intel_display.c 175 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/module.h>
  27. #include <linux/input.h>
  28. #include <linux/i2c.h>
  29. #include <linux/kernel.h>
  30. #include <linux/slab.h>
  31. #include <linux/vgaarb.h>
  32. #include "drmP.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "i915_trace.h"
  37. #include "drm_dp_helper.h"
  38. #include "drm_crtc_helper.h"
  39. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  40. bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
  41. static void intel_update_watermarks(struct drm_device *dev);
  42. static void intel_increase_pllclock(struct drm_crtc *crtc);
  43. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  44. typedef struct {
  45. /* given values */
  46. int n;
  47. int m1, m2;
  48. int p1, p2;
  49. /* derived values */
  50. int dot;
  51. int vco;
  52. int m;
  53. int p;
  54. } intel_clock_t;
  55. typedef struct {
  56. int min, max;
  57. } intel_range_t;
  58. typedef struct {
  59. int dot_limit;
  60. int p2_slow, p2_fast;
  61. } intel_p2_t;
  62. #define INTEL_P2_NUM 2
  63. typedef struct intel_limit intel_limit_t;
  64. struct intel_limit {
  65. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  66. intel_p2_t p2;
  67. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  68. int, int, intel_clock_t *);
  69. };
  70. #define I8XX_DOT_MIN 25000
  71. #define I8XX_DOT_MAX 350000
  72. #define I8XX_VCO_MIN 930000
  73. #define I8XX_VCO_MAX 1400000
  74. #define I8XX_N_MIN 3
  75. #define I8XX_N_MAX 16
  76. #define I8XX_M_MIN 96
  77. #define I8XX_M_MAX 140
  78. #define I8XX_M1_MIN 18
  79. #define I8XX_M1_MAX 26
  80. #define I8XX_M2_MIN 6
  81. #define I8XX_M2_MAX 16
  82. #define I8XX_P_MIN 4
  83. #define I8XX_P_MAX 128
  84. #define I8XX_P1_MIN 2
  85. #define I8XX_P1_MAX 33
  86. #define I8XX_P1_LVDS_MIN 1
  87. #define I8XX_P1_LVDS_MAX 6
  88. #define I8XX_P2_SLOW 4
  89. #define I8XX_P2_FAST 2
  90. #define I8XX_P2_LVDS_SLOW 14
  91. #define I8XX_P2_LVDS_FAST 7
  92. #define I8XX_P2_SLOW_LIMIT 165000
  93. #define I9XX_DOT_MIN 20000
  94. #define I9XX_DOT_MAX 400000
  95. #define I9XX_VCO_MIN 1400000
  96. #define I9XX_VCO_MAX 2800000
  97. #define PINEVIEW_VCO_MIN 1700000
  98. #define PINEVIEW_VCO_MAX 3500000
  99. #define I9XX_N_MIN 1
  100. #define I9XX_N_MAX 6
  101. /* Pineview's Ncounter is a ring counter */
  102. #define PINEVIEW_N_MIN 3
  103. #define PINEVIEW_N_MAX 6
  104. #define I9XX_M_MIN 70
  105. #define I9XX_M_MAX 120
  106. #define PINEVIEW_M_MIN 2
  107. #define PINEVIEW_M_MAX 256
  108. #define I9XX_M1_MIN 10
  109. #define I9XX_M1_MAX 22
  110. #define I9XX_M2_MIN 5
  111. #define I9XX_M2_MAX 9
  112. /* Pineview M1 is reserved, and must be 0 */
  113. #define PINEVIEW_M1_MIN 0
  114. #define PINEVIEW_M1_MAX 0
  115. #define PINEVIEW_M2_MIN 0
  116. #define PINEVIEW_M2_MAX 254
  117. #define I9XX_P_SDVO_DAC_MIN 5
  118. #define I9XX_P_SDVO_DAC_MAX 80
  119. #define I9XX_P_LVDS_MIN 7
  120. #define I9XX_P_LVDS_MAX 98
  121. #define PINEVIEW_P_LVDS_MIN 7
  122. #define PINEVIEW_P_LVDS_MAX 112
  123. #define I9XX_P1_MIN 1
  124. #define I9XX_P1_MAX 8
  125. #define I9XX_P2_SDVO_DAC_SLOW 10
  126. #define I9XX_P2_SDVO_DAC_FAST 5
  127. #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
  128. #define I9XX_P2_LVDS_SLOW 14
  129. #define I9XX_P2_LVDS_FAST 7
  130. #define I9XX_P2_LVDS_SLOW_LIMIT 112000
  131. /*The parameter is for SDVO on G4x platform*/
  132. #define G4X_DOT_SDVO_MIN 25000
  133. #define G4X_DOT_SDVO_MAX 270000
  134. #define G4X_VCO_MIN 1750000
  135. #define G4X_VCO_MAX 3500000
  136. #define G4X_N_SDVO_MIN 1
  137. #define G4X_N_SDVO_MAX 4
  138. #define G4X_M_SDVO_MIN 104
  139. #define G4X_M_SDVO_MAX 138
  140. #define G4X_M1_SDVO_MIN 17
  141. #define G4X_M1_SDVO_MAX 23
  142. #define G4X_M2_SDVO_MIN 5
  143. #define G4X_M2_SDVO_MAX 11
  144. #define G4X_P_SDVO_MIN 10
  145. #define G4X_P_SDVO_MAX 30
  146. #define G4X_P1_SDVO_MIN 1
  147. #define G4X_P1_SDVO_MAX 3
  148. #define G4X_P2_SDVO_SLOW 10
  149. #define G4X_P2_SDVO_FAST 10
  150. #define G4X_P2_SDVO_LIMIT 270000
  151. /*The parameter is for HDMI_DAC on G4x platform*/
  152. #define G4X_DOT_HDMI_DAC_MIN 22000
  153. #define G4X_DOT_HDMI_DAC_MAX 400000
  154. #define G4X_N_HDMI_DAC_MIN 1
  155. #define G4X_N_HDMI_DAC_MAX 4
  156. #define G4X_M_HDMI_DAC_MIN 104
  157. #define G4X_M_HDMI_DAC_MAX 138
  158. #define G4X_M1_HDMI_DAC_MIN 16
  159. #define G4X_M1_HDMI_DAC_MAX 23
  160. #define G4X_M2_HDMI_DAC_MIN 5
  161. #define G4X_M2_HDMI_DAC_MAX 11
  162. #define G4X_P_HDMI_DAC_MIN 5
  163. #define G4X_P_HDMI_DAC_MAX 80
  164. #define G4X_P1_HDMI_DAC_MIN 1
  165. #define G4X_P1_HDMI_DAC_MAX 8
  166. #define G4X_P2_HDMI_DAC_SLOW 10
  167. #define G4X_P2_HDMI_DAC_FAST 5
  168. #define G4X_P2_HDMI_DAC_LIMIT 165000
  169. /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
  170. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
  171. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
  172. #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
  173. #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
  174. #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
  175. #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
  176. #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
  177. #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
  178. #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
  179. #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
  180. #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
  181. #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
  182. #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
  183. #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
  184. #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
  185. #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
  186. #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
  187. /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
  188. #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
  189. #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
  190. #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
  191. #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
  192. #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
  193. #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
  194. #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
  195. #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
  196. #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
  197. #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
  198. #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
  199. #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
  200. #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
  201. #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
  202. #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
  203. #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
  204. #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
  205. /*The parameter is for DISPLAY PORT on G4x platform*/
  206. #define G4X_DOT_DISPLAY_PORT_MIN 161670
  207. #define G4X_DOT_DISPLAY_PORT_MAX 227000
  208. #define G4X_N_DISPLAY_PORT_MIN 1
  209. #define G4X_N_DISPLAY_PORT_MAX 2
  210. #define G4X_M_DISPLAY_PORT_MIN 97
  211. #define G4X_M_DISPLAY_PORT_MAX 108
  212. #define G4X_M1_DISPLAY_PORT_MIN 0x10
  213. #define G4X_M1_DISPLAY_PORT_MAX 0x12
  214. #define G4X_M2_DISPLAY_PORT_MIN 0x05
  215. #define G4X_M2_DISPLAY_PORT_MAX 0x06
  216. #define G4X_P_DISPLAY_PORT_MIN 10
  217. #define G4X_P_DISPLAY_PORT_MAX 20
  218. #define G4X_P1_DISPLAY_PORT_MIN 1
  219. #define G4X_P1_DISPLAY_PORT_MAX 2
  220. #define G4X_P2_DISPLAY_PORT_SLOW 10
  221. #define G4X_P2_DISPLAY_PORT_FAST 10
  222. #define G4X_P2_DISPLAY_PORT_LIMIT 0
  223. /* Ironlake / Sandybridge */
  224. /* as we calculate clock using (register_value + 2) for
  225. N/M1/M2, so here the range value for them is (actual_value-2).
  226. */
  227. #define IRONLAKE_DOT_MIN 25000
  228. #define IRONLAKE_DOT_MAX 350000
  229. #define IRONLAKE_VCO_MIN 1760000
  230. #define IRONLAKE_VCO_MAX 3510000
  231. #define IRONLAKE_M1_MIN 12
  232. #define IRONLAKE_M1_MAX 22
  233. #define IRONLAKE_M2_MIN 5
  234. #define IRONLAKE_M2_MAX 9
  235. #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
  236. /* We have parameter ranges for different type of outputs. */
  237. /* DAC & HDMI Refclk 120Mhz */
  238. #define IRONLAKE_DAC_N_MIN 1
  239. #define IRONLAKE_DAC_N_MAX 5
  240. #define IRONLAKE_DAC_M_MIN 79
  241. #define IRONLAKE_DAC_M_MAX 127
  242. #define IRONLAKE_DAC_P_MIN 5
  243. #define IRONLAKE_DAC_P_MAX 80
  244. #define IRONLAKE_DAC_P1_MIN 1
  245. #define IRONLAKE_DAC_P1_MAX 8
  246. #define IRONLAKE_DAC_P2_SLOW 10
  247. #define IRONLAKE_DAC_P2_FAST 5
  248. /* LVDS single-channel 120Mhz refclk */
  249. #define IRONLAKE_LVDS_S_N_MIN 1
  250. #define IRONLAKE_LVDS_S_N_MAX 3
  251. #define IRONLAKE_LVDS_S_M_MIN 79
  252. #define IRONLAKE_LVDS_S_M_MAX 118
  253. #define IRONLAKE_LVDS_S_P_MIN 28
  254. #define IRONLAKE_LVDS_S_P_MAX 112
  255. #define IRONLAKE_LVDS_S_P1_MIN 2
  256. #define IRONLAKE_LVDS_S_P1_MAX 8
  257. #define IRONLAKE_LVDS_S_P2_SLOW 14
  258. #define IRONLAKE_LVDS_S_P2_FAST 14
  259. /* LVDS dual-channel 120Mhz refclk */
  260. #define IRONLAKE_LVDS_D_N_MIN 1
  261. #define IRONLAKE_LVDS_D_N_MAX 3
  262. #define IRONLAKE_LVDS_D_M_MIN 79
  263. #define IRONLAKE_LVDS_D_M_MAX 127
  264. #define IRONLAKE_LVDS_D_P_MIN 14
  265. #define IRONLAKE_LVDS_D_P_MAX 56
  266. #define IRONLAKE_LVDS_D_P1_MIN 2
  267. #define IRONLAKE_LVDS_D_P1_MAX 8
  268. #define IRONLAKE_LVDS_D_P2_SLOW 7
  269. #define IRONLAKE_LVDS_D_P2_FAST 7
  270. /* LVDS single-channel 100Mhz refclk */
  271. #define IRONLAKE_LVDS_S_SSC_N_MIN 1
  272. #define IRONLAKE_LVDS_S_SSC_N_MAX 2
  273. #define IRONLAKE_LVDS_S_SSC_M_MIN 79
  274. #define IRONLAKE_LVDS_S_SSC_M_MAX 126
  275. #define IRONLAKE_LVDS_S_SSC_P_MIN 28
  276. #define IRONLAKE_LVDS_S_SSC_P_MAX 112
  277. #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
  278. #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
  279. #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
  280. #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
  281. /* LVDS dual-channel 100Mhz refclk */
  282. #define IRONLAKE_LVDS_D_SSC_N_MIN 1
  283. #define IRONLAKE_LVDS_D_SSC_N_MAX 3
  284. #define IRONLAKE_LVDS_D_SSC_M_MIN 79
  285. #define IRONLAKE_LVDS_D_SSC_M_MAX 126
  286. #define IRONLAKE_LVDS_D_SSC_P_MIN 14
  287. #define IRONLAKE_LVDS_D_SSC_P_MAX 42
  288. #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
  289. #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
  290. #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
  291. #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
  292. /* DisplayPort */
  293. #define IRONLAKE_DP_N_MIN 1
  294. #define IRONLAKE_DP_N_MAX 2
  295. #define IRONLAKE_DP_M_MIN 81
  296. #define IRONLAKE_DP_M_MAX 90
  297. #define IRONLAKE_DP_P_MIN 10
  298. #define IRONLAKE_DP_P_MAX 20
  299. #define IRONLAKE_DP_P2_FAST 10
  300. #define IRONLAKE_DP_P2_SLOW 10
  301. #define IRONLAKE_DP_P2_LIMIT 0
  302. #define IRONLAKE_DP_P1_MIN 1
  303. #define IRONLAKE_DP_P1_MAX 2
  304. /* FDI */
  305. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  306. static bool
  307. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  308. int target, int refclk, intel_clock_t *best_clock);
  309. static bool
  310. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  311. int target, int refclk, intel_clock_t *best_clock);
  312. static bool
  313. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  314. int target, int refclk, intel_clock_t *best_clock);
  315. static bool
  316. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  317. int target, int refclk, intel_clock_t *best_clock);
  318. static inline u32 /* units of 100MHz */
  319. intel_fdi_link_freq(struct drm_device *dev)
  320. {
  321. struct drm_i915_private *dev_priv = dev->dev_private;
  322. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  323. }
  324. static const intel_limit_t intel_limits_i8xx_dvo = {
  325. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  326. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  327. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  328. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  329. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  330. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  331. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  332. .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
  333. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  334. .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
  335. .find_pll = intel_find_best_PLL,
  336. };
  337. static const intel_limit_t intel_limits_i8xx_lvds = {
  338. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  339. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  340. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  341. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  342. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  343. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  344. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  345. .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
  346. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  347. .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
  348. .find_pll = intel_find_best_PLL,
  349. };
  350. static const intel_limit_t intel_limits_i9xx_sdvo = {
  351. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  352. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  353. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  354. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  355. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  356. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  357. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  358. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  359. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  360. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  361. .find_pll = intel_find_best_PLL,
  362. };
  363. static const intel_limit_t intel_limits_i9xx_lvds = {
  364. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  365. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  366. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  367. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  368. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  369. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  370. .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
  371. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  372. /* The single-channel range is 25-112Mhz, and dual-channel
  373. * is 80-224Mhz. Prefer single channel as much as possible.
