x86.c 162 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <linux/hash.h>
  45. #include <trace/events/kvm.h>
  46. #define CREATE_TRACE_POINTS
  47. #include "trace.h"
  48. #include <asm/debugreg.h>
  49. #include <asm/msr.h>
  50. #include <asm/desc.h>
  51. #include <asm/mtrr.h>
  52. #include <asm/mce.h>
  53. #include <asm/i387.h>
  54. #include <asm/xcr.h>
  55. #include <asm/pvclock.h>
  56. #include <asm/div64.h>
  57. #define MAX_IO_MSRS 256
  58. #define KVM_MAX_MCE_BANKS 32
  59. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  60. #define emul_to_vcpu(ctxt) \
  61. container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  62. /* EFER defaults:
  63. * - enable syscall per default because its emulated by KVM
  64. * - enable LME and LMA per default on 64 bit KVM
  65. */
  66. #ifdef CONFIG_X86_64
  67. static
  68. u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  69. #else
  70. static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  71. #endif
  72. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  73. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  74. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  75. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  76. struct kvm_cpuid_entry2 __user *entries);
  77. struct kvm_x86_ops *kvm_x86_ops;
  78. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  79. int ignore_msrs = 0;
  80. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  81. bool kvm_has_tsc_control;
  82. EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
  83. u32 kvm_max_guest_tsc_khz;
  84. EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
  85. #define KVM_NR_SHARED_MSRS 16
  86. struct kvm_shared_msrs_global {
  87. int nr;
  88. u32 msrs[KVM_NR_SHARED_MSRS];
  89. };
  90. struct kvm_shared_msrs {
  91. struct user_return_notifier urn;
  92. bool registered;
  93. struct kvm_shared_msr_values {
  94. u64 host;
  95. u64 curr;
  96. } values[KVM_NR_SHARED_MSRS];
  97. };
  98. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  99. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  100. struct kvm_stats_debugfs_item debugfs_entries[] = {
  101. { "pf_fixed", VCPU_STAT(pf_fixed) },
  102. { "pf_guest", VCPU_STAT(pf_guest) },
  103. { "tlb_flush", VCPU_STAT(tlb_flush) },
  104. { "invlpg", VCPU_STAT(invlpg) },
  105. { "exits", VCPU_STAT(exits) },
  106. { "io_exits", VCPU_STAT(io_exits) },
  107. { "mmio_exits", VCPU_STAT(mmio_exits) },
  108. { "signal_exits", VCPU_STAT(signal_exits) },
  109. { "irq_window", VCPU_STAT(irq_window_exits) },
  110. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  111. { "halt_exits", VCPU_STAT(halt_exits) },
  112. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  113. { "hypercalls", VCPU_STAT(hypercalls) },
  114. { "request_irq", VCPU_STAT(request_irq_exits) },
  115. { "irq_exits", VCPU_STAT(irq_exits) },
  116. { "host_state_reload", VCPU_STAT(host_state_reload) },
  117. { "efer_reload", VCPU_STAT(efer_reload) },
  118. { "fpu_reload", VCPU_STAT(fpu_reload) },
  119. { "insn_emulation", VCPU_STAT(insn_emulation) },
  120. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  121. { "irq_injections", VCPU_STAT(irq_injections) },
  122. { "nmi_injections", VCPU_STAT(nmi_injections) },
  123. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  124. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  125. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  126. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  127. { "mmu_flooded", VM_STAT(mmu_flooded) },
  128. { "mmu_recycled", VM_STAT(mmu_recycled) },
  129. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  130. { "mmu_unsync", VM_STAT(mmu_unsync) },
  131. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  132. { "largepages", VM_STAT(lpages) },
  133. { NULL }
  134. };
  135. u64 __read_mostly host_xcr0;
  136. static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
  137. {
  138. int i;
  139. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
  140. vcpu->arch.apf.gfns[i] = ~0;
  141. }
  142. static void kvm_on_user_return(struct user_return_notifier *urn)
  143. {
  144. unsigned slot;
  145. struct kvm_shared_msrs *locals
  146. = container_of(urn, struct kvm_shared_msrs, urn);
  147. struct kvm_shared_msr_values *values;
  148. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  149. values = &locals->values[slot];
  150. if (values->host != values->curr) {
  151. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  152. values->curr = values->host;
  153. }
  154. }
  155. locals->registered = false;
  156. user_return_notifier_unregister(urn);
  157. }
  158. static void shared_msr_update(unsigned slot, u32 msr)
  159. {
  160. struct kvm_shared_msrs *smsr;
  161. u64 value;
  162. smsr = &__get_cpu_var(shared_msrs);
  163. /* only read, and nobody should modify it at this time,
  164. * so don't need lock */
  165. if (slot >= shared_msrs_global.nr) {
  166. printk(KERN_ERR "kvm: invalid MSR slot!");
  167. return;
  168. }
  169. rdmsrl_safe(msr, &value);
  170. smsr->values[slot].host = value;
  171. smsr->values[slot].curr = value;
  172. }
  173. void kvm_define_shared_msr(unsigned slot, u32 msr)
  174. {
  175. if (slot >= shared_msrs_global.nr)
  176. shared_msrs_global.nr = slot + 1;
  177. shared_msrs_global.msrs[slot] = msr;
  178. /* we need ensured the shared_msr_global have been updated */
  179. smp_wmb();
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  182. static void kvm_shared_msr_cpu_online(void)
  183. {
  184. unsigned i;
  185. for (i = 0; i < shared_msrs_global.nr; ++i)
  186. shared_msr_update(i, shared_msrs_global.msrs[i]);
  187. }
  188. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  189. {
  190. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  191. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  192. return;
  193. smsr->values[slot].curr = value;
  194. wrmsrl(shared_msrs_global.msrs[slot], value);
  195. if (!smsr->registered) {
  196. smsr->urn.on_user_return = kvm_on_user_return;
  197. user_return_notifier_register(&smsr->urn);
  198. smsr->registered = true;
  199. }
  200. }
  201. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  202. static void drop_user_return_notifiers(void *ignore)
  203. {
  204. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  205. if (smsr->registered)
  206. kvm_on_user_return(&smsr->urn);
  207. }
  208. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  209. {
  210. if (irqchip_in_kernel(vcpu->kvm))
  211. return vcpu->arch.apic_base;
  212. else
  213. return vcpu->arch.apic_base;
  214. }
  215. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  216. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  217. {
  218. /* TODO: reserve bits check */
  219. if (irqchip_in_kernel(vcpu->kvm))
  220. kvm_lapic_set_base(vcpu, data);
  221. else
  222. vcpu->arch.apic_base = data;
  223. }
  224. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  225. #define EXCPT_BENIGN 0
  226. #define EXCPT_CONTRIBUTORY 1
  227. #define EXCPT_PF 2
  228. static int exception_class(int vector)
  229. {
  230. switch (vector) {
  231. case PF_VECTOR:
  232. return EXCPT_PF;
  233. case DE_VECTOR:
  234. case TS_VECTOR:
  235. case NP_VECTOR:
  236. case SS_VECTOR:
  237. case GP_VECTOR:
  238. return EXCPT_CONTRIBUTORY;
  239. default:
  240. break;
  241. }
  242. return EXCPT_BENIGN;
  243. }
  244. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  245. unsigned nr, bool has_error, u32 error_code,
  246. bool reinject)
  247. {
  248. u32 prev_nr;
  249. int class1, class2;
  250. kvm_make_request(KVM_REQ_EVENT, vcpu);
  251. if (!vcpu->arch.exception.pending) {
  252. queue:
  253. vcpu->arch.exception.pending = true;
  254. vcpu->arch.exception.has_error_code = has_error;
  255. vcpu->arch.exception.nr = nr;
  256. vcpu->arch.exception.error_code = error_code;
  257. vcpu->arch.exception.reinject = reinject;
  258. return;
  259. }
  260. /* to check exception */
  261. prev_nr = vcpu->arch.exception.nr;
  262. if (prev_nr == DF_VECTOR) {
  263. /* triple fault -> shutdown */
  264. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  265. return;
  266. }
  267. class1 = exception_class(prev_nr);
  268. class2 = exception_class(nr);
  269. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  270. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  271. /* generate double fault per SDM Table 5-5 */
  272. vcpu->arch.exception.pending = true;
  273. vcpu->arch.exception.has_error_code = true;
  274. vcpu->arch.exception.nr = DF_VECTOR;
  275. vcpu->arch.exception.error_code = 0;
  276. } else
  277. /* replace previous exception with a new one in a hope
  278. that instruction re-execution will regenerate lost
  279. exception */
  280. goto queue;
  281. }
  282. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  283. {
  284. kvm_multiple_exception(vcpu, nr, false, 0, false);
  285. }
  286. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  287. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  288. {
  289. kvm_multiple_exception(vcpu, nr, false, 0, true);
  290. }
  291. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  292. void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
  293. {
  294. if (err)
  295. kvm_inject_gp(vcpu, 0);
  296. else
  297. kvm_x86_ops->skip_emulated_instruction(vcpu);
  298. }
  299. EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
  300. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  301. {
  302. ++vcpu->stat.pf_guest;
  303. vcpu->arch.cr2 = fault->address;
  304. kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
  305. }
  306. void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  307. {
  308. if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
  309. vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
  310. else
  311. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  312. }
  313. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  314. {
  315. kvm_make_request(KVM_REQ_EVENT, vcpu);
  316. vcpu->arch.nmi_pending = 1;
  317. }
  318. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  319. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  320. {
  321. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  322. }
  323. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  324. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  325. {
  326. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  327. }
  328. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  329. /*
  330. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  331. * a #GP and return false.
  332. */
  333. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  334. {
  335. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  336. return true;
  337. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  338. return false;
  339. }
  340. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  341. /*
  342. * This function will be used to read from the physical memory of the currently
  343. * running guest. The difference to kvm_read_guest_page is that this function
  344. * can read from guest physical or from the guest's guest physical memory.
  345. */
  346. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  347. gfn_t ngfn, void *data, int offset, int len,
  348. u32 access)
  349. {
  350. gfn_t real_gfn;
  351. gpa_t ngpa;
  352. ngpa = gfn_to_gpa(ngfn);
  353. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  354. if (real_gfn == UNMAPPED_GVA)
  355. return -EFAULT;
  356. real_gfn = gpa_to_gfn(real_gfn);
  357. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  358. }
  359. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  360. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  361. void *data, int offset, int len, u32 access)
  362. {
  363. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  364. data, offset, len, access);
  365. }
  366. /*
  367. * Load the pae pdptrs. Return true is they are all valid.
  368. */
  369. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  370. {
  371. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  372. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  373. int i;
  374. int ret;
  375. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  376. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  377. offset * sizeof(u64), sizeof(pdpte),
  378. PFERR_USER_MASK|PFERR_WRITE_MASK);
  379. if (ret < 0) {
  380. ret = 0;
  381. goto out;
  382. }
  383. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  384. if (is_present_gpte(pdpte[i]) &&
  385. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  386. ret = 0;
  387. goto out;
  388. }
  389. }
  390. ret = 1;
  391. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  392. __set_bit(VCPU_EXREG_PDPTR,
  393. (unsigned long *)&vcpu->arch.regs_avail);
  394. __set_bit(VCPU_EXREG_PDPTR,
  395. (unsigned long *)&vcpu->arch.regs_dirty);
  396. out:
  397. return ret;
  398. }
  399. EXPORT_SYMBOL_GPL(load_pdptrs);
  400. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  401. {
  402. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  403. bool changed = true;
  404. int offset;
  405. gfn_t gfn;
  406. int r;
  407. if (is_long_mode(vcpu) || !is_pae(vcpu))
  408. return false;
  409. if (!test_bit(VCPU_EXREG_PDPTR,
  410. (unsigned long *)&vcpu->arch.regs_avail))
  411. return true;
  412. gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
  413. offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
  414. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  415. PFERR_USER_MASK | PFERR_WRITE_MASK);
  416. if (r < 0)
  417. goto out;
  418. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  419. out:
  420. return changed;
  421. }
  422. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  423. {
  424. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  425. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  426. X86_CR0_CD | X86_CR0_NW;
  427. cr0 |= X86_CR0_ET;
  428. #ifdef CONFIG_X86_64
  429. if (cr0 & 0xffffffff00000000UL)
  430. return 1;
  431. #endif
  432. cr0 &= ~CR0_RESERVED_BITS;
  433. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  434. return 1;
  435. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  436. return 1;
  437. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  438. #ifdef CONFIG_X86_64
  439. if ((vcpu->arch.efer & EFER_LME)) {
  440. int cs_db, cs_l;
  441. if (!is_pae(vcpu))
  442. return 1;
  443. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  444. if (cs_l)
  445. return 1;
  446. } else
  447. #endif
  448. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  449. kvm_read_cr3(vcpu)))
  450. return 1;
  451. }
  452. kvm_x86_ops->set_cr0(vcpu, cr0);
  453. if ((cr0 ^ old_cr0) & X86_CR0_PG) {
  454. kvm_clear_async_pf_completion_queue(vcpu);
  455. kvm_async_pf_hash_reset(vcpu);
  456. }
  457. if ((cr0 ^ old_cr0) & update_bits)
  458. kvm_mmu_reset_context(vcpu);
  459. return 0;
  460. }
  461. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  462. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  463. {
  464. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  465. }
  466. EXPORT_SYMBOL_GPL(kvm_lmsw);
  467. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  468. {
  469. u64 xcr0;
  470. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  471. if (index != XCR_XFEATURE_ENABLED_MASK)
  472. return 1;
  473. xcr0 = xcr;
  474. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  475. return 1;
  476. if (!(xcr0 & XSTATE_FP))
  477. return 1;
  478. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  479. return 1;
  480. if (xcr0 & ~host_xcr0)
  481. return 1;
  482. vcpu->arch.xcr0 = xcr0;
  483. vcpu->guest_xcr0_loaded = 0;
  484. return 0;
  485. }
  486. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  487. {
  488. if (__kvm_set_xcr(vcpu, index, xcr)) {
  489. kvm_inject_gp(vcpu, 0);
  490. return 1;
  491. }
  492. return 0;
  493. }
  494. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  495. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  496. {
  497. struct kvm_cpuid_entry2 *best;
  498. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  499. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  500. }
  501. static void update_cpuid(struct kvm_vcpu *vcpu)
  502. {
  503. struct kvm_cpuid_entry2 *best;
  504. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  505. if (!best)
  506. return;
  507. /* Update OSXSAVE bit */
  508. if (cpu_has_xsave && best->function == 0x1) {
  509. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  510. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  511. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  512. }
  513. }
  514. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  515. {
  516. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  517. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  518. if (cr4 & CR4_RESERVED_BITS)
  519. return 1;
  520. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  521. return 1;
  522. if (is_long_mode(vcpu)) {
  523. if (!(cr4 & X86_CR4_PAE))
  524. return 1;
  525. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  526. && ((cr4 ^ old_cr4) & pdptr_bits)
  527. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  528. kvm_read_cr3(vcpu)))
  529. return 1;
  530. if (cr4 & X86_CR4_VMXE)
  531. return 1;
  532. kvm_x86_ops->set_cr4(vcpu, cr4);
  533. if ((cr4 ^ old_cr4) & pdptr_bits)
  534. kvm_mmu_reset_context(vcpu);
  535. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  536. update_cpuid(vcpu);
  537. return 0;
  538. }
  539. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  540. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  541. {
  542. if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
  543. kvm_mmu_sync_roots(vcpu);
  544. kvm_mmu_flush_tlb(vcpu);
  545. return 0;
  546. }
  547. if (is_long_mode(vcpu)) {
  548. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  549. return 1;
  550. } else {
  551. if (is_pae(vcpu)) {
  552. if (cr3 & CR3_PAE_RESERVED_BITS)
  553. return 1;
  554. if (is_paging(vcpu) &&
  555. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  556. return 1;
  557. }
  558. /*
  559. * We don't check reserved bits in nonpae mode, because
  560. * this isn't enforced, and VMware depends on this.
  561. */
  562. }
  563. /*
  564. * Does the new cr3 value map to physical memory? (Note, we
  565. * catch an invalid cr3 even in real-mode, because it would
  566. * cause trouble later on when we turn on paging anyway.)
  567. *
  568. * A real CPU would silently accept an invalid cr3 and would
  569. * attempt to use it - with largely undefined (and often hard
  570. * to debug) behavior on the guest side.
  571. */
  572. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  573. return 1;
  574. vcpu->arch.cr3 = cr3;
  575. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  576. vcpu->arch.mmu.new_cr3(vcpu);
  577. return 0;
  578. }
  579. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  580. int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  581. {
  582. if (cr8 & CR8_RESERVED_BITS)
  583. return 1;
  584. if (irqchip_in_kernel(vcpu->kvm))
  585. kvm_lapic_set_tpr(vcpu, cr8);
  586. else
  587. vcpu->arch.cr8 = cr8;
  588. return 0;
  589. }
  590. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  591. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  592. {
  593. if (irqchip_in_kernel(vcpu->kvm))
  594. return kvm_lapic_get_cr8(vcpu);
  595. else
  596. return vcpu->arch.cr8;
  597. }
  598. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  599. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  600. {
  601. switch (dr) {
  602. case 0 ... 3:
  603. vcpu->arch.db[dr] = val;
  604. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  605. vcpu->arch.eff_db[dr] = val;
  606. break;
  607. case 4:
  608. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  609. return 1; /* #UD */
  610. /* fall through */
  611. case 6:
  612. if (val & 0xffffffff00000000ULL)
  613. return -1; /* #GP */
  614. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  615. break;
  616. case 5:
  617. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  618. return 1; /* #UD */
  619. /* fall through */
  620. default: /* 7 */
  621. if (val & 0xffffffff00000000ULL)
  622. return -1; /* #GP */
  623. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  624. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  625. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  626. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  627. }
  628. break;
  629. }
  630. return 0;
  631. }
  632. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  633. {
  634. int res;
  635. res = __kvm_set_dr(vcpu, dr, val);
  636. if (res > 0)
  637. kvm_queue_exception(vcpu, UD_VECTOR);
  638. else if (res < 0)
  639. kvm_inject_gp(vcpu, 0);
  640. return res;
  641. }
  642. EXPORT_SYMBOL_GPL(kvm_set_dr);
  643. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  644. {
  645. switch (dr) {
  646. case 0 ... 3:
  647. *val = vcpu->arch.db[dr];
  648. break;
  649. case 4:
  650. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  651. return 1;
  652. /* fall through */
  653. case 6:
  654. *val = vcpu->arch.dr6;
  655. break;
  656. case 5:
  657. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  658. return 1;
  659. /* fall through */
  660. default: /* 7 */
  661. *val = vcpu->arch.dr7;
  662. break;
  663. }
  664. return 0;
  665. }
  666. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  667. {
  668. if (_kvm_get_dr(vcpu, dr, val)) {
  669. kvm_queue_exception(vcpu, UD_VECTOR);
  670. return 1;
  671. }
  672. return 0;
  673. }
  674. EXPORT_SYMBOL_GPL(kvm_get_dr);
  675. /*
  676. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  677. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  678. *
  679. * This list is modified at module load time to reflect the
  680. * capabilities of the host cpu. This capabilities test skips MSRs that are
  681. * kvm-specific. Those are put in the beginning of the list.
  682. */
  683. #define KVM_SAVE_MSRS_BEGIN 8
  684. static u32 msrs_to_save[] = {
  685. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  686. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  687. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  688. HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
  689. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  690. MSR_STAR,
  691. #ifdef CONFIG_X86_64
  692. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  693. #endif
  694. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  695. };
  696. static unsigned num_msrs_to_save;
  697. static u32 emulated_msrs[] = {
  698. MSR_IA32_MISC_ENABLE,
  699. MSR_IA32_MCG_STATUS,
  700. MSR_IA32_MCG_CTL,
  701. };
  702. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  703. {
  704. u64 old_efer = vcpu->arch.efer;
  705. if (efer & efer_reserved_bits)
  706. return 1;
  707. if (is_paging(vcpu)
  708. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  709. return 1;
  710. if (efer & EFER_FFXSR) {
  711. struct kvm_cpuid_entry2 *feat;
  712. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  713. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  714. return 1;
  715. }
  716. if (efer & EFER_SVME) {
  717. struct kvm_cpuid_entry2 *feat;
  718. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  719. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  720. return 1;
  721. }
  722. efer &= ~EFER_LMA;
  723. efer |= vcpu->arch.efer & EFER_LMA;
  724. kvm_x86_ops->set_efer(vcpu, efer);
  725. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  726. /* Update reserved bits */
  727. if ((efer ^ old_efer) & EFER_NX)
  728. kvm_mmu_reset_context(vcpu);
  729. return 0;
  730. }
  731. void kvm_enable_efer_bits(u64 mask)
  732. {
  733. efer_reserved_bits &= ~mask;
  734. }
  735. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  736. /*
  737. * Writes msr value into into the appropriate "register".
  738. * Returns 0 on success, non-0 otherwise.
  739. * Assumes vcpu_load() was already called.
  740. */
  741. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  742. {
  743. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  744. }
  745. /*
  746. * Adapt set_msr() to msr_io()'s calling convention
  747. */
  748. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  749. {
  750. return kvm_set_msr(vcpu, index, *data);
  751. }
  752. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  753. {
  754. int version;
  755. int r;
  756. struct pvclock_wall_clock wc;
  757. struct timespec boot;
  758. if (!wall_clock)
  759. return;
  760. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  761. if (r)
  762. return;
  763. if (version & 1)
  764. ++version; /* first time write, random junk */
  765. ++version;
  766. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  767. /*
  768. * The guest calculates current wall clock time by adding
  769. * system time (updated by kvm_guest_time_update below) to the
  770. * wall clock specified here. guest system time equals host
  771. * system time for us, thus we must fill in host boot time here.
