
  2939. unsigned long flags;
  2940. __u32 a, a1, a2;
  2941. if (interrupt_not_for_us(h))
  2942. return IRQ_NONE;
  2943. /*
  2944. * If there are completed commands in the completion queue,
  2945. * we had better do something about it.
  2946. */
  2947. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  2948. while (interrupt_pending(h)) {
  2949. while ((a = get_next_completion(h)) != FIFO_EMPTY) {
  2950. a1 = a;
  2951. if ((a & 0x04)) {
  2952. a2 = (a >> 3);
  2953. if (a2 >= h->nr_cmds) {
  2954. printk(KERN_WARNING
  2955. "cciss: controller cciss%d failed, stopping.\n",
  2956. h->ctlr);
  2957. fail_all_cmds(h->ctlr);
  2958. return IRQ_HANDLED;
  2959. }
  2960. c = h->cmd_pool + a2;
  2961. a = c->busaddr;
  2962. } else {
  2963. struct hlist_node *tmp;
  2964. a &= ~3;
  2965. c = NULL;
  2966. hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
  2967. if (c->busaddr == a)
  2968. break;
  2969. }
  2970. }
  2971. /*
  2972. * If we've found the command, take it off the
  2973. * completion Q and free it
  2974. */
  2975. if (c && c->busaddr == a) {
  2976. removeQ(c);
  2977. if (c->cmd_type == CMD_RWREQ) {
  2978. complete_command(h, c, 0);
  2979. } else if (c->cmd_type == CMD_IOCTL_PEND) {
  2980. complete(c->waiting);
  2981. }
  2982. # ifdef CONFIG_CISS_SCSI_TAPE
  2983. else if (c->cmd_type == CMD_SCSI)
  2984. complete_scsi_command(c, 0, a1);
  2985. # endif
  2986. continue;
  2987. }
  2988. }
  2989. }
  2990. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  2991. return IRQ_HANDLED;
  2992. }
  2993. /**
  2994. * add_to_scan_list() - add controller to rescan queue
  2995. * @h: Pointer to the controller.
  2996. *
  2997. * Adds the controller to the rescan queue if not already on the queue.
  2998. *
  2999. * returns 1 if added to the queue, 0 if skipped (could be on the
  3000. * queue already, or the controller could be initializing or shutting
  3001. * down).
  3002. **/
  3003. static int add_to_scan_list(struct ctlr_info *h)
  3004. {
  3005. struct ctlr_info *test_h;
  3006. int found = 0;
  3007. int ret = 0;
  3008. if (h->busy_initializing)
  3009. return 0;
  3010. if (!mutex_trylock(&h->busy_shutting_down))
  3011. return 0;
  3012. mutex_lock(&scan_mutex);
  3013. list_for_each_entry(test_h, &scan_q, scan_list) {
  3014. if (test_h == h) {
  3015. found = 1;
  3016. break;
  3017. }
  3018. }
  3019. if (!found && !h->busy_scanning) {
  3020. INIT_COMPLETION(h->scan_wait);
  3021. list_add_tail(&h->scan_list, &scan_q);
  3022. ret = 1;
  3023. }
  3024. mutex_unlock(&scan_mutex);
  3025. mutex_unlock(&h->busy_shutting_down);
  3026. return ret;
  3027. }
  3028. /**
  3029. * remove_from_scan_list() - remove controller from rescan queue
  3030. * @h: Pointer to the controller.
  3031. *
  3032. * Removes the controller from the rescan queue if present. Blocks if
  3033. * the controller is currently conducting a rescan.
  3034. **/
  3035. static void remove_from_scan_list(struct ctlr_info *h)
  3036. {
  3037. struct ctlr_info *test_h, *tmp_h;
  3038. int scanning = 0;
  3039. mutex_lock(&scan_mutex);
  3040. list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
  3041. if (test_h == h) {
  3042. list_del(&h->scan_list);
  3043. complete_all(&h->scan_wait);
  3044. mutex_unlock(&scan_mutex);
  3045. return;
  3046. }
  3047. }
  3048. if (&h->busy_scanning)
  3049. scanning = 0;
  3050. mutex_unlock(&scan_mutex);
  3051. if (scanning)
  3052. wait_for_completion(&h->scan_wait);
  3053. }
  3054. /**
  3055. * scan_thread() - kernel thread used to rescan controllers
  3056. * @data: Ignored.
  3057. *
  3058. * A kernel thread used scan for drive topology changes on
  3059. * controllers. The thread processes only one controller at a time
  3060. * using a queue. Controllers are added to the queue using
  3061. * add_to_scan_list() and removed from the queue either after done
  3062. * processing or using remove_from_scan_list().
  3063. *
  3064. * returns 0.