  374. */
  375. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  376. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
  377. .find_pll = intel_find_best_PLL,
  378. };
  379. /* below parameter and function is for G4X Chipset Family*/
  380. static const intel_limit_t intel_limits_g4x_sdvo = {
  381. .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
  382. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  383. .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
  384. .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
  385. .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
  386. .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
  387. .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
  388. .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
  389. .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
  390. .p2_slow = G4X_P2_SDVO_SLOW,
  391. .p2_fast = G4X_P2_SDVO_FAST
  392. },
  393. .find_pll = intel_g4x_find_best_PLL,
  394. };
  395. static const intel_limit_t intel_limits_g4x_hdmi = {
  396. .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
  397. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  398. .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
  399. .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
  400. .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
  401. .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
  402. .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
  403. .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
  404. .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
  405. .p2_slow = G4X_P2_HDMI_DAC_SLOW,
  406. .p2_fast = G4X_P2_HDMI_DAC_FAST
  407. },
  408. .find_pll = intel_g4x_find_best_PLL,
  409. };
  410. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  411. .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
  412. .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
  413. .vco = { .min = G4X_VCO_MIN,
  414. .max = G4X_VCO_MAX },
  415. .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
  416. .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
  417. .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
  418. .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
  419. .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
  420. .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
  421. .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
  422. .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
  423. .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
  424. .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
  425. .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
  426. .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
  427. .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
  428. .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
  429. .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
  430. },
  431. .find_pll = intel_g4x_find_best_PLL,
  432. };
  433. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  434. .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
  435. .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
  436. .vco = { .min = G4X_VCO_MIN,
  437. .max = G4X_VCO_MAX },
  438. .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
  439. .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
  440. .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
  441. .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
  442. .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
  443. .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
  444. .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
  445. .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
  446. .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
  447. .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
  448. .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
  449. .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
  450. .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
  451. .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
  452. .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
  453. },
  454. .find_pll = intel_g4x_find_best_PLL,
  455. };
  456. static const intel_limit_t intel_limits_g4x_display_port = {
  457. .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
  458. .max = G4X_DOT_DISPLAY_PORT_MAX },
  459. .vco = { .min = G4X_VCO_MIN,
  460. .max = G4X_VCO_MAX},
  461. .n = { .min = G4X_N_DISPLAY_PORT_MIN,
  462. .max = G4X_N_DISPLAY_PORT_MAX },
  463. .m = { .min = G4X_M_DISPLAY_PORT_MIN,
  464. .max = G4X_M_DISPLAY_PORT_MAX },
  465. .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
  466. .max = G4X_M1_DISPLAY_PORT_MAX },
  467. .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
  468. .max = G4X_M2_DISPLAY_PORT_MAX },
  469. .p = { .min = G4X_P_DISPLAY_PORT_MIN,
  470. .max = G4X_P_DISPLAY_PORT_MAX },
  471. .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
  472. .max = G4X_P1_DISPLAY_PORT_MAX},
  473. .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
  474. .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
  475. .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
  476. .find_pll = intel_find_pll_g4x_dp,
  477. };
  478. static const intel_limit_t intel_limits_pineview_sdvo = {
  479. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
  480. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  481. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  482. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  483. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  484. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  485. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  486. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  487. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  488. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  489. .find_pll = intel_find_best_PLL,
  490. };
  491. static const intel_limit_t intel_limits_pineview_lvds = {
  492. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  493. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  494. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  495. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  496. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  497. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  498. .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
  499. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  500. /* Pineview only supports single-channel mode. */
  501. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  502. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
  503. .find_pll = intel_find_best_PLL,
  504. };
  505. static const intel_limit_t intel_limits_ironlake_dac = {
  506. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  507. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  508. .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
  509. .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
  510. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  511. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  512. .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
  513. .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
  514. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  515. .p2_slow = IRONLAKE_DAC_P2_SLOW,
  516. .p2_fast = IRONLAKE_DAC_P2_FAST },
  517. .find_pll = intel_g4x_find_best_PLL,
  518. };
  519. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  520. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  521. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  522. .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
  523. .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
  524. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  525. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  526. .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
  527. .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
  528. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  529. .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
  530. .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
  531. .find_pll = intel_g4x_find_best_PLL,
  532. };
  533. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  534. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  535. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  536. .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
  537. .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
  538. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  539. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  540. .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
  541. .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
  542. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  543. .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
  544. .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
  545. .find_pll = intel_g4x_find_best_PLL,
  546. };
  547. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  548. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  549. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  550. .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
  551. .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
  552. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  553. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  554. .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
  555. .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
  556. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  557. .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
  558. .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
  559. .find_pll = intel_g4x_find_best_PLL,
  560. };
  561. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  562. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  563. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  564. .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
  565. .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
  566. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  567. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  568. .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
  569. .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
  570. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  571. .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
  572. .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
  573. .find_pll = intel_g4x_find_best_PLL,
  574. };
  575. static const intel_limit_t intel_limits_ironlake_display_port = {
  576. .dot = { .min = IRONLAKE_DOT_MIN,
  577. .max = IRONLAKE_DOT_MAX },
  578. .vco = { .min = IRONLAKE_VCO_MIN,
  579. .max = IRONLAKE_VCO_MAX},
  580. .n = { .min = IRONLAKE_DP_N_MIN,
  581. .max = IRONLAKE_DP_N_MAX },
  582. .m = { .min = IRONLAKE_DP_M_MIN,
  583. .max = IRONLAKE_DP_M_MAX },
  584. .m1 = { .min = IRONLAKE_M1_MIN,
  585. .max = IRONLAKE_M1_MAX },
  586. .m2 = { .min = IRONLAKE_M2_MIN,
  587. .max = IRONLAKE_M2_MAX },
  588. .p = { .min = IRONLAKE_DP_P_MIN,
  589. .max = IRONLAKE_DP_P_MAX },
  590. .p1 = { .min = IRONLAKE_DP_P1_MIN,
  591. .max = IRONLAKE_DP_P1_MAX},
  592. .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
  593. .p2_slow = IRONLAKE_DP_P2_SLOW,
  594. .p2_fast = IRONLAKE_DP_P2_FAST },
  595. .find_pll = intel_find_pll_ironlake_dp,
  596. };
  597. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
  598. {
  599. struct drm_device *dev = crtc->dev;
  600. struct drm_i915_private *dev_priv = dev->dev_private;
  601. const intel_limit_t *limit;
  602. int refclk = 120;
  603. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  604. if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
  605. refclk = 100;
  606. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  607. LVDS_CLKB_POWER_UP) {
  608. /* LVDS dual channel */
  609. if (refclk == 100)
  610. limit = &intel_limits_ironlake_dual_lvds_100m;
  611. else
  612. limit = &intel_limits_ironlake_dual_lvds;
  613. } else {
  614. if (refclk == 100)
  615. limit = &intel_limits_ironlake_single_lvds_100m;
  616. else
  617. limit = &intel_limits_ironlake_single_lvds;
  618. }
  619. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  620. HAS_eDP)
  621. limit = &intel_limits_ironlake_display_port;
  622. else
  623. limit = &intel_limits_ironlake_dac;
  624. return limit;
  625. }
  626. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  627. {
  628. struct drm_device *dev = crtc->dev;
  629. struct drm_i915_private *dev_priv = dev->dev_private;
  630. const intel_limit_t *limit;
  631. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  632. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  633. LVDS_CLKB_POWER_UP)
  634. /* LVDS with dual channel */
  635. limit = &intel_limits_g4x_dual_channel_lvds;
  636. else
  637. /* LVDS with dual channel */
  638. limit = &intel_limits_g4x_single_channel_lvds;
  639. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  640. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  641. limit = &intel_limits_g4x_hdmi;
  642. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  643. limit = &intel_limits_g4x_sdvo;
  644. } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  645. limit = &intel_limits_g4x_display_port;
  646. } else /* The option is for other outputs */
  647. limit = &intel_limits_i9xx_sdvo;
  648. return limit;
  649. }
  650. static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
  651. {
  652. struct drm_device *dev = crtc->dev;
  653. const intel_limit_t *limit;
  654. if (HAS_PCH_SPLIT(dev))
  655. limit = intel_ironlake_limit(crtc);
  656. else if (IS_G4X(dev)) {
  657. limit = intel_g4x_limit(crtc);
  658. } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
  659. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  660. limit = &intel_limits_i9xx_lvds;
  661. else
  662. limit = &intel_limits_i9xx_sdvo;
  663. } else if (IS_PINEVIEW(dev)) {
  664. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  665. limit = &intel_limits_pineview_lvds;
  666. else
  667. limit = &intel_limits_pineview_sdvo;
  668. } else {
  669. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  670. limit = &intel_limits_i8xx_lvds;
  671. else
  672. limit = &intel_limits_i8xx_dvo;
  673. }
  674. return limit;
  675. }
  676. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  677. static void pineview_clock(int refclk, intel_clock_t *clock)
  678. {
  679. clock->m = clock->m2 + 2;
  680. clock->p = clock->p1 * clock->p2;
  681. clock->vco = refclk * clock->m / clock->n;
  682. clock->dot = clock->vco / clock->p;
  683. }
  684. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  685. {
  686. if (IS_PINEVIEW(dev)) {
  687. pineview_clock(refclk, clock);
  688. return;
  689. }
  690. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  691. clock->p = clock->p1 * clock->p2;
  692. clock->vco = refclk * clock->m / (clock->n + 2);
  693. clock->dot = clock->vco / clock->p;
  694. }
  695. /**
  696. * Returns whether any output on the specified pipe is of the specified type
  697. */
  698. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  699. {
  700. struct drm_device *dev = crtc->dev;
  701. struct drm_mode_config *mode_config = &dev->mode_config;
  702. struct intel_encoder *encoder;
  703. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  704. if (encoder->base.crtc == crtc && encoder->type == type)
  705. return true;
  706. return false;
  707. }
  708. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  709. /**
  710. * Returns whether the given set of divisors are valid for a given refclk with
  711. * the given connectors.