  772. */
  773. getboottime(&boot);
  774. wc.sec = boot.tv_sec;
  775. wc.nsec = boot.tv_nsec;
  776. wc.version = version;
  777. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  778. version++;
  779. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  780. }
  781. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  782. {
  783. uint32_t quotient, remainder;
  784. /* Don't try to replace with do_div(), this one calculates
  785. * "(dividend << 32) / divisor" */
  786. __asm__ ( "divl %4"
  787. : "=a" (quotient), "=d" (remainder)
  788. : "0" (0), "1" (dividend), "r" (divisor) );
  789. return quotient;
  790. }
  791. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  792. s8 *pshift, u32 *pmultiplier)
  793. {
  794. uint64_t scaled64;
  795. int32_t shift = 0;
  796. uint64_t tps64;
  797. uint32_t tps32;
  798. tps64 = base_khz * 1000LL;
  799. scaled64 = scaled_khz * 1000LL;
  800. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  801. tps64 >>= 1;
  802. shift--;
  803. }
  804. tps32 = (uint32_t)tps64;
  805. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  806. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  807. scaled64 >>= 1;
  808. else
  809. tps32 <<= 1;
  810. shift++;
  811. }
  812. *pshift = shift;
  813. *pmultiplier = div_frac(scaled64, tps32);
  814. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  815. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  816. }
  817. static inline u64 get_kernel_ns(void)
  818. {
  819. struct timespec ts;
  820. WARN_ON(preemptible());
  821. ktime_get_ts(&ts);
  822. monotonic_to_bootbased(&ts);
  823. return timespec_to_ns(&ts);
  824. }
  825. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  826. unsigned long max_tsc_khz;
  827. static inline int kvm_tsc_changes_freq(void)
  828. {
  829. int cpu = get_cpu();
  830. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  831. cpufreq_quick_get(cpu) != 0;
  832. put_cpu();
  833. return ret;
  834. }
  835. static u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
  836. {
  837. if (vcpu->arch.virtual_tsc_khz)
  838. return vcpu->arch.virtual_tsc_khz;
  839. else
  840. return __this_cpu_read(cpu_tsc_khz);
  841. }
  842. static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
  843. {
  844. u64 ret;
  845. WARN_ON(preemptible());
  846. if (kvm_tsc_changes_freq())
  847. printk_once(KERN_WARNING
  848. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  849. ret = nsec * vcpu_tsc_khz(vcpu);
  850. do_div(ret, USEC_PER_SEC);
  851. return ret;
  852. }
  853. static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
  854. {
  855. /* Compute a scale to convert nanoseconds in TSC cycles */
  856. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  857. &vcpu->arch.tsc_catchup_shift,
  858. &vcpu->arch.tsc_catchup_mult);
  859. }
  860. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  861. {
  862. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
  863. vcpu->arch.tsc_catchup_mult,
  864. vcpu->arch.tsc_catchup_shift);
  865. tsc += vcpu->arch.last_tsc_write;
  866. return tsc;
  867. }
  868. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  869. {
  870. struct kvm *kvm = vcpu->kvm;
  871. u64 offset, ns, elapsed;
  872. unsigned long flags;
  873. s64 sdiff;
  874. raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  875. offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
  876. ns = get_kernel_ns();
  877. elapsed = ns - kvm->arch.last_tsc_nsec;
  878. sdiff = data - kvm->arch.last_tsc_write;
  879. if (sdiff < 0)
  880. sdiff = -sdiff;
  881. /*
  882. * Special case: close write to TSC within 5 seconds of
  883. * another CPU is interpreted as an attempt to synchronize
  884. * The 5 seconds is to accommodate host load / swapping as
  885. * well as any reset of TSC during the boot process.
  886. *
  887. * In that case, for a reliable TSC, we can match TSC offsets,
  888. * or make a best guest using elapsed value.
  889. */
  890. if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
  891. elapsed < 5ULL * NSEC_PER_SEC) {
  892. if (!check_tsc_unstable()) {
  893. offset = kvm->arch.last_tsc_offset;
  894. pr_debug("kvm: matched tsc offset for %llu\n", data);
  895. } else {
  896. u64 delta = nsec_to_cycles(vcpu, elapsed);
  897. offset += delta;
  898. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  899. }
  900. ns = kvm->arch.last_tsc_nsec;
  901. }
  902. kvm->arch.last_tsc_nsec = ns;
  903. kvm->arch.last_tsc_write = data;
  904. kvm->arch.last_tsc_offset = offset;
  905. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  906. raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  907. /* Reset of TSC must disable overshoot protection below */
  908. vcpu->arch.hv_clock.tsc_timestamp = 0;
  909. vcpu->arch.last_tsc_write = data;
  910. vcpu->arch.last_tsc_nsec = ns;
  911. }
  912. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  913. static int kvm_guest_time_update(struct kvm_vcpu *v)
  914. {
  915. unsigned long flags;
  916. struct kvm_vcpu_arch *vcpu = &v->arch;
  917. void *shared_kaddr;
  918. unsigned long this_tsc_khz;
  919. s64 kernel_ns, max_kernel_ns;
  920. u64 tsc_timestamp;
  921. /* Keep irq disabled to prevent changes to the clock */
  922. local_irq_save(flags);
  923. kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
  924. kernel_ns = get_kernel_ns();
  925. this_tsc_khz = vcpu_tsc_khz(v);
  926. if (unlikely(this_tsc_khz == 0)) {
  927. local_irq_restore(flags);
  928. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  929. return 1;
  930. }
  931. /*
  932. * We may have to catch up the TSC to match elapsed wall clock
  933. * time for two reasons, even if kvmclock is used.
  934. * 1) CPU could have been running below the maximum TSC rate
  935. * 2) Broken TSC compensation resets the base at each VCPU
  936. * entry to avoid unknown leaps of TSC even when running
  937. * again on the same CPU. This may cause apparent elapsed
  938. * time to disappear, and the guest to stand still or run
  939. * very slowly.
  940. */
  941. if (vcpu->tsc_catchup) {
  942. u64 tsc = compute_guest_tsc(v, kernel_ns);
  943. if (tsc > tsc_timestamp) {
  944. kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
  945. tsc_timestamp = tsc;
  946. }
  947. }
  948. local_irq_restore(flags);
  949. if (!vcpu->time_page)
  950. return 0;
  951. /*
  952. * Time as measured by the TSC may go backwards when resetting the base
  953. * tsc_timestamp. The reason for this is that the TSC resolution is
  954. * higher than the resolution of the other clock scales. Thus, many
  955. * possible measurments of the TSC correspond to one measurement of any
  956. * other clock, and so a spread of values is possible. This is not a
  957. * problem for the computation of the nanosecond clock; with TSC rates
  958. * around 1GHZ, there can only be a few cycles which correspond to one
  959. * nanosecond value, and any path through this code will inevitably
  960. * take longer than that. However, with the kernel_ns value itself,
  961. * the precision may be much lower, down to HZ granularity. If the
  962. * first sampling of TSC against kernel_ns ends in the low part of the
  963. * range, and the second in the high end of the range, we can get:
  964. *
  965. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  966. *
  967. * As the sampling errors potentially range in the thousands of cycles,
  968. * it is possible such a time value has already been observed by the
  969. * guest. To protect against this, we must compute the system time as
  970. * observed by the guest and ensure the new system time is greater.
  971. */
  972. max_kernel_ns = 0;
  973. if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
  974. max_kernel_ns = vcpu->last_guest_tsc -
  975. vcpu->hv_clock.tsc_timestamp;
  976. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  977. vcpu->hv_clock.tsc_to_system_mul,
  978. vcpu->hv_clock.tsc_shift);
  979. max_kernel_ns += vcpu->last_kernel_ns;
  980. }
  981. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  982. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  983. &vcpu->hv_clock.tsc_shift,
  984. &vcpu->hv_clock.tsc_to_system_mul);
  985. vcpu->hw_tsc_khz = this_tsc_khz;
  986. }
  987. if (max_kernel_ns > kernel_ns)
  988. kernel_ns = max_kernel_ns;
  989. /* With all the info we got, fill in the values */
  990. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  991. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  992. vcpu->last_kernel_ns = kernel_ns;
  993. vcpu->last_guest_tsc = tsc_timestamp;
  994. vcpu->hv_clock.flags = 0;
  995. /*
  996. * The interface expects us to write an even number signaling that the
  997. * update is finished. Since the guest won't see the intermediate
  998. * state, we just increase by 2 at the end.
  999. */
  1000. vcpu->hv_clock.version += 2;
  1001. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  1002. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  1003. sizeof(vcpu->hv_clock));
  1004. kunmap_atomic(shared_kaddr, KM_USER0);
  1005. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  1006. return 0;
  1007. }
  1008. static bool msr_mtrr_valid(unsigned msr)
  1009. {
  1010. switch (msr) {
  1011. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1012. case MSR_MTRRfix64K_00000:
  1013. case MSR_MTRRfix16K_80000:
  1014. case MSR_MTRRfix16K_A0000:
  1015. case MSR_MTRRfix4K_C0000:
  1016. case MSR_MTRRfix4K_C8000:
  1017. case MSR_MTRRfix4K_D0000:
  1018. case MSR_MTRRfix4K_D8000:
  1019. case MSR_MTRRfix4K_E0000:
  1020. case MSR_MTRRfix4K_E8000:
  1021. case MSR_MTRRfix4K_F0000:
  1022. case MSR_MTRRfix4K_F8000:
  1023. case MSR_MTRRdefType:
  1024. case MSR_IA32_CR_PAT:
  1025. return true;
  1026. case 0x2f8:
  1027. return true;
  1028. }
  1029. return false;
  1030. }
  1031. static bool valid_pat_type(unsigned t)
  1032. {
  1033. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1034. }
  1035. static bool valid_mtrr_type(unsigned t)
  1036. {
  1037. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1038. }
  1039. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1040. {
  1041. int i;
  1042. if (!msr_mtrr_valid(msr))
  1043. return false;
  1044. if (msr == MSR_IA32_CR_PAT) {
  1045. for (i = 0; i < 8; i++)
  1046. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1047. return false;
  1048. return true;
  1049. } else if (msr == MSR_MTRRdefType) {
  1050. if (data & ~0xcff)
  1051. return false;
  1052. return valid_mtrr_type(data & 0xff);
  1053. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1054. for (i = 0; i < 8 ; i++)
  1055. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1056. return false;
  1057. return true;
  1058. }
  1059. /* variable MTRRs */
  1060. return valid_mtrr_type(data & 0xff);
  1061. }
  1062. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1063. {
  1064. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1065. if (!mtrr_valid(vcpu, msr, data))
  1066. return 1;
  1067. if (msr == MSR_MTRRdefType) {
  1068. vcpu->arch.mtrr_state.def_type = data;
  1069. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1070. } else if (msr == MSR_MTRRfix64K_00000)
  1071. p[0] = data;
  1072. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1073. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1074. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1075. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1076. else if (msr == MSR_IA32_CR_PAT)
  1077. vcpu->arch.pat = data;
  1078. else { /* Variable MTRRs */
  1079. int idx, is_mtrr_mask;
  1080. u64 *pt;
  1081. idx = (msr - 0x200) / 2;
  1082. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1083. if (!is_mtrr_mask)
  1084. pt =
  1085. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1086. else
  1087. pt =
  1088. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1089. *pt = data;
  1090. }
  1091. kvm_mmu_reset_context(vcpu);
  1092. return 0;
  1093. }
  1094. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1095. {
  1096. u64 mcg_cap = vcpu->arch.mcg_cap;
  1097. unsigned bank_num = mcg_cap & 0xff;
  1098. switch (msr) {
  1099. case MSR_IA32_MCG_STATUS:
  1100. vcpu->arch.mcg_status = data;
  1101. break;
  1102. case MSR_IA32_MCG_CTL:
  1103. if (!(mcg_cap & MCG_CTL_P))
  1104. return 1;
  1105. if (data != 0 && data != ~(u64)0)
  1106. return -1;
  1107. vcpu->arch.mcg_ctl = data;
  1108. break;
  1109. default:
  1110. if (msr >= MSR_IA32_MC0_CTL &&
  1111. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1112. u32 offset = msr - MSR_IA32_MC0_CTL;
  1113. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1114. * some Linux kernels though clear bit 10 in bank 4 to
  1115. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1116. * this to avoid an uncatched #GP in the guest
  1117. */
  1118. if ((offset & 0x3) == 0 &&
  1119. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1120. return -1;
  1121. vcpu->arch.mce_banks[offset] = data;
  1122. break;
  1123. }
  1124. return 1;
  1125. }
  1126. return 0;
  1127. }
  1128. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1129. {
  1130. struct kvm *kvm = vcpu->kvm;
  1131. int lm = is_long_mode(vcpu);
  1132. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1133. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1134. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1135. : kvm->arch.xen_hvm_config.blob_size_32;
  1136. u32 page_num = data & ~PAGE_MASK;
  1137. u64 page_addr = data & PAGE_MASK;
  1138. u8 *page;
  1139. int r;
  1140. r = -E2BIG;
  1141. if (page_num >= blob_size)
  1142. goto out;
  1143. r = -ENOMEM;
  1144. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1145. if (!page)
  1146. goto out;
  1147. r = -EFAULT;
  1148. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1149. goto out_free;
  1150. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1151. goto out_free;
  1152. r = 0;
  1153. out_free:
  1154. kfree(page);
  1155. out:
  1156. return r;
  1157. }
  1158. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1159. {
  1160. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1161. }
  1162. static bool kvm_hv_msr_partition_wide(u32 msr)
  1163. {
  1164. bool r = false;
  1165. switch (msr) {
  1166. case HV_X64_MSR_GUEST_OS_ID:
  1167. case HV_X64_MSR_HYPERCALL:
  1168. r = true;
  1169. break;
  1170. }
  1171. return r;
  1172. }
  1173. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1174. {
  1175. struct kvm *kvm = vcpu->kvm;
  1176. switch (msr) {
  1177. case HV_X64_MSR_GUEST_OS_ID:
  1178. kvm->arch.hv_guest_os_id = data;
  1179. /* setting guest os id to zero disables hypercall page */
  1180. if (!kvm->arch.hv_guest_os_id)
  1181. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1182. break;
  1183. case HV_X64_MSR_HYPERCALL: {
  1184. u64 gfn;
  1185. unsigned long addr;
  1186. u8 instructions[4];
  1187. /* if guest os id is not set hypercall should remain disabled */
  1188. if (!kvm->arch.hv_guest_os_id)
  1189. break;
  1190. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1191. kvm->arch.hv_hypercall = data;
  1192. break;
  1193. }
  1194. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1195. addr = gfn_to_hva(kvm, gfn);
  1196. if (kvm_is_error_hva(addr))
  1197. return 1;
  1198. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1199. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1200. if (copy_to_user((void __user *)addr, instructions, 4))
  1201. return 1;
  1202. kvm->arch.hv_hypercall = data;
  1203. break;
  1204. }
  1205. default:
  1206. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1207. "data 0x%llx\n", msr, data);
  1208. return 1;
  1209. }
  1210. return 0;
  1211. }
  1212. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1213. {
  1214. switch (msr) {
  1215. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1216. unsigned long addr;
  1217. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1218. vcpu->arch.hv_vapic = data;
  1219. break;
  1220. }
  1221. addr = gfn_to_hva(vcpu->kvm, data >>
  1222. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1223. if (kvm_is_error_hva(addr))
  1224. return 1;
  1225. if (clear_user((void __user *)addr, PAGE_SIZE))
  1226. return 1;
  1227. vcpu->arch.hv_vapic = data;
  1228. break;
  1229. }
  1230. case HV_X64_MSR_EOI:
  1231. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1232. case HV_X64_MSR_ICR:
  1233. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1234. case HV_X64_MSR_TPR:
  1235. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1236. default:
  1237. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1238. "data 0x%llx\n", msr, data);
  1239. return 1;
  1240. }
  1241. return 0;
  1242. }
  1243. static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
  1244. {
  1245. gpa_t gpa = data & ~0x3f;
  1246. /* Bits 2:5 are resrved, Should be zero */
  1247. if (data & 0x3c)
  1248. return 1;
  1249. vcpu->arch.apf.msr_val = data;
  1250. if (!(data & KVM_ASYNC_PF_ENABLED)) {
  1251. kvm_clear_async_pf_completion_queue(vcpu);
  1252. kvm_async_pf_hash_reset(vcpu);
  1253. return 0;
  1254. }
  1255. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
  1256. return 1;
  1257. vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
  1258. kvm_async_pf_wakeup_all(vcpu);
  1259. return 0;
  1260. }
  1261. static void kvmclock_reset(struct kvm_vcpu *vcpu)
  1262. {
  1263. if (vcpu->arch.time_page) {
  1264. kvm_release_page_dirty(vcpu->arch.time_page);
  1265. vcpu->arch.time_page = NULL;
  1266. }
  1267. }
  1268. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1269. {
  1270. switch (msr) {
  1271. case MSR_EFER:
  1272. return set_efer(vcpu, data);
  1273. case MSR_K7_HWCR:
  1274. data &= ~(u64)0x40; /* ignore flush filter disable */
  1275. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1276. if (data != 0) {
  1277. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1278. data);
  1279. return 1;
  1280. }
  1281. break;
  1282. case MSR_FAM10H_MMIO_CONF_BASE:
  1283. if (data != 0) {
  1284. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1285. "0x%llx\n", data);
  1286. return 1;
  1287. }
  1288. break;
  1289. case MSR_AMD64_NB_CFG:
  1290. break;
  1291. case MSR_IA32_DEBUGCTLMSR:
  1292. if (!data) {
  1293. /* We support the non-activated case already */
  1294. break;
  1295. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1296. /* Values other than LBR and BTF are vendor-specific,
  1297. thus reserved and should throw a #GP */
  1298. return 1;
  1299. }
  1300. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1301. __func__, data);
  1302. break;
  1303. case MSR_IA32_UCODE_REV:
  1304. case MSR_IA32_UCODE_WRITE:
  1305. case MSR_VM_HSAVE_PA:
  1306. case MSR_AMD64_PATCH_LOADER:
  1307. break;
  1308. case 0x200 ... 0x2ff:
  1309. return set_msr_mtrr(vcpu, msr, data);
  1310. case MSR_IA32_APICBASE:
  1311. kvm_set_apic_base(vcpu, data);
  1312. break;
  1313. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1314. return kvm_x2apic_msr_write(vcpu, msr, data);
  1315. case MSR_IA32_MISC_ENABLE:
  1316. vcpu->arch.ia32_misc_enable_msr = data;
  1317. break;
  1318. case MSR_KVM_WALL_CLOCK_NEW:
  1319. case MSR_KVM_WALL_CLOCK:
  1320. vcpu->kvm->arch.wall_clock = data;
  1321. kvm_write_wall_clock(vcpu->kvm, data);
  1322. break;
  1323. case MSR_KVM_SYSTEM_TIME_NEW:
  1324. case MSR_KVM_SYSTEM_TIME: {
  1325. kvmclock_reset(vcpu);
  1326. vcpu->arch.time = data;
  1327. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1328. /* we verify if the enable bit is set... */
  1329. if (!(data & 1))
  1330. break;
  1331. /* ...but clean it before doing the actual write */
  1332. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1333. vcpu->arch.time_page =
  1334. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1335. if (is_error_page(vcpu->arch.time_page)) {
  1336. kvm_release_page_clean(vcpu->arch.time_page);
  1337. vcpu->arch.time_page = NULL;
  1338. }
  1339. break;
  1340. }
  1341. case MSR_KVM_ASYNC_PF_EN:
  1342. if (kvm_pv_enable_async_pf(vcpu, data))
  1343. return 1;
  1344. break;
  1345. case MSR_IA32_MCG_CTL:
  1346. case MSR_IA32_MCG_STATUS:
  1347. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1348. return set_msr_mce(vcpu, msr, data);
  1349. /* Performance counters are not protected by a CPUID bit,
  1350. * so we should check all of them in the generic path for the sake of
  1351. * cross vendor migration.
  1352. * Writing a zero into the event select MSRs disables them,
  1353. * which we perfectly emulate ;-). Any other value should be at least
  1354. * reported, some guests depend on them.
  1355. */
  1356. case MSR_P6_EVNTSEL0:
  1357. case MSR_P6_EVNTSEL1:
  1358. case MSR_K7_EVNTSEL0:
  1359. case MSR_K7_EVNTSEL1:
  1360. case MSR_K7_EVNTSEL2:
  1361. case MSR_K7_EVNTSEL3:
  1362. if (data != 0)
  1363. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1364. "0x%x data 0x%llx\n", msr, data);
  1365. break;
  1366. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1367. * so we ignore writes to make it happy.
  1368. */
  1369. case MSR_P6_PERFCTR0:
  1370. case MSR_P6_PERFCTR1:
  1371. case MSR_K7_PERFCTR0:
  1372. case MSR_K7_PERFCTR1:
  1373. case MSR_K7_PERFCTR2:
  1374. case MSR_K7_PERFCTR3:
  1375. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1376. "0x%x data 0x%llx\n", msr, data);
  1377. break;
  1378. case MSR_K7_CLK_CTL:
  1379. /*
  1380. * Ignore all writes to this no longer documented MSR.
  1381. * Writes are only relevant for old K7 processors,
  1382. * all pre-dating SVM, but a recommended workaround from
  1383. * AMD for these chips. It is possible to speicify the
  1384. * affected processor models on the command line, hence
  1385. * the need to ignore the workaround.
  1386. */
  1387. break;
  1388. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1389. if (kvm_hv_msr_partition_wide(msr)) {
  1390. int r;
  1391. mutex_lock(&vcpu->kvm->lock);
  1392. r = set_msr_hyperv_pw(vcpu, msr, data);
  1393. mutex_unlock(&vcpu->kvm->lock);
  1394. return r;
  1395. } else
  1396. return set_msr_hyperv(vcpu, msr, data);
  1397. break;
  1398. case MSR_IA32_BBL_CR_CTL3:
  1399. /* Drop writes to this legacy MSR -- see rdmsr
  1400. * counterpart for further detail.
  1401. */
  1402. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
  1403. break;
  1404. default:
  1405. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1406. return xen_hvm_config(vcpu, data);
  1407. if (!ignore_msrs) {
  1408. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1409. msr, data);
  1410. return 1;
  1411. } else {
  1412. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1413. msr, data);
  1414. break;
  1415. }
  1416. }
  1417. return 0;
  1418. }
  1419. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1420. /*
  1421. * Reads an msr value (of 'msr_index') into 'pdata'.
  1422. * Returns 0 on success, non-0 otherwise.
  1423. * Assumes vcpu_load() was already called.