  3065. **/
  3066. static int scan_thread(void *data)
  3067. {
  3068. struct ctlr_info *h;
  3069. while (1) {
  3070. set_current_state(TASK_INTERRUPTIBLE);
  3071. schedule();
  3072. if (kthread_should_stop())
  3073. break;
  3074. while (1) {
  3075. mutex_lock(&scan_mutex);
  3076. if (list_empty(&scan_q)) {
  3077. mutex_unlock(&scan_mutex);
  3078. break;
  3079. }
  3080. h = list_entry(scan_q.next,
  3081. struct ctlr_info,
  3082. scan_list);
  3083. list_del(&h->scan_list);
  3084. h->busy_scanning = 1;
  3085. mutex_unlock(&scan_mutex);
  3086. if (h) {
  3087. rebuild_lun_table(h, 0, 0);
  3088. complete_all(&h->scan_wait);
  3089. mutex_lock(&scan_mutex);
  3090. h->busy_scanning = 0;
  3091. mutex_unlock(&scan_mutex);
  3092. }
  3093. }
  3094. }
  3095. return 0;
  3096. }
  3097. static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
  3098. {
  3099. if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
  3100. return 0;
  3101. switch (c->err_info->SenseInfo[12]) {
  3102. case STATE_CHANGED:
  3103. printk(KERN_WARNING "cciss%d: a state change "
  3104. "detected, command retried\n", h->ctlr);
  3105. return 1;
  3106. break;
  3107. case LUN_FAILED:
  3108. printk(KERN_WARNING "cciss%d: LUN failure "
  3109. "detected, action required\n", h->ctlr);
  3110. return 1;
  3111. break;
  3112. case REPORT_LUNS_CHANGED:
  3113. printk(KERN_WARNING "cciss%d: report LUN data "
  3114. "changed\n", h->ctlr);
  3115. add_to_scan_list(h);
  3116. wake_up_process(cciss_scan_thread);
  3117. return 1;
  3118. break;
  3119. case POWER_OR_RESET:
  3120. printk(KERN_WARNING "cciss%d: a power on "
  3121. "or device reset detected\n", h->ctlr);
  3122. return 1;
  3123. break;
  3124. case UNIT_ATTENTION_CLEARED:
  3125. printk(KERN_WARNING "cciss%d: unit attention "
  3126. "cleared by another initiator\n", h->ctlr);
  3127. return 1;
  3128. break;
  3129. default:
  3130. printk(KERN_WARNING "cciss%d: unknown "
  3131. "unit attention detected\n", h->ctlr);
  3132. return 1;
  3133. }
  3134. }
  3135. /*
  3136. * We cannot read the structure directly, for portability we must use
  3137. * the io functions.
  3138. * This is for debug only.
  3139. */
  3140. #ifdef CCISS_DEBUG
  3141. static void print_cfg_table(CfgTable_struct *tb)
  3142. {
  3143. int i;
  3144. char temp_name[17];
  3145. printk("Controller Configuration information\n");
  3146. printk("------------------------------------\n");
  3147. for (i = 0; i < 4; i++)
  3148. temp_name[i] = readb(&(tb->Signature[i]));
  3149. temp_name[4] = '\0';
  3150. printk(" Signature = %s\n", temp_name);
  3151. printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
  3152. printk(" Transport methods supported = 0x%x\n",
  3153. readl(&(tb->TransportSupport)));
  3154. printk(" Transport methods active = 0x%x\n",
  3155. readl(&(tb->TransportActive)));
  3156. printk(" Requested transport Method = 0x%x\n",
  3157. readl(&(tb->HostWrite.TransportRequest)));
  3158. printk(" Coalesce Interrupt Delay = 0x%x\n",
  3159. readl(&(tb->HostWrite.CoalIntDelay)));
  3160. printk(" Coalesce Interrupt Count = 0x%x\n",
  3161. readl(&(tb->HostWrite.CoalIntCount)));
  3162. printk(" Max outstanding commands = 0x%d\n",
  3163. readl(&(tb->CmdsOutMax)));
  3164. printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
  3165. for (i = 0; i < 16; i++)
  3166. temp_name[i] = readb(&(tb->ServerName[i]));
  3167. temp_name[16] = '\0';
  3168. printk(" Server Name = %s\n", temp_name);
  3169. printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
  3170. }
  3171. #endif /* CCISS_DEBUG */
  3172. static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
  3173. {
  3174. int i, offset, mem_type, bar_type;
  3175. if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
  3176. return 0;
  3177. offset = 0;
  3178. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3179. bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
  3180. if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
  3181. offset += 4;
  3182. else {
  3183. mem_type = pci_resource_flags(pdev, i) &
  3184. PCI_BASE_ADDRESS_MEM_TYPE_MASK;
  3185. switch (mem_type) {
  3186. case PCI_BASE_ADDRESS_MEM_TYPE_32:
  3187. case PCI_BASE_ADDRESS_MEM_TYPE_1M:
  3188. offset += 4; /* 32 bit */
  3189. break;
  3190. case PCI_BASE_ADDRESS_MEM_TYPE_64:
  3191. offset += 8;
  3192. break;
  3193. default: /* reserved in PCI 2.2 */
  3194. printk(KERN_WARNING
  3195. "Base address is invalid\n");
  3196. return -1;
  3197. break;
  3198. }
  3199. }
  3200. if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
  3201. return i + 1;
  3202. }
  3203. return -1;
  3204. }
  3205. /* If MSI/MSI-X is supported by the kernel we will try to enable it on
  3206. * controllers that are capable. If not, we use IO-APIC mode.