  712. */
  713. static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
  714. {
  715. const intel_limit_t *limit = intel_limit (crtc);
  716. struct drm_device *dev = crtc->dev;
  717. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  718. INTELPllInvalid ("p1 out of range\n");
  719. if (clock->p < limit->p.min || limit->p.max < clock->p)
  720. INTELPllInvalid ("p out of range\n");
  721. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  722. INTELPllInvalid ("m2 out of range\n");
  723. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  724. INTELPllInvalid ("m1 out of range\n");
  725. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  726. INTELPllInvalid ("m1 <= m2\n");
  727. if (clock->m < limit->m.min || limit->m.max < clock->m)
  728. INTELPllInvalid ("m out of range\n");
  729. if (clock->n < limit->n.min || limit->n.max < clock->n)
  730. INTELPllInvalid ("n out of range\n");
  731. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  732. INTELPllInvalid ("vco out of range\n");
  733. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  734. * connector, etc., rather than just a single range.
  735. */
  736. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  737. INTELPllInvalid ("dot out of range\n");
  738. return true;
  739. }
  740. static bool
  741. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  742. int target, int refclk, intel_clock_t *best_clock)
  743. {
  744. struct drm_device *dev = crtc->dev;
  745. struct drm_i915_private *dev_priv = dev->dev_private;
  746. intel_clock_t clock;
  747. int err = target;
  748. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  749. (I915_READ(LVDS)) != 0) {
  750. /*
  751. * For LVDS, if the panel is on, just rely on its current
  752. * settings for dual-channel. We haven't figured out how to
  753. * reliably set up different single/dual channel state, if we
  754. * even can.
  755. */
  756. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  757. LVDS_CLKB_POWER_UP)
  758. clock.p2 = limit->p2.p2_fast;
  759. else
  760. clock.p2 = limit->p2.p2_slow;
  761. } else {
  762. if (target < limit->p2.dot_limit)
  763. clock.p2 = limit->p2.p2_slow;
  764. else
  765. clock.p2 = limit->p2.p2_fast;
  766. }
  767. memset (best_clock, 0, sizeof (*best_clock));
  768. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  769. clock.m1++) {
  770. for (clock.m2 = limit->m2.min;
  771. clock.m2 <= limit->m2.max; clock.m2++) {
  772. /* m1 is always 0 in Pineview */
  773. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  774. break;
  775. for (clock.n = limit->n.min;
  776. clock.n <= limit->n.max; clock.n++) {
  777. for (clock.p1 = limit->p1.min;
  778. clock.p1 <= limit->p1.max; clock.p1++) {
  779. int this_err;
  780. intel_clock(dev, refclk, &clock);
  781. if (!intel_PLL_is_valid(crtc, &clock))
  782. continue;
  783. this_err = abs(clock.dot - target);
  784. if (this_err < err) {
  785. *best_clock = clock;
  786. err = this_err;
  787. }
  788. }
  789. }
  790. }
  791. }
  792. return (err != target);
  793. }
  794. static bool
  795. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  796. int target, int refclk, intel_clock_t *best_clock)
  797. {
  798. struct drm_device *dev = crtc->dev;
  799. struct drm_i915_private *dev_priv = dev->dev_private;
  800. intel_clock_t clock;
  801. int max_n;
  802. bool found;
  803. /* approximately equals target * 0.00585 */
  804. int err_most = (target >> 8) + (target >> 9);
  805. found = false;
  806. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  807. int lvds_reg;
  808. if (HAS_PCH_SPLIT(dev))
  809. lvds_reg = PCH_LVDS;
  810. else
  811. lvds_reg = LVDS;
  812. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  813. LVDS_CLKB_POWER_UP)
  814. clock.p2 = limit->p2.p2_fast;
  815. else
  816. clock.p2 = limit->p2.p2_slow;
  817. } else {
  818. if (target < limit->p2.dot_limit)
  819. clock.p2 = limit->p2.p2_slow;
  820. else
  821. clock.p2 = limit->p2.p2_fast;
  822. }
  823. memset(best_clock, 0, sizeof(*best_clock));
  824. max_n = limit->n.max;
  825. /* based on hardware requirement, prefer smaller n to precision */
  826. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  827. /* based on hardware requirement, prefere larger m1,m2 */
  828. for (clock.m1 = limit->m1.max;
  829. clock.m1 >= limit->m1.min; clock.m1--) {
  830. for (clock.m2 = limit->m2.max;
  831. clock.m2 >= limit->m2.min; clock.m2--) {
  832. for (clock.p1 = limit->p1.max;
  833. clock.p1 >= limit->p1.min; clock.p1--) {
  834. int this_err;
  835. intel_clock(dev, refclk, &clock);
  836. if (!intel_PLL_is_valid(crtc, &clock))
  837. continue;
  838. this_err = abs(clock.dot - target) ;
  839. if (this_err < err_most) {
  840. *best_clock = clock;
  841. err_most = this_err;
  842. max_n = clock.n;
  843. found = true;
  844. }
  845. }
  846. }
  847. }
  848. }
  849. return found;
  850. }
  851. static bool
  852. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  853. int target, int refclk, intel_clock_t *best_clock)
  854. {
  855. struct drm_device *dev = crtc->dev;
  856. intel_clock_t clock;
  857. /* return directly when it is eDP */
  858. if (HAS_eDP)
  859. return true;
  860. if (target < 200000) {
  861. clock.n = 1;
  862. clock.p1 = 2;
  863. clock.p2 = 10;
  864. clock.m1 = 12;
  865. clock.m2 = 9;
  866. } else {
  867. clock.n = 2;
  868. clock.p1 = 1;
  869. clock.p2 = 10;
  870. clock.m1 = 14;
  871. clock.m2 = 8;
  872. }
  873. intel_clock(dev, refclk, &clock);
  874. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  875. return true;
  876. }
  877. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  878. static bool
  879. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  880. int target, int refclk, intel_clock_t *best_clock)
  881. {
  882. intel_clock_t clock;
  883. if (target < 200000) {
  884. clock.p1 = 2;
  885. clock.p2 = 10;
  886. clock.n = 2;
  887. clock.m1 = 23;
  888. clock.m2 = 8;
  889. } else {
  890. clock.p1 = 1;
  891. clock.p2 = 10;
  892. clock.n = 1;
  893. clock.m1 = 14;
  894. clock.m2 = 2;
  895. }
  896. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  897. clock.p = (clock.p1 * clock.p2);
  898. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  899. clock.vco = 0;
  900. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  901. return true;
  902. }
  903. /**
  904. * intel_wait_for_vblank - wait for vblank on a given pipe
  905. * @dev: drm device
  906. * @pipe: pipe to wait for
  907. *
  908. * Wait for vblank to occur on a given pipe. Needed for various bits of
  909. * mode setting code.
  910. */
  911. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  912. {
  913. struct drm_i915_private *dev_priv = dev->dev_private;
  914. int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
  915. /* Clear existing vblank status. Note this will clear any other
  916. * sticky status fields as well.
  917. *
  918. * This races with i915_driver_irq_handler() with the result
  919. * that either function could miss a vblank event. Here it is not
  920. * fatal, as we will either wait upon the next vblank interrupt or
  921. * timeout. Generally speaking intel_wait_for_vblank() is only
  922. * called during modeset at which time the GPU should be idle and
  923. * should *not* be performing page flips and thus not waiting on
  924. * vblanks...
  925. * Currently, the result of us stealing a vblank from the irq
  926. * handler is that a single frame will be skipped during swapbuffers.
  927. */
  928. I915_WRITE(pipestat_reg,
  929. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  930. /* Wait for vblank interrupt bit to set */
  931. if (wait_for(I915_READ(pipestat_reg) &
  932. PIPE_VBLANK_INTERRUPT_STATUS,
  933. 50))
  934. DRM_DEBUG_KMS("vblank wait timed out\n");
  935. }
  936. /**
  937. * intel_wait_for_vblank_off - wait for vblank after disabling a pipe
  938. * @dev: drm device
  939. * @pipe: pipe to wait for
  940. *
  941. * After disabling a pipe, we can't wait for vblank in the usual way,
  942. * spinning on the vblank interrupt status bit, since we won't actually
  943. * see an interrupt when the pipe is disabled.
  944. *
  945. * So this function waits for the display line value to settle (it
  946. * usually ends up stopping at the start of the next frame).
  947. */
  948. void intel_wait_for_vblank_off(struct drm_device *dev, int pipe)
  949. {
  950. struct drm_i915_private *dev_priv = dev->dev_private;
  951. int pipedsl_reg = (pipe == 0 ? PIPEADSL : PIPEBDSL);
  952. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  953. u32 last_line, line;
  954. /* Wait for the display line to settle */
  955. line = I915_READ(pipedsl_reg) & DSL_LINEMASK;
  956. do {
  957. last_line = line;
  958. MSLEEP(5);
  959. line = I915_READ(pipedsl_reg) & DSL_LINEMASK;
  960. } while (line != last_line && time_after(timeout, jiffies));
  961. if (line != last_line)
  962. DRM_DEBUG_KMS("vblank wait timed out\n");
  963. }
  964. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  965. {
  966. struct drm_device *dev = crtc->dev;
  967. struct drm_i915_private *dev_priv = dev->dev_private;
  968. struct drm_framebuffer *fb = crtc->fb;
  969. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  970. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  971. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  972. int plane, i;
  973. u32 fbc_ctl, fbc_ctl2;
  974. if (fb->pitch == dev_priv->cfb_pitch &&
  975. obj_priv->fence_reg == dev_priv->cfb_fence &&
  976. intel_crtc->plane == dev_priv->cfb_plane &&
  977. I915_READ(FBC_CONTROL) & FBC_CTL_EN)
  978. return;
  979. i8xx_disable_fbc(dev);
  980. dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  981. if (fb->pitch < dev_priv->cfb_pitch)
  982. dev_priv->cfb_pitch = fb->pitch;
  983. /* FBC_CTL wants 64B units */
  984. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  985. dev_priv->cfb_fence = obj_priv->fence_reg;
  986. dev_priv->cfb_plane = intel_crtc->plane;
  987. plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  988. /* Clear old tags */
  989. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  990. I915_WRITE(FBC_TAG + (i * 4), 0);
  991. /* Set it up... */
  992. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
  993. if (obj_priv->tiling_mode != I915_TILING_NONE)
  994. fbc_ctl2 |= FBC_CTL_CPU_FENCE;
  995. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  996. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  997. /* enable it... */
  998. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  999. if (IS_I945GM(dev))
  1000. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  1001. fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  1002. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  1003. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1004. fbc_ctl |= dev_priv->cfb_fence;
  1005. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1006. DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
  1007. dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
  1008. }
  1009. void i8xx_disable_fbc(struct drm_device *dev)
  1010. {
  1011. struct drm_i915_private *dev_priv = dev->dev_private;
  1012. u32 fbc_ctl;
  1013. /* Disable compression */
  1014. fbc_ctl = I915_READ(FBC_CONTROL);
  1015. fbc_ctl &= ~FBC_CTL_EN;
  1016. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1017. /* Wait for compressing bit to clear */