  1424. */
  1425. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1426. {
  1427. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1428. }
  1429. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1430. {
  1431. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1432. if (!msr_mtrr_valid(msr))
  1433. return 1;
  1434. if (msr == MSR_MTRRdefType)
  1435. *pdata = vcpu->arch.mtrr_state.def_type +
  1436. (vcpu->arch.mtrr_state.enabled << 10);
  1437. else if (msr == MSR_MTRRfix64K_00000)
  1438. *pdata = p[0];
  1439. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1440. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1441. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1442. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1443. else if (msr == MSR_IA32_CR_PAT)
  1444. *pdata = vcpu->arch.pat;
  1445. else { /* Variable MTRRs */
  1446. int idx, is_mtrr_mask;
  1447. u64 *pt;
  1448. idx = (msr - 0x200) / 2;
  1449. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1450. if (!is_mtrr_mask)
  1451. pt =
  1452. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1453. else
  1454. pt =
  1455. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1456. *pdata = *pt;
  1457. }
  1458. return 0;
  1459. }
  1460. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1461. {
  1462. u64 data;
  1463. u64 mcg_cap = vcpu->arch.mcg_cap;
  1464. unsigned bank_num = mcg_cap & 0xff;
  1465. switch (msr) {
  1466. case MSR_IA32_P5_MC_ADDR:
  1467. case MSR_IA32_P5_MC_TYPE:
  1468. data = 0;
  1469. break;
  1470. case MSR_IA32_MCG_CAP:
  1471. data = vcpu->arch.mcg_cap;
  1472. break;
  1473. case MSR_IA32_MCG_CTL:
  1474. if (!(mcg_cap & MCG_CTL_P))
  1475. return 1;
  1476. data = vcpu->arch.mcg_ctl;
  1477. break;
  1478. case MSR_IA32_MCG_STATUS:
  1479. data = vcpu->arch.mcg_status;
  1480. break;
  1481. default:
  1482. if (msr >= MSR_IA32_MC0_CTL &&
  1483. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1484. u32 offset = msr - MSR_IA32_MC0_CTL;
  1485. data = vcpu->arch.mce_banks[offset];
  1486. break;
  1487. }
  1488. return 1;
  1489. }
  1490. *pdata = data;
  1491. return 0;
  1492. }
  1493. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1494. {
  1495. u64 data = 0;
  1496. struct kvm *kvm = vcpu->kvm;
  1497. switch (msr) {
  1498. case HV_X64_MSR_GUEST_OS_ID:
  1499. data = kvm->arch.hv_guest_os_id;
  1500. break;
  1501. case HV_X64_MSR_HYPERCALL:
  1502. data = kvm->arch.hv_hypercall;
  1503. break;
  1504. default:
  1505. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1506. return 1;
  1507. }
  1508. *pdata = data;
  1509. return 0;
  1510. }
  1511. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1512. {
  1513. u64 data = 0;
  1514. switch (msr) {
  1515. case HV_X64_MSR_VP_INDEX: {
  1516. int r;
  1517. struct kvm_vcpu *v;
  1518. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1519. if (v == vcpu)
  1520. data = r;
  1521. break;
  1522. }
  1523. case HV_X64_MSR_EOI:
  1524. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1525. case HV_X64_MSR_ICR:
  1526. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1527. case HV_X64_MSR_TPR:
  1528. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1529. default:
  1530. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1531. return 1;
  1532. }
  1533. *pdata = data;
  1534. return 0;
  1535. }
  1536. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1537. {
  1538. u64 data;
  1539. switch (msr) {
  1540. case MSR_IA32_PLATFORM_ID:
  1541. case MSR_IA32_UCODE_REV:
  1542. case MSR_IA32_EBL_CR_POWERON:
  1543. case MSR_IA32_DEBUGCTLMSR:
  1544. case MSR_IA32_LASTBRANCHFROMIP:
  1545. case MSR_IA32_LASTBRANCHTOIP:
  1546. case MSR_IA32_LASTINTFROMIP:
  1547. case MSR_IA32_LASTINTTOIP:
  1548. case MSR_K8_SYSCFG:
  1549. case MSR_K7_HWCR:
  1550. case MSR_VM_HSAVE_PA:
  1551. case MSR_P6_PERFCTR0:
  1552. case MSR_P6_PERFCTR1:
  1553. case MSR_P6_EVNTSEL0:
  1554. case MSR_P6_EVNTSEL1:
  1555. case MSR_K7_EVNTSEL0:
  1556. case MSR_K7_PERFCTR0:
  1557. case MSR_K8_INT_PENDING_MSG:
  1558. case MSR_AMD64_NB_CFG:
  1559. case MSR_FAM10H_MMIO_CONF_BASE:
  1560. data = 0;
  1561. break;
  1562. case MSR_MTRRcap:
  1563. data = 0x500 | KVM_NR_VAR_MTRR;
  1564. break;
  1565. case 0x200 ... 0x2ff:
  1566. return get_msr_mtrr(vcpu, msr, pdata);
  1567. case 0xcd: /* fsb frequency */
  1568. data = 3;
  1569. break;
  1570. /*
  1571. * MSR_EBC_FREQUENCY_ID
  1572. * Conservative value valid for even the basic CPU models.
  1573. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1574. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1575. * and 266MHz for model 3, or 4. Set Core Clock
  1576. * Frequency to System Bus Frequency Ratio to 1 (bits
  1577. * 31:24) even though these are only valid for CPU
  1578. * models > 2, however guests may end up dividing or
  1579. * multiplying by zero otherwise.
  1580. */
  1581. case MSR_EBC_FREQUENCY_ID:
  1582. data = 1 << 24;
  1583. break;
  1584. case MSR_IA32_APICBASE:
  1585. data = kvm_get_apic_base(vcpu);
  1586. break;
  1587. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1588. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1589. break;
  1590. case MSR_IA32_MISC_ENABLE:
  1591. data = vcpu->arch.ia32_misc_enable_msr;
  1592. break;
  1593. case MSR_IA32_PERF_STATUS:
  1594. /* TSC increment by tick */
  1595. data = 1000ULL;
  1596. /* CPU multiplier */
  1597. data |= (((uint64_t)4ULL) << 40);
  1598. break;
  1599. case MSR_EFER:
  1600. data = vcpu->arch.efer;
  1601. break;
  1602. case MSR_KVM_WALL_CLOCK:
  1603. case MSR_KVM_WALL_CLOCK_NEW:
  1604. data = vcpu->kvm->arch.wall_clock;
  1605. break;
  1606. case MSR_KVM_SYSTEM_TIME:
  1607. case MSR_KVM_SYSTEM_TIME_NEW:
  1608. data = vcpu->arch.time;
  1609. break;
  1610. case MSR_KVM_ASYNC_PF_EN:
  1611. data = vcpu->arch.apf.msr_val;
  1612. break;
  1613. case MSR_IA32_P5_MC_ADDR:
  1614. case MSR_IA32_P5_MC_TYPE:
  1615. case MSR_IA32_MCG_CAP:
  1616. case MSR_IA32_MCG_CTL:
  1617. case MSR_IA32_MCG_STATUS:
  1618. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1619. return get_msr_mce(vcpu, msr, pdata);
  1620. case MSR_K7_CLK_CTL:
  1621. /*
  1622. * Provide expected ramp-up count for K7. All other
  1623. * are set to zero, indicating minimum divisors for
  1624. * every field.
  1625. *
  1626. * This prevents guest kernels on AMD host with CPU
  1627. * type 6, model 8 and higher from exploding due to
  1628. * the rdmsr failing.
  1629. */
  1630. data = 0x20000000;
  1631. break;
  1632. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1633. if (kvm_hv_msr_partition_wide(msr)) {
  1634. int r;
  1635. mutex_lock(&vcpu->kvm->lock);
  1636. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1637. mutex_unlock(&vcpu->kvm->lock);
  1638. return r;
  1639. } else
  1640. return get_msr_hyperv(vcpu, msr, pdata);
  1641. break;
  1642. case MSR_IA32_BBL_CR_CTL3:
  1643. /* This legacy MSR exists but isn't fully documented in current
  1644. * silicon. It is however accessed by winxp in very narrow
  1645. * scenarios where it sets bit #19, itself documented as
  1646. * a "reserved" bit. Best effort attempt to source coherent
  1647. * read data here should the balance of the register be
  1648. * interpreted by the guest:
  1649. *
  1650. * L2 cache control register 3: 64GB range, 256KB size,
  1651. * enabled, latency 0x1, configured
  1652. */
  1653. data = 0xbe702111;
  1654. break;
  1655. default:
  1656. if (!ignore_msrs) {
  1657. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1658. return 1;
  1659. } else {
  1660. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1661. data = 0;
  1662. }
  1663. break;
  1664. }
  1665. *pdata = data;
  1666. return 0;
  1667. }
  1668. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1669. /*
  1670. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1671. *
  1672. * @return number of msrs set successfully.
  1673. */
  1674. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1675. struct kvm_msr_entry *entries,
  1676. int (*do_msr)(struct kvm_vcpu *vcpu,
  1677. unsigned index, u64 *data))
  1678. {
  1679. int i, idx;
  1680. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1681. for (i = 0; i < msrs->nmsrs; ++i)
  1682. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1683. break;
  1684. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1685. return i;
  1686. }
  1687. /*
  1688. * Read or write a bunch of msrs. Parameters are user addresses.
  1689. *
  1690. * @return number of msrs set successfully.
  1691. */
  1692. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1693. int (*do_msr)(struct kvm_vcpu *vcpu,
  1694. unsigned index, u64 *data),
  1695. int writeback)
  1696. {
  1697. struct kvm_msrs msrs;
  1698. struct kvm_msr_entry *entries;
  1699. int r, n;
  1700. unsigned size;
  1701. r = -EFAULT;
  1702. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1703. goto out;
  1704. r = -E2BIG;
  1705. if (msrs.nmsrs >= MAX_IO_MSRS)
  1706. goto out;
  1707. r = -ENOMEM;
  1708. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1709. entries = kmalloc(size, GFP_KERNEL);
  1710. if (!entries)
  1711. goto out;
  1712. r = -EFAULT;
  1713. if (copy_from_user(entries, user_msrs->entries, size))
  1714. goto out_free;
  1715. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1716. if (r < 0)
  1717. goto out_free;
  1718. r = -EFAULT;
  1719. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1720. goto out_free;
  1721. r = n;
  1722. out_free:
  1723. kfree(entries);
  1724. out:
  1725. return r;
  1726. }
  1727. int kvm_dev_ioctl_check_extension(long ext)
  1728. {
  1729. int r;
  1730. switch (ext) {
  1731. case KVM_CAP_IRQCHIP:
  1732. case KVM_CAP_HLT:
  1733. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1734. case KVM_CAP_SET_TSS_ADDR:
  1735. case KVM_CAP_EXT_CPUID:
  1736. case KVM_CAP_CLOCKSOURCE:
  1737. case KVM_CAP_PIT:
  1738. case KVM_CAP_NOP_IO_DELAY:
  1739. case KVM_CAP_MP_STATE:
  1740. case KVM_CAP_SYNC_MMU:
  1741. case KVM_CAP_USER_NMI:
  1742. case KVM_CAP_REINJECT_CONTROL:
  1743. case KVM_CAP_IRQ_INJECT_STATUS:
  1744. case KVM_CAP_ASSIGN_DEV_IRQ:
  1745. case KVM_CAP_IRQFD:
  1746. case KVM_CAP_IOEVENTFD:
  1747. case KVM_CAP_PIT2:
  1748. case KVM_CAP_PIT_STATE2:
  1749. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1750. case KVM_CAP_XEN_HVM:
  1751. case KVM_CAP_ADJUST_CLOCK:
  1752. case KVM_CAP_VCPU_EVENTS:
  1753. case KVM_CAP_HYPERV:
  1754. case KVM_CAP_HYPERV_VAPIC:
  1755. case KVM_CAP_HYPERV_SPIN:
  1756. case KVM_CAP_PCI_SEGMENT:
  1757. case KVM_CAP_DEBUGREGS:
  1758. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1759. case KVM_CAP_XSAVE:
  1760. case KVM_CAP_ASYNC_PF:
  1761. case KVM_CAP_GET_TSC_KHZ:
  1762. r = 1;
  1763. break;
  1764. case KVM_CAP_COALESCED_MMIO:
  1765. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1766. break;
  1767. case KVM_CAP_VAPIC:
  1768. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1769. break;
  1770. case KVM_CAP_NR_VCPUS:
  1771. r = KVM_MAX_VCPUS;
  1772. break;
  1773. case KVM_CAP_NR_MEMSLOTS:
  1774. r = KVM_MEMORY_SLOTS;
  1775. break;
  1776. case KVM_CAP_PV_MMU: /* obsolete */
  1777. r = 0;
  1778. break;
  1779. case KVM_CAP_IOMMU:
  1780. r = iommu_found();
  1781. break;
  1782. case KVM_CAP_MCE:
  1783. r = KVM_MAX_MCE_BANKS;
  1784. break;
  1785. case KVM_CAP_XCRS:
  1786. r = cpu_has_xsave;
  1787. break;
  1788. case KVM_CAP_TSC_CONTROL:
  1789. r = kvm_has_tsc_control;
  1790. break;
  1791. default:
  1792. r = 0;
  1793. break;
  1794. }
  1795. return r;
  1796. }
  1797. long kvm_arch_dev_ioctl(struct file *filp,
  1798. unsigned int ioctl, unsigned long arg)
  1799. {
  1800. void __user *argp = (void __user *)arg;
  1801. long r;
  1802. switch (ioctl) {
  1803. case KVM_GET_MSR_INDEX_LIST: {
  1804. struct kvm_msr_list __user *user_msr_list = argp;
  1805. struct kvm_msr_list msr_list;
  1806. unsigned n;
  1807. r = -EFAULT;
  1808. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1809. goto out;
  1810. n = msr_list.nmsrs;
  1811. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1812. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1813. goto out;
  1814. r = -E2BIG;
  1815. if (n < msr_list.nmsrs)
  1816. goto out;
  1817. r = -EFAULT;
  1818. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1819. num_msrs_to_save * sizeof(u32)))
  1820. goto out;
  1821. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1822. &emulated_msrs,
  1823. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1824. goto out;
  1825. r = 0;
  1826. break;
  1827. }
  1828. case KVM_GET_SUPPORTED_CPUID: {
  1829. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1830. struct kvm_cpuid2 cpuid;
  1831. r = -EFAULT;
  1832. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1833. goto out;
  1834. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1835. cpuid_arg->entries);
  1836. if (r)
  1837. goto out;
  1838. r = -EFAULT;
  1839. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1840. goto out;
  1841. r = 0;
  1842. break;
  1843. }
  1844. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1845. u64 mce_cap;
  1846. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1847. r = -EFAULT;
  1848. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1849. goto out;
  1850. r = 0;
  1851. break;
  1852. }
  1853. default:
  1854. r = -EINVAL;
  1855. }
  1856. out:
  1857. return r;
  1858. }
  1859. static void wbinvd_ipi(void *garbage)
  1860. {
  1861. wbinvd();
  1862. }
  1863. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1864. {
  1865. return vcpu->kvm->arch.iommu_domain &&
  1866. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1867. }
  1868. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1869. {
  1870. /* Address WBINVD may be executed by guest */
  1871. if (need_emulate_wbinvd(vcpu)) {
  1872. if (kvm_x86_ops->has_wbinvd_exit())
  1873. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1874. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1875. smp_call_function_single(vcpu->cpu,
  1876. wbinvd_ipi, NULL, 1);
  1877. }
  1878. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1879. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1880. /* Make sure TSC doesn't go backwards */
  1881. s64 tsc_delta;
  1882. u64 tsc;
  1883. kvm_get_msr(vcpu, MSR_IA32_TSC, &tsc);
  1884. tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
  1885. tsc - vcpu->arch.last_guest_tsc;
  1886. if (tsc_delta < 0)
  1887. mark_tsc_unstable("KVM discovered backwards TSC");
  1888. if (check_tsc_unstable()) {
  1889. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1890. vcpu->arch.tsc_catchup = 1;
  1891. }
  1892. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1893. if (vcpu->cpu != cpu)
  1894. kvm_migrate_timers(vcpu);
  1895. vcpu->cpu = cpu;
  1896. }
  1897. }
  1898. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1899. {
  1900. kvm_x86_ops->vcpu_put(vcpu);
  1901. kvm_put_guest_fpu(vcpu);
  1902. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  1903. }
  1904. static int is_efer_nx(void)
  1905. {
  1906. unsigned long long efer = 0;
  1907. rdmsrl_safe(MSR_EFER, &efer);
  1908. return efer & EFER_NX;
  1909. }
  1910. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1911. {
  1912. int i;
  1913. struct kvm_cpuid_entry2 *e, *entry;
  1914. entry = NULL;
  1915. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1916. e = &vcpu->arch.cpuid_entries[i];
  1917. if (e->function == 0x80000001) {
  1918. entry = e;
  1919. break;
  1920. }
  1921. }
  1922. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1923. entry->edx &= ~(1 << 20);
  1924. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1925. }
  1926. }
  1927. /* when an old userspace process fills a new kernel module */
  1928. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1929. struct kvm_cpuid *cpuid,
  1930. struct kvm_cpuid_entry __user *entries)
  1931. {
  1932. int r, i;
  1933. struct kvm_cpuid_entry *cpuid_entries;
  1934. r = -E2BIG;
  1935. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1936. goto out;
  1937. r = -ENOMEM;
  1938. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1939. if (!cpuid_entries)
  1940. goto out;
  1941. r = -EFAULT;
  1942. if (copy_from_user(cpuid_entries, entries,
  1943. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1944. goto out_free;
  1945. for (i = 0; i < cpuid->nent; i++) {
  1946. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1947. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1948. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1949. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1950. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1951. vcpu->arch.cpuid_entries[i].index = 0;
  1952. vcpu->arch.cpuid_entries[i].flags = 0;
  1953. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1954. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1955. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1956. }
  1957. vcpu->arch.cpuid_nent = cpuid->nent;
  1958. cpuid_fix_nx_cap(vcpu);
  1959. r = 0;
  1960. kvm_apic_set_version(vcpu);
  1961. kvm_x86_ops->cpuid_update(vcpu);
  1962. update_cpuid(vcpu);
  1963. out_free:
  1964. vfree(cpuid_entries);
  1965. out:
  1966. return r;
  1967. }
  1968. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1969. struct kvm_cpuid2 *cpuid,
  1970. struct kvm_cpuid_entry2 __user *entries)
  1971. {
  1972. int r;
  1973. r = -E2BIG;
  1974. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1975. goto out;
  1976. r = -EFAULT;
  1977. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1978. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1979. goto out;
  1980. vcpu->arch.cpuid_nent = cpuid->nent;
  1981. kvm_apic_set_version(vcpu);
  1982. kvm_x86_ops->cpuid_update(vcpu);
  1983. update_cpuid(vcpu);
  1984. return 0;
  1985. out:
  1986. return r;
  1987. }
  1988. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1989. struct kvm_cpuid2 *cpuid,
  1990. struct kvm_cpuid_entry2 __user *entries)
  1991. {
  1992. int r;
  1993. r = -E2BIG;
  1994. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1995. goto out;
  1996. r = -EFAULT;
  1997. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1998. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1999. goto out;
  2000. return 0;
  2001. out:
  2002. cpuid->nent = vcpu->arch.cpuid_nent;
  2003. return r;
  2004. }
  2005. static void cpuid_mask(u32 *word, int wordnum)
  2006. {
  2007. *word &= boot_cpu_data.x86_capability[wordnum];
  2008. }
  2009. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  2010. u32 index)
  2011. {
  2012. entry->function = function;
  2013. entry->index = index;
  2014. cpuid_count(entry->function, entry->index,
  2015. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  2016. entry->flags = 0;
  2017. }
  2018. #define F(x) bit(X86_FEATURE_##x)
  2019. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  2020. u32 index, int *nent, int maxnent)
  2021. {
  2022. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  2023. #ifdef CONFIG_X86_64
  2024. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  2025. ? F(GBPAGES) : 0;
  2026. unsigned f_lm = F(LM);
  2027. #else
  2028. unsigned f_gbpages = 0;
  2029. unsigned f_lm = 0;
  2030. #endif
  2031. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  2032. /* cpuid 1.edx */
  2033. const u32 kvm_supported_word0_x86_features =
  2034. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2035. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2036. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  2037. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2038. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  2039. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  2040. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  2041. 0 /* HTT, TM, Reserved, PBE */;
  2042. /* cpuid 0x80000001.edx */
  2043. const u32 kvm_supported_word1_x86_features =
  2044. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2045. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2046. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  2047. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2048. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  2049. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  2050. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  2051. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  2052. /* cpuid 1.ecx */
  2053. const u32 kvm_supported_word4_x86_features =
  2054. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  2055. 0 /* DS-CPL, VMX, SMX, EST */ |
  2056. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  2057. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  2058. 0 /* Reserved, DCA */ | F(XMM4_1) |
  2059. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  2060. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  2061. F(F16C);
  2062. /* cpuid 0x80000001.ecx */
  2063. const u32 kvm_supported_word6_x86_features =
  2064. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  2065. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  2066. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
  2067. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  2068. /* all calls to cpuid_count() should be made on the same cpu */
  2069. get_cpu();
  2070. do_cpuid_1_ent(entry, function, index);
  2071. ++*nent;
  2072. switch (function) {
  2073. case 0:
  2074. entry->eax = min(entry->eax, (u32)0xd);
  2075. break;
  2076. case 1:
  2077. entry->edx &= kvm_supported_word0_x86_features;
  2078. cpuid_mask(&entry->edx, 0);
  2079. entry->ecx &= kvm_supported_word4_x86_features;
  2080. cpuid_mask(&entry->ecx, 4);
  2081. /* we support x2apic emulation even if host does not support
  2082. * it since we emulate x2apic in software */
  2083. entry->ecx |= F(X2APIC);
  2084. break;
  2085. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  2086. * may return different values. This forces us to get_cpu() before
  2087. * issuing the first command, and also to emulate this annoying behavior
  2088. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  2089. case 2: {
  2090. int t, times = entry->eax & 0xff;
  2091. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2092. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2093. for (t = 1; t < times && *nent < maxnent; ++t) {
  2094. do_cpuid_1_ent(&entry[t], function, 0);
  2095. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2096. ++*nent;
  2097. }
  2098. break;
  2099. }
  2100. /* function 4 and 0xb have additional index. */
  2101. case 4: {
  2102. int i, cache_type;
  2103. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2104. /* read more entries until cache_type is zero */
  2105. for (i = 1; *nent < maxnent; ++i) {
  2106. cache_type = entry[i - 1].eax & 0x1f;
  2107. if (!cache_type)
  2108. break;
  2109. do_cpuid_1_ent(&entry[i], function, i);
  2110. entry[i].flags |=
  2111. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2112. ++*nent;
  2113. }
  2114. break;
  2115. }
  2116. case 0xb: {
  2117. int i, level_type;
  2118. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2119. /* read more entries until level_type is zero */
  2120. for (i = 1; *nent < maxnent; ++i) {
  2121. level_type = entry[i - 1].ecx & 0xff00;
  2122. if (!level_type)
  2123. break;
  2124. do_cpuid_1_ent(&entry[i], function, i);
  2125. entry[i].flags |=
  2126. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2127. ++*nent;
  2128. }
  2129. break;
  2130. }
  2131. case 0xd: {
  2132. int i;
  2133. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2134. for (i = 1; *nent < maxnent && i < 64; ++i) {
  2135. if (entry[i].eax == 0)