  3207. */
  3208. static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
  3209. struct pci_dev *pdev, __u32 board_id)
  3210. {
  3211. #ifdef CONFIG_PCI_MSI
  3212. int err;
  3213. struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
  3214. {0, 2}, {0, 3}
  3215. };
  3216. /* Some boards advertise MSI but don't really support it */
  3217. if ((board_id == 0x40700E11) ||
  3218. (board_id == 0x40800E11) ||
  3219. (board_id == 0x40820E11) || (board_id == 0x40830E11))
  3220. goto default_int_mode;
  3221. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
  3222. err = pci_enable_msix(pdev, cciss_msix_entries, 4);
  3223. if (!err) {
  3224. c->intr[0] = cciss_msix_entries[0].vector;
  3225. c->intr[1] = cciss_msix_entries[1].vector;
  3226. c->intr[2] = cciss_msix_entries[2].vector;
  3227. c->intr[3] = cciss_msix_entries[3].vector;
  3228. c->msix_vector = 1;
  3229. return;
  3230. }
  3231. if (err > 0) {
  3232. printk(KERN_WARNING "cciss: only %d MSI-X vectors "
  3233. "available\n", err);
  3234. goto default_int_mode;
  3235. } else {
  3236. printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
  3237. err);
  3238. goto default_int_mode;
  3239. }
  3240. }
  3241. if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
  3242. if (!pci_enable_msi(pdev)) {
  3243. c->msi_vector = 1;
  3244. } else {
  3245. printk(KERN_WARNING "cciss: MSI init failed\n");
  3246. }
  3247. }
  3248. default_int_mode:
  3249. #endif /* CONFIG_PCI_MSI */
  3250. /* if we get here we're going to use the default interrupt mode */
  3251. c->intr[SIMPLE_MODE_INT] = pdev->irq;
  3252. return;
  3253. }
  3254. static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
  3255. {
  3256. ushort subsystem_vendor_id, subsystem_device_id, command;
  3257. __u32 board_id, scratchpad = 0;
  3258. __u64 cfg_offset;
  3259. __u32 cfg_base_addr;
  3260. __u64 cfg_base_addr_index;
  3261. int i, err;
  3262. /* check to see if controller has been disabled */
  3263. /* BEFORE trying to enable it */
  3264. (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
  3265. if (!(command & 0x02)) {
  3266. printk(KERN_WARNING
  3267. "cciss: controller appears to be disabled\n");
  3268. return -ENODEV;
  3269. }
  3270. err = pci_enable_device(pdev);
  3271. if (err) {
  3272. printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
  3273. return err;
  3274. }
  3275. err = pci_request_regions(pdev, "cciss");
  3276. if (err) {
  3277. printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
  3278. "aborting\n");
  3279. return err;
  3280. }
  3281. subsystem_vendor_id = pdev->subsystem_vendor;
  3282. subsystem_device_id = pdev->subsystem_device;
  3283. board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
  3284. subsystem_vendor_id);
  3285. #ifdef CCISS_DEBUG
  3286. printk("command = %x\n", command);
  3287. printk("irq = %x\n", pdev->irq);
  3288. printk("board_id = %x\n", board_id);
  3289. #endif /* CCISS_DEBUG */
  3290. /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
  3291. * else we use the IO-APIC interrupt assigned to us by system ROM.
  3292. */
  3293. cciss_interrupt_mode(c, pdev, board_id);
  3294. /* find the memory BAR */
  3295. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3296. if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
  3297. break;
  3298. }
  3299. if (i == DEVICE_COUNT_RESOURCE) {
  3300. printk(KERN_WARNING "cciss: No memory BAR found\n");
  3301. err = -ENODEV;
  3302. goto err_out_free_res;
  3303. }
  3304. c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
  3305. * already removed
  3306. */
  3307. #ifdef CCISS_DEBUG
  3308. printk("address 0 = %lx\n", c->paddr);
  3309. #endif /* CCISS_DEBUG */
  3310. c->vaddr = remap_pci_mem(c->paddr, 0x250);
  3311. /* Wait for the board to become ready. (PCI hotplug needs this.)
  3312. * We poll for up to 120 secs, once per 100ms. */
  3313. for (i = 0; i < 1200; i++) {
  3314. scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
  3315. if (scratchpad == CCISS_FIRMWARE_READY)
  3316. break;
  3317. set_current_state(TASK_INTERRUPTIBLE);
  3318. schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
  3319. }
  3320. if (scratchpad != CCISS_FIRMWARE_READY) {
  3321. printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
  3322. err = -ENODEV;
  3323. goto err_out_free_res;
  3324. }
  3325. /* get the address index number */
  3326. cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
  3327. cfg_base_addr &= (__u32) 0x0000ffff;
  3328. #ifdef CCISS_DEBUG
  3329. printk("cfg base address = %x\n", cfg_base_addr);
  3330. #endif /* CCISS_DEBUG */
  3331. cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
  3332. #ifdef CCISS_DEBUG
  3333. printk("cfg base address index = %llx\n",
  3334. (unsigned long long)cfg_base_addr_index);
  3335. #endif /* CCISS_DEBUG */
  3336. if (cfg_base_addr_index == -1) {
  3337. printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
  3338. err = -ENODEV;
  3339. goto err_out_free_res;
  3340. }
  3341. cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
  3342. #ifdef CCISS_DEBUG
  3343. printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
  3344. #endif /* CCISS_DEBUG */
  3345. c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
  3346. cfg_base_addr_index) +
  3347. cfg_offset, sizeof(CfgTable_struct));
  3348. c->board_id = board_id;
  3349. #ifdef CCISS_DEBUG
  3350. print_cfg_table(c->cfgtable);
  3351. #endif /* CCISS_DEBUG */
  3352. /* Some controllers support Zero Memory Raid (ZMR).
  3353. * When configured in ZMR mode the number of supported
  3354. * commands drops to 64. So instead of just setting an
  3355. * arbitrary value we make the driver a little smarter.