  1018. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1019. DRM_DEBUG_KMS("FBC idle timed out\n");
  1020. return;
  1021. }
  1022. DRM_DEBUG_KMS("disabled FBC\n");
  1023. }
  1024. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1025. {
  1026. struct drm_i915_private *dev_priv = dev->dev_private;
  1027. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1028. }
  1029. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1030. {
  1031. struct drm_device *dev = crtc->dev;
  1032. struct drm_i915_private *dev_priv = dev->dev_private;
  1033. struct drm_framebuffer *fb = crtc->fb;
  1034. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1035. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  1036. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1037. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1038. unsigned long stall_watermark = 200;
  1039. u32 dpfc_ctl;
  1040. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1041. if (dpfc_ctl & DPFC_CTL_EN) {
  1042. if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
  1043. dev_priv->cfb_fence == obj_priv->fence_reg &&
  1044. dev_priv->cfb_plane == intel_crtc->plane &&
  1045. dev_priv->cfb_y == crtc->y)
  1046. return;
  1047. I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
  1048. POSTING_READ(DPFC_CONTROL);
  1049. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1050. }
  1051. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  1052. dev_priv->cfb_fence = obj_priv->fence_reg;
  1053. dev_priv->cfb_plane = intel_crtc->plane;
  1054. dev_priv->cfb_y = crtc->y;
  1055. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1056. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1057. dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
  1058. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1059. } else {
  1060. I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  1061. }
  1062. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1063. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1064. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1065. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1066. /* enable it... */
  1067. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1068. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1069. }
  1070. void g4x_disable_fbc(struct drm_device *dev)
  1071. {
  1072. struct drm_i915_private *dev_priv = dev->dev_private;
  1073. u32 dpfc_ctl;
  1074. /* Disable compression */
  1075. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1076. if (dpfc_ctl & DPFC_CTL_EN) {
  1077. dpfc_ctl &= ~DPFC_CTL_EN;
  1078. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1079. DRM_DEBUG_KMS("disabled FBC\n");
  1080. }
  1081. }
  1082. static bool g4x_fbc_enabled(struct drm_device *dev)
  1083. {
  1084. struct drm_i915_private *dev_priv = dev->dev_private;
  1085. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1086. }
  1087. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1088. {
  1089. struct drm_device *dev = crtc->dev;
  1090. struct drm_i915_private *dev_priv = dev->dev_private;
  1091. struct drm_framebuffer *fb = crtc->fb;
  1092. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1093. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  1094. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1095. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1096. unsigned long stall_watermark = 200;
  1097. u32 dpfc_ctl;
  1098. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1099. if (dpfc_ctl & DPFC_CTL_EN) {
  1100. if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
  1101. dev_priv->cfb_fence == obj_priv->fence_reg &&
  1102. dev_priv->cfb_plane == intel_crtc->plane &&
  1103. dev_priv->cfb_offset == obj_priv->gtt_offset &&
  1104. dev_priv->cfb_y == crtc->y)
  1105. return;
  1106. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
  1107. POSTING_READ(ILK_DPFC_CONTROL);
  1108. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1109. }
  1110. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  1111. dev_priv->cfb_fence = obj_priv->fence_reg;
  1112. dev_priv->cfb_plane = intel_crtc->plane;
  1113. dev_priv->cfb_offset = obj_priv->gtt_offset;
  1114. dev_priv->cfb_y = crtc->y;
  1115. dpfc_ctl &= DPFC_RESERVED;
  1116. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1117. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1118. dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
  1119. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1120. } else {
  1121. I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  1122. }
  1123. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1124. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1125. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1126. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1127. I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
  1128. /* enable it... */
  1129. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  1130. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1131. }
  1132. void ironlake_disable_fbc(struct drm_device *dev)
  1133. {
  1134. struct drm_i915_private *dev_priv = dev->dev_private;
  1135. u32 dpfc_ctl;
  1136. /* Disable compression */
  1137. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1138. if (dpfc_ctl & DPFC_CTL_EN) {
  1139. dpfc_ctl &= ~DPFC_CTL_EN;
  1140. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1141. DRM_DEBUG_KMS("disabled FBC\n");
  1142. }
  1143. }
  1144. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1145. {
  1146. struct drm_i915_private *dev_priv = dev->dev_private;
  1147. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1148. }
  1149. bool intel_fbc_enabled(struct drm_device *dev)
  1150. {
  1151. struct drm_i915_private *dev_priv = dev->dev_private;
  1152. if (!dev_priv->display.fbc_enabled)
  1153. return false;
  1154. return dev_priv->display.fbc_enabled(dev);
  1155. }
  1156. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1157. {
  1158. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1159. if (!dev_priv->display.enable_fbc)
  1160. return;
  1161. dev_priv->display.enable_fbc(crtc, interval);
  1162. }
  1163. void intel_disable_fbc(struct drm_device *dev)
  1164. {
  1165. struct drm_i915_private *dev_priv = dev->dev_private;
  1166. if (!dev_priv->display.disable_fbc)
  1167. return;
  1168. dev_priv->display.disable_fbc(dev);
  1169. }
  1170. /**
  1171. * intel_update_fbc - enable/disable FBC as needed
  1172. * @dev: the drm_device
  1173. *
  1174. * Set up the framebuffer compression hardware at mode set time. We
  1175. * enable it if possible:
  1176. * - plane A only (on pre-965)
  1177. * - no pixel mulitply/line duplication
  1178. * - no alpha buffer discard
  1179. * - no dual wide
  1180. * - framebuffer <= 2048 in width, 1536 in height
  1181. *
  1182. * We can't assume that any compression will take place (worst case),
  1183. * so the compressed buffer has to be the same size as the uncompressed
  1184. * one. It also must reside (along with the line length buffer) in
  1185. * stolen memory.
  1186. *
  1187. * We need to enable/disable FBC on a global basis.
  1188. */
  1189. static void intel_update_fbc(struct drm_device *dev)
  1190. {
  1191. struct drm_i915_private *dev_priv = dev->dev_private;
  1192. struct drm_crtc *crtc = NULL, *tmp_crtc;
  1193. struct intel_crtc *intel_crtc;
  1194. struct drm_framebuffer *fb;
  1195. struct intel_framebuffer *intel_fb;
  1196. struct drm_i915_gem_object *obj_priv;
  1197. DRM_DEBUG_KMS("\n");
  1198. if (!i915_powersave)
  1199. return;
  1200. if (!I915_HAS_FBC(dev))
  1201. return;
  1202. /*
  1203. * If FBC is already on, we just have to verify that we can
  1204. * keep it that way...
  1205. * Need to disable if:
  1206. * - more than one pipe is active
  1207. * - changing FBC params (stride, fence, mode)
  1208. * - new fb is too large to fit in compressed buffer
  1209. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1210. */
  1211. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1212. if (tmp_crtc->enabled) {
  1213. if (crtc) {
  1214. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1215. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1216. goto out_disable;
  1217. }
  1218. crtc = tmp_crtc;
  1219. }
  1220. }
  1221. if (!crtc || crtc->fb == NULL) {
  1222. DRM_DEBUG_KMS("no output, disabling\n");
  1223. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  1224. goto out_disable;
  1225. }
  1226. intel_crtc = to_intel_crtc(crtc);
  1227. fb = crtc->fb;
  1228. intel_fb = to_intel_framebuffer(fb);
  1229. obj_priv = to_intel_bo(intel_fb->obj);
  1230. if (intel_fb->obj->size > dev_priv->cfb_size) {
  1231. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1232. "compression\n");
  1233. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1234. goto out_disable;
  1235. }
  1236. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  1237. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  1238. DRM_DEBUG_KMS("mode incompatible with compression, "
  1239. "disabling\n");
  1240. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1241. goto out_disable;
  1242. }
  1243. if ((crtc->mode.hdisplay > 2048) ||
  1244. (crtc->mode.vdisplay > 1536)) {
  1245. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1246. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1247. goto out_disable;
  1248. }
  1249. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  1250. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1251. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1252. goto out_disable;
  1253. }
  1254. if (obj_priv->tiling_mode != I915_TILING_X) {
  1255. DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
  1256. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1257. goto out_disable;
  1258. }
  1259. /* If the kernel debugger is active, always disable compression */
  1260. if (in_dbg_master())
  1261. goto out_disable;
  1262. intel_enable_fbc(crtc, 500);
  1263. return;
  1264. out_disable:
  1265. /* Multiple disables should be harmless */
  1266. if (intel_fbc_enabled(dev)) {
  1267. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1268. intel_disable_fbc(dev);
  1269. }
  1270. }
  1271. int
  1272. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1273. struct drm_gem_object *obj,
  1274. bool pipelined)
  1275. {
  1276. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1277. u32 alignment;
  1278. int ret;
  1279. switch (obj_priv->tiling_mode) {
  1280. case I915_TILING_NONE:
  1281. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1282. alignment = 128 * 1024;
  1283. else if (IS_I965G(dev))
  1284. alignment = 4 * 1024;
  1285. else
  1286. alignment = 64 * 1024;
  1287. break;
  1288. case I915_TILING_X:
  1289. /* pin() will align the object as required by fence */
  1290. alignment = 0;
  1291. break;
  1292. case I915_TILING_Y:
  1293. /* FIXME: Is this true? */
  1294. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1295. return -EINVAL;
  1296. default:
  1297. BUG();
  1298. }
  1299. ret = i915_gem_object_pin(obj, alignment);
  1300. if (ret)
  1301. return ret;
  1302. ret = i915_gem_object_set_to_display_plane(obj, pipelined);
  1303. if (ret)
  1304. goto err_unpin;
  1305. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1306. * fence, whereas 965+ only requires a fence if using
  1307. * framebuffer compression. For simplicity, we always install
  1308. * a fence as the cost is not that onerous.