  2136. continue;
  2137. do_cpuid_1_ent(&entry[i], function, i);
  2138. entry[i].flags |=
  2139. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2140. ++*nent;
  2141. }
  2142. break;
  2143. }
  2144. case KVM_CPUID_SIGNATURE: {
  2145. char signature[12] = "KVMKVMKVM\0\0";
  2146. u32 *sigptr = (u32 *)signature;
  2147. entry->eax = 0;
  2148. entry->ebx = sigptr[0];
  2149. entry->ecx = sigptr[1];
  2150. entry->edx = sigptr[2];
  2151. break;
  2152. }
  2153. case KVM_CPUID_FEATURES:
  2154. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  2155. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  2156. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  2157. (1 << KVM_FEATURE_ASYNC_PF) |
  2158. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  2159. entry->ebx = 0;
  2160. entry->ecx = 0;
  2161. entry->edx = 0;
  2162. break;
  2163. case 0x80000000:
  2164. entry->eax = min(entry->eax, 0x8000001a);
  2165. break;
  2166. case 0x80000001:
  2167. entry->edx &= kvm_supported_word1_x86_features;
  2168. cpuid_mask(&entry->edx, 1);
  2169. entry->ecx &= kvm_supported_word6_x86_features;
  2170. cpuid_mask(&entry->ecx, 6);
  2171. break;
  2172. }
  2173. kvm_x86_ops->set_supported_cpuid(function, entry);
  2174. put_cpu();
  2175. }
  2176. #undef F
  2177. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  2178. struct kvm_cpuid_entry2 __user *entries)
  2179. {
  2180. struct kvm_cpuid_entry2 *cpuid_entries;
  2181. int limit, nent = 0, r = -E2BIG;
  2182. u32 func;
  2183. if (cpuid->nent < 1)
  2184. goto out;
  2185. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2186. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  2187. r = -ENOMEM;
  2188. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  2189. if (!cpuid_entries)
  2190. goto out;
  2191. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  2192. limit = cpuid_entries[0].eax;
  2193. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  2194. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2195. &nent, cpuid->nent);
  2196. r = -E2BIG;
  2197. if (nent >= cpuid->nent)
  2198. goto out_free;
  2199. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  2200. limit = cpuid_entries[nent - 1].eax;
  2201. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  2202. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2203. &nent, cpuid->nent);
  2204. r = -E2BIG;
  2205. if (nent >= cpuid->nent)
  2206. goto out_free;
  2207. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  2208. cpuid->nent);
  2209. r = -E2BIG;
  2210. if (nent >= cpuid->nent)
  2211. goto out_free;
  2212. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  2213. cpuid->nent);
  2214. r = -E2BIG;
  2215. if (nent >= cpuid->nent)
  2216. goto out_free;
  2217. r = -EFAULT;
  2218. if (copy_to_user(entries, cpuid_entries,
  2219. nent * sizeof(struct kvm_cpuid_entry2)))
  2220. goto out_free;
  2221. cpuid->nent = nent;
  2222. r = 0;
  2223. out_free:
  2224. vfree(cpuid_entries);
  2225. out:
  2226. return r;
  2227. }
  2228. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2229. struct kvm_lapic_state *s)
  2230. {
  2231. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2232. return 0;
  2233. }
  2234. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2235. struct kvm_lapic_state *s)
  2236. {
  2237. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2238. kvm_apic_post_state_restore(vcpu);
  2239. update_cr8_intercept(vcpu);
  2240. return 0;
  2241. }
  2242. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2243. struct kvm_interrupt *irq)
  2244. {
  2245. if (irq->irq < 0 || irq->irq >= 256)
  2246. return -EINVAL;
  2247. if (irqchip_in_kernel(vcpu->kvm))
  2248. return -ENXIO;
  2249. kvm_queue_interrupt(vcpu, irq->irq, false);
  2250. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2251. return 0;
  2252. }
  2253. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2254. {
  2255. kvm_inject_nmi(vcpu);
  2256. return 0;
  2257. }
  2258. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2259. struct kvm_tpr_access_ctl *tac)
  2260. {
  2261. if (tac->flags)
  2262. return -EINVAL;
  2263. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2264. return 0;
  2265. }
  2266. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2267. u64 mcg_cap)
  2268. {
  2269. int r;
  2270. unsigned bank_num = mcg_cap & 0xff, bank;
  2271. r = -EINVAL;
  2272. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2273. goto out;
  2274. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2275. goto out;
  2276. r = 0;
  2277. vcpu->arch.mcg_cap = mcg_cap;
  2278. /* Init IA32_MCG_CTL to all 1s */
  2279. if (mcg_cap & MCG_CTL_P)
  2280. vcpu->arch.mcg_ctl = ~(u64)0;
  2281. /* Init IA32_MCi_CTL to all 1s */
  2282. for (bank = 0; bank < bank_num; bank++)
  2283. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2284. out:
  2285. return r;
  2286. }
  2287. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2288. struct kvm_x86_mce *mce)
  2289. {
  2290. u64 mcg_cap = vcpu->arch.mcg_cap;
  2291. unsigned bank_num = mcg_cap & 0xff;
  2292. u64 *banks = vcpu->arch.mce_banks;
  2293. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2294. return -EINVAL;
  2295. /*
  2296. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2297. * reporting is disabled
  2298. */
  2299. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2300. vcpu->arch.mcg_ctl != ~(u64)0)
  2301. return 0;
  2302. banks += 4 * mce->bank;
  2303. /*
  2304. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2305. * reporting is disabled for the bank
  2306. */
  2307. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2308. return 0;
  2309. if (mce->status & MCI_STATUS_UC) {
  2310. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2311. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2312. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2313. return 0;
  2314. }
  2315. if (banks[1] & MCI_STATUS_VAL)
  2316. mce->status |= MCI_STATUS_OVER;
  2317. banks[2] = mce->addr;
  2318. banks[3] = mce->misc;
  2319. vcpu->arch.mcg_status = mce->mcg_status;
  2320. banks[1] = mce->status;
  2321. kvm_queue_exception(vcpu, MC_VECTOR);
  2322. } else if (!(banks[1] & MCI_STATUS_VAL)
  2323. || !(banks[1] & MCI_STATUS_UC)) {
  2324. if (banks[1] & MCI_STATUS_VAL)
  2325. mce->status |= MCI_STATUS_OVER;
  2326. banks[2] = mce->addr;
  2327. banks[3] = mce->misc;
  2328. banks[1] = mce->status;
  2329. } else
  2330. banks[1] |= MCI_STATUS_OVER;
  2331. return 0;
  2332. }
  2333. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2334. struct kvm_vcpu_events *events)
  2335. {
  2336. events->exception.injected =
  2337. vcpu->arch.exception.pending &&
  2338. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2339. events->exception.nr = vcpu->arch.exception.nr;
  2340. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2341. events->exception.pad = 0;
  2342. events->exception.error_code = vcpu->arch.exception.error_code;
  2343. events->interrupt.injected =
  2344. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2345. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2346. events->interrupt.soft = 0;
  2347. events->interrupt.shadow =
  2348. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2349. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2350. events->nmi.injected = vcpu->arch.nmi_injected;
  2351. events->nmi.pending = vcpu->arch.nmi_pending;
  2352. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2353. events->nmi.pad = 0;
  2354. events->sipi_vector = vcpu->arch.sipi_vector;
  2355. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2356. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2357. | KVM_VCPUEVENT_VALID_SHADOW);
  2358. memset(&events->reserved, 0, sizeof(events->reserved));
  2359. }
  2360. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2361. struct kvm_vcpu_events *events)
  2362. {
  2363. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2364. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2365. | KVM_VCPUEVENT_VALID_SHADOW))
  2366. return -EINVAL;
  2367. vcpu->arch.exception.pending = events->exception.injected;
  2368. vcpu->arch.exception.nr = events->exception.nr;
  2369. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2370. vcpu->arch.exception.error_code = events->exception.error_code;
  2371. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2372. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2373. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2374. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2375. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2376. events->interrupt.shadow);
  2377. vcpu->arch.nmi_injected = events->nmi.injected;
  2378. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2379. vcpu->arch.nmi_pending = events->nmi.pending;
  2380. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2381. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2382. vcpu->arch.sipi_vector = events->sipi_vector;
  2383. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2384. return 0;
  2385. }
  2386. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2387. struct kvm_debugregs *dbgregs)
  2388. {
  2389. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2390. dbgregs->dr6 = vcpu->arch.dr6;
  2391. dbgregs->dr7 = vcpu->arch.dr7;
  2392. dbgregs->flags = 0;
  2393. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2394. }
  2395. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2396. struct kvm_debugregs *dbgregs)
  2397. {
  2398. if (dbgregs->flags)
  2399. return -EINVAL;
  2400. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2401. vcpu->arch.dr6 = dbgregs->dr6;
  2402. vcpu->arch.dr7 = dbgregs->dr7;
  2403. return 0;
  2404. }
  2405. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2406. struct kvm_xsave *guest_xsave)
  2407. {
  2408. if (cpu_has_xsave)
  2409. memcpy(guest_xsave->region,
  2410. &vcpu->arch.guest_fpu.state->xsave,
  2411. xstate_size);
  2412. else {
  2413. memcpy(guest_xsave->region,
  2414. &vcpu->arch.guest_fpu.state->fxsave,
  2415. sizeof(struct i387_fxsave_struct));
  2416. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2417. XSTATE_FPSSE;
  2418. }
  2419. }
  2420. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2421. struct kvm_xsave *guest_xsave)
  2422. {
  2423. u64 xstate_bv =
  2424. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2425. if (cpu_has_xsave)
  2426. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2427. guest_xsave->region, xstate_size);
  2428. else {
  2429. if (xstate_bv & ~XSTATE_FPSSE)
  2430. return -EINVAL;
  2431. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2432. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2433. }
  2434. return 0;
  2435. }
  2436. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2437. struct kvm_xcrs *guest_xcrs)
  2438. {
  2439. if (!cpu_has_xsave) {
  2440. guest_xcrs->nr_xcrs = 0;
  2441. return;
  2442. }
  2443. guest_xcrs->nr_xcrs = 1;
  2444. guest_xcrs->flags = 0;
  2445. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2446. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2447. }
  2448. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2449. struct kvm_xcrs *guest_xcrs)
  2450. {
  2451. int i, r = 0;
  2452. if (!cpu_has_xsave)
  2453. return -EINVAL;
  2454. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2455. return -EINVAL;
  2456. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2457. /* Only support XCR0 currently */
  2458. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2459. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2460. guest_xcrs->xcrs[0].value);
  2461. break;
  2462. }
  2463. if (r)
  2464. r = -EINVAL;
  2465. return r;
  2466. }
  2467. long kvm_arch_vcpu_ioctl(struct file *filp,
  2468. unsigned int ioctl, unsigned long arg)
  2469. {
  2470. struct kvm_vcpu *vcpu = filp->private_data;
  2471. void __user *argp = (void __user *)arg;
  2472. int r;
  2473. union {
  2474. struct kvm_lapic_state *lapic;
  2475. struct kvm_xsave *xsave;
  2476. struct kvm_xcrs *xcrs;
  2477. void *buffer;
  2478. } u;
  2479. u.buffer = NULL;
  2480. switch (ioctl) {
  2481. case KVM_GET_LAPIC: {
  2482. r = -EINVAL;
  2483. if (!vcpu->arch.apic)
  2484. goto out;
  2485. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2486. r = -ENOMEM;
  2487. if (!u.lapic)
  2488. goto out;
  2489. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2490. if (r)
  2491. goto out;
  2492. r = -EFAULT;
  2493. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2494. goto out;
  2495. r = 0;
  2496. break;
  2497. }
  2498. case KVM_SET_LAPIC: {
  2499. r = -EINVAL;
  2500. if (!vcpu->arch.apic)
  2501. goto out;
  2502. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2503. r = -ENOMEM;
  2504. if (!u.lapic)
  2505. goto out;
  2506. r = -EFAULT;
  2507. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2508. goto out;
  2509. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2510. if (r)
  2511. goto out;
  2512. r = 0;
  2513. break;
  2514. }
  2515. case KVM_INTERRUPT: {
  2516. struct kvm_interrupt irq;
  2517. r = -EFAULT;
  2518. if (copy_from_user(&irq, argp, sizeof irq))
  2519. goto out;
  2520. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2521. if (r)
  2522. goto out;
  2523. r = 0;
  2524. break;
  2525. }
  2526. case KVM_NMI: {
  2527. r = kvm_vcpu_ioctl_nmi(vcpu);
  2528. if (r)
  2529. goto out;
  2530. r = 0;
  2531. break;
  2532. }
  2533. case KVM_SET_CPUID: {
  2534. struct kvm_cpuid __user *cpuid_arg = argp;
  2535. struct kvm_cpuid cpuid;
  2536. r = -EFAULT;
  2537. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2538. goto out;
  2539. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2540. if (r)
  2541. goto out;
  2542. break;
  2543. }
  2544. case KVM_SET_CPUID2: {
  2545. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2546. struct kvm_cpuid2 cpuid;
  2547. r = -EFAULT;
  2548. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2549. goto out;
  2550. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2551. cpuid_arg->entries);
  2552. if (r)
  2553. goto out;
  2554. break;
  2555. }
  2556. case KVM_GET_CPUID2: {
  2557. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2558. struct kvm_cpuid2 cpuid;
  2559. r = -EFAULT;
  2560. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2561. goto out;
  2562. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2563. cpuid_arg->entries);
  2564. if (r)
  2565. goto out;
  2566. r = -EFAULT;
  2567. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2568. goto out;
  2569. r = 0;
  2570. break;
  2571. }
  2572. case KVM_GET_MSRS:
  2573. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2574. break;
  2575. case KVM_SET_MSRS:
  2576. r = msr_io(vcpu, argp, do_set_msr, 0);
  2577. break;
  2578. case KVM_TPR_ACCESS_REPORTING: {
  2579. struct kvm_tpr_access_ctl tac;
  2580. r = -EFAULT;
  2581. if (copy_from_user(&tac, argp, sizeof tac))
  2582. goto out;
  2583. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2584. if (r)
  2585. goto out;
  2586. r = -EFAULT;
  2587. if (copy_to_user(argp, &tac, sizeof tac))
  2588. goto out;
  2589. r = 0;
  2590. break;
  2591. };
  2592. case KVM_SET_VAPIC_ADDR: {
  2593. struct kvm_vapic_addr va;
  2594. r = -EINVAL;
  2595. if (!irqchip_in_kernel(vcpu->kvm))
  2596. goto out;
  2597. r = -EFAULT;
  2598. if (copy_from_user(&va, argp, sizeof va))
  2599. goto out;
  2600. r = 0;
  2601. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2602. break;
  2603. }
  2604. case KVM_X86_SETUP_MCE: {
  2605. u64 mcg_cap;
  2606. r = -EFAULT;
  2607. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2608. goto out;
  2609. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2610. break;
  2611. }
  2612. case KVM_X86_SET_MCE: {
  2613. struct kvm_x86_mce mce;
  2614. r = -EFAULT;
  2615. if (copy_from_user(&mce, argp, sizeof mce))
  2616. goto out;
  2617. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2618. break;
  2619. }
  2620. case KVM_GET_VCPU_EVENTS: {
  2621. struct kvm_vcpu_events events;
  2622. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2623. r = -EFAULT;
  2624. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2625. break;
  2626. r = 0;
  2627. break;
  2628. }
  2629. case KVM_SET_VCPU_EVENTS: {
  2630. struct kvm_vcpu_events events;
  2631. r = -EFAULT;
  2632. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2633. break;
  2634. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2635. break;
  2636. }
  2637. case KVM_GET_DEBUGREGS: {
  2638. struct kvm_debugregs dbgregs;
  2639. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2640. r = -EFAULT;
  2641. if (copy_to_user(argp, &dbgregs,
  2642. sizeof(struct kvm_debugregs)))
  2643. break;
  2644. r = 0;
  2645. break;
  2646. }
  2647. case KVM_SET_DEBUGREGS: {
  2648. struct kvm_debugregs dbgregs;
  2649. r = -EFAULT;
  2650. if (copy_from_user(&dbgregs, argp,
  2651. sizeof(struct kvm_debugregs)))
  2652. break;
  2653. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2654. break;
  2655. }
  2656. case KVM_GET_XSAVE: {
  2657. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2658. r = -ENOMEM;
  2659. if (!u.xsave)
  2660. break;
  2661. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2662. r = -EFAULT;
  2663. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2664. break;
  2665. r = 0;
  2666. break;
  2667. }
  2668. case KVM_SET_XSAVE: {
  2669. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2670. r = -ENOMEM;
  2671. if (!u.xsave)
  2672. break;
  2673. r = -EFAULT;
  2674. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2675. break;
  2676. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2677. break;
  2678. }
  2679. case KVM_GET_XCRS: {
  2680. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2681. r = -ENOMEM;
  2682. if (!u.xcrs)
  2683. break;
  2684. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2685. r = -EFAULT;
  2686. if (copy_to_user(argp, u.xcrs,
  2687. sizeof(struct kvm_xcrs)))
  2688. break;
  2689. r = 0;
  2690. break;
  2691. }
  2692. case KVM_SET_XCRS: {
  2693. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2694. r = -ENOMEM;
  2695. if (!u.xcrs)
  2696. break;
  2697. r = -EFAULT;
  2698. if (copy_from_user(u.xcrs, argp,
  2699. sizeof(struct kvm_xcrs)))
  2700. break;
  2701. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2702. break;
  2703. }
  2704. case KVM_SET_TSC_KHZ: {
  2705. u32 user_tsc_khz;
  2706. r = -EINVAL;
  2707. if (!kvm_has_tsc_control)
  2708. break;
  2709. user_tsc_khz = (u32)arg;
  2710. if (user_tsc_khz >= kvm_max_guest_tsc_khz)
  2711. goto out;
  2712. kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
  2713. r = 0;
  2714. goto out;
  2715. }
  2716. case KVM_GET_TSC_KHZ: {
  2717. r = -EIO;
  2718. if (check_tsc_unstable())
  2719. goto out;
  2720. r = vcpu_tsc_khz(vcpu);
  2721. goto out;
  2722. }
  2723. default:
  2724. r = -EINVAL;
  2725. }
  2726. out:
  2727. kfree(u.buffer);
  2728. return r;
  2729. }
  2730. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2731. {
  2732. int ret;
  2733. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2734. return -1;
  2735. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2736. return ret;
  2737. }
  2738. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2739. u64 ident_addr)
  2740. {
  2741. kvm->arch.ept_identity_map_addr = ident_addr;
  2742. return 0;
  2743. }
  2744. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2745. u32 kvm_nr_mmu_pages)
  2746. {
  2747. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2748. return -EINVAL;
  2749. mutex_lock(&kvm->slots_lock);
  2750. spin_lock(&kvm->mmu_lock);
  2751. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2752. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2753. spin_unlock(&kvm->mmu_lock);
  2754. mutex_unlock(&kvm->slots_lock);
  2755. return 0;
  2756. }
  2757. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2758. {
  2759. return kvm->arch.n_max_mmu_pages;
  2760. }
  2761. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2762. {
  2763. int r;
  2764. r = 0;
  2765. switch (chip->chip_id) {
  2766. case KVM_IRQCHIP_PIC_MASTER:
  2767. memcpy(&chip->chip.pic,
  2768. &pic_irqchip(kvm)->pics[0],
  2769. sizeof(struct kvm_pic_state));
  2770. break;
  2771. case KVM_IRQCHIP_PIC_SLAVE:
  2772. memcpy(&chip->chip.pic,
  2773. &pic_irqchip(kvm)->pics[1],
  2774. sizeof(struct kvm_pic_state));
  2775. break;
  2776. case KVM_IRQCHIP_IOAPIC:
  2777. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2778. break;
  2779. default:
  2780. r = -EINVAL;
  2781. break;
  2782. }
  2783. return r;
  2784. }
  2785. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2786. {
  2787. int r;
  2788. r = 0;
  2789. switch (chip->chip_id) {
  2790. case KVM_IRQCHIP_PIC_MASTER:
  2791. spin_lock(&pic_irqchip(kvm)->lock);
  2792. memcpy(&pic_irqchip(kvm)->pics[0],
  2793. &chip->chip.pic,
  2794. sizeof(struct kvm_pic_state));
  2795. spin_unlock(&pic_irqchip(kvm)->lock);
  2796. break;
  2797. case KVM_IRQCHIP_PIC_SLAVE:
  2798. spin_lock(&pic_irqchip(kvm)->lock);
  2799. memcpy(&pic_irqchip(kvm)->pics[1],
  2800. &chip->chip.pic,
  2801. sizeof(struct kvm_pic_state));
  2802. spin_unlock(&pic_irqchip(kvm)->lock);
  2803. break;
  2804. case KVM_IRQCHIP_IOAPIC:
  2805. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2806. break;
  2807. default:
  2808. r = -EINVAL;
  2809. break;
  2810. }
  2811. kvm_pic_update_irq(pic_irqchip(kvm));
  2812. return r;
  2813. }
  2814. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2815. {
  2816. int r = 0;
  2817. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2818. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2819. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2820. return r;
  2821. }
  2822. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2823. {
  2824. int r = 0;
  2825. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2826. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2827. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2828. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2829. return r;
  2830. }
  2831. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2832. {
  2833. int r = 0;
  2834. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2835. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2836. sizeof(ps->channels));
  2837. ps->flags = kvm->arch.vpit->pit_state.flags;
  2838. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2839. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2840. return r;
  2841. }
  2842. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2843. {
  2844. int r = 0, start = 0;
  2845. u32 prev_legacy, cur_legacy;
  2846. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2847. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2848. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2849. if (!prev_legacy && cur_legacy)
  2850. start = 1;
  2851. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2852. sizeof(kvm->arch.vpit->pit_state.channels));
  2853. kvm->arch.vpit->pit_state.flags = ps->flags;
  2854. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2855. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2856. return r;
  2857. }
  2858. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2859. struct kvm_reinject_control *control)
  2860. {
  2861. if (!kvm->arch.vpit)
  2862. return -ENXIO;
  2863. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2864. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2865. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2866. return 0;
  2867. }
  2868. /*
  2869. * Get (and clear) the dirty memory log for a memory slot.