  3356. * We read the config table to tell us how many commands
  3357. * are supported on the controller then subtract 4 to
  3358. * leave a little room for ioctl calls.
  3359. */
  3360. c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
  3361. for (i = 0; i < ARRAY_SIZE(products); i++) {
  3362. if (board_id == products[i].board_id) {
  3363. c->product_name = products[i].product_name;
  3364. c->access = *(products[i].access);
  3365. c->nr_cmds = c->max_commands - 4;
  3366. break;
  3367. }
  3368. }
  3369. if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
  3370. (readb(&c->cfgtable->Signature[1]) != 'I') ||
  3371. (readb(&c->cfgtable->Signature[2]) != 'S') ||
  3372. (readb(&c->cfgtable->Signature[3]) != 'S')) {
  3373. printk("Does not appear to be a valid CISS config table\n");
  3374. err = -ENODEV;
  3375. goto err_out_free_res;
  3376. }
  3377. /* We didn't find the controller in our list. We know the
  3378. * signature is valid. If it's an HP device let's try to
  3379. * bind to the device and fire it up. Otherwise we bail.
  3380. */
  3381. if (i == ARRAY_SIZE(products)) {
  3382. if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
  3383. c->product_name = products[i-1].product_name;
  3384. c->access = *(products[i-1].access);
  3385. c->nr_cmds = c->max_commands - 4;
  3386. printk(KERN_WARNING "cciss: This is an unknown "
  3387. "Smart Array controller.\n"
  3388. "cciss: Please update to the latest driver "
  3389. "available from www.hp.com.\n");
  3390. } else {
  3391. printk(KERN_WARNING "cciss: Sorry, I don't know how"
  3392. " to access the Smart Array controller %08lx\n"
  3393. , (unsigned long)board_id);
  3394. err = -ENODEV;
  3395. goto err_out_free_res;
  3396. }
  3397. }
  3398. #ifdef CONFIG_X86
  3399. {
  3400. /* Need to enable prefetch in the SCSI core for 6400 in x86 */
  3401. __u32 prefetch;
  3402. prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
  3403. prefetch |= 0x100;
  3404. writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
  3405. }
  3406. #endif
  3407. /* Disabling DMA prefetch and refetch for the P600.
  3408. * An ASIC bug may result in accesses to invalid memory addresses.
  3409. * We've disabled prefetch for some time now. Testing with XEN
  3410. * kernels revealed a bug in the refetch if dom0 resides on a P600.
  3411. */
  3412. if(board_id == 0x3225103C) {
  3413. __u32 dma_prefetch;
  3414. __u32 dma_refetch;
  3415. dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
  3416. dma_prefetch |= 0x8000;
  3417. writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
  3418. pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
  3419. dma_refetch |= 0x1;
  3420. pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
  3421. }
  3422. #ifdef CCISS_DEBUG
  3423. printk("Trying to put board into Simple mode\n");
  3424. #endif /* CCISS_DEBUG */
  3425. c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
  3426. /* Update the field, and then ring the doorbell */
  3427. writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
  3428. writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
  3429. /* under certain very rare conditions, this can take awhile.
  3430. * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
  3431. * as we enter this code.) */
  3432. for (i = 0; i < MAX_CONFIG_WAIT; i++) {
  3433. if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
  3434. break;
  3435. /* delay and try again */
  3436. set_current_state(TASK_INTERRUPTIBLE);
  3437. schedule_timeout(msecs_to_jiffies(1));
  3438. }
  3439. #ifdef CCISS_DEBUG
  3440. printk(KERN_DEBUG "I counter got to %d %x\n", i,
  3441. readl(c->vaddr + SA5_DOORBELL));
  3442. #endif /* CCISS_DEBUG */
  3443. #ifdef CCISS_DEBUG
  3444. print_cfg_table(c->cfgtable);
  3445. #endif /* CCISS_DEBUG */
  3446. if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
  3447. printk(KERN_WARNING "cciss: unable to get board into"
  3448. " simple mode\n");
  3449. err = -ENODEV;
  3450. goto err_out_free_res;
  3451. }
  3452. return 0;
  3453. err_out_free_res:
  3454. /*
  3455. * Deliberately omit pci_disable_device(): it does something nasty to
  3456. * Smart Array controllers that pci_enable_device does not undo
  3457. */
  3458. pci_release_regions(pdev);
  3459. return err;
  3460. }
  3461. /* Function to find the first free pointer into our hba[] array
  3462. * Returns -1 if no free entries are left.