  1309. */
  1310. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  1311. obj_priv->tiling_mode != I915_TILING_NONE) {
  1312. ret = i915_gem_object_get_fence_reg(obj, false);
  1313. if (ret)
  1314. goto err_unpin;
  1315. }
  1316. return 0;
  1317. err_unpin:
  1318. i915_gem_object_unpin(obj);
  1319. return ret;
  1320. }
  1321. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1322. static int
  1323. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1324. int x, int y)
  1325. {
  1326. struct drm_device *dev = crtc->dev;
  1327. struct drm_i915_private *dev_priv = dev->dev_private;
  1328. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1329. struct intel_framebuffer *intel_fb;
  1330. struct drm_i915_gem_object *obj_priv;
  1331. struct drm_gem_object *obj;
  1332. int plane = intel_crtc->plane;
  1333. unsigned long Start, Offset;
  1334. u32 dspcntr;
  1335. u32 reg;
  1336. switch (plane) {
  1337. case 0:
  1338. case 1:
  1339. break;
  1340. default:
  1341. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1342. return -EINVAL;
  1343. }
  1344. intel_fb = to_intel_framebuffer(fb);
  1345. obj = intel_fb->obj;
  1346. obj_priv = to_intel_bo(obj);
  1347. reg = DSPCNTR(plane);
  1348. dspcntr = I915_READ(reg);
  1349. /* Mask out pixel format bits in case we change it */
  1350. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1351. switch (fb->bits_per_pixel) {
  1352. case 8:
  1353. dspcntr |= DISPPLANE_8BPP;
  1354. break;
  1355. case 16:
  1356. if (fb->depth == 15)
  1357. dspcntr |= DISPPLANE_15_16BPP;
  1358. else
  1359. dspcntr |= DISPPLANE_16BPP;
  1360. break;
  1361. case 24:
  1362. case 32:
  1363. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1364. break;
  1365. default:
  1366. DRM_ERROR("Unknown color depth\n");
  1367. return -EINVAL;
  1368. }
  1369. if (IS_I965G(dev)) {
  1370. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1371. dspcntr |= DISPPLANE_TILED;
  1372. else
  1373. dspcntr &= ~DISPPLANE_TILED;
  1374. }
  1375. if (HAS_PCH_SPLIT(dev))
  1376. /* must disable */
  1377. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1378. I915_WRITE(reg, dspcntr);
  1379. Start = obj_priv->gtt_offset;
  1380. Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
  1381. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1382. Start, Offset, x, y, fb->pitch);
  1383. I915_WRITE(DSPSTRIDE(plane), fb->pitch);
  1384. if (IS_I965G(dev)) {
  1385. I915_WRITE(DSPSURF(plane), Start);
  1386. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1387. I915_WRITE(DSPADDR(plane), Offset);
  1388. } else
  1389. I915_WRITE(DSPADDR(plane), Start + Offset);
  1390. POSTING_READ(reg);
  1391. intel_update_fbc(dev);
  1392. intel_increase_pllclock(crtc);
  1393. return 0;
  1394. }
  1395. static int
  1396. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1397. struct drm_framebuffer *old_fb)
  1398. {
  1399. struct drm_device *dev = crtc->dev;
  1400. struct drm_i915_master_private *master_priv;
  1401. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1402. struct intel_framebuffer *intel_fb;
  1403. struct drm_i915_gem_object *obj_priv;
  1404. struct drm_gem_object *obj;
  1405. int pipe = intel_crtc->pipe;
  1406. int plane = intel_crtc->plane;
  1407. int ret;
  1408. /* no fb bound */
  1409. if (!crtc->fb) {
  1410. DRM_DEBUG_KMS("No FB bound\n");
  1411. return 0;
  1412. }
  1413. switch (plane) {
  1414. case 0:
  1415. case 1:
  1416. break;
  1417. default:
  1418. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1419. return -EINVAL;
  1420. }
  1421. intel_fb = to_intel_framebuffer(crtc->fb);
  1422. obj = intel_fb->obj;
  1423. obj_priv = to_intel_bo(obj);
  1424. mutex_lock(&dev->struct_mutex);
  1425. ret = intel_pin_and_fence_fb_obj(dev, obj, false);
  1426. if (ret != 0) {
  1427. mutex_unlock(&dev->struct_mutex);
  1428. return ret;
  1429. }
  1430. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y);
  1431. if (ret) {
  1432. i915_gem_object_unpin(obj);
  1433. mutex_unlock(&dev->struct_mutex);
  1434. return ret;
  1435. }
  1436. if (old_fb) {
  1437. intel_fb = to_intel_framebuffer(old_fb);
  1438. obj_priv = to_intel_bo(intel_fb->obj);
  1439. i915_gem_object_unpin(intel_fb->obj);
  1440. }
  1441. mutex_unlock(&dev->struct_mutex);
  1442. if (!dev->primary->master)
  1443. return 0;
  1444. master_priv = dev->primary->master->driver_priv;
  1445. if (!master_priv->sarea_priv)
  1446. return 0;
  1447. if (pipe) {
  1448. master_priv->sarea_priv->pipeB_x = x;
  1449. master_priv->sarea_priv->pipeB_y = y;
  1450. } else {
  1451. master_priv->sarea_priv->pipeA_x = x;
  1452. master_priv->sarea_priv->pipeA_y = y;
  1453. }
  1454. return 0;
  1455. }
  1456. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  1457. {
  1458. struct drm_device *dev = crtc->dev;
  1459. struct drm_i915_private *dev_priv = dev->dev_private;
  1460. u32 dpa_ctl;
  1461. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1462. dpa_ctl = I915_READ(DP_A);
  1463. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1464. if (clock < 200000) {
  1465. u32 temp;
  1466. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1467. /* workaround for 160Mhz:
  1468. 1) program 0x4600c bits 15:0 = 0x8124
  1469. 2) program 0x46010 bit 0 = 1
  1470. 3) program 0x46034 bit 24 = 1
  1471. 4) program 0x64000 bit 14 = 1
  1472. */
  1473. temp = I915_READ(0x4600c);
  1474. temp &= 0xffff0000;
  1475. I915_WRITE(0x4600c, temp | 0x8124);
  1476. temp = I915_READ(0x46010);
  1477. I915_WRITE(0x46010, temp | 1);
  1478. temp = I915_READ(0x46034);
  1479. I915_WRITE(0x46034, temp | (1 << 24));
  1480. } else {
  1481. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1482. }
  1483. I915_WRITE(DP_A, dpa_ctl);
  1484. POSTING_READ(DP_A);
  1485. udelay(500);
  1486. }
  1487. /* The FDI link training functions for ILK/Ibexpeak. */
  1488. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  1489. {
  1490. struct drm_device *dev = crtc->dev;
  1491. struct drm_i915_private *dev_priv = dev->dev_private;
  1492. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1493. int pipe = intel_crtc->pipe;
  1494. u32 reg, temp, tries;
  1495. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1496. for train result */
  1497. reg = FDI_RX_IMR(pipe);
  1498. temp = I915_READ(reg);
  1499. temp &= ~FDI_RX_SYMBOL_LOCK;
  1500. temp &= ~FDI_RX_BIT_LOCK;
  1501. I915_WRITE(reg, temp);
  1502. I915_READ(reg);
  1503. udelay(150);
  1504. /* enable CPU FDI TX and PCH FDI RX */
  1505. reg = FDI_TX_CTL(pipe);
  1506. temp = I915_READ(reg);
  1507. temp &= ~(7 << 19);
  1508. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1509. temp &= ~FDI_LINK_TRAIN_NONE;
  1510. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1511. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  1512. reg = FDI_RX_CTL(pipe);
  1513. temp = I915_READ(reg);
  1514. temp &= ~FDI_LINK_TRAIN_NONE;
  1515. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1516. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  1517. POSTING_READ(reg);
  1518. udelay(150);
  1519. reg = FDI_RX_IIR(pipe);
  1520. for (tries = 0; tries < 5; tries++) {
  1521. temp = I915_READ(reg);
  1522. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1523. if ((temp & FDI_RX_BIT_LOCK)) {
  1524. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1525. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  1526. break;
  1527. }
  1528. }
  1529. if (tries == 5)
  1530. DRM_ERROR("FDI train 1 fail!\n");
  1531. /* Train 2 */
  1532. reg = FDI_TX_CTL(pipe);
  1533. temp = I915_READ(reg);
  1534. temp &= ~FDI_LINK_TRAIN_NONE;
  1535. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1536. I915_WRITE(reg, temp);
  1537. reg = FDI_RX_CTL(pipe);
  1538. temp = I915_READ(reg);
  1539. temp &= ~FDI_LINK_TRAIN_NONE;
  1540. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1541. I915_WRITE(reg, temp);
  1542. POSTING_READ(reg);
  1543. udelay(150);
  1544. reg = FDI_RX_IIR(pipe);
  1545. for (tries = 0; tries < 5; tries++) {
  1546. temp = I915_READ(reg);
  1547. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1548. if (temp & FDI_RX_SYMBOL_LOCK) {
  1549. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  1550. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1551. break;
  1552. }
  1553. }
  1554. if (tries == 5)
  1555. DRM_ERROR("FDI train 2 fail!\n");
  1556. DRM_DEBUG_KMS("FDI train done\n");
  1557. }
  1558. static const int const snb_b_fdi_train_param [] = {
  1559. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  1560. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  1561. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  1562. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  1563. };
  1564. /* The FDI link training functions for SNB/Cougarpoint. */
  1565. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  1566. {
  1567. struct drm_device *dev = crtc->dev;
  1568. struct drm_i915_private *dev_priv = dev->dev_private;
  1569. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1570. int pipe = intel_crtc->pipe;
  1571. u32 reg, temp, i;
  1572. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1573. for train result */
  1574. reg = FDI_RX_IMR(pipe);
  1575. temp = I915_READ(reg);
  1576. temp &= ~FDI_RX_SYMBOL_LOCK;
  1577. temp &= ~FDI_RX_BIT_LOCK;
  1578. I915_WRITE(reg, temp);
  1579. POSTING_READ(reg);
  1580. udelay(150);
  1581. /* enable CPU FDI TX and PCH FDI RX */
  1582. reg = FDI_TX_CTL(pipe);
  1583. temp = I915_READ(reg);
  1584. temp &= ~(7 << 19);
  1585. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1586. temp &= ~FDI_LINK_TRAIN_NONE;
  1587. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1588. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1589. /* SNB-B */
  1590. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1591. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  1592. reg = FDI_RX_CTL(pipe);
  1593. temp = I915_READ(reg);
  1594. if (HAS_PCH_CPT(dev)) {
  1595. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1596. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1597. } else {
  1598. temp &= ~FDI_LINK_TRAIN_NONE;
  1599. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1600. }
  1601. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  1602. POSTING_READ(reg);
  1603. udelay(150);
  1604. for (i = 0; i < 4; i++ ) {
  1605. reg = FDI_TX_CTL(pipe);
  1606. temp = I915_READ(reg);
  1607. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1608. temp |= snb_b_fdi_train_param[i];
  1609. I915_WRITE(reg, temp);
  1610. POSTING_READ(reg);
  1611. udelay(500);
  1612. reg = FDI_RX_IIR(pipe);
  1613. temp = I915_READ(reg);
  1614. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1615. if (temp & FDI_RX_BIT_LOCK) {
  1616. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  1617. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1618. break;
  1619. }
  1620. }
  1621. if (i == 4)
  1622. DRM_ERROR("FDI train 1 fail!\n");
  1623. /* Train 2 */
  1624. reg = FDI_TX_CTL(pipe);
  1625. temp = I915_READ(reg);
  1626. temp &= ~FDI_LINK_TRAIN_NONE;
  1627. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1628. if (IS_GEN6(dev)) {
  1629. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1630. /* SNB-B */
  1631. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1632. }
  1633. I915_WRITE(reg, temp);
  1634. reg = FDI_RX_CTL(pipe);
  1635. temp = I915_READ(reg);
  1636. if (HAS_PCH_CPT(dev)) {
  1637. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1638. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  1639. } else {
  1640. temp &= ~FDI_LINK_TRAIN_NONE;
  1641. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1642. }
  1643. I915_WRITE(reg, temp);
  1644. POSTING_READ(reg);
  1645. udelay(150);
  1646. for (i = 0; i < 4; i++ ) {
  1647. reg = FDI_TX_CTL(pipe);
  1648. temp = I915_READ(reg);
  1649. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1650. temp |= snb_b_fdi_train_param[i];
  1651. I915_WRITE(reg, temp);
  1652. POSTING_READ(reg);
  1653. udelay(500);
  1654. reg = FDI_RX_IIR(pipe);
  1655. temp = I915_READ(reg);
  1656. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1657. if (temp & FDI_RX_SYMBOL_LOCK) {
  1658. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  1659. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1660. break;
  1661. }
  1662. }
  1663. if (i == 4)
  1664. DRM_ERROR("FDI train 2 fail!\n");
  1665. DRM_DEBUG_KMS("FDI train done.\n");
  1666. }
  1667. static void ironlake_fdi_enable(struct drm_crtc *crtc)
  1668. {
  1669. struct drm_device *dev = crtc->dev;
  1670. struct drm_i915_private *dev_priv = dev->dev_private;
  1671. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1672. int pipe = intel_crtc->pipe;
  1673. u32 reg, temp;
  1674. /* Write the TU size bits so error detection works */
  1675. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  1676. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  1677. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  1678. reg = FDI_RX_CTL(pipe);
  1679. temp = I915_READ(reg);
  1680. temp &= ~((0x7 << 19) | (0x7 << 16));
  1681. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1682. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  1683. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  1684. POSTING_READ(reg);
  1685. udelay(200);
  1686. /* Switch from Rawclk to PCDclk */
  1687. temp = I915_READ(reg);
  1688. I915_WRITE(reg, temp | FDI_PCDCLK);
  1689. POSTING_READ(reg);
  1690. udelay(200);
  1691. /* Enable CPU FDI TX PLL, always on for Ironlake */
  1692. reg = FDI_TX_CTL(pipe);
  1693. temp = I915_READ(reg);
  1694. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  1695. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  1696. POSTING_READ(reg);
  1697. udelay(100);
  1698. }
  1699. }
  1700. static void intel_flush_display_plane(struct drm_device *dev,
  1701. int plane)
  1702. {
  1703. struct drm_i915_private *dev_priv = dev->dev_private;
  1704. u32 reg = DSPADDR(plane);
  1705. I915_WRITE(reg, I915_READ(reg));
  1706. }
  1707. /*
  1708. * When we disable a pipe, we need to clear any pending scanline wait events
  1709. * to avoid hanging the ring, which we assume we are waiting on.
  1710. */
  1711. static void intel_clear_scanline_wait(struct drm_device *dev)
  1712. {
  1713. struct drm_i915_private *dev_priv = dev->dev_private;
  1714. u32 tmp;
  1715. if (IS_GEN2(dev))
  1716. /* Can't break the hang on i8xx */
  1717. return;
  1718. tmp = I915_READ(PRB0_CTL);
  1719. if (tmp & RING_WAIT) {
  1720. I915_WRITE(PRB0_CTL, tmp);
  1721. POSTING_READ(PRB0_CTL);
  1722. }
  1723. }
  1724. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  1725. {
  1726. struct drm_device *dev = crtc->dev;
  1727. struct drm_i915_private *dev_priv = dev->dev_private;
  1728. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1729. int pipe = intel_crtc->pipe;
  1730. int plane = intel_crtc->plane;
  1731. u32 reg, temp;
  1732. if (intel_crtc->active)
  1733. return;
  1734. intel_crtc->active = true;
  1735. intel_update_watermarks(dev);
  1736. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1737. temp = I915_READ(PCH_LVDS);
  1738. if ((temp & LVDS_PORT_EN) == 0)
  1739. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  1740. }
  1741. ironlake_fdi_enable(crtc);
  1742. /* Enable panel fitting for LVDS */
  1743. if (dev_priv->pch_pf_size &&
  1744. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)
  1745. || HAS_eDP || intel_pch_has_edp(crtc))) {
  1746. /* Force use of hard-coded filter coefficients
  1747. * as some pre-programmed values are broken,
  1748. * e.g. x201.