  2870. */
  2871. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2872. struct kvm_dirty_log *log)
  2873. {
  2874. int r, i;
  2875. struct kvm_memory_slot *memslot;
  2876. unsigned long n;
  2877. unsigned long is_dirty = 0;
  2878. mutex_lock(&kvm->slots_lock);
  2879. r = -EINVAL;
  2880. if (log->slot >= KVM_MEMORY_SLOTS)
  2881. goto out;
  2882. memslot = &kvm->memslots->memslots[log->slot];
  2883. r = -ENOENT;
  2884. if (!memslot->dirty_bitmap)
  2885. goto out;
  2886. n = kvm_dirty_bitmap_bytes(memslot);
  2887. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2888. is_dirty = memslot->dirty_bitmap[i];
  2889. /* If nothing is dirty, don't bother messing with page tables. */
  2890. if (is_dirty) {
  2891. struct kvm_memslots *slots, *old_slots;
  2892. unsigned long *dirty_bitmap;
  2893. dirty_bitmap = memslot->dirty_bitmap_head;
  2894. if (memslot->dirty_bitmap == dirty_bitmap)
  2895. dirty_bitmap += n / sizeof(long);
  2896. memset(dirty_bitmap, 0, n);
  2897. r = -ENOMEM;
  2898. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2899. if (!slots)
  2900. goto out;
  2901. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2902. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2903. slots->generation++;
  2904. old_slots = kvm->memslots;
  2905. rcu_assign_pointer(kvm->memslots, slots);
  2906. synchronize_srcu_expedited(&kvm->srcu);
  2907. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2908. kfree(old_slots);
  2909. spin_lock(&kvm->mmu_lock);
  2910. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2911. spin_unlock(&kvm->mmu_lock);
  2912. r = -EFAULT;
  2913. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2914. goto out;
  2915. } else {
  2916. r = -EFAULT;
  2917. if (clear_user(log->dirty_bitmap, n))
  2918. goto out;
  2919. }
  2920. r = 0;
  2921. out:
  2922. mutex_unlock(&kvm->slots_lock);
  2923. return r;
  2924. }
  2925. long kvm_arch_vm_ioctl(struct file *filp,
  2926. unsigned int ioctl, unsigned long arg)
  2927. {
  2928. struct kvm *kvm = filp->private_data;
  2929. void __user *argp = (void __user *)arg;
  2930. int r = -ENOTTY;
  2931. /*
  2932. * This union makes it completely explicit to gcc-3.x
  2933. * that these two variables' stack usage should be
  2934. * combined, not added together.
  2935. */
  2936. union {
  2937. struct kvm_pit_state ps;
  2938. struct kvm_pit_state2 ps2;
  2939. struct kvm_pit_config pit_config;
  2940. } u;
  2941. switch (ioctl) {
  2942. case KVM_SET_TSS_ADDR:
  2943. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2944. if (r < 0)
  2945. goto out;
  2946. break;
  2947. case KVM_SET_IDENTITY_MAP_ADDR: {
  2948. u64 ident_addr;
  2949. r = -EFAULT;
  2950. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2951. goto out;
  2952. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2953. if (r < 0)
  2954. goto out;
  2955. break;
  2956. }
  2957. case KVM_SET_NR_MMU_PAGES:
  2958. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2959. if (r)
  2960. goto out;
  2961. break;
  2962. case KVM_GET_NR_MMU_PAGES:
  2963. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2964. break;
  2965. case KVM_CREATE_IRQCHIP: {
  2966. struct kvm_pic *vpic;
  2967. mutex_lock(&kvm->lock);
  2968. r = -EEXIST;
  2969. if (kvm->arch.vpic)
  2970. goto create_irqchip_unlock;
  2971. r = -ENOMEM;
  2972. vpic = kvm_create_pic(kvm);
  2973. if (vpic) {
  2974. r = kvm_ioapic_init(kvm);
  2975. if (r) {
  2976. mutex_lock(&kvm->slots_lock);
  2977. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2978. &vpic->dev);
  2979. mutex_unlock(&kvm->slots_lock);
  2980. kfree(vpic);
  2981. goto create_irqchip_unlock;
  2982. }
  2983. } else
  2984. goto create_irqchip_unlock;
  2985. smp_wmb();
  2986. kvm->arch.vpic = vpic;
  2987. smp_wmb();
  2988. r = kvm_setup_default_irq_routing(kvm);
  2989. if (r) {
  2990. mutex_lock(&kvm->slots_lock);
  2991. mutex_lock(&kvm->irq_lock);
  2992. kvm_ioapic_destroy(kvm);
  2993. kvm_destroy_pic(kvm);
  2994. mutex_unlock(&kvm->irq_lock);
  2995. mutex_unlock(&kvm->slots_lock);
  2996. }
  2997. create_irqchip_unlock:
  2998. mutex_unlock(&kvm->lock);
  2999. break;
  3000. }
  3001. case KVM_CREATE_PIT:
  3002. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  3003. goto create_pit;
  3004. case KVM_CREATE_PIT2:
  3005. r = -EFAULT;
  3006. if (copy_from_user(&u.pit_config, argp,
  3007. sizeof(struct kvm_pit_config)))
  3008. goto out;
  3009. create_pit:
  3010. mutex_lock(&kvm->slots_lock);
  3011. r = -EEXIST;
  3012. if (kvm->arch.vpit)
  3013. goto create_pit_unlock;
  3014. r = -ENOMEM;
  3015. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  3016. if (kvm->arch.vpit)
  3017. r = 0;
  3018. create_pit_unlock:
  3019. mutex_unlock(&kvm->slots_lock);
  3020. break;
  3021. case KVM_IRQ_LINE_STATUS:
  3022. case KVM_IRQ_LINE: {
  3023. struct kvm_irq_level irq_event;
  3024. r = -EFAULT;
  3025. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  3026. goto out;
  3027. r = -ENXIO;
  3028. if (irqchip_in_kernel(kvm)) {
  3029. __s32 status;
  3030. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  3031. irq_event.irq, irq_event.level);
  3032. if (ioctl == KVM_IRQ_LINE_STATUS) {
  3033. r = -EFAULT;
  3034. irq_event.status = status;
  3035. if (copy_to_user(argp, &irq_event,
  3036. sizeof irq_event))
  3037. goto out;
  3038. }
  3039. r = 0;
  3040. }
  3041. break;
  3042. }
  3043. case KVM_GET_IRQCHIP: {
  3044. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3045. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3046. r = -ENOMEM;
  3047. if (!chip)
  3048. goto out;
  3049. r = -EFAULT;
  3050. if (copy_from_user(chip, argp, sizeof *chip))
  3051. goto get_irqchip_out;
  3052. r = -ENXIO;
  3053. if (!irqchip_in_kernel(kvm))
  3054. goto get_irqchip_out;
  3055. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  3056. if (r)
  3057. goto get_irqchip_out;
  3058. r = -EFAULT;
  3059. if (copy_to_user(argp, chip, sizeof *chip))
  3060. goto get_irqchip_out;
  3061. r = 0;
  3062. get_irqchip_out:
  3063. kfree(chip);
  3064. if (r)
  3065. goto out;
  3066. break;
  3067. }
  3068. case KVM_SET_IRQCHIP: {
  3069. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3070. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3071. r = -ENOMEM;
  3072. if (!chip)
  3073. goto out;
  3074. r = -EFAULT;
  3075. if (copy_from_user(chip, argp, sizeof *chip))
  3076. goto set_irqchip_out;
  3077. r = -ENXIO;
  3078. if (!irqchip_in_kernel(kvm))
  3079. goto set_irqchip_out;
  3080. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  3081. if (r)
  3082. goto set_irqchip_out;
  3083. r = 0;
  3084. set_irqchip_out:
  3085. kfree(chip);
  3086. if (r)
  3087. goto out;
  3088. break;
  3089. }
  3090. case KVM_GET_PIT: {
  3091. r = -EFAULT;
  3092. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  3093. goto out;
  3094. r = -ENXIO;
  3095. if (!kvm->arch.vpit)
  3096. goto out;
  3097. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3098. if (r)
  3099. goto out;
  3100. r = -EFAULT;
  3101. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3102. goto out;
  3103. r = 0;
  3104. break;
  3105. }
  3106. case KVM_SET_PIT: {
  3107. r = -EFAULT;
  3108. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3109. goto out;
  3110. r = -ENXIO;
  3111. if (!kvm->arch.vpit)
  3112. goto out;
  3113. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3114. if (r)
  3115. goto out;
  3116. r = 0;
  3117. break;
  3118. }
  3119. case KVM_GET_PIT2: {
  3120. r = -ENXIO;
  3121. if (!kvm->arch.vpit)
  3122. goto out;
  3123. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3124. if (r)
  3125. goto out;
  3126. r = -EFAULT;
  3127. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3128. goto out;
  3129. r = 0;
  3130. break;
  3131. }
  3132. case KVM_SET_PIT2: {
  3133. r = -EFAULT;
  3134. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3135. goto out;
  3136. r = -ENXIO;
  3137. if (!kvm->arch.vpit)
  3138. goto out;
  3139. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3140. if (r)
  3141. goto out;
  3142. r = 0;
  3143. break;
  3144. }
  3145. case KVM_REINJECT_CONTROL: {
  3146. struct kvm_reinject_control control;
  3147. r = -EFAULT;
  3148. if (copy_from_user(&control, argp, sizeof(control)))
  3149. goto out;
  3150. r = kvm_vm_ioctl_reinject(kvm, &control);
  3151. if (r)
  3152. goto out;
  3153. r = 0;
  3154. break;
  3155. }
  3156. case KVM_XEN_HVM_CONFIG: {
  3157. r = -EFAULT;
  3158. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3159. sizeof(struct kvm_xen_hvm_config)))
  3160. goto out;
  3161. r = -EINVAL;
  3162. if (kvm->arch.xen_hvm_config.flags)
  3163. goto out;
  3164. r = 0;
  3165. break;
  3166. }
  3167. case KVM_SET_CLOCK: {
  3168. struct kvm_clock_data user_ns;
  3169. u64 now_ns;
  3170. s64 delta;
  3171. r = -EFAULT;
  3172. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3173. goto out;
  3174. r = -EINVAL;
  3175. if (user_ns.flags)
  3176. goto out;
  3177. r = 0;
  3178. local_irq_disable();
  3179. now_ns = get_kernel_ns();
  3180. delta = user_ns.clock - now_ns;
  3181. local_irq_enable();
  3182. kvm->arch.kvmclock_offset = delta;
  3183. break;
  3184. }
  3185. case KVM_GET_CLOCK: {
  3186. struct kvm_clock_data user_ns;
  3187. u64 now_ns;
  3188. local_irq_disable();
  3189. now_ns = get_kernel_ns();
  3190. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3191. local_irq_enable();
  3192. user_ns.flags = 0;
  3193. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3194. r = -EFAULT;
  3195. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3196. goto out;
  3197. r = 0;
  3198. break;
  3199. }
  3200. default:
  3201. ;
  3202. }
  3203. out:
  3204. return r;
  3205. }
  3206. static void kvm_init_msr_list(void)
  3207. {
  3208. u32 dummy[2];
  3209. unsigned i, j;
  3210. /* skip the first msrs in the list. KVM-specific */
  3211. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3212. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3213. continue;
  3214. if (j < i)
  3215. msrs_to_save[j] = msrs_to_save[i];
  3216. j++;
  3217. }
  3218. num_msrs_to_save = j;
  3219. }
  3220. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3221. const void *v)
  3222. {
  3223. int handled = 0;
  3224. int n;
  3225. do {
  3226. n = min(len, 8);
  3227. if (!(vcpu->arch.apic &&
  3228. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
  3229. && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3230. break;
  3231. handled += n;
  3232. addr += n;
  3233. len -= n;
  3234. v += n;
  3235. } while (len);
  3236. return handled;
  3237. }
  3238. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3239. {
  3240. int handled = 0;
  3241. int n;
  3242. do {
  3243. n = min(len, 8);
  3244. if (!(vcpu->arch.apic &&
  3245. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
  3246. && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3247. break;
  3248. trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
  3249. handled += n;
  3250. addr += n;
  3251. len -= n;
  3252. v += n;
  3253. } while (len);
  3254. return handled;
  3255. }
  3256. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3257. struct kvm_segment *var, int seg)
  3258. {
  3259. kvm_x86_ops->set_segment(vcpu, var, seg);
  3260. }
  3261. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3262. struct kvm_segment *var, int seg)
  3263. {
  3264. kvm_x86_ops->get_segment(vcpu, var, seg);
  3265. }
  3266. static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3267. {
  3268. return gpa;
  3269. }
  3270. static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3271. {
  3272. gpa_t t_gpa;
  3273. struct x86_exception exception;
  3274. BUG_ON(!mmu_is_nested(vcpu));
  3275. /* NPT walks are always user-walks */
  3276. access |= PFERR_USER_MASK;
  3277. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
  3278. return t_gpa;
  3279. }
  3280. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
  3281. struct x86_exception *exception)
  3282. {
  3283. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3284. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3285. }
  3286. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
  3287. struct x86_exception *exception)
  3288. {
  3289. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3290. access |= PFERR_FETCH_MASK;
  3291. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3292. }
  3293. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
  3294. struct x86_exception *exception)
  3295. {
  3296. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3297. access |= PFERR_WRITE_MASK;
  3298. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3299. }
  3300. /* uses this to access any guest's mapped memory without checking CPL */
  3301. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
  3302. struct x86_exception *exception)
  3303. {
  3304. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
  3305. }
  3306. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3307. struct kvm_vcpu *vcpu, u32 access,
  3308. struct x86_exception *exception)
  3309. {
  3310. void *data = val;
  3311. int r = X86EMUL_CONTINUE;
  3312. while (bytes) {
  3313. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3314. exception);
  3315. unsigned offset = addr & (PAGE_SIZE-1);
  3316. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3317. int ret;
  3318. if (gpa == UNMAPPED_GVA)
  3319. return X86EMUL_PROPAGATE_FAULT;
  3320. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3321. if (ret < 0) {
  3322. r = X86EMUL_IO_NEEDED;
  3323. goto out;
  3324. }
  3325. bytes -= toread;
  3326. data += toread;
  3327. addr += toread;
  3328. }
  3329. out:
  3330. return r;
  3331. }
  3332. /* used for instruction fetching */
  3333. static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
  3334. gva_t addr, void *val, unsigned int bytes,
  3335. struct x86_exception *exception)
  3336. {
  3337. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3338. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3339. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3340. access | PFERR_FETCH_MASK,
  3341. exception);
  3342. }
  3343. static int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
  3344. gva_t addr, void *val, unsigned int bytes,
  3345. struct x86_exception *exception)
  3346. {
  3347. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3348. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3349. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3350. exception);
  3351. }
  3352. static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3353. gva_t addr, void *val, unsigned int bytes,
  3354. struct x86_exception *exception)
  3355. {
  3356. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3357. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
  3358. }
  3359. static int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3360. gva_t addr, void *val,
  3361. unsigned int bytes,
  3362. struct x86_exception *exception)
  3363. {
  3364. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3365. void *data = val;
  3366. int r = X86EMUL_CONTINUE;
  3367. while (bytes) {
  3368. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3369. PFERR_WRITE_MASK,
  3370. exception);
  3371. unsigned offset = addr & (PAGE_SIZE-1);
  3372. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3373. int ret;
  3374. if (gpa == UNMAPPED_GVA)
  3375. return X86EMUL_PROPAGATE_FAULT;
  3376. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3377. if (ret < 0) {
  3378. r = X86EMUL_IO_NEEDED;
  3379. goto out;
  3380. }
  3381. bytes -= towrite;
  3382. data += towrite;
  3383. addr += towrite;
  3384. }
  3385. out:
  3386. return r;
  3387. }
  3388. static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
  3389. unsigned long addr,
  3390. void *val,
  3391. unsigned int bytes,
  3392. struct x86_exception *exception)
  3393. {
  3394. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3395. gpa_t gpa;
  3396. int handled;
  3397. if (vcpu->mmio_read_completed) {
  3398. memcpy(val, vcpu->mmio_data, bytes);
  3399. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3400. vcpu->mmio_phys_addr, *(u64 *)val);
  3401. vcpu->mmio_read_completed = 0;
  3402. return X86EMUL_CONTINUE;
  3403. }
  3404. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
  3405. if (gpa == UNMAPPED_GVA)
  3406. return X86EMUL_PROPAGATE_FAULT;
  3407. /* For APIC access vmexit */
  3408. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3409. goto mmio;
  3410. if (kvm_read_guest_virt(ctxt, addr, val, bytes, exception)
  3411. == X86EMUL_CONTINUE)
  3412. return X86EMUL_CONTINUE;
  3413. mmio:
  3414. /*
  3415. * Is this MMIO handled locally?
  3416. */
  3417. handled = vcpu_mmio_read(vcpu, gpa, bytes, val);
  3418. if (handled == bytes)
  3419. return X86EMUL_CONTINUE;
  3420. gpa += handled;
  3421. bytes -= handled;
  3422. val += handled;
  3423. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3424. vcpu->mmio_needed = 1;
  3425. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3426. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3427. vcpu->mmio_size = bytes;
  3428. vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
  3429. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3430. vcpu->mmio_index = 0;
  3431. return X86EMUL_IO_NEEDED;
  3432. }
  3433. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3434. const void *val, int bytes)
  3435. {
  3436. int ret;
  3437. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3438. if (ret < 0)
  3439. return 0;
  3440. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3441. return 1;
  3442. }
  3443. static int emulator_write_emulated_onepage(unsigned long addr,
  3444. const void *val,
  3445. unsigned int bytes,
  3446. struct x86_exception *exception,
  3447. struct kvm_vcpu *vcpu)
  3448. {
  3449. gpa_t gpa;
  3450. int handled;
  3451. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
  3452. if (gpa == UNMAPPED_GVA)
  3453. return X86EMUL_PROPAGATE_FAULT;
  3454. /* For APIC access vmexit */
  3455. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3456. goto mmio;
  3457. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3458. return X86EMUL_CONTINUE;
  3459. mmio:
  3460. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3461. /*
  3462. * Is this MMIO handled locally?