  3463. */
  3464. static int alloc_cciss_hba(void)
  3465. {
  3466. int i;
  3467. for (i = 0; i < MAX_CTLR; i++) {
  3468. if (!hba[i]) {
  3469. ctlr_info_t *p;
  3470. p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
  3471. if (!p)
  3472. goto Enomem;
  3473. hba[i] = p;
  3474. return i;
  3475. }
  3476. }
  3477. printk(KERN_WARNING "cciss: This driver supports a maximum"
  3478. " of %d controllers.\n", MAX_CTLR);
  3479. return -1;
  3480. Enomem:
  3481. printk(KERN_ERR "cciss: out of memory.\n");
  3482. return -1;
  3483. }
  3484. static void free_hba(int i)
  3485. {
  3486. ctlr_info_t *p = hba[i];
  3487. int n;
  3488. hba[i] = NULL;
  3489. for (n = 0; n < CISS_MAX_LUN; n++)
  3490. put_disk(p->gendisk[n]);
  3491. kfree(p);
  3492. }
  3493. /* Send a message CDB to the firmware. */
  3494. static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
  3495. {
  3496. typedef struct {
  3497. CommandListHeader_struct CommandHeader;
  3498. RequestBlock_struct Request;
  3499. ErrDescriptor_struct ErrorDescriptor;
  3500. } Command;
  3501. static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
  3502. Command *cmd;
  3503. dma_addr_t paddr64;
  3504. uint32_t paddr32, tag;
  3505. void __iomem *vaddr;
  3506. int i, err;
  3507. vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
  3508. if (vaddr == NULL)
  3509. return -ENOMEM;
  3510. /* The Inbound Post Queue only accepts 32-bit physical addresses for the
  3511. CCISS commands, so they must be allocated from the lower 4GiB of
  3512. memory. */
  3513. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3514. if (err) {
  3515. iounmap(vaddr);
  3516. return -ENOMEM;
  3517. }
  3518. cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
  3519. if (cmd == NULL) {
  3520. iounmap(vaddr);
  3521. return -ENOMEM;
  3522. }
  3523. /* This must fit, because of the 32-bit consistent DMA mask. Also,
  3524. although there's no guarantee, we assume that the address is at
  3525. least 4-byte aligned (most likely, it's page-aligned). */
  3526. paddr32 = paddr64;
  3527. cmd->CommandHeader.ReplyQueue = 0;
  3528. cmd->CommandHeader.SGList = 0;
  3529. cmd->CommandHeader.SGTotal = 0;
  3530. cmd->CommandHeader.Tag.lower = paddr32;
  3531. cmd->CommandHeader.Tag.upper = 0;
  3532. memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
  3533. cmd->Request.CDBLen = 16;
  3534. cmd->Request.Type.Type = TYPE_MSG;
  3535. cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
  3536. cmd->Request.Type.Direction = XFER_NONE;
  3537. cmd->Request.Timeout = 0; /* Don't time out */
  3538. cmd->Request.CDB[0] = opcode;
  3539. cmd->Request.CDB[1] = type;
  3540. memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
  3541. cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
  3542. cmd->ErrorDescriptor.Addr.upper = 0;
  3543. cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
  3544. writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
  3545. for (i = 0; i < 10; i++) {
  3546. tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
  3547. if ((tag & ~3) == paddr32)
  3548. break;
  3549. schedule_timeout_uninterruptible(HZ);
  3550. }
  3551. iounmap(vaddr);
  3552. /* we leak the DMA buffer here ... no choice since the controller could
  3553. still complete the command. */
  3554. if (i == 10) {
  3555. printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
  3556. opcode, type);
  3557. return -ETIMEDOUT;
  3558. }
  3559. pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
  3560. if (tag & 2) {
  3561. printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
  3562. opcode, type);
  3563. return -EIO;
  3564. }
  3565. printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
  3566. opcode, type);
  3567. return 0;
  3568. }
  3569. #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
  3570. #define cciss_noop(p) cciss_message(p, 3, 0)
  3571. static __devinit int cciss_reset_msi(struct pci_dev *pdev)
  3572. {
  3573. /* the #defines are stolen from drivers/pci/msi.h. */
  3574. #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
  3575. #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
  3576. int pos;
  3577. u16 control = 0;
  3578. pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
  3579. if (pos) {
  3580. pci_read_config_word(pdev, msi_control_reg(pos), &control);
  3581. if (control & PCI_MSI_FLAGS_ENABLE) {
  3582. printk(KERN_INFO "cciss: resetting MSI\n");
  3583. pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
  3584. }
  3585. }
  3586. pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
  3587. if (pos) {
  3588. pci_read_config_word(pdev, msi_control_reg(pos), &control);
  3589. if (control & PCI_MSIX_FLAGS_ENABLE) {
  3590. printk(KERN_INFO "cciss: resetting MSI-X\n");
  3591. pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
  3592. }
  3593. }
  3594. return 0;
  3595. }
  3596. /* This does a hard reset of the controller using PCI power management
  3597. * states. */
  3598. static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
  3599. {
  3600. u16 pmcsr, saved_config_space[32];
  3601. int i, pos;
  3602. printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
  3603. /* This is very nearly the same thing as
  3604. pci_save_state(pci_dev);
  3605. pci_set_power_state(pci_dev, PCI_D3hot);
  3606. pci_set_power_state(pci_dev, PCI_D0);
  3607. pci_restore_state(pci_dev);
  3608. but we can't use these nice canned kernel routines on
  3609. kexec, because they also check the MSI/MSI-X state in PCI
  3610. configuration space and do the wrong thing when it is
  3611. set/cleared. Also, the pci_save/restore_state functions
  3612. violate the ordering requirements for restoring the
  3613. configuration space from the CCISS document (see the
  3614. comment below). So we roll our own .... */
  3615. for (i = 0; i < 32; i++)
  3616. pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
  3617. pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
  3618. if (pos == 0) {
  3619. printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
  3620. return -ENODEV;
  3621. }
  3622. /* Quoting from the Open CISS Specification: "The Power
  3623. * Management Control/Status Register (CSR) controls the power
  3624. * state of the device. The normal operating state is D0,
  3625. * CSR=00h. The software off state is D3, CSR=03h. To reset
  3626. * the controller, place the interface device in D3 then to
  3627. * D0, this causes a secondary PCI reset which will reset the
  3628. * controller." */
  3629. /* enter the D3hot power management state */
  3630. pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
  3631. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3632. pmcsr |= PCI_D3hot;
  3633. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  3634. schedule_timeout_uninterruptible(HZ >> 1);
  3635. /* enter the D0 power management state */
  3636. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3637. pmcsr |= PCI_D0;
  3638. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  3639. schedule_timeout_uninterruptible(HZ >> 1);
  3640. /* Restore the PCI configuration space. The Open CISS
  3641. * Specification says, "Restore the PCI Configuration
  3642. * Registers, offsets 00h through 60h. It is important to
  3643. * restore the command register, 16-bits at offset 04h,
  3644. * last. Do not restore the configuration status register,
  3645. * 16-bits at offset 06h." Note that the offset is 2*i. */
  3646. for (i = 0; i < 32; i++) {
  3647. if (i == 2 || i == 3)
  3648. continue;
  3649. pci_write_config_word(pdev, 2*i, saved_config_space[i]);
  3650. }
  3651. wmb();
  3652. pci_write_config_word(pdev, 4, saved_config_space[2]);
  3653. return 0;
  3654. }
  3655. /*
  3656. * This is it. Find all the controllers and register them. I really hate
  3657. * stealing all these major device numbers.