  1749. */
  1750. I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
  1751. PF_ENABLE | PF_FILTER_MED_3x3);
  1752. I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
  1753. dev_priv->pch_pf_pos);
  1754. I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
  1755. dev_priv->pch_pf_size);
  1756. }
  1757. /* Enable CPU pipe */
  1758. reg = PIPECONF(pipe);
  1759. temp = I915_READ(reg);
  1760. if ((temp & PIPECONF_ENABLE) == 0) {
  1761. I915_WRITE(reg, temp | PIPECONF_ENABLE);
  1762. POSTING_READ(reg);
  1763. udelay(100);
  1764. }
  1765. /* configure and enable CPU plane */
  1766. reg = DSPCNTR(plane);
  1767. temp = I915_READ(reg);
  1768. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1769. I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
  1770. intel_flush_display_plane(dev, plane);
  1771. }
  1772. /* For PCH output, training FDI link */
  1773. if (IS_GEN6(dev))
  1774. gen6_fdi_link_train(crtc);
  1775. else
  1776. ironlake_fdi_link_train(crtc);
  1777. /* enable PCH DPLL */
  1778. reg = PCH_DPLL(pipe);
  1779. temp = I915_READ(reg);
  1780. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1781. I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
  1782. POSTING_READ(reg);
  1783. udelay(200);
  1784. }
  1785. if (HAS_PCH_CPT(dev)) {
  1786. /* Be sure PCH DPLL SEL is set */
  1787. temp = I915_READ(PCH_DPLL_SEL);
  1788. if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
  1789. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  1790. else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
  1791. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1792. I915_WRITE(PCH_DPLL_SEL, temp);
  1793. }
  1794. /* set transcoder timing */
  1795. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  1796. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  1797. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  1798. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  1799. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  1800. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  1801. /* enable normal train */
  1802. reg = FDI_TX_CTL(pipe);
  1803. temp = I915_READ(reg);
  1804. temp &= ~FDI_LINK_TRAIN_NONE;
  1805. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1806. I915_WRITE(reg, temp);
  1807. reg = FDI_RX_CTL(pipe);
  1808. temp = I915_READ(reg);
  1809. if (HAS_PCH_CPT(dev)) {
  1810. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1811. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1812. } else {
  1813. temp &= ~FDI_LINK_TRAIN_NONE;
  1814. temp |= FDI_LINK_TRAIN_NONE;
  1815. }
  1816. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1817. /* wait one idle pattern time */
  1818. POSTING_READ(reg);
  1819. udelay(100);
  1820. /* For PCH DP, enable TRANS_DP_CTL */
  1821. if (HAS_PCH_CPT(dev) &&
  1822. intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  1823. reg = TRANS_DP_CTL(pipe);
  1824. temp = I915_READ(reg);
  1825. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  1826. TRANS_DP_SYNC_MASK);
  1827. temp |= (TRANS_DP_OUTPUT_ENABLE |
  1828. TRANS_DP_ENH_FRAMING);
  1829. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  1830. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  1831. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  1832. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  1833. switch (intel_trans_dp_port_sel(crtc)) {
  1834. case PCH_DP_B:
  1835. temp |= TRANS_DP_PORT_SEL_B;
  1836. break;
  1837. case PCH_DP_C:
  1838. temp |= TRANS_DP_PORT_SEL_C;
  1839. break;
  1840. case PCH_DP_D:
  1841. temp |= TRANS_DP_PORT_SEL_D;
  1842. break;
  1843. default:
  1844. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  1845. temp |= TRANS_DP_PORT_SEL_B;
  1846. break;
  1847. }
  1848. I915_WRITE(reg, temp);
  1849. }
  1850. /* enable PCH transcoder */
  1851. reg = TRANSCONF(pipe);
  1852. temp = I915_READ(reg);
  1853. /*
  1854. * make the BPC in transcoder be consistent with
  1855. * that in pipeconf reg.
  1856. */
  1857. temp &= ~PIPE_BPC_MASK;
  1858. temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
  1859. I915_WRITE(reg, temp | TRANS_ENABLE);
  1860. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1861. DRM_ERROR("failed to enable transcoder\n");
  1862. intel_crtc_load_lut(crtc);
  1863. intel_update_fbc(dev);
  1864. intel_crtc_update_cursor(crtc, true);
  1865. }
  1866. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  1867. {
  1868. struct drm_device *dev = crtc->dev;
  1869. struct drm_i915_private *dev_priv = dev->dev_private;
  1870. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1871. int pipe = intel_crtc->pipe;
  1872. int plane = intel_crtc->plane;
  1873. u32 reg, temp;
  1874. if (!intel_crtc->active)
  1875. return;
  1876. drm_vblank_off(dev, pipe);
  1877. intel_crtc_update_cursor(crtc, false);
  1878. /* Disable display plane */
  1879. reg = DSPCNTR(plane);
  1880. temp = I915_READ(reg);
  1881. if (temp & DISPLAY_PLANE_ENABLE) {
  1882. I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
  1883. intel_flush_display_plane(dev, plane);
  1884. }
  1885. if (dev_priv->cfb_plane == plane &&
  1886. dev_priv->display.disable_fbc)
  1887. dev_priv->display.disable_fbc(dev);
  1888. /* disable cpu pipe, disable after all planes disabled */
  1889. reg = PIPECONF(pipe);
  1890. temp = I915_READ(reg);
  1891. if (temp & PIPECONF_ENABLE) {
  1892. I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
  1893. /* wait for cpu pipe off, pipe state */
  1894. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 50))
  1895. DRM_ERROR("failed to turn off cpu pipe\n");
  1896. }
  1897. /* Disable PF */
  1898. I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
  1899. I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
  1900. /* disable CPU FDI tx and PCH FDI rx */
  1901. reg = FDI_TX_CTL(pipe);
  1902. temp = I915_READ(reg);
  1903. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  1904. POSTING_READ(reg);
  1905. reg = FDI_RX_CTL(pipe);
  1906. temp = I915_READ(reg);
  1907. temp &= ~(0x7 << 16);
  1908. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  1909. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  1910. POSTING_READ(reg);
  1911. udelay(100);
  1912. /* still set train pattern 1 */
  1913. reg = FDI_TX_CTL(pipe);
  1914. temp = I915_READ(reg);
  1915. temp &= ~FDI_LINK_TRAIN_NONE;
  1916. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1917. I915_WRITE(reg, temp);
  1918. reg = FDI_RX_CTL(pipe);
  1919. temp = I915_READ(reg);
  1920. if (HAS_PCH_CPT(dev)) {
  1921. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1922. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1923. } else {
  1924. temp &= ~FDI_LINK_TRAIN_NONE;
  1925. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1926. }
  1927. /* BPC in FDI rx is consistent with that in PIPECONF */
  1928. temp &= ~(0x07 << 16);
  1929. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  1930. I915_WRITE(reg, temp);
  1931. POSTING_READ(reg);
  1932. udelay(100);
  1933. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1934. temp = I915_READ(PCH_LVDS);
  1935. if (temp & LVDS_PORT_EN) {
  1936. I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
  1937. POSTING_READ(PCH_LVDS);
  1938. udelay(100);
  1939. }
  1940. }
  1941. /* disable PCH transcoder */
  1942. reg = TRANSCONF(plane);
  1943. temp = I915_READ(reg);
  1944. if (temp & TRANS_ENABLE) {
  1945. I915_WRITE(reg, temp & ~TRANS_ENABLE);
  1946. /* wait for PCH transcoder off, transcoder state */
  1947. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1948. DRM_ERROR("failed to disable transcoder\n");
  1949. }
  1950. if (HAS_PCH_CPT(dev)) {
  1951. /* disable TRANS_DP_CTL */
  1952. reg = TRANS_DP_CTL(pipe);
  1953. temp = I915_READ(reg);
  1954. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  1955. I915_WRITE(reg, temp);
  1956. /* disable DPLL_SEL */
  1957. temp = I915_READ(PCH_DPLL_SEL);
  1958. if (pipe == 0)
  1959. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  1960. else
  1961. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1962. I915_WRITE(PCH_DPLL_SEL, temp);
  1963. }
  1964. /* disable PCH DPLL */
  1965. reg = PCH_DPLL(pipe);
  1966. temp = I915_READ(reg);
  1967. I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
  1968. /* Switch from PCDclk to Rawclk */
  1969. reg = FDI_RX_CTL(pipe);
  1970. temp = I915_READ(reg);
  1971. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  1972. /* Disable CPU FDI TX PLL */
  1973. reg = FDI_TX_CTL(pipe);
  1974. temp = I915_READ(reg);
  1975. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  1976. POSTING_READ(reg);
  1977. udelay(100);
  1978. reg = FDI_RX_CTL(pipe);
  1979. temp = I915_READ(reg);
  1980. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  1981. /* Wait for the clocks to turn off. */
  1982. POSTING_READ(reg);
  1983. udelay(100);
  1984. intel_crtc->active = false;
  1985. intel_update_watermarks(dev);
  1986. intel_update_fbc(dev);
  1987. intel_clear_scanline_wait(dev);
  1988. }
  1989. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  1990. {
  1991. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1992. int pipe = intel_crtc->pipe;
  1993. int plane = intel_crtc->plane;
  1994. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1995. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1996. */
  1997. switch (mode) {
  1998. case DRM_MODE_DPMS_ON:
  1999. case DRM_MODE_DPMS_STANDBY:
  2000. case DRM_MODE_DPMS_SUSPEND:
  2001. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2002. ironlake_crtc_enable(crtc);
  2003. break;
  2004. case DRM_MODE_DPMS_OFF:
  2005. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2006. ironlake_crtc_disable(crtc);
  2007. break;
  2008. }
  2009. }
  2010. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2011. {
  2012. if (!enable && intel_crtc->overlay) {
  2013. struct drm_device *dev = intel_crtc->base.dev;
  2014. mutex_lock(&dev->struct_mutex);
  2015. (void) intel_overlay_switch_off(intel_crtc->overlay, false);
  2016. mutex_unlock(&dev->struct_mutex);
  2017. }
  2018. /* Let userspace switch the overlay on again. In most cases userspace
  2019. * has to recompute where to put it anyway.