  3463. */
  3464. handled = vcpu_mmio_write(vcpu, gpa, bytes, val);
  3465. if (handled == bytes)
  3466. return X86EMUL_CONTINUE;
  3467. gpa += handled;
  3468. bytes -= handled;
  3469. val += handled;
  3470. vcpu->mmio_needed = 1;
  3471. memcpy(vcpu->mmio_data, val, bytes);
  3472. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3473. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3474. vcpu->mmio_size = bytes;
  3475. vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
  3476. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3477. memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
  3478. vcpu->mmio_index = 0;
  3479. return X86EMUL_CONTINUE;
  3480. }
  3481. int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
  3482. unsigned long addr,
  3483. const void *val,
  3484. unsigned int bytes,
  3485. struct x86_exception *exception)
  3486. {
  3487. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3488. /* Crossing a page boundary? */
  3489. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3490. int rc, now;
  3491. now = -addr & ~PAGE_MASK;
  3492. rc = emulator_write_emulated_onepage(addr, val, now, exception,
  3493. vcpu);
  3494. if (rc != X86EMUL_CONTINUE)
  3495. return rc;
  3496. addr += now;
  3497. val += now;
  3498. bytes -= now;
  3499. }
  3500. return emulator_write_emulated_onepage(addr, val, bytes, exception,
  3501. vcpu);
  3502. }
  3503. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3504. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3505. #ifdef CONFIG_X86_64
  3506. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3507. #else
  3508. # define CMPXCHG64(ptr, old, new) \
  3509. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3510. #endif
  3511. static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
  3512. unsigned long addr,
  3513. const void *old,
  3514. const void *new,
  3515. unsigned int bytes,
  3516. struct x86_exception *exception)
  3517. {
  3518. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3519. gpa_t gpa;
  3520. struct page *page;
  3521. char *kaddr;
  3522. bool exchanged;
  3523. /* guests cmpxchg8b have to be emulated atomically */
  3524. if (bytes > 8 || (bytes & (bytes - 1)))
  3525. goto emul_write;
  3526. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3527. if (gpa == UNMAPPED_GVA ||
  3528. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3529. goto emul_write;
  3530. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3531. goto emul_write;
  3532. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3533. if (is_error_page(page)) {
  3534. kvm_release_page_clean(page);
  3535. goto emul_write;
  3536. }
  3537. kaddr = kmap_atomic(page, KM_USER0);
  3538. kaddr += offset_in_page(gpa);
  3539. switch (bytes) {
  3540. case 1:
  3541. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3542. break;
  3543. case 2:
  3544. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3545. break;
  3546. case 4:
  3547. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3548. break;
  3549. case 8:
  3550. exchanged = CMPXCHG64(kaddr, old, new);
  3551. break;
  3552. default:
  3553. BUG();
  3554. }
  3555. kunmap_atomic(kaddr, KM_USER0);
  3556. kvm_release_page_dirty(page);
  3557. if (!exchanged)
  3558. return X86EMUL_CMPXCHG_FAILED;
  3559. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3560. return X86EMUL_CONTINUE;
  3561. emul_write:
  3562. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3563. return emulator_write_emulated(ctxt, addr, new, bytes, exception);
  3564. }
  3565. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3566. {
  3567. /* TODO: String I/O for in kernel device */
  3568. int r;
  3569. if (vcpu->arch.pio.in)
  3570. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3571. vcpu->arch.pio.size, pd);
  3572. else
  3573. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3574. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3575. pd);
  3576. return r;
  3577. }
  3578. static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  3579. int size, unsigned short port, void *val,
  3580. unsigned int count)
  3581. {
  3582. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3583. if (vcpu->arch.pio.count)
  3584. goto data_avail;
  3585. trace_kvm_pio(0, port, size, count);
  3586. vcpu->arch.pio.port = port;
  3587. vcpu->arch.pio.in = 1;
  3588. vcpu->arch.pio.count = count;
  3589. vcpu->arch.pio.size = size;
  3590. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3591. data_avail:
  3592. memcpy(val, vcpu->arch.pio_data, size * count);
  3593. vcpu->arch.pio.count = 0;
  3594. return 1;
  3595. }
  3596. vcpu->run->exit_reason = KVM_EXIT_IO;
  3597. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3598. vcpu->run->io.size = size;
  3599. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3600. vcpu->run->io.count = count;
  3601. vcpu->run->io.port = port;
  3602. return 0;
  3603. }
  3604. static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
  3605. int size, unsigned short port,
  3606. const void *val, unsigned int count)
  3607. {
  3608. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3609. trace_kvm_pio(1, port, size, count);
  3610. vcpu->arch.pio.port = port;
  3611. vcpu->arch.pio.in = 0;
  3612. vcpu->arch.pio.count = count;
  3613. vcpu->arch.pio.size = size;
  3614. memcpy(vcpu->arch.pio_data, val, size * count);
  3615. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3616. vcpu->arch.pio.count = 0;
  3617. return 1;
  3618. }
  3619. vcpu->run->exit_reason = KVM_EXIT_IO;
  3620. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3621. vcpu->run->io.size = size;
  3622. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3623. vcpu->run->io.count = count;
  3624. vcpu->run->io.port = port;
  3625. return 0;
  3626. }
  3627. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3628. {
  3629. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3630. }
  3631. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3632. {
  3633. kvm_mmu_invlpg(vcpu, address);
  3634. return X86EMUL_CONTINUE;
  3635. }
  3636. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3637. {
  3638. if (!need_emulate_wbinvd(vcpu))
  3639. return X86EMUL_CONTINUE;
  3640. if (kvm_x86_ops->has_wbinvd_exit()) {
  3641. int cpu = get_cpu();
  3642. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  3643. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3644. wbinvd_ipi, NULL, 1);
  3645. put_cpu();
  3646. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3647. } else
  3648. wbinvd();
  3649. return X86EMUL_CONTINUE;
  3650. }
  3651. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3652. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  3653. {
  3654. return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
  3655. }
  3656. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  3657. {
  3658. return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
  3659. }
  3660. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3661. {
  3662. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3663. }
  3664. static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
  3665. {
  3666. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3667. unsigned long value;
  3668. switch (cr) {
  3669. case 0:
  3670. value = kvm_read_cr0(vcpu);
  3671. break;
  3672. case 2:
  3673. value = vcpu->arch.cr2;
  3674. break;
  3675. case 3:
  3676. value = kvm_read_cr3(vcpu);
  3677. break;
  3678. case 4:
  3679. value = kvm_read_cr4(vcpu);
  3680. break;
  3681. case 8:
  3682. value = kvm_get_cr8(vcpu);
  3683. break;
  3684. default:
  3685. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3686. return 0;
  3687. }
  3688. return value;
  3689. }
  3690. static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
  3691. {
  3692. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3693. int res = 0;
  3694. switch (cr) {
  3695. case 0:
  3696. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3697. break;
  3698. case 2:
  3699. vcpu->arch.cr2 = val;
  3700. break;
  3701. case 3:
  3702. res = kvm_set_cr3(vcpu, val);
  3703. break;
  3704. case 4:
  3705. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3706. break;
  3707. case 8:
  3708. res = kvm_set_cr8(vcpu, val);
  3709. break;
  3710. default:
  3711. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3712. res = -1;
  3713. }
  3714. return res;
  3715. }
  3716. static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
  3717. {
  3718. return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
  3719. }
  3720. static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3721. {
  3722. kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
  3723. }
  3724. static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3725. {
  3726. kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
  3727. }
  3728. static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3729. {
  3730. kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
  3731. }
  3732. static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3733. {
  3734. kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
  3735. }
  3736. static unsigned long emulator_get_cached_segment_base(
  3737. struct x86_emulate_ctxt *ctxt, int seg)
  3738. {
  3739. return get_segment_base(emul_to_vcpu(ctxt), seg);
  3740. }
  3741. static bool emulator_get_cached_descriptor(struct x86_emulate_ctxt *ctxt,
  3742. struct desc_struct *desc, u32 *base3,
  3743. int seg)
  3744. {
  3745. struct kvm_segment var;
  3746. kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
  3747. if (var.unusable)
  3748. return false;
  3749. if (var.g)
  3750. var.limit >>= 12;
  3751. set_desc_limit(desc, var.limit);
  3752. set_desc_base(desc, (unsigned long)var.base);
  3753. #ifdef CONFIG_X86_64
  3754. if (base3)
  3755. *base3 = var.base >> 32;
  3756. #endif
  3757. desc->type = var.type;
  3758. desc->s = var.s;
  3759. desc->dpl = var.dpl;
  3760. desc->p = var.present;
  3761. desc->avl = var.avl;
  3762. desc->l = var.l;
  3763. desc->d = var.db;
  3764. desc->g = var.g;
  3765. return true;
  3766. }
  3767. static void emulator_set_cached_descriptor(struct x86_emulate_ctxt *ctxt,
  3768. struct desc_struct *desc, u32 base3,
  3769. int seg)
  3770. {
  3771. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3772. struct kvm_segment var;
  3773. /* needed to preserve selector */
  3774. kvm_get_segment(vcpu, &var, seg);
  3775. var.base = get_desc_base(desc);
  3776. #ifdef CONFIG_X86_64
  3777. var.base |= ((u64)base3) << 32;
  3778. #endif
  3779. var.limit = get_desc_limit(desc);
  3780. if (desc->g)
  3781. var.limit = (var.limit << 12) | 0xfff;
  3782. var.type = desc->type;
  3783. var.present = desc->p;
  3784. var.dpl = desc->dpl;
  3785. var.db = desc->d;
  3786. var.s = desc->s;
  3787. var.l = desc->l;
  3788. var.g = desc->g;
  3789. var.avl = desc->avl;
  3790. var.present = desc->p;
  3791. var.unusable = !var.present;
  3792. var.padding = 0;
  3793. kvm_set_segment(vcpu, &var, seg);
  3794. return;
  3795. }
  3796. static u16 emulator_get_segment_selector(struct x86_emulate_ctxt *ctxt, int seg)
  3797. {
  3798. struct kvm_segment kvm_seg;
  3799. kvm_get_segment(emul_to_vcpu(ctxt), &kvm_seg, seg);
  3800. return kvm_seg.selector;
  3801. }
  3802. static void emulator_set_segment_selector(struct x86_emulate_ctxt *ctxt,
  3803. u16 sel, int seg)
  3804. {
  3805. struct kvm_segment kvm_seg;
  3806. kvm_get_segment(emul_to_vcpu(ctxt), &kvm_seg, seg);
  3807. kvm_seg.selector = sel;
  3808. kvm_set_segment(emul_to_vcpu(ctxt), &kvm_seg, seg);
  3809. }
  3810. static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
  3811. u32 msr_index, u64 *pdata)
  3812. {
  3813. return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
  3814. }
  3815. static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
  3816. u32 msr_index, u64 data)
  3817. {
  3818. return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
  3819. }
  3820. static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
  3821. {
  3822. preempt_disable();
  3823. kvm_load_guest_fpu(ctxt->vcpu);
  3824. /*
  3825. * CR0.TS may reference the host fpu state, not the guest fpu state,
  3826. * so it may be clear at this point.
  3827. */
  3828. clts();
  3829. }
  3830. static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
  3831. {
  3832. preempt_enable();
  3833. }
  3834. static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
  3835. struct x86_instruction_info *info,
  3836. enum x86_intercept_stage stage)
  3837. {
  3838. return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
  3839. }
  3840. static struct x86_emulate_ops emulate_ops = {
  3841. .read_std = kvm_read_guest_virt_system,
  3842. .write_std = kvm_write_guest_virt_system,
  3843. .fetch = kvm_fetch_guest_virt,
  3844. .read_emulated = emulator_read_emulated,
  3845. .write_emulated = emulator_write_emulated,
  3846. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3847. .pio_in_emulated = emulator_pio_in_emulated,
  3848. .pio_out_emulated = emulator_pio_out_emulated,
  3849. .get_cached_descriptor = emulator_get_cached_descriptor,
  3850. .set_cached_descriptor = emulator_set_cached_descriptor,
  3851. .get_segment_selector = emulator_get_segment_selector,
  3852. .set_segment_selector = emulator_set_segment_selector,
  3853. .get_cached_segment_base = emulator_get_cached_segment_base,
  3854. .get_gdt = emulator_get_gdt,
  3855. .get_idt = emulator_get_idt,
  3856. .set_gdt = emulator_set_gdt,
  3857. .set_idt = emulator_set_idt,
  3858. .get_cr = emulator_get_cr,
  3859. .set_cr = emulator_set_cr,
  3860. .cpl = emulator_get_cpl,
  3861. .get_dr = emulator_get_dr,
  3862. .set_dr = emulator_set_dr,
  3863. .set_msr = emulator_set_msr,
  3864. .get_msr = emulator_get_msr,
  3865. .get_fpu = emulator_get_fpu,
  3866. .put_fpu = emulator_put_fpu,
  3867. .intercept = emulator_intercept,
  3868. };
  3869. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3870. {
  3871. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3872. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3873. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3874. vcpu->arch.regs_dirty = ~0;
  3875. }
  3876. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3877. {
  3878. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3879. /*
  3880. * an sti; sti; sequence only disable interrupts for the first
  3881. * instruction. So, if the last instruction, be it emulated or
  3882. * not, left the system with the INT_STI flag enabled, it
  3883. * means that the last instruction is an sti. We should not
  3884. * leave the flag on in this case. The same goes for mov ss
  3885. */
  3886. if (!(int_shadow & mask))
  3887. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3888. }
  3889. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3890. {
  3891. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3892. if (ctxt->exception.vector == PF_VECTOR)
  3893. kvm_propagate_fault(vcpu, &ctxt->exception);
  3894. else if (ctxt->exception.error_code_valid)
  3895. kvm_queue_exception_e(vcpu, ctxt->exception.vector,
  3896. ctxt->exception.error_code);
  3897. else
  3898. kvm_queue_exception(vcpu, ctxt->exception.vector);
  3899. }
  3900. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3901. {
  3902. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3903. int cs_db, cs_l;
  3904. cache_all_regs(vcpu);
  3905. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3906. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3907. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  3908. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3909. vcpu->arch.emulate_ctxt.mode =
  3910. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3911. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3912. ? X86EMUL_MODE_VM86 : cs_l
  3913. ? X86EMUL_MODE_PROT64 : cs_db
  3914. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3915. vcpu->arch.emulate_ctxt.guest_mode = is_guest_mode(vcpu);
  3916. memset(c, 0, sizeof(struct decode_cache));
  3917. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3918. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  3919. }
  3920. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
  3921. {
  3922. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3923. int ret;
  3924. init_emulate_ctxt(vcpu);
  3925. vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
  3926. vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
  3927. vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip +
  3928. inc_eip;
  3929. ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
  3930. if (ret != X86EMUL_CONTINUE)
  3931. return EMULATE_FAIL;
  3932. vcpu->arch.emulate_ctxt.eip = c->eip;
  3933. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3934. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3935. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3936. if (irq == NMI_VECTOR)
  3937. vcpu->arch.nmi_pending = false;
  3938. else
  3939. vcpu->arch.interrupt.pending = false;
  3940. return EMULATE_DONE;
  3941. }
  3942. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  3943. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3944. {
  3945. int r = EMULATE_DONE;
  3946. ++vcpu->stat.insn_emulation_fail;
  3947. trace_kvm_emulate_insn_failed(vcpu);
  3948. if (!is_guest_mode(vcpu)) {
  3949. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3950. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3951. vcpu->run->internal.ndata = 0;
  3952. r = EMULATE_FAIL;
  3953. }
  3954. kvm_queue_exception(vcpu, UD_VECTOR);
  3955. return r;
  3956. }
  3957. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3958. {
  3959. gpa_t gpa;
  3960. if (tdp_enabled)
  3961. return false;
  3962. /*
  3963. * if emulation was due to access to shadowed page table
  3964. * and it failed try to unshadow page and re-entetr the
  3965. * guest to let CPU execute the instruction.
  3966. */
  3967. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3968. return true;
  3969. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3970. if (gpa == UNMAPPED_GVA)
  3971. return true; /* let cpu generate fault */
  3972. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3973. return true;
  3974. return false;
  3975. }
  3976. int x86_emulate_instruction(struct kvm_vcpu *vcpu,
  3977. unsigned long cr2,
  3978. int emulation_type,
  3979. void *insn,
  3980. int insn_len)
  3981. {
  3982. int r;
  3983. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3984. bool writeback = true;
  3985. kvm_clear_exception_queue(vcpu);
  3986. vcpu->arch.mmio_fault_cr2 = cr2;
  3987. /*
  3988. * TODO: fix emulate.c to use guest_read/write_register
  3989. * instead of direct ->regs accesses, can save hundred cycles
  3990. * on Intel for instructions that don't read/change RSP, for
  3991. * for example.
  3992. */
  3993. cache_all_regs(vcpu);
  3994. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3995. init_emulate_ctxt(vcpu);
  3996. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3997. vcpu->arch.emulate_ctxt.have_exception = false;
  3998. vcpu->arch.emulate_ctxt.perm_ok = false;
  3999. vcpu->arch.emulate_ctxt.only_vendor_specific_insn
  4000. = emulation_type & EMULTYPE_TRAP_UD;
  4001. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
  4002. trace_kvm_emulate_insn_start(vcpu);
  4003. ++vcpu->stat.insn_emulation;
  4004. if (r) {
  4005. if (emulation_type & EMULTYPE_TRAP_UD)
  4006. return EMULATE_FAIL;
  4007. if (reexecute_instruction(vcpu, cr2))
  4008. return EMULATE_DONE;
  4009. if (emulation_type & EMULTYPE_SKIP)
  4010. return EMULATE_FAIL;
  4011. return handle_emulation_failure(vcpu);
  4012. }
  4013. }
  4014. if (emulation_type & EMULTYPE_SKIP) {
  4015. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  4016. return EMULATE_DONE;
  4017. }
  4018. /* this is needed for vmware backdoor interface to work since it
  4019. changes registers values during IO operation */
  4020. if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
  4021. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  4022. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  4023. }
  4024. restart:
  4025. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  4026. if (r == EMULATION_INTERCEPTED)
  4027. return EMULATE_DONE;
  4028. if (r == EMULATION_FAILED) {
  4029. if (reexecute_instruction(vcpu, cr2))
  4030. return EMULATE_DONE;
  4031. return handle_emulation_failure(vcpu);
  4032. }
  4033. if (vcpu->arch.emulate_ctxt.have_exception) {
  4034. inject_emulated_exception(vcpu);
  4035. r = EMULATE_DONE;
  4036. } else if (vcpu->arch.pio.count) {
  4037. if (!vcpu->arch.pio.in)
  4038. vcpu->arch.pio.count = 0;
  4039. else
  4040. writeback = false;
  4041. r = EMULATE_DO_MMIO;
  4042. } else if (vcpu->mmio_needed) {
  4043. if (!vcpu->mmio_is_write)
  4044. writeback = false;
  4045. r = EMULATE_DO_MMIO;
  4046. } else if (r == EMULATION_RESTART)
  4047. goto restart;
  4048. else
  4049. r = EMULATE_DONE;
  4050. if (writeback) {
  4051. toggle_interruptibility(vcpu,
  4052. vcpu->arch.emulate_ctxt.interruptibility);
  4053. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4054. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4055. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4056. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  4057. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4058. } else
  4059. vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
  4060. return r;
  4061. }
  4062. EXPORT_SYMBOL_GPL(x86_emulate_instruction);
  4063. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  4064. {
  4065. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4066. int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
  4067. size, port, &val, 1);
  4068. /* do not return to emulator after return from userspace */
  4069. vcpu->arch.pio.count = 0;
  4070. return ret;
  4071. }
  4072. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  4073. static void tsc_bad(void *info)
  4074. {
  4075. __this_cpu_write(cpu_tsc_khz, 0);
  4076. }
  4077. static void tsc_khz_changed(void *data)
  4078. {
  4079. struct cpufreq_freqs *freq = data;
  4080. unsigned long khz = 0;
  4081. if (data)
  4082. khz = freq->new;
  4083. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4084. khz = cpufreq_quick_get(raw_smp_processor_id());
  4085. if (!khz)
  4086. khz = tsc_khz;
  4087. __this_cpu_write(cpu_tsc_khz, khz);
  4088. }
  4089. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  4090. void *data)
  4091. {
  4092. struct cpufreq_freqs *freq = data;
  4093. struct kvm *kvm;
  4094. struct kvm_vcpu *vcpu;
  4095. int i, send_ipi = 0;
  4096. /*
  4097. * We allow guests to temporarily run on slowing clocks,
  4098. * provided we notify them after, or to run on accelerating
  4099. * clocks, provided we notify them before. Thus time never
  4100. * goes backwards.
  4101. *
  4102. * However, we have a problem. We can't atomically update
  4103. * the frequency of a given CPU from this function; it is
  4104. * merely a notifier, which can be called from any CPU.
  4105. * Changing the TSC frequency at arbitrary points in time
  4106. * requires a recomputation of local variables related to
  4107. * the TSC for each VCPU. We must flag these local variables
  4108. * to be updated and be sure the update takes place with the
  4109. * new frequency before any guests proceed.
  4110. *
  4111. * Unfortunately, the combination of hotplug CPU and frequency
  4112. * change creates an intractable locking scenario; the order
  4113. * of when these callouts happen is undefined with respect to
  4114. * CPU hotplug, and they can race with each other. As such,
  4115. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  4116. * undefined; you can actually have a CPU frequency change take
  4117. * place in between the computation of X and the setting of the
  4118. * variable. To protect against this problem, all updates of
  4119. * the per_cpu tsc_khz variable are done in an interrupt
  4120. * protected IPI, and all callers wishing to update the value
  4121. * must wait for a synchronous IPI to complete (which is trivial
  4122. * if the caller is on the CPU already). This establishes the
  4123. * necessary total order on variable updates.
  4124. *
  4125. * Note that because a guest time update may take place
  4126. * anytime after the setting of the VCPU's request bit, the
  4127. * correct TSC value must be set before the request. However,
  4128. * to ensure the update actually makes it to any guest which
  4129. * starts running in hardware virtualization between the set
  4130. * and the acquisition of the spinlock, we must also ping the
  4131. * CPU after setting the request bit.
  4132. *
  4133. */
  4134. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  4135. return 0;
  4136. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  4137. return 0;
  4138. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4139. raw_spin_lock(&kvm_lock);
  4140. list_for_each_entry(kvm, &vm_list, vm_list) {
  4141. kvm_for_each_vcpu(i, vcpu, kvm) {
  4142. if (vcpu->cpu != freq->cpu)
  4143. continue;
  4144. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  4145. if (vcpu->cpu != smp_processor_id())
  4146. send_ipi = 1;
  4147. }
  4148. }
  4149. raw_spin_unlock(&kvm_lock);
  4150. if (freq->old < freq->new && send_ipi) {
  4151. /*
  4152. * We upscale the frequency. Must make the guest
  4153. * doesn't see old kvmclock values while running with
  4154. * the new frequency, otherwise we risk the guest sees
  4155. * time go backwards.
  4156. *
  4157. * In case we update the frequency for another cpu
  4158. * (which might be in guest context) send an interrupt
  4159. * to kick the cpu out of guest context. Next time
  4160. * guest context is entered kvmclock will be updated,
  4161. * so the guest will not see stale values.