  3658. * returns the number of block devices registered.
  3659. */
  3660. static int __devinit cciss_init_one(struct pci_dev *pdev,
  3661. const struct pci_device_id *ent)
  3662. {
  3663. int i;
  3664. int j = 0;
  3665. int rc;
  3666. int dac, return_code;
  3667. InquiryData_struct *inq_buff;
  3668. if (reset_devices) {
  3669. /* Reset the controller with a PCI power-cycle */
  3670. if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
  3671. return -ENODEV;
  3672. /* Now try to get the controller to respond to a no-op. Some
  3673. devices (notably the HP Smart Array 5i Controller) need
  3674. up to 30 seconds to respond. */
  3675. for (i=0; i<30; i++) {
  3676. if (cciss_noop(pdev) == 0)
  3677. break;
  3678. schedule_timeout_uninterruptible(HZ);
  3679. }
  3680. if (i == 30) {
  3681. printk(KERN_ERR "cciss: controller seems dead\n");
  3682. return -EBUSY;
  3683. }
  3684. }
  3685. i = alloc_cciss_hba();
  3686. if (i < 0)
  3687. return -1;
  3688. hba[i]->busy_initializing = 1;
  3689. INIT_HLIST_HEAD(&hba[i]->cmpQ);
  3690. INIT_HLIST_HEAD(&hba[i]->reqQ);
  3691. mutex_init(&hba[i]->busy_shutting_down);
  3692. if (cciss_pci_init(hba[i], pdev) != 0)
  3693. goto clean0;
  3694. sprintf(hba[i]->devname, "cciss%d", i);
  3695. hba[i]->ctlr = i;
  3696. hba[i]->pdev = pdev;
  3697. init_completion(&hba[i]->scan_wait);
  3698. if (cciss_create_hba_sysfs_entry(hba[i]))
  3699. goto clean0;
  3700. /* configure PCI DMA stuff */
  3701. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
  3702. dac = 1;
  3703. else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
  3704. dac = 0;
  3705. else {
  3706. printk(KERN_ERR "cciss: no suitable DMA available\n");
  3707. goto clean1;
  3708. }
  3709. /*
  3710. * register with the major number, or get a dynamic major number
  3711. * by passing 0 as argument. This is done for greater than
  3712. * 8 controller support.
  3713. */
  3714. if (i < MAX_CTLR_ORIG)
  3715. hba[i]->major = COMPAQ_CISS_MAJOR + i;
  3716. rc = register_blkdev(hba[i]->major, hba[i]->devname);
  3717. if (rc == -EBUSY || rc == -EINVAL) {
  3718. printk(KERN_ERR
  3719. "cciss: Unable to get major number %d for %s "
  3720. "on hba %d\n", hba[i]->major, hba[i]->devname, i);
  3721. goto clean1;
  3722. } else {
  3723. if (i >= MAX_CTLR_ORIG)
  3724. hba[i]->major = rc;
  3725. }
  3726. /* make sure the board interrupts are off */
  3727. hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
  3728. if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
  3729. IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
  3730. printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
  3731. hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
  3732. goto clean2;
  3733. }
  3734. printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
  3735. hba[i]->devname, pdev->device, pci_name(pdev),
  3736. hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
  3737. hba[i]->cmd_pool_bits =
  3738. kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
  3739. * sizeof(unsigned long), GFP_KERNEL);
  3740. hba[i]->cmd_pool = (CommandList_struct *)
  3741. pci_alloc_consistent(hba[i]->pdev,
  3742. hba[i]->nr_cmds * sizeof(CommandList_struct),
  3743. &(hba[i]->cmd_pool_dhandle));
  3744. hba[i]->errinfo_pool = (ErrorInfo_struct *)
  3745. pci_alloc_consistent(hba[i]->pdev,
  3746. hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3747. &(hba[i]->errinfo_pool_dhandle));
  3748. if ((hba[i]->cmd_pool_bits == NULL)
  3749. || (hba[i]->cmd_pool == NULL)
  3750. || (hba[i]->errinfo_pool == NULL)) {
  3751. printk(KERN_ERR "cciss: out of memory");
  3752. goto clean4;
  3753. }
  3754. spin_lock_init(&hba[i]->lock);
  3755. /* Initialize the pdev driver private data.