  2020. */
  2021. }
  2022. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2023. {
  2024. struct drm_device *dev = crtc->dev;
  2025. struct drm_i915_private *dev_priv = dev->dev_private;
  2026. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2027. int pipe = intel_crtc->pipe;
  2028. int plane = intel_crtc->plane;
  2029. u32 reg, temp;
  2030. if (intel_crtc->active)
  2031. return;
  2032. intel_crtc->active = true;
  2033. intel_update_watermarks(dev);
  2034. /* Enable the DPLL */
  2035. reg = DPLL(pipe);
  2036. temp = I915_READ(reg);
  2037. if ((temp & DPLL_VCO_ENABLE) == 0) {
  2038. I915_WRITE(reg, temp);
  2039. /* Wait for the clocks to stabilize. */
  2040. POSTING_READ(reg);
  2041. udelay(150);
  2042. I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
  2043. /* Wait for the clocks to stabilize. */
  2044. POSTING_READ(reg);
  2045. udelay(150);
  2046. I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
  2047. /* Wait for the clocks to stabilize. */
  2048. POSTING_READ(reg);
  2049. udelay(150);
  2050. }
  2051. /* Enable the pipe */
  2052. reg = PIPECONF(pipe);
  2053. temp = I915_READ(reg);
  2054. if ((temp & PIPECONF_ENABLE) == 0)
  2055. I915_WRITE(reg, temp | PIPECONF_ENABLE);
  2056. /* Enable the plane */
  2057. reg = DSPCNTR(plane);
  2058. temp = I915_READ(reg);
  2059. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  2060. I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
  2061. intel_flush_display_plane(dev, plane);
  2062. }
  2063. intel_crtc_load_lut(crtc);
  2064. intel_update_fbc(dev);
  2065. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2066. intel_crtc_dpms_overlay(intel_crtc, true);
  2067. intel_crtc_update_cursor(crtc, true);
  2068. }
  2069. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2070. {
  2071. struct drm_device *dev = crtc->dev;
  2072. struct drm_i915_private *dev_priv = dev->dev_private;
  2073. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2074. int pipe = intel_crtc->pipe;
  2075. int plane = intel_crtc->plane;
  2076. u32 reg, temp;
  2077. if (!intel_crtc->active)
  2078. return;
  2079. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2080. intel_crtc_dpms_overlay(intel_crtc, false);
  2081. intel_crtc_update_cursor(crtc, false);
  2082. drm_vblank_off(dev, pipe);
  2083. if (dev_priv->cfb_plane == plane &&
  2084. dev_priv->display.disable_fbc)
  2085. dev_priv->display.disable_fbc(dev);
  2086. /* Disable display plane */
  2087. reg = DSPCNTR(plane);
  2088. temp = I915_READ(reg);
  2089. if (temp & DISPLAY_PLANE_ENABLE) {
  2090. I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
  2091. /* Flush the plane changes */
  2092. intel_flush_display_plane(dev, plane);
  2093. /* Wait for vblank for the disable to take effect */
  2094. if (!IS_I9XX(dev))
  2095. intel_wait_for_vblank_off(dev, pipe);
  2096. }
  2097. /* Don't disable pipe A or pipe A PLLs if needed */
  2098. if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  2099. goto done;
  2100. /* Next, disable display pipes */
  2101. reg = PIPECONF(pipe);
  2102. temp = I915_READ(reg);
  2103. if (temp & PIPECONF_ENABLE) {
  2104. I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
  2105. /* Wait for vblank for the disable to take effect. */
  2106. POSTING_READ(reg);
  2107. intel_wait_for_vblank_off(dev, pipe);
  2108. }
  2109. reg = DPLL(pipe);
  2110. temp = I915_READ(reg);
  2111. if (temp & DPLL_VCO_ENABLE) {
  2112. I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
  2113. /* Wait for the clocks to turn off. */
  2114. POSTING_READ(reg);
  2115. udelay(150);
  2116. }
  2117. done:
  2118. intel_crtc->active = false;
  2119. intel_update_fbc(dev);
  2120. intel_update_watermarks(dev);
  2121. intel_clear_scanline_wait(dev);
  2122. }
  2123. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2124. {
  2125. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2126. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2127. */
  2128. switch (mode) {
  2129. case DRM_MODE_DPMS_ON:
  2130. case DRM_MODE_DPMS_STANDBY:
  2131. case DRM_MODE_DPMS_SUSPEND:
  2132. i9xx_crtc_enable(crtc);
  2133. break;
  2134. case DRM_MODE_DPMS_OFF:
  2135. i9xx_crtc_disable(crtc);
  2136. break;
  2137. }
  2138. }
  2139. /**
  2140. * Sets the power management mode of the pipe and plane.
  2141. */
  2142. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2143. {
  2144. struct drm_device *dev = crtc->dev;
  2145. struct drm_i915_private *dev_priv = dev->dev_private;
  2146. struct drm_i915_master_private *master_priv;
  2147. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2148. int pipe = intel_crtc->pipe;
  2149. bool enabled;
  2150. if (intel_crtc->dpms_mode == mode)
  2151. return;
  2152. intel_crtc->dpms_mode = mode;
  2153. dev_priv->display.dpms(crtc, mode);
  2154. if (!dev->primary->master)
  2155. return;
  2156. master_priv = dev->primary->master->driver_priv;
  2157. if (!master_priv->sarea_priv)
  2158. return;
  2159. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2160. switch (pipe) {
  2161. case 0:
  2162. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2163. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2164. break;
  2165. case 1:
  2166. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2167. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2168. break;
  2169. default:
  2170. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  2171. break;
  2172. }
  2173. }
  2174. /* Prepare for a mode set.
  2175. *
  2176. * Note we could be a lot smarter here. We need to figure out which outputs
  2177. * will be enabled, which disabled (in short, how the config will changes)
  2178. * and perform the minimum necessary steps to accomplish that, e.g. updating
  2179. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  2180. * panel fitting is in the proper state, etc.
  2181. */
  2182. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  2183. {
  2184. i9xx_crtc_disable(crtc);
  2185. }
  2186. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  2187. {
  2188. i9xx_crtc_enable(crtc);
  2189. }
  2190. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  2191. {
  2192. ironlake_crtc_disable(crtc);
  2193. }
  2194. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  2195. {
  2196. ironlake_crtc_enable(crtc);
  2197. }
  2198. void intel_encoder_prepare (struct drm_encoder *encoder)
  2199. {
  2200. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2201. /* lvds has its own version of prepare see intel_lvds_prepare */
  2202. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2203. }
  2204. void intel_encoder_commit (struct drm_encoder *encoder)
  2205. {
  2206. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2207. /* lvds has its own version of commit see intel_lvds_commit */
  2208. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2209. }
  2210. void intel_encoder_destroy(struct drm_encoder *encoder)
  2211. {
  2212. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2213. if (intel_encoder->ddc_bus)
  2214. intel_i2c_destroy(intel_encoder->ddc_bus);
  2215. if (intel_encoder->i2c_bus)
  2216. intel_i2c_destroy(intel_encoder->i2c_bus);
  2217. drm_encoder_cleanup(encoder);
  2218. kfree(intel_encoder);
  2219. }
  2220. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2221. struct drm_display_mode *mode,
  2222. struct drm_display_mode *adjusted_mode)
  2223. {
  2224. struct drm_device *dev = crtc->dev;
  2225. if (HAS_PCH_SPLIT(dev)) {
  2226. /* FDI link clock is fixed at 2.7G */
  2227. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2228. return false;
  2229. }
  2230. return true;
  2231. }
  2232. static int i945_get_display_clock_speed(struct drm_device *dev)
  2233. {
  2234. return 400000;
  2235. }
  2236. static int i915_get_display_clock_speed(struct drm_device *dev)
  2237. {
  2238. return 333000;
  2239. }
  2240. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2241. {
  2242. return 200000;
  2243. }
  2244. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2245. {
  2246. u16 gcfgc = 0;
  2247. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2248. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2249. return 133000;
  2250. else {
  2251. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2252. case GC_DISPLAY_CLOCK_333_MHZ:
  2253. return 333000;
  2254. default:
  2255. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2256. return 190000;
  2257. }
  2258. }
  2259. }
  2260. static int i865_get_display_clock_speed(struct drm_device *dev)
  2261. {
  2262. return 266000;
  2263. }
  2264. static int i855_get_display_clock_speed(struct drm_device *dev)
  2265. {
  2266. u16 hpllcc = 0;
  2267. /* Assume that the hardware is in the high speed state. This
  2268. * should be the default.
  2269. */
  2270. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  2271. case GC_CLOCK_133_200:
  2272. case GC_CLOCK_100_200:
  2273. return 200000;
  2274. case GC_CLOCK_166_250:
  2275. return 250000;
  2276. case GC_CLOCK_100_133:
  2277. return 133000;
  2278. }
  2279. /* Shouldn't happen */
  2280. return 0;
  2281. }
  2282. static int i830_get_display_clock_speed(struct drm_device *dev)
  2283. {
  2284. return 133000;
  2285. }
  2286. struct fdi_m_n {
  2287. u32 tu;
  2288. u32 gmch_m;
  2289. u32 gmch_n;
  2290. u32 link_m;
  2291. u32 link_n;
  2292. };
  2293. static void
  2294. fdi_reduce_ratio(u32 *num, u32 *den)
  2295. {
  2296. while (*num > 0xffffff || *den > 0xffffff) {
  2297. *num >>= 1;
  2298. *den >>= 1;
  2299. }
  2300. }
  2301. #define DATA_N 0x800000
  2302. #define LINK_N 0x80000
  2303. static void
  2304. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  2305. int link_clock, struct fdi_m_n *m_n)
  2306. {
  2307. u64 temp;
  2308. m_n->tu = 64; /* default size */
  2309. temp = (u64) DATA_N * pixel_clock;
  2310. temp = div_u64(temp, link_clock);
  2311. m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
  2312. m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
  2313. m_n->gmch_n = DATA_N;
  2314. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  2315. temp = (u64) LINK_N * pixel_clock;
  2316. m_n->link_m = div_u64(temp, link_clock);
  2317. m_n->link_n = LINK_N;
  2318. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  2319. }
  2320. struct intel_watermark_params {
  2321. unsigned long fifo_size;
  2322. unsigned long max_wm;
  2323. unsigned long default_wm;
  2324. unsigned long guard_size;
  2325. unsigned long cacheline_size;
  2326. };
  2327. /* Pineview has different values for various configs */
  2328. static struct intel_watermark_params pineview_display_wm = {
  2329. PINEVIEW_DISPLAY_FIFO,
  2330. PINEVIEW_MAX_WM,
  2331. PINEVIEW_DFT_WM,
  2332. PINEVIEW_GUARD_WM,
  2333. PINEVIEW_FIFO_LINE_SIZE
  2334. };
  2335. static struct intel_watermark_params pineview_display_hplloff_wm = {
  2336. PINEVIEW_DISPLAY_FIFO,
  2337. PINEVIEW_MAX_WM,
  2338. PINEVIEW_DFT_HPLLOFF_WM,
  2339. PINEVIEW_GUARD_WM,
  2340. PINEVIEW_FIFO_LINE_SIZE
  2341. };
  2342. static struct intel_watermark_params pineview_cursor_wm = {
  2343. PINEVIEW_CURSOR_FIFO,
  2344. PINEVIEW_CURSOR_MAX_WM,
  2345. PINEVIEW_CURSOR_DFT_WM,
  2346. PINEVIEW_CURSOR_GUARD_WM,
  2347. PINEVIEW_FIFO_LINE_SIZE,
  2348. };
  2349. static struct intel_watermark_params pineview_cursor_hplloff_wm = {
  2350. PINEVIEW_CURSOR_FIFO,
  2351. PINEVIEW_CURSOR_MAX_WM,
  2352. PINEVIEW_CURSOR_DFT_WM,
  2353. PINEVIEW_CURSOR_GUARD_WM,
  2354. PINEVIEW_FIFO_LINE_SIZE
  2355. };
  2356. static struct intel_watermark_params g4x_wm_info = {
  2357. G4X_FIFO_SIZE,
  2358. G4X_MAX_WM,
  2359. G4X_MAX_WM,
  2360. 2,
  2361. G4X_FIFO_LINE_SIZE,
  2362. };
  2363. static struct intel_watermark_params g4x_cursor_wm_info = {
  2364. I965_CURSOR_FIFO,
  2365. I965_CURSOR_MAX_WM,
  2366. I965_CURSOR_DFT_WM,
  2367. 2,
  2368. G4X_FIFO_LINE_SIZE,
  2369. };
  2370. static struct intel_watermark_params i965_cursor_wm_info = {
  2371. I965_CURSOR_FIFO,
  2372. I965_CURSOR_MAX_WM,
  2373. I965_CURSOR_DFT_WM,
  2374. 2,
  2375. I915_FIFO_LINE_SIZE,
  2376. };
  2377. static struct intel_watermark_params i945_wm_info = {
  2378. I945_FIFO_SIZE,
  2379. I915_MAX_WM,
  2380. 1,
  2381. 2,
  2382. I915_FIFO_LINE_SIZE
  2383. };
  2384. static struct intel_watermark_params i915_wm_info = {
  2385. I915_FIFO_SIZE,
  2386. I915_MAX_WM,
  2387. 1,
  2388. 2,
  2389. I915_FIFO_LINE_SIZE
  2390. };
  2391. static struct intel_watermark_params i855_wm_info = {
  2392. I855GM_FIFO_SIZE,
  2393. I915_MAX_WM,
  2394. 1,
  2395. 2,
  2396. I830_FIFO_LINE_SIZE
  2397. };
  2398. static struct intel_watermark_params i830_wm_info = {
  2399. I830_FIFO_SIZE,
  2400. I915_MAX_WM,
  2401. 1,
  2402. 2,
  2403. I830_FIFO_LINE_SIZE
  2404. };
  2405. static struct intel_watermark_params ironlake_display_wm_info = {
  2406. ILK_DISPLAY_FIFO,
  2407. ILK_DISPLAY_MAXWM,
  2408. ILK_DISPLAY_DFTWM,
  2409. 2,
  2410. ILK_FIFO_LINE_SIZE
  2411. };
  2412. static struct intel_watermark_params ironlake_cursor_wm_info = {
  2413. ILK_CURSOR_FIFO,
  2414. ILK_CURSOR_MAXWM,
  2415. ILK_CURSOR_DFTWM,
  2416. 2,
  2417. ILK_FIFO_LINE_SIZE
  2418. };
  2419. static struct intel_watermark_params ironlake_display_srwm_info = {
  2420. ILK_DISPLAY_SR_FIFO,
  2421. ILK_DISPLAY_MAX_SRWM,
  2422. ILK_DISPLAY_DFT_SRWM,
  2423. 2,
  2424. ILK_FIFO_LINE_SIZE
  2425. };
  2426. static struct intel_watermark_params ironlake_cursor_srwm_info = {
  2427. ILK_CURSOR_SR_FIFO,
  2428. ILK_CURSOR_MAX_SRWM,
  2429. ILK_CURSOR_DFT_SRWM,
  2430. 2,
  2431. ILK_FIFO_LINE_SIZE
  2432. };
  2433. /**
  2434. * intel_calculate_wm - calculate watermark level
  2435. * @clock_in_khz: pixel clock
  2436. * @wm: chip FIFO params
  2437. * @pixel_size: display pixel size
  2438. * @latency_ns: memory latency for the platform
  2439. *
  2440. * Calculate the watermark level (the level at which the display plane will
  2441. * start fetching from memory again). Each chip has a different display
  2442. * FIFO size and allocation, so the caller needs to figure that out and pass
  2443. * in the correct intel_watermark_params structure.