  4162. */
  4163. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4164. }
  4165. return 0;
  4166. }
  4167. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  4168. .notifier_call = kvmclock_cpufreq_notifier
  4169. };
  4170. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  4171. unsigned long action, void *hcpu)
  4172. {
  4173. unsigned int cpu = (unsigned long)hcpu;
  4174. switch (action) {
  4175. case CPU_ONLINE:
  4176. case CPU_DOWN_FAILED:
  4177. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4178. break;
  4179. case CPU_DOWN_PREPARE:
  4180. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  4181. break;
  4182. }
  4183. return NOTIFY_OK;
  4184. }
  4185. static struct notifier_block kvmclock_cpu_notifier_block = {
  4186. .notifier_call = kvmclock_cpu_notifier,
  4187. .priority = -INT_MAX
  4188. };
  4189. static void kvm_timer_init(void)
  4190. {
  4191. int cpu;
  4192. max_tsc_khz = tsc_khz;
  4193. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4194. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4195. #ifdef CONFIG_CPU_FREQ
  4196. struct cpufreq_policy policy;
  4197. memset(&policy, 0, sizeof(policy));
  4198. cpu = get_cpu();
  4199. cpufreq_get_policy(&policy, cpu);
  4200. if (policy.cpuinfo.max_freq)
  4201. max_tsc_khz = policy.cpuinfo.max_freq;
  4202. put_cpu();
  4203. #endif
  4204. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4205. CPUFREQ_TRANSITION_NOTIFIER);
  4206. }
  4207. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4208. for_each_online_cpu(cpu)
  4209. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4210. }
  4211. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4212. static int kvm_is_in_guest(void)
  4213. {
  4214. return percpu_read(current_vcpu) != NULL;
  4215. }
  4216. static int kvm_is_user_mode(void)
  4217. {
  4218. int user_mode = 3;
  4219. if (percpu_read(current_vcpu))
  4220. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  4221. return user_mode != 0;
  4222. }
  4223. static unsigned long kvm_get_guest_ip(void)
  4224. {
  4225. unsigned long ip = 0;
  4226. if (percpu_read(current_vcpu))
  4227. ip = kvm_rip_read(percpu_read(current_vcpu));
  4228. return ip;
  4229. }
  4230. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4231. .is_in_guest = kvm_is_in_guest,
  4232. .is_user_mode = kvm_is_user_mode,
  4233. .get_guest_ip = kvm_get_guest_ip,
  4234. };
  4235. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4236. {
  4237. percpu_write(current_vcpu, vcpu);
  4238. }
  4239. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4240. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4241. {
  4242. percpu_write(current_vcpu, NULL);
  4243. }
  4244. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4245. int kvm_arch_init(void *opaque)
  4246. {
  4247. int r;
  4248. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4249. if (kvm_x86_ops) {
  4250. printk(KERN_ERR "kvm: already loaded the other module\n");
  4251. r = -EEXIST;
  4252. goto out;
  4253. }
  4254. if (!ops->cpu_has_kvm_support()) {
  4255. printk(KERN_ERR "kvm: no hardware support\n");
  4256. r = -EOPNOTSUPP;
  4257. goto out;
  4258. }
  4259. if (ops->disabled_by_bios()) {
  4260. printk(KERN_ERR "kvm: disabled by bios\n");
  4261. r = -EOPNOTSUPP;
  4262. goto out;
  4263. }
  4264. r = kvm_mmu_module_init();
  4265. if (r)
  4266. goto out;
  4267. kvm_init_msr_list();
  4268. kvm_x86_ops = ops;
  4269. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  4270. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4271. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4272. kvm_timer_init();
  4273. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4274. if (cpu_has_xsave)
  4275. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4276. return 0;
  4277. out:
  4278. return r;
  4279. }
  4280. void kvm_arch_exit(void)
  4281. {
  4282. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4283. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4284. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4285. CPUFREQ_TRANSITION_NOTIFIER);
  4286. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4287. kvm_x86_ops = NULL;
  4288. kvm_mmu_module_exit();
  4289. }
  4290. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4291. {
  4292. ++vcpu->stat.halt_exits;
  4293. if (irqchip_in_kernel(vcpu->kvm)) {
  4294. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4295. return 1;
  4296. } else {
  4297. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4298. return 0;
  4299. }
  4300. }
  4301. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4302. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  4303. unsigned long a1)
  4304. {
  4305. if (is_long_mode(vcpu))
  4306. return a0;
  4307. else
  4308. return a0 | ((gpa_t)a1 << 32);
  4309. }
  4310. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4311. {
  4312. u64 param, ingpa, outgpa, ret;
  4313. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4314. bool fast, longmode;
  4315. int cs_db, cs_l;
  4316. /*
  4317. * hypercall generates UD from non zero cpl and real mode
  4318. * per HYPER-V spec
  4319. */
  4320. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4321. kvm_queue_exception(vcpu, UD_VECTOR);
  4322. return 0;
  4323. }
  4324. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4325. longmode = is_long_mode(vcpu) && cs_l == 1;
  4326. if (!longmode) {
  4327. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4328. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4329. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4330. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4331. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4332. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4333. }
  4334. #ifdef CONFIG_X86_64
  4335. else {
  4336. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4337. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4338. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4339. }
  4340. #endif
  4341. code = param & 0xffff;
  4342. fast = (param >> 16) & 0x1;
  4343. rep_cnt = (param >> 32) & 0xfff;
  4344. rep_idx = (param >> 48) & 0xfff;
  4345. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4346. switch (code) {
  4347. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4348. kvm_vcpu_on_spin(vcpu);
  4349. break;
  4350. default:
  4351. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4352. break;
  4353. }
  4354. ret = res | (((u64)rep_done & 0xfff) << 32);
  4355. if (longmode) {
  4356. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4357. } else {
  4358. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4359. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4360. }
  4361. return 1;
  4362. }
  4363. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4364. {
  4365. unsigned long nr, a0, a1, a2, a3, ret;
  4366. int r = 1;
  4367. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4368. return kvm_hv_hypercall(vcpu);
  4369. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4370. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4371. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4372. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4373. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4374. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4375. if (!is_long_mode(vcpu)) {
  4376. nr &= 0xFFFFFFFF;
  4377. a0 &= 0xFFFFFFFF;
  4378. a1 &= 0xFFFFFFFF;
  4379. a2 &= 0xFFFFFFFF;
  4380. a3 &= 0xFFFFFFFF;
  4381. }
  4382. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4383. ret = -KVM_EPERM;
  4384. goto out;
  4385. }
  4386. switch (nr) {
  4387. case KVM_HC_VAPIC_POLL_IRQ:
  4388. ret = 0;
  4389. break;
  4390. case KVM_HC_MMU_OP:
  4391. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  4392. break;
  4393. default:
  4394. ret = -KVM_ENOSYS;
  4395. break;
  4396. }
  4397. out:
  4398. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4399. ++vcpu->stat.hypercalls;
  4400. return r;
  4401. }
  4402. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4403. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  4404. {
  4405. char instruction[3];
  4406. unsigned long rip = kvm_rip_read(vcpu);
  4407. /*
  4408. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4409. * to ensure that the updated hypercall appears atomically across all
  4410. * VCPUs.
  4411. */
  4412. kvm_mmu_zap_all(vcpu->kvm);
  4413. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4414. return emulator_write_emulated(&vcpu->arch.emulate_ctxt,
  4415. rip, instruction, 3, NULL);
  4416. }
  4417. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4418. {
  4419. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4420. int j, nent = vcpu->arch.cpuid_nent;
  4421. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4422. /* when no next entry is found, the current entry[i] is reselected */
  4423. for (j = i + 1; ; j = (j + 1) % nent) {
  4424. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4425. if (ej->function == e->function) {
  4426. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4427. return j;
  4428. }
  4429. }
  4430. return 0; /* silence gcc, even though control never reaches here */
  4431. }
  4432. /* find an entry with matching function, matching index (if needed), and that
  4433. * should be read next (if it's stateful) */
  4434. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4435. u32 function, u32 index)
  4436. {
  4437. if (e->function != function)
  4438. return 0;
  4439. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4440. return 0;
  4441. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4442. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4443. return 0;
  4444. return 1;
  4445. }
  4446. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4447. u32 function, u32 index)
  4448. {
  4449. int i;
  4450. struct kvm_cpuid_entry2 *best = NULL;
  4451. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4452. struct kvm_cpuid_entry2 *e;
  4453. e = &vcpu->arch.cpuid_entries[i];
  4454. if (is_matching_cpuid_entry(e, function, index)) {
  4455. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4456. move_to_next_stateful_cpuid_entry(vcpu, i);
  4457. best = e;
  4458. break;
  4459. }
  4460. }
  4461. return best;
  4462. }
  4463. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4464. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4465. {
  4466. struct kvm_cpuid_entry2 *best;
  4467. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4468. if (!best || best->eax < 0x80000008)
  4469. goto not_found;
  4470. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4471. if (best)
  4472. return best->eax & 0xff;
  4473. not_found:
  4474. return 36;
  4475. }
  4476. /*
  4477. * If no match is found, check whether we exceed the vCPU's limit
  4478. * and return the content of the highest valid _standard_ leaf instead.
  4479. * This is to satisfy the CPUID specification.
  4480. */
  4481. static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
  4482. u32 function, u32 index)
  4483. {
  4484. struct kvm_cpuid_entry2 *maxlevel;
  4485. maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
  4486. if (!maxlevel || maxlevel->eax >= function)
  4487. return NULL;
  4488. if (function & 0x80000000) {
  4489. maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
  4490. if (!maxlevel)
  4491. return NULL;
  4492. }
  4493. return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
  4494. }
  4495. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4496. {
  4497. u32 function, index;
  4498. struct kvm_cpuid_entry2 *best;
  4499. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4500. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4501. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4502. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4503. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4504. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4505. best = kvm_find_cpuid_entry(vcpu, function, index);
  4506. if (!best)
  4507. best = check_cpuid_limit(vcpu, function, index);
  4508. if (best) {
  4509. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4510. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4511. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4512. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4513. }
  4514. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4515. trace_kvm_cpuid(function,
  4516. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4517. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4518. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4519. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4520. }
  4521. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4522. /*
  4523. * Check if userspace requested an interrupt window, and that the
  4524. * interrupt window is open.
  4525. *
  4526. * No need to exit to userspace if we already have an interrupt queued.
  4527. */
  4528. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4529. {
  4530. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4531. vcpu->run->request_interrupt_window &&
  4532. kvm_arch_interrupt_allowed(vcpu));
  4533. }
  4534. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4535. {
  4536. struct kvm_run *kvm_run = vcpu->run;
  4537. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4538. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4539. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4540. if (irqchip_in_kernel(vcpu->kvm))
  4541. kvm_run->ready_for_interrupt_injection = 1;
  4542. else
  4543. kvm_run->ready_for_interrupt_injection =
  4544. kvm_arch_interrupt_allowed(vcpu) &&
  4545. !kvm_cpu_has_interrupt(vcpu) &&
  4546. !kvm_event_needs_reinjection(vcpu);
  4547. }
  4548. static void vapic_enter(struct kvm_vcpu *vcpu)
  4549. {
  4550. struct kvm_lapic *apic = vcpu->arch.apic;
  4551. struct page *page;
  4552. if (!apic || !apic->vapic_addr)
  4553. return;
  4554. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4555. vcpu->arch.apic->vapic_page = page;
  4556. }
  4557. static void vapic_exit(struct kvm_vcpu *vcpu)
  4558. {
  4559. struct kvm_lapic *apic = vcpu->arch.apic;
  4560. int idx;
  4561. if (!apic || !apic->vapic_addr)
  4562. return;
  4563. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4564. kvm_release_page_dirty(apic->vapic_page);
  4565. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4566. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4567. }
  4568. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4569. {
  4570. int max_irr, tpr;
  4571. if (!kvm_x86_ops->update_cr8_intercept)
  4572. return;
  4573. if (!vcpu->arch.apic)
  4574. return;
  4575. if (!vcpu->arch.apic->vapic_addr)
  4576. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4577. else
  4578. max_irr = -1;
  4579. if (max_irr != -1)
  4580. max_irr >>= 4;
  4581. tpr = kvm_lapic_get_cr8(vcpu);
  4582. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4583. }
  4584. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4585. {
  4586. /* try to reinject previous events if any */
  4587. if (vcpu->arch.exception.pending) {
  4588. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4589. vcpu->arch.exception.has_error_code,
  4590. vcpu->arch.exception.error_code);
  4591. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4592. vcpu->arch.exception.has_error_code,
  4593. vcpu->arch.exception.error_code,
  4594. vcpu->arch.exception.reinject);
  4595. return;
  4596. }
  4597. if (vcpu->arch.nmi_injected) {
  4598. kvm_x86_ops->set_nmi(vcpu);
  4599. return;
  4600. }
  4601. if (vcpu->arch.interrupt.pending) {
  4602. kvm_x86_ops->set_irq(vcpu);
  4603. return;
  4604. }
  4605. /* try to inject new event if pending */
  4606. if (vcpu->arch.nmi_pending) {
  4607. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4608. vcpu->arch.nmi_pending = false;
  4609. vcpu->arch.nmi_injected = true;
  4610. kvm_x86_ops->set_nmi(vcpu);
  4611. }
  4612. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4613. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4614. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4615. false);
  4616. kvm_x86_ops->set_irq(vcpu);
  4617. }
  4618. }
  4619. }
  4620. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4621. {
  4622. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4623. !vcpu->guest_xcr0_loaded) {
  4624. /* kvm_set_xcr() also depends on this */
  4625. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4626. vcpu->guest_xcr0_loaded = 1;
  4627. }
  4628. }
  4629. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4630. {
  4631. if (vcpu->guest_xcr0_loaded) {
  4632. if (vcpu->arch.xcr0 != host_xcr0)
  4633. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4634. vcpu->guest_xcr0_loaded = 0;
  4635. }
  4636. }
  4637. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4638. {
  4639. int r;
  4640. bool nmi_pending;
  4641. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4642. vcpu->run->request_interrupt_window;
  4643. if (vcpu->requests) {
  4644. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4645. kvm_mmu_unload(vcpu);
  4646. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4647. __kvm_migrate_timers(vcpu);
  4648. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4649. r = kvm_guest_time_update(vcpu);
  4650. if (unlikely(r))
  4651. goto out;
  4652. }
  4653. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4654. kvm_mmu_sync_roots(vcpu);
  4655. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4656. kvm_x86_ops->tlb_flush(vcpu);
  4657. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4658. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4659. r = 0;
  4660. goto out;
  4661. }
  4662. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4663. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4664. r = 0;
  4665. goto out;
  4666. }
  4667. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4668. vcpu->fpu_active = 0;
  4669. kvm_x86_ops->fpu_deactivate(vcpu);
  4670. }
  4671. if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  4672. /* Page is swapped out. Do synthetic halt */
  4673. vcpu->arch.apf.halted = true;
  4674. r = 1;
  4675. goto out;
  4676. }
  4677. }
  4678. r = kvm_mmu_reload(vcpu);
  4679. if (unlikely(r))
  4680. goto out;
  4681. /*
  4682. * An NMI can be injected between local nmi_pending read and
  4683. * vcpu->arch.nmi_pending read inside inject_pending_event().
  4684. * But in that case, KVM_REQ_EVENT will be set, which makes
  4685. * the race described above benign.
  4686. */
  4687. nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
  4688. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4689. inject_pending_event(vcpu);
  4690. /* enable NMI/IRQ window open exits if needed */
  4691. if (nmi_pending)
  4692. kvm_x86_ops->enable_nmi_window(vcpu);
  4693. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4694. kvm_x86_ops->enable_irq_window(vcpu);
  4695. if (kvm_lapic_enabled(vcpu)) {
  4696. update_cr8_intercept(vcpu);
  4697. kvm_lapic_sync_to_vapic(vcpu);
  4698. }
  4699. }
  4700. preempt_disable();
  4701. kvm_x86_ops->prepare_guest_switch(vcpu);
  4702. if (vcpu->fpu_active)
  4703. kvm_load_guest_fpu(vcpu);
  4704. kvm_load_guest_xcr0(vcpu);
  4705. vcpu->mode = IN_GUEST_MODE;
  4706. /* We should set ->mode before check ->requests,
  4707. * see the comment in make_all_cpus_request.
  4708. */
  4709. smp_mb();
  4710. local_irq_disable();
  4711. if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
  4712. || need_resched() || signal_pending(current)) {
  4713. vcpu->mode = OUTSIDE_GUEST_MODE;
  4714. smp_wmb();
  4715. local_irq_enable();
  4716. preempt_enable();
  4717. kvm_x86_ops->cancel_injection(vcpu);
  4718. r = 1;
  4719. goto out;
  4720. }
  4721. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4722. kvm_guest_enter();
  4723. if (unlikely(vcpu->arch.switch_db_regs)) {
  4724. set_debugreg(0, 7);
  4725. set_debugreg(vcpu->arch.eff_db[0], 0);
  4726. set_debugreg(vcpu->arch.eff_db[1], 1);
  4727. set_debugreg(vcpu->arch.eff_db[2], 2);
  4728. set_debugreg(vcpu->arch.eff_db[3], 3);
  4729. }
  4730. trace_kvm_entry(vcpu->vcpu_id);
  4731. kvm_x86_ops->run(vcpu);
  4732. /*
  4733. * If the guest has used debug registers, at least dr7
  4734. * will be disabled while returning to the host.
  4735. * If we don't have active breakpoints in the host, we don't
  4736. * care about the messed up debug address registers. But if
  4737. * we have some of them active, restore the old state.
  4738. */
  4739. if (hw_breakpoint_active())
  4740. hw_breakpoint_restore();
  4741. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  4742. vcpu->mode = OUTSIDE_GUEST_MODE;
  4743. smp_wmb();
  4744. local_irq_enable();
  4745. ++vcpu->stat.exits;
  4746. /*
  4747. * We must have an instruction between local_irq_enable() and
  4748. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4749. * the interrupt shadow. The stat.exits increment will do nicely.
  4750. * But we need to prevent reordering, hence this barrier():
  4751. */
  4752. barrier();
  4753. kvm_guest_exit();
  4754. preempt_enable();
  4755. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4756. /*
  4757. * Profile KVM exit RIPs:
  4758. */
  4759. if (unlikely(prof_on == KVM_PROFILING)) {
  4760. unsigned long rip = kvm_rip_read(vcpu);
  4761. profile_hit(KVM_PROFILING, (void *)rip);
  4762. }
  4763. kvm_lapic_sync_from_vapic(vcpu);
  4764. r = kvm_x86_ops->handle_exit(vcpu);
  4765. out:
  4766. return r;
  4767. }
  4768. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4769. {
  4770. int r;
  4771. struct kvm *kvm = vcpu->kvm;
  4772. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4773. pr_debug("vcpu %d received sipi with vector # %x\n",
  4774. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4775. kvm_lapic_reset(vcpu);
  4776. r = kvm_arch_vcpu_reset(vcpu);
  4777. if (r)
  4778. return r;
  4779. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4780. }
  4781. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4782. vapic_enter(vcpu);
  4783. r = 1;
  4784. while (r > 0) {
  4785. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  4786. !vcpu->arch.apf.halted)
  4787. r = vcpu_enter_guest(vcpu);
  4788. else {
  4789. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4790. kvm_vcpu_block(vcpu);
  4791. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4792. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4793. {
  4794. switch(vcpu->arch.mp_state) {
  4795. case KVM_MP_STATE_HALTED:
  4796. vcpu->arch.mp_state =
  4797. KVM_MP_STATE_RUNNABLE;
  4798. case KVM_MP_STATE_RUNNABLE:
  4799. vcpu->arch.apf.halted = false;
  4800. break;
  4801. case KVM_MP_STATE_SIPI_RECEIVED:
  4802. default:
  4803. r = -EINTR;
  4804. break;
  4805. }
  4806. }
  4807. }
  4808. if (r <= 0)
  4809. break;
  4810. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4811. if (kvm_cpu_has_pending_timer(vcpu))
  4812. kvm_inject_pending_timer_irqs(vcpu);
  4813. if (dm_request_for_irq_injection(vcpu)) {
  4814. r = -EINTR;
  4815. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4816. ++vcpu->stat.request_irq_exits;
  4817. }
  4818. kvm_check_async_pf_completion(vcpu);
  4819. if (signal_pending(current)) {
  4820. r = -EINTR;
  4821. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4822. ++vcpu->stat.signal_exits;
  4823. }
  4824. if (need_resched()) {
  4825. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4826. kvm_resched(vcpu);
  4827. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4828. }
  4829. }
  4830. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4831. vapic_exit(vcpu);
  4832. return r;
  4833. }
  4834. static int complete_mmio(struct kvm_vcpu *vcpu)
  4835. {
  4836. struct kvm_run *run = vcpu->run;
  4837. int r;
  4838. if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
  4839. return 1;
  4840. if (vcpu->mmio_needed) {
  4841. vcpu->mmio_needed = 0;
  4842. if (!vcpu->mmio_is_write)
  4843. memcpy(vcpu->mmio_data, run->mmio.data, 8);
  4844. vcpu->mmio_index += 8;
  4845. if (vcpu->mmio_index < vcpu->mmio_size) {
  4846. run->exit_reason = KVM_EXIT_MMIO;
  4847. run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
  4848. memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
  4849. run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
  4850. run->mmio.is_write = vcpu->mmio_is_write;
  4851. vcpu->mmio_needed = 1;
  4852. return 0;
  4853. }
  4854. if (vcpu->mmio_is_write)
  4855. return 1;
  4856. vcpu->mmio_read_completed = 1;
  4857. }
  4858. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4859. r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
  4860. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4861. if (r != EMULATE_DONE)
  4862. return 0;
  4863. return 1;
  4864. }
  4865. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4866. {
  4867. int r;
  4868. sigset_t sigsaved;
  4869. if (!tsk_used_math(current) && init_fpu(current))
  4870. return -ENOMEM;
  4871. if (vcpu->sigset_active)
  4872. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4873. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4874. kvm_vcpu_block(vcpu);
  4875. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4876. r = -EAGAIN;
  4877. goto out;
  4878. }
  4879. /* re-sync apic's tpr */
  4880. if (!irqchip_in_kernel(vcpu->kvm)) {
  4881. if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
  4882. r = -EINVAL;
  4883. goto out;
  4884. }
  4885. }
  4886. r = complete_mmio(vcpu);
  4887. if (r <= 0)
  4888. goto out;
  4889. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4890. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4891. kvm_run->hypercall.ret);
  4892. r = __vcpu_run(vcpu);
  4893. out:
  4894. post_kvm_run_save(vcpu);
  4895. if (vcpu->sigset_active)
  4896. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4897. return r;
  4898. }
  4899. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4900. {
  4901. if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
  4902. /*
  4903. * We are here if userspace calls get_regs() in the middle of
  4904. * instruction emulation. Registers state needs to be copied
  4905. * back from emulation context to vcpu. Usrapace shouldn't do
  4906. * that usually, but some bad designed PV devices (vmware
  4907. * backdoor interface) need this to work
  4908. */
  4909. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4910. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4911. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  4912. }
  4913. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4914. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4915. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4916. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4917. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4918. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4919. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4920. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4921. #ifdef CONFIG_X86_64
  4922. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4923. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4924. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4925. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4926. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4927. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4928. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4929. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4930. #endif
  4931. regs->rip = kvm_rip_read(vcpu);
  4932. regs->rflags = kvm_get_rflags(vcpu);
  4933. return 0;
  4934. }
  4935. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4936. {
  4937. vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
  4938. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  4939. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4940. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4941. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4942. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4943. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4944. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4945. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4946. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4947. #ifdef CONFIG_X86_64
  4948. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4949. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4950. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4951. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4952. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4953. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4954. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4955. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4956. #endif
  4957. kvm_rip_write(vcpu, regs->rip);
  4958. kvm_set_rflags(vcpu, regs->rflags);
  4959. vcpu->arch.exception.pending = false;
  4960. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4961. return 0;
  4962. }
  4963. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4964. {
  4965. struct kvm_segment cs;
  4966. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4967. *db = cs.db;
  4968. *l = cs.l;
  4969. }
  4970. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4971. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4972. struct kvm_sregs *sregs)
  4973. {
  4974. struct desc_ptr dt;
  4975. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4976. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4977. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4978. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4979. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4980. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4981. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4982. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4983. kvm_x86_ops->get_idt(vcpu, &dt);
  4984. sregs->idt.limit = dt.size;
  4985. sregs->idt.base = dt.address;
  4986. kvm_x86_ops->get_gdt(vcpu, &dt);
  4987. sregs->gdt.limit = dt.size;
  4988. sregs->gdt.base = dt.address;
  4989. sregs->cr0 = kvm_read_cr0(vcpu);
  4990. sregs->cr2 = vcpu->arch.cr2;
  4991. sregs->cr3 = kvm_read_cr3(vcpu);
  4992. sregs->cr4 = kvm_read_cr4(vcpu);
  4993. sregs->cr8 = kvm_get_cr8(vcpu);
  4994. sregs->efer = vcpu->arch.efer;
  4995. sregs->apic_base = kvm_get_apic_base(vcpu);
  4996. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4997. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4998. set_bit(vcpu->arch.interrupt.nr,
  4999. (unsigned long *)sregs->interrupt_bitmap);
  5000. return 0;
  5001. }
  5002. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  5003. struct kvm_mp_state *mp_state)
  5004. {
  5005. mp_state->mp_state = vcpu->arch.mp_state;
  5006. return 0;
  5007. }
  5008. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  5009. struct kvm_mp_state *mp_state)
  5010. {
  5011. vcpu->arch.mp_state = mp_state->mp_state;
  5012. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5013. return 0;
  5014. }
  5015. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  5016. bool has_error_code, u32 error_code)
  5017. {
  5018. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  5019. int ret;
  5020. init_emulate_ctxt(vcpu);
  5021. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  5022. tss_selector, reason, has_error_code,
  5023. error_code);
  5024. if (ret)
  5025. return EMULATE_FAIL;
  5026. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  5027. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  5028. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  5029. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5030. return EMULATE_DONE;
  5031. }
  5032. EXPORT_SYMBOL_GPL(kvm_task_switch);
  5033. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  5034. struct kvm_sregs *sregs)
  5035. {
  5036. int mmu_reset_needed = 0;
  5037. int pending_vec, max_bits, idx;
  5038. struct desc_ptr dt;
  5039. dt.size = sregs->idt.limit;
  5040. dt.address = sregs->idt.base;
  5041. kvm_x86_ops->set_idt(vcpu, &dt);
  5042. dt.size = sregs->gdt.limit;
  5043. dt.address = sregs->gdt.base;
  5044. kvm_x86_ops->set_gdt(vcpu, &dt);
  5045. vcpu->arch.cr2 = sregs->cr2;
  5046. mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
  5047. vcpu->arch.cr3 = sregs->cr3;
  5048. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  5049. kvm_set_cr8(vcpu, sregs->cr8);
  5050. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  5051. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  5052. kvm_set_apic_base(vcpu, sregs->apic_base);
  5053. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  5054. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  5055. vcpu->arch.cr0 = sregs->cr0;
  5056. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  5057. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  5058. if (sregs->cr4 & X86_CR4_OSXSAVE)
  5059. update_cpuid(vcpu);
  5060. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5061. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  5062. load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
  5063. mmu_reset_needed = 1;
  5064. }
  5065. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5066. if (mmu_reset_needed)
  5067. kvm_mmu_reset_context(vcpu);
  5068. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  5069. pending_vec = find_first_bit(
  5070. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  5071. if (pending_vec < max_bits) {
  5072. kvm_queue_interrupt(vcpu, pending_vec, false);
  5073. pr_debug("Set back pending irq %d\n", pending_vec);
  5074. }
  5075. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  5076. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  5077. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  5078. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  5079. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  5080. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  5081. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  5082. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  5083. update_cr8_intercept(vcpu);
  5084. /* Older userspace won't unhalt the vcpu on reset. */
  5085. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  5086. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  5087. !is_protmode(vcpu))
  5088. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5089. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5090. return 0;
  5091. }
  5092. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  5093. struct kvm_guest_debug *dbg)
  5094. {
  5095. unsigned long rflags;
  5096. int i, r;
  5097. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  5098. r = -EBUSY;
  5099. if (vcpu->arch.exception.pending)
  5100. goto out;
  5101. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  5102. kvm_queue_exception(vcpu, DB_VECTOR);
  5103. else
  5104. kvm_queue_exception(vcpu, BP_VECTOR);
  5105. }
  5106. /*
  5107. * Read rflags as long as potentially injected trace flags are still
  5108. * filtered out.