  3756. have it point to hba[i]. */
  3757. pci_set_drvdata(pdev, hba[i]);
  3758. /* command and error info recs zeroed out before
  3759. they are used */
  3760. memset(hba[i]->cmd_pool_bits, 0,
  3761. DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
  3762. * sizeof(unsigned long));
  3763. hba[i]->num_luns = 0;
  3764. hba[i]->highest_lun = -1;
  3765. for (j = 0; j < CISS_MAX_LUN; j++) {
  3766. hba[i]->drv[j].raid_level = -1;
  3767. hba[i]->drv[j].queue = NULL;
  3768. hba[i]->gendisk[j] = NULL;
  3769. }
  3770. cciss_scsi_setup(i);
  3771. /* Turn the interrupts on so we can service requests */
  3772. hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
  3773. /* Get the firmware version */
  3774. inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  3775. if (inq_buff == NULL) {
  3776. printk(KERN_ERR "cciss: out of memory\n");
  3777. goto clean4;
  3778. }
  3779. return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
  3780. sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
  3781. if (return_code == IO_OK) {
  3782. hba[i]->firm_ver[0] = inq_buff->data_byte[32];
  3783. hba[i]->firm_ver[1] = inq_buff->data_byte[33];
  3784. hba[i]->firm_ver[2] = inq_buff->data_byte[34];
  3785. hba[i]->firm_ver[3] = inq_buff->data_byte[35];
  3786. } else { /* send command failed */
  3787. printk(KERN_WARNING "cciss: unable to determine firmware"
  3788. " version of controller\n");
  3789. }
  3790. kfree(inq_buff);
  3791. cciss_procinit(i);
  3792. hba[i]->cciss_max_sectors = 2048;
  3793. rebuild_lun_table(hba[i], 1, 0);
  3794. hba[i]->busy_initializing = 0;
  3795. return 1;
  3796. clean4:
  3797. kfree(hba[i]->cmd_pool_bits);
  3798. if (hba[i]->cmd_pool)
  3799. pci_free_consistent(hba[i]->pdev,
  3800. hba[i]->nr_cmds * sizeof(CommandList_struct),
  3801. hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
  3802. if (hba[i]->errinfo_pool)
  3803. pci_free_consistent(hba[i]->pdev,
  3804. hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3805. hba[i]->errinfo_pool,
  3806. hba[i]->errinfo_pool_dhandle);
  3807. free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
  3808. clean2:
  3809. unregister_blkdev(hba[i]->major, hba[i]->devname);
  3810. clean1:
  3811. cciss_destroy_hba_sysfs_entry(hba[i]);
  3812. clean0:
  3813. hba[i]->busy_initializing = 0;
  3814. /* cleanup any queues that may have been initialized */
  3815. for (j=0; j <= hba[i]->highest_lun; j++){
  3816. drive_info_struct *drv = &(hba[i]->drv[j]);
  3817. if (drv->queue)
  3818. blk_cleanup_queue(drv->queue);
  3819. }
  3820. /*
  3821. * Deliberately omit pci_disable_device(): it does something nasty to
  3822. * Smart Array controllers that pci_enable_device does not undo
  3823. */
  3824. pci_release_regions(pdev);
  3825. pci_set_drvdata(pdev, NULL);
  3826. free_hba(i);
  3827. return -1;
  3828. }
  3829. static void cciss_shutdown(struct pci_dev *pdev)
  3830. {
  3831. ctlr_info_t *tmp_ptr;
  3832. int i;
  3833. char flush_buf[4];
  3834. int return_code;
  3835. tmp_ptr = pci_get_drvdata(pdev);
  3836. if (tmp_ptr == NULL)
  3837. return;
  3838. i = tmp_ptr->ctlr;
  3839. if (hba[i] == NULL)
  3840. return;
  3841. /* Turn board interrupts off and send the flush cache command */
  3842. /* sendcmd will turn off interrupt, and send the flush...
  3843. * To write all data in the battery backed cache to disks */
  3844. memset(flush_buf, 0, 4);
  3845. return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
  3846. CTLR_LUNID, TYPE_CMD);
  3847. if (return_code == IO_OK) {
  3848. printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
  3849. } else {
  3850. printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
  3851. }
  3852. free_irq(hba[i]->intr[2], hba[i]);
  3853. }
  3854. static void __devexit cciss_remove_one(struct pci_dev *pdev)
  3855. {
  3856. ctlr_info_t *tmp_ptr;
  3857. int i, j;
  3858. if (pci_get_drvdata(pdev) == NULL) {
  3859. printk(KERN_ERR "cciss: Unable to remove device \n");
  3860. return;
  3861. }
  3862. tmp_ptr = pci_get_drvdata(pdev);
  3863. i = tmp_ptr->ctlr;
  3864. if (hba[i] == NULL) {
  3865. printk(KERN_ERR "cciss: device appears to "
  3866. "already be removed \n");
  3867. return;
  3868. }
  3869. mutex_lock(&hba[i]->busy_shutting_down);
  3870. remove_from_scan_list(hba[i]);
  3871. remove_proc_entry(hba[i]->devname, proc_cciss);
  3872. unregister_blkdev(hba[i]->major, hba[i]->devname);
  3873. /* remove it from the disk list */
  3874. for (j = 0; j < CISS_MAX_LUN; j++) {
  3875. struct gendisk *disk = hba[i]->gendisk[j];
  3876. if (disk) {
  3877. struct request_queue *q = disk->queue;
  3878. if (disk->flags & GENHD_FL_UP) {
  3879. cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
  3880. del_gendisk(disk);
  3881. }
  3882. if (q)
  3883. blk_cleanup_queue(q);
  3884. }
  3885. }
  3886. #ifdef CONFIG_CISS_SCSI_TAPE
  3887. cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
  3888. #endif
  3889. cciss_shutdown(pdev);
  3890. #ifdef CONFIG_PCI_MSI
  3891. if (hba[i]->msix_vector)
  3892. pci_disable_msix(hba[i]->pdev);
  3893. else if (hba[i]->msi_vector)
  3894. pci_disable_msi(hba[i]->pdev);
  3895. #endif /* CONFIG_PCI_MSI */
  3896. iounmap(hba[i]->vaddr);
  3897. pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
  3898. hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
  3899. pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3900. hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
  3901. kfree(hba[i]->cmd_pool_bits);
  3902. /*
  3903. * Deliberately omit pci_disable_device(): it does something nasty to
  3904. * Smart Array controllers that pci_enable_device does not undo
  3905. */
  3906. pci_release_regions(pdev);
  3907. pci_set_drvdata(pdev, NULL);
  3908. cciss_destroy_hba_sysfs_entry(hba[i]);
  3909. mutex_unlock(&hba[i]->busy_shutting_down);
  3910. free_hba(i);
  3911. }
  3912. static struct pci_driver cciss_pci_driver = {
  3913. .name = "cciss",
  3914. .probe = cciss_init_one,
  3915. .remove = __devexit_p(cciss_remove_one),
  3916. .id_table = cciss_pci_device_id, /* id_table */
  3917. .shutdown = cciss_shutdown,
  3918. };
  3919. /*
  3920. * This is it. Register the PCI driver information for the cards we control
  3921. * the OS will call our registered routines when it finds one of our cards.
  3922. */
  3923. static int __init cciss_init(void)
  3924. {
  3925. int err;
  3926. /*
  3927. * The hardware requires that commands are aligned on a 64-bit
  3928. * boundary. Given that we use pci_alloc_consistent() to allocate an
  3929. * array of them, the size must be a multiple of 8 bytes.
  3930. */
  3931. BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
  3932. printk(KERN_INFO DRIVER_NAME "\n");
  3933. err = bus_register(&cciss_bus_type);
  3934. if (err)
  3935. return err;
  3936. /* Start the scan thread */
  3937. cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
  3938. if (IS_ERR(cciss_scan_thread)) {
  3939. err = PTR_ERR(cciss_scan_thread);
  3940. goto err_bus_unregister;
  3941. }
  3942. /* Register for our PCI devices */
  3943. err = pci_register_driver(&cciss_pci_driver);
  3944. if (err)
  3945. goto err_thread_stop;
  3946. return err;
  3947. err_thread_stop:
  3948. kthread_stop(cciss_scan_thread);
  3949. err_bus_unregister:
  3950. bus_unregister(&cciss_bus_type);
  3951. return err;
  3952. }
  3953. static void __exit cciss_cleanup(void)
  3954. {
  3955. int i;
  3956. pci_unregister_driver(&cciss_pci_driver);
  3957. /* double check that all controller entrys have been removed */
  3958. for (i = 0; i < MAX_CTLR; i++) {
  3959. if (hba[i] != NULL) {
  3960. printk(KERN_WARNING "cciss: had to remove"
  3961. " controller %d\n", i);
  3962. cciss_remove_one(hba[i]->pdev);
  3963. }
  3964. }
  3965. kthread_stop(cciss_scan_thread);
  3966. remove_proc_entry("driver/cciss", NULL);
  3967. bus_unregister(&cciss_bus_type);
  3968. }
  3969. static void fail_all_cmds(unsigned long ctlr)
  3970. {
  3971. /* If we get here, the board is apparently dead. */
  3972. ctlr_info_t *h = hba[ctlr];
  3973. CommandList_struct *c;
  3974. unsigned long flags;
  3975. printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
  3976. h->alive = 0; /* the controller apparently died... */
  3977. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  3978. pci_disable_device(h->pdev); /* Make sure it is really dead. */
  3979. /* move everything off the request queue onto the completed queue */
  3980. while (!hlist_empty(&h->reqQ)) {
  3981. c = hlist_entry(h->reqQ.first, CommandList_struct, list);
  3982. removeQ(c);
  3983. h->Qdepth--;
  3984. addQ(&h->cmpQ, c);
  3985. }
  3986. /* Now, fail everything on the completed queue with a HW error */
  3987. while (!hlist_empty(&h->cmpQ)) {
  3988. c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
  3989. removeQ(c);
  3990. if (c->cmd_type != CMD_MSG_STALE)
  3991. c->err_info->CommandStatus = CMD_HARDWARE_ERR;
  3992. if (c->cmd_type == CMD_RWREQ) {
  3993. complete_command(h, c, 0);
  3994. } else if (c->cmd_type == CMD_IOCTL_PEND)
  3995. complete(c->waiting);
  3996. #ifdef CONFIG_CISS_SCSI_TAPE
  3997. else if (c->cmd_type == CMD_SCSI)
  3998. complete_scsi_command(c, 0, 0);
  3999. #endif
  4000. }
  4001. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  4002. return;
  4003. }
  4004. module_init(cciss_init);
  4005. module_exit(cciss_cleanup);