  5109. */
  5110. rflags = kvm_get_rflags(vcpu);
  5111. vcpu->guest_debug = dbg->control;
  5112. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  5113. vcpu->guest_debug = 0;
  5114. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  5115. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  5116. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  5117. vcpu->arch.switch_db_regs =
  5118. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  5119. } else {
  5120. for (i = 0; i < KVM_NR_DB_REGS; i++)
  5121. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  5122. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  5123. }
  5124. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5125. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  5126. get_segment_base(vcpu, VCPU_SREG_CS);
  5127. /*
  5128. * Trigger an rflags update that will inject or remove the trace
  5129. * flags.
  5130. */
  5131. kvm_set_rflags(vcpu, rflags);
  5132. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  5133. r = 0;
  5134. out:
  5135. return r;
  5136. }
  5137. /*
  5138. * Translate a guest virtual address to a guest physical address.
  5139. */
  5140. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  5141. struct kvm_translation *tr)
  5142. {
  5143. unsigned long vaddr = tr->linear_address;
  5144. gpa_t gpa;
  5145. int idx;
  5146. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5147. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  5148. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5149. tr->physical_address = gpa;
  5150. tr->valid = gpa != UNMAPPED_GVA;
  5151. tr->writeable = 1;
  5152. tr->usermode = 0;
  5153. return 0;
  5154. }
  5155. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5156. {
  5157. struct i387_fxsave_struct *fxsave =
  5158. &vcpu->arch.guest_fpu.state->fxsave;
  5159. memcpy(fpu->fpr, fxsave->st_space, 128);
  5160. fpu->fcw = fxsave->cwd;
  5161. fpu->fsw = fxsave->swd;
  5162. fpu->ftwx = fxsave->twd;
  5163. fpu->last_opcode = fxsave->fop;
  5164. fpu->last_ip = fxsave->rip;
  5165. fpu->last_dp = fxsave->rdp;
  5166. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  5167. return 0;
  5168. }
  5169. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5170. {
  5171. struct i387_fxsave_struct *fxsave =
  5172. &vcpu->arch.guest_fpu.state->fxsave;
  5173. memcpy(fxsave->st_space, fpu->fpr, 128);
  5174. fxsave->cwd = fpu->fcw;
  5175. fxsave->swd = fpu->fsw;
  5176. fxsave->twd = fpu->ftwx;
  5177. fxsave->fop = fpu->last_opcode;
  5178. fxsave->rip = fpu->last_ip;
  5179. fxsave->rdp = fpu->last_dp;
  5180. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  5181. return 0;
  5182. }
  5183. int fx_init(struct kvm_vcpu *vcpu)
  5184. {
  5185. int err;
  5186. err = fpu_alloc(&vcpu->arch.guest_fpu);
  5187. if (err)
  5188. return err;
  5189. fpu_finit(&vcpu->arch.guest_fpu);
  5190. /*
  5191. * Ensure guest xcr0 is valid for loading
  5192. */
  5193. vcpu->arch.xcr0 = XSTATE_FP;
  5194. vcpu->arch.cr0 |= X86_CR0_ET;
  5195. return 0;
  5196. }
  5197. EXPORT_SYMBOL_GPL(fx_init);
  5198. static void fx_free(struct kvm_vcpu *vcpu)
  5199. {
  5200. fpu_free(&vcpu->arch.guest_fpu);
  5201. }
  5202. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  5203. {
  5204. if (vcpu->guest_fpu_loaded)
  5205. return;
  5206. /*
  5207. * Restore all possible states in the guest,
  5208. * and assume host would use all available bits.
  5209. * Guest xcr0 would be loaded later.
  5210. */
  5211. kvm_put_guest_xcr0(vcpu);
  5212. vcpu->guest_fpu_loaded = 1;
  5213. unlazy_fpu(current);
  5214. fpu_restore_checking(&vcpu->arch.guest_fpu);
  5215. trace_kvm_fpu(1);
  5216. }
  5217. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  5218. {
  5219. kvm_put_guest_xcr0(vcpu);
  5220. if (!vcpu->guest_fpu_loaded)
  5221. return;
  5222. vcpu->guest_fpu_loaded = 0;
  5223. fpu_save_init(&vcpu->arch.guest_fpu);
  5224. ++vcpu->stat.fpu_reload;
  5225. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  5226. trace_kvm_fpu(0);
  5227. }
  5228. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  5229. {
  5230. kvmclock_reset(vcpu);
  5231. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5232. fx_free(vcpu);
  5233. kvm_x86_ops->vcpu_free(vcpu);
  5234. }
  5235. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  5236. unsigned int id)
  5237. {
  5238. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  5239. printk_once(KERN_WARNING
  5240. "kvm: SMP vm created on host with unstable TSC; "
  5241. "guest TSC will not be reliable\n");
  5242. return kvm_x86_ops->vcpu_create(kvm, id);
  5243. }
  5244. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  5245. {
  5246. int r;
  5247. vcpu->arch.mtrr_state.have_fixed = 1;
  5248. vcpu_load(vcpu);
  5249. r = kvm_arch_vcpu_reset(vcpu);
  5250. if (r == 0)
  5251. r = kvm_mmu_setup(vcpu);
  5252. vcpu_put(vcpu);
  5253. if (r < 0)
  5254. goto free_vcpu;
  5255. return 0;
  5256. free_vcpu:
  5257. kvm_x86_ops->vcpu_free(vcpu);
  5258. return r;
  5259. }
  5260. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5261. {
  5262. vcpu->arch.apf.msr_val = 0;
  5263. vcpu_load(vcpu);
  5264. kvm_mmu_unload(vcpu);
  5265. vcpu_put(vcpu);
  5266. fx_free(vcpu);
  5267. kvm_x86_ops->vcpu_free(vcpu);
  5268. }
  5269. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  5270. {
  5271. vcpu->arch.nmi_pending = false;
  5272. vcpu->arch.nmi_injected = false;
  5273. vcpu->arch.switch_db_regs = 0;
  5274. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5275. vcpu->arch.dr6 = DR6_FIXED_1;
  5276. vcpu->arch.dr7 = DR7_FIXED_1;
  5277. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5278. vcpu->arch.apf.msr_val = 0;
  5279. kvmclock_reset(vcpu);
  5280. kvm_clear_async_pf_completion_queue(vcpu);
  5281. kvm_async_pf_hash_reset(vcpu);
  5282. vcpu->arch.apf.halted = false;
  5283. return kvm_x86_ops->vcpu_reset(vcpu);
  5284. }
  5285. int kvm_arch_hardware_enable(void *garbage)
  5286. {
  5287. struct kvm *kvm;
  5288. struct kvm_vcpu *vcpu;
  5289. int i;
  5290. kvm_shared_msr_cpu_online();
  5291. list_for_each_entry(kvm, &vm_list, vm_list)
  5292. kvm_for_each_vcpu(i, vcpu, kvm)
  5293. if (vcpu->cpu == smp_processor_id())
  5294. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5295. return kvm_x86_ops->hardware_enable(garbage);
  5296. }
  5297. void kvm_arch_hardware_disable(void *garbage)
  5298. {
  5299. kvm_x86_ops->hardware_disable(garbage);
  5300. drop_user_return_notifiers(garbage);
  5301. }
  5302. int kvm_arch_hardware_setup(void)
  5303. {
  5304. return kvm_x86_ops->hardware_setup();
  5305. }
  5306. void kvm_arch_hardware_unsetup(void)
  5307. {
  5308. kvm_x86_ops->hardware_unsetup();
  5309. }
  5310. void kvm_arch_check_processor_compat(void *rtn)
  5311. {
  5312. kvm_x86_ops->check_processor_compatibility(rtn);
  5313. }
  5314. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5315. {
  5316. struct page *page;
  5317. struct kvm *kvm;
  5318. int r;
  5319. BUG_ON(vcpu->kvm == NULL);
  5320. kvm = vcpu->kvm;
  5321. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5322. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  5323. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  5324. vcpu->arch.mmu.translate_gpa = translate_gpa;
  5325. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  5326. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5327. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5328. else
  5329. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5330. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5331. if (!page) {
  5332. r = -ENOMEM;
  5333. goto fail;
  5334. }
  5335. vcpu->arch.pio_data = page_address(page);
  5336. kvm_init_tsc_catchup(vcpu, max_tsc_khz);
  5337. r = kvm_mmu_create(vcpu);
  5338. if (r < 0)
  5339. goto fail_free_pio_data;
  5340. if (irqchip_in_kernel(kvm)) {
  5341. r = kvm_create_lapic(vcpu);
  5342. if (r < 0)
  5343. goto fail_mmu_destroy;
  5344. }
  5345. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5346. GFP_KERNEL);
  5347. if (!vcpu->arch.mce_banks) {
  5348. r = -ENOMEM;
  5349. goto fail_free_lapic;
  5350. }
  5351. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5352. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5353. goto fail_free_mce_banks;
  5354. kvm_async_pf_hash_reset(vcpu);
  5355. return 0;
  5356. fail_free_mce_banks:
  5357. kfree(vcpu->arch.mce_banks);
  5358. fail_free_lapic:
  5359. kvm_free_lapic(vcpu);
  5360. fail_mmu_destroy:
  5361. kvm_mmu_destroy(vcpu);
  5362. fail_free_pio_data:
  5363. free_page((unsigned long)vcpu->arch.pio_data);
  5364. fail:
  5365. return r;
  5366. }
  5367. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5368. {
  5369. int idx;
  5370. kfree(vcpu->arch.mce_banks);
  5371. kvm_free_lapic(vcpu);
  5372. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5373. kvm_mmu_destroy(vcpu);
  5374. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5375. free_page((unsigned long)vcpu->arch.pio_data);
  5376. }
  5377. int kvm_arch_init_vm(struct kvm *kvm)
  5378. {
  5379. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5380. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5381. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5382. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5383. raw_spin_lock_init(&kvm->arch.tsc_write_lock);
  5384. return 0;
  5385. }
  5386. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5387. {
  5388. vcpu_load(vcpu);
  5389. kvm_mmu_unload(vcpu);
  5390. vcpu_put(vcpu);
  5391. }
  5392. static void kvm_free_vcpus(struct kvm *kvm)
  5393. {
  5394. unsigned int i;
  5395. struct kvm_vcpu *vcpu;
  5396. /*
  5397. * Unpin any mmu pages first.
  5398. */
  5399. kvm_for_each_vcpu(i, vcpu, kvm) {
  5400. kvm_clear_async_pf_completion_queue(vcpu);
  5401. kvm_unload_vcpu_mmu(vcpu);
  5402. }
  5403. kvm_for_each_vcpu(i, vcpu, kvm)
  5404. kvm_arch_vcpu_free(vcpu);
  5405. mutex_lock(&kvm->lock);
  5406. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5407. kvm->vcpus[i] = NULL;
  5408. atomic_set(&kvm->online_vcpus, 0);
  5409. mutex_unlock(&kvm->lock);
  5410. }
  5411. void kvm_arch_sync_events(struct kvm *kvm)
  5412. {
  5413. kvm_free_all_assigned_devices(kvm);
  5414. kvm_free_pit(kvm);
  5415. }
  5416. void kvm_arch_destroy_vm(struct kvm *kvm)
  5417. {
  5418. kvm_iommu_unmap_guest(kvm);
  5419. kfree(kvm->arch.vpic);
  5420. kfree(kvm->arch.vioapic);
  5421. kvm_free_vcpus(kvm);
  5422. if (kvm->arch.apic_access_page)
  5423. put_page(kvm->arch.apic_access_page);
  5424. if (kvm->arch.ept_identity_pagetable)
  5425. put_page(kvm->arch.ept_identity_pagetable);
  5426. }
  5427. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5428. struct kvm_memory_slot *memslot,
  5429. struct kvm_memory_slot old,
  5430. struct kvm_userspace_memory_region *mem,
  5431. int user_alloc)
  5432. {
  5433. int npages = memslot->npages;
  5434. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5435. /* Prevent internal slot pages from being moved by fork()/COW. */
  5436. if (memslot->id >= KVM_MEMORY_SLOTS)
  5437. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5438. /*To keep backward compatibility with older userspace,
  5439. *x86 needs to hanlde !user_alloc case.
  5440. */
  5441. if (!user_alloc) {
  5442. if (npages && !old.rmap) {
  5443. unsigned long userspace_addr;
  5444. down_write(&current->mm->mmap_sem);
  5445. userspace_addr = do_mmap(NULL, 0,
  5446. npages * PAGE_SIZE,
  5447. PROT_READ | PROT_WRITE,
  5448. map_flags,
  5449. 0);
  5450. up_write(&current->mm->mmap_sem);
  5451. if (IS_ERR((void *)userspace_addr))
  5452. return PTR_ERR((void *)userspace_addr);
  5453. memslot->userspace_addr = userspace_addr;
  5454. }
  5455. }
  5456. return 0;
  5457. }
  5458. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5459. struct kvm_userspace_memory_region *mem,
  5460. struct kvm_memory_slot old,
  5461. int user_alloc)
  5462. {
  5463. int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
  5464. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5465. int ret;
  5466. down_write(&current->mm->mmap_sem);
  5467. ret = do_munmap(current->mm, old.userspace_addr,
  5468. old.npages * PAGE_SIZE);
  5469. up_write(&current->mm->mmap_sem);
  5470. if (ret < 0)
  5471. printk(KERN_WARNING
  5472. "kvm_vm_ioctl_set_memory_region: "
  5473. "failed to munmap memory\n");
  5474. }
  5475. if (!kvm->arch.n_requested_mmu_pages)
  5476. nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5477. spin_lock(&kvm->mmu_lock);
  5478. if (nr_mmu_pages)
  5479. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5480. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5481. spin_unlock(&kvm->mmu_lock);
  5482. }
  5483. void kvm_arch_flush_shadow(struct kvm *kvm)
  5484. {
  5485. kvm_mmu_zap_all(kvm);
  5486. kvm_reload_remote_mmus(kvm);
  5487. }
  5488. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5489. {
  5490. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5491. !vcpu->arch.apf.halted)
  5492. || !list_empty_careful(&vcpu->async_pf.done)
  5493. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5494. || vcpu->arch.nmi_pending ||
  5495. (kvm_arch_interrupt_allowed(vcpu) &&
  5496. kvm_cpu_has_interrupt(vcpu));
  5497. }
  5498. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5499. {
  5500. int me;
  5501. int cpu = vcpu->cpu;
  5502. if (waitqueue_active(&vcpu->wq)) {
  5503. wake_up_interruptible(&vcpu->wq);
  5504. ++vcpu->stat.halt_wakeup;
  5505. }
  5506. me = get_cpu();
  5507. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5508. if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
  5509. smp_send_reschedule(cpu);
  5510. put_cpu();
  5511. }
  5512. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5513. {
  5514. return kvm_x86_ops->interrupt_allowed(vcpu);
  5515. }
  5516. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5517. {
  5518. unsigned long current_rip = kvm_rip_read(vcpu) +
  5519. get_segment_base(vcpu, VCPU_SREG_CS);
  5520. return current_rip == linear_rip;
  5521. }
  5522. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5523. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5524. {
  5525. unsigned long rflags;
  5526. rflags = kvm_x86_ops->get_rflags(vcpu);
  5527. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5528. rflags &= ~X86_EFLAGS_TF;
  5529. return rflags;
  5530. }
  5531. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5532. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5533. {
  5534. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5535. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5536. rflags |= X86_EFLAGS_TF;
  5537. kvm_x86_ops->set_rflags(vcpu, rflags);
  5538. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5539. }
  5540. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5541. void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
  5542. {
  5543. int r;
  5544. if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
  5545. is_error_page(work->page))
  5546. return;
  5547. r = kvm_mmu_reload(vcpu);
  5548. if (unlikely(r))
  5549. return;
  5550. if (!vcpu->arch.mmu.direct_map &&
  5551. work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
  5552. return;
  5553. vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
  5554. }
  5555. static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
  5556. {
  5557. return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
  5558. }
  5559. static inline u32 kvm_async_pf_next_probe(u32 key)
  5560. {
  5561. return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
  5562. }
  5563. static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5564. {
  5565. u32 key = kvm_async_pf_hash_fn(gfn);
  5566. while (vcpu->arch.apf.gfns[key] != ~0)
  5567. key = kvm_async_pf_next_probe(key);
  5568. vcpu->arch.apf.gfns[key] = gfn;
  5569. }
  5570. static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
  5571. {
  5572. int i;
  5573. u32 key = kvm_async_pf_hash_fn(gfn);
  5574. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
  5575. (vcpu->arch.apf.gfns[key] != gfn &&
  5576. vcpu->arch.apf.gfns[key] != ~0); i++)
  5577. key = kvm_async_pf_next_probe(key);
  5578. return key;
  5579. }
  5580. bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5581. {
  5582. return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
  5583. }
  5584. static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5585. {
  5586. u32 i, j, k;
  5587. i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
  5588. while (true) {
  5589. vcpu->arch.apf.gfns[i] = ~0;
  5590. do {
  5591. j = kvm_async_pf_next_probe(j);
  5592. if (vcpu->arch.apf.gfns[j] == ~0)
  5593. return;
  5594. k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
  5595. /*
  5596. * k lies cyclically in ]i,j]
  5597. * | i.k.j |
  5598. * |....j i.k.| or |.k..j i...|
  5599. */
  5600. } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
  5601. vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
  5602. i = j;
  5603. }
  5604. }
  5605. static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
  5606. {
  5607. return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
  5608. sizeof(val));
  5609. }
  5610. void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
  5611. struct kvm_async_pf *work)
  5612. {
  5613. struct x86_exception fault;
  5614. trace_kvm_async_pf_not_present(work->arch.token, work->gva);
  5615. kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
  5616. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
  5617. (vcpu->arch.apf.send_user_only &&
  5618. kvm_x86_ops->get_cpl(vcpu) == 0))
  5619. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  5620. else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
  5621. fault.vector = PF_VECTOR;
  5622. fault.error_code_valid = true;
  5623. fault.error_code = 0;
  5624. fault.nested_page_fault = false;
  5625. fault.address = work->arch.token;
  5626. kvm_inject_page_fault(vcpu, &fault);
  5627. }
  5628. }
  5629. void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
  5630. struct kvm_async_pf *work)
  5631. {
  5632. struct x86_exception fault;
  5633. trace_kvm_async_pf_ready(work->arch.token, work->gva);
  5634. if (is_error_page(work->page))
  5635. work->arch.token = ~0; /* broadcast wakeup */
  5636. else
  5637. kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
  5638. if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
  5639. !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
  5640. fault.vector = PF_VECTOR;
  5641. fault.error_code_valid = true;
  5642. fault.error_code = 0;
  5643. fault.nested_page_fault = false;
  5644. fault.address = work->arch.token;
  5645. kvm_inject_page_fault(vcpu, &fault);
  5646. }
  5647. vcpu->arch.apf.halted = false;
  5648. }
  5649. bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
  5650. {
  5651. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
  5652. return true;
  5653. else
  5654. return !kvm_event_needs_reinjection(vcpu) &&
  5655. kvm_x86_ops->interrupt_allowed(vcpu);
  5656. }
  5657. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5658. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5659. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5660. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5661. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5662. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5663. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5664. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5665. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5666. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5667. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5668. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);