  2444. *
  2445. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  2446. * on the pixel size. When it reaches the watermark level, it'll start
  2447. * fetching FIFO line sized based chunks from memory until the FIFO fills
  2448. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  2449. * will occur, and a display engine hang could result.
  2450. */
  2451. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  2452. struct intel_watermark_params *wm,
  2453. int pixel_size,
  2454. unsigned long latency_ns)
  2455. {
  2456. long entries_required, wm_size;
  2457. /*
  2458. * Note: we need to make sure we don't overflow for various clock &
  2459. * latency values.
  2460. * clocks go from a few thousand to several hundred thousand.
  2461. * latency is usually a few thousand
  2462. */
  2463. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  2464. 1000;
  2465. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  2466. DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
  2467. wm_size = wm->fifo_size - (entries_required + wm->guard_size);
  2468. DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
  2469. /* Don't promote wm_size to unsigned... */
  2470. if (wm_size > (long)wm->max_wm)
  2471. wm_size = wm->max_wm;
  2472. if (wm_size <= 0)
  2473. wm_size = wm->default_wm;
  2474. return wm_size;
  2475. }
  2476. struct cxsr_latency {
  2477. int is_desktop;
  2478. int is_ddr3;
  2479. unsigned long fsb_freq;
  2480. unsigned long mem_freq;
  2481. unsigned long display_sr;
  2482. unsigned long display_hpll_disable;
  2483. unsigned long cursor_sr;
  2484. unsigned long cursor_hpll_disable;
  2485. };
  2486. static const struct cxsr_latency cxsr_latency_table[] = {
  2487. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  2488. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  2489. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  2490. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  2491. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  2492. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  2493. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  2494. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  2495. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  2496. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  2497. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  2498. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  2499. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  2500. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  2501. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  2502. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  2503. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  2504. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  2505. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  2506. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  2507. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  2508. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  2509. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  2510. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  2511. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  2512. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  2513. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  2514. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  2515. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  2516. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  2517. };
  2518. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  2519. int is_ddr3,
  2520. int fsb,
  2521. int mem)
  2522. {
  2523. const struct cxsr_latency *latency;
  2524. int i;
  2525. if (fsb == 0 || mem == 0)
  2526. return NULL;
  2527. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  2528. latency = &cxsr_latency_table[i];
  2529. if (is_desktop == latency->is_desktop &&
  2530. is_ddr3 == latency->is_ddr3 &&
  2531. fsb == latency->fsb_freq && mem == latency->mem_freq)
  2532. return latency;
  2533. }
  2534. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2535. return NULL;
  2536. }
  2537. static void pineview_disable_cxsr(struct drm_device *dev)
  2538. {
  2539. struct drm_i915_private *dev_priv = dev->dev_private;
  2540. /* deactivate cxsr */
  2541. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  2542. }
  2543. /*
  2544. * Latency for FIFO fetches is dependent on several factors:
  2545. * - memory configuration (speed, channels)
  2546. * - chipset
  2547. * - current MCH state
  2548. * It can be fairly high in some situations, so here we assume a fairly
  2549. * pessimal value. It's a tradeoff between extra memory fetches (if we
  2550. * set this value too high, the FIFO will fetch frequently to stay full)
  2551. * and power consumption (set it too low to save power and we might see
  2552. * FIFO underruns and display "flicker").
  2553. *
  2554. * A value of 5us seems to be a good balance; safe for very low end
  2555. * platforms but not overly aggressive on lower latency configs.
  2556. */
  2557. static const int latency_ns = 5000;
  2558. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  2559. {
  2560. struct drm_i915_private *dev_priv = dev->dev_private;
  2561. uint32_t dsparb = I915_READ(DSPARB);
  2562. int size;
  2563. size = dsparb & 0x7f;
  2564. if (plane)
  2565. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  2566. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2567. plane ? "B" : "A", size);
  2568. return size;
  2569. }
  2570. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  2571. {
  2572. struct drm_i915_private *dev_priv = dev->dev_private;
  2573. uint32_t dsparb = I915_READ(DSPARB);
  2574. int size;
  2575. size = dsparb & 0x1ff;
  2576. if (plane)
  2577. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  2578. size >>= 1; /* Convert to cachelines */
  2579. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2580. plane ? "B" : "A", size);
  2581. return size;
  2582. }
  2583. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  2584. {
  2585. struct drm_i915_private *dev_priv = dev->dev_private;
  2586. uint32_t dsparb = I915_READ(DSPARB);
  2587. int size;
  2588. size = dsparb & 0x7f;
  2589. size >>= 2; /* Convert to cachelines */
  2590. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2591. plane ? "B" : "A",
  2592. size);
  2593. return size;
  2594. }
  2595. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  2596. {
  2597. struct drm_i915_private *dev_priv = dev->dev_private;
  2598. uint32_t dsparb = I915_READ(DSPARB);
  2599. int size;
  2600. size = dsparb & 0x7f;
  2601. size >>= 1; /* Convert to cachelines */
  2602. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2603. plane ? "B" : "A", size);
  2604. return size;
  2605. }
  2606. static void pineview_update_wm(struct drm_device *dev, int planea_clock,
  2607. int planeb_clock, int sr_hdisplay, int unused,
  2608. int pixel_size)
  2609. {
  2610. struct drm_i915_private *dev_priv = dev->dev_private;
  2611. const struct cxsr_latency *latency;
  2612. u32 reg;
  2613. unsigned long wm;
  2614. int sr_clock;
  2615. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  2616. dev_priv->fsb_freq, dev_priv->mem_freq);
  2617. if (!latency) {
  2618. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2619. pineview_disable_cxsr(dev);
  2620. return;
  2621. }
  2622. if (!planea_clock || !planeb_clock) {
  2623. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2624. /* Display SR */
  2625. wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
  2626. pixel_size, latency->display_sr);
  2627. reg = I915_READ(DSPFW1);
  2628. reg &= ~DSPFW_SR_MASK;
  2629. reg |= wm << DSPFW_SR_SHIFT;
  2630. I915_WRITE(DSPFW1, reg);
  2631. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  2632. /* cursor SR */
  2633. wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
  2634. pixel_size, latency->cursor_sr);
  2635. reg = I915_READ(DSPFW3);
  2636. reg &= ~DSPFW_CURSOR_SR_MASK;
  2637. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  2638. I915_WRITE(DSPFW3, reg);
  2639. /* Display HPLL off SR */
  2640. wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
  2641. pixel_size, latency->display_hpll_disable);
  2642. reg = I915_READ(DSPFW3);
  2643. reg &= ~DSPFW_HPLL_SR_MASK;
  2644. reg |= wm & DSPFW_HPLL_SR_MASK;
  2645. I915_WRITE(DSPFW3, reg);
  2646. /* cursor HPLL off SR */
  2647. wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
  2648. pixel_size, latency->cursor_hpll_disable);
  2649. reg = I915_READ(DSPFW3);
  2650. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  2651. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  2652. I915_WRITE(DSPFW3, reg);
  2653. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  2654. /* activate cxsr */
  2655. I915_WRITE(DSPFW3,
  2656. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  2657. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  2658. } else {
  2659. pineview_disable_cxsr(dev);
  2660. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  2661. }
  2662. }
  2663. static void g4x_update_wm(struct drm_device *dev, int planea_clock,
  2664. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2665. int pixel_size)
  2666. {
  2667. struct drm_i915_private *dev_priv = dev->dev_private;
  2668. int total_size, cacheline_size;
  2669. int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
  2670. struct intel_watermark_params planea_params, planeb_params;
  2671. unsigned long line_time_us;
  2672. int sr_clock, sr_entries = 0, entries_required;
  2673. /* Create copies of the base settings for each pipe */
  2674. planea_params = planeb_params = g4x_wm_info;
  2675. /* Grab a couple of global values before we overwrite them */
  2676. total_size = planea_params.fifo_size;
  2677. cacheline_size = planea_params.cacheline_size;
  2678. /*
  2679. * Note: we need to make sure we don't overflow for various clock &
  2680. * latency values.
  2681. * clocks go from a few thousand to several hundred thousand.
  2682. * latency is usually a few thousand
  2683. */
  2684. entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
  2685. 1000;
  2686. entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
  2687. planea_wm = entries_required + planea_params.guard_size;
  2688. entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
  2689. 1000;
  2690. entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
  2691. planeb_wm = entries_required + planeb_params.guard_size;
  2692. cursora_wm = cursorb_wm = 16;
  2693. cursor_sr = 32;
  2694. DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2695. /* Calc sr entries for one plane configs */
  2696. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2697. /* self-refresh has much higher latency */
  2698. static const int sr_latency_ns = 12000;
  2699. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2700. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2701. /* Use ns/us then divide to preserve precision */
  2702. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2703. pixel_size * sr_hdisplay;
  2704. sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
  2705. entries_required = (((sr_latency_ns / line_time_us) +
  2706. 1000) / 1000) * pixel_size * 64;
  2707. entries_required = DIV_ROUND_UP(entries_required,
  2708. g4x_cursor_wm_info.cacheline_size);
  2709. cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
  2710. if (cursor_sr > g4x_cursor_wm_info.max_wm)
  2711. cursor_sr = g4x_cursor_wm_info.max_wm;
  2712. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2713. "cursor %d\n", sr_entries, cursor_sr);
  2714. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2715. } else {
  2716. /* Turn off self refresh if both pipes are enabled */
  2717. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2718. & ~FW_BLC_SELF_EN);
  2719. }
  2720. DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
  2721. planea_wm, planeb_wm, sr_entries);
  2722. planea_wm &= 0x3f;
  2723. planeb_wm &= 0x3f;
  2724. I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
  2725. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  2726. (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
  2727. I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  2728. (cursora_wm << DSPFW_CURSORA_SHIFT));
  2729. /* HPLL off in SR has some issues on G4x... disable it */
  2730. I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  2731. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  2732. }
  2733. static void i965_update_wm(struct drm_device *dev, int planea_clock,
  2734. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2735. int pixel_size)
  2736. {
  2737. struct drm_i915_private *dev_priv = dev->dev_private;
  2738. unsigned long line_time_us;
  2739. int sr_clock, sr_entries, srwm = 1;
  2740. int cursor_sr = 16;
  2741. /* Calc sr entries for one plane configs */
  2742. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2743. /* self-refresh has much higher latency */
  2744. static const int sr_latency_ns = 12000;
  2745. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2746. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2747. /* Use ns/us then divide to preserve precision */
  2748. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2749. pixel_size * sr_hdisplay;
  2750. sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
  2751. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  2752. srwm = I965_FIFO_SIZE - sr_entries;
  2753. if (srwm < 0)
  2754. srwm = 1;
  2755. srwm &= 0x1ff;
  2756. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2757. pixel_size * 64;
  2758. sr_entries = DIV_ROUND_UP(sr_entries,
  2759. i965_cursor_wm_info.cacheline_size);
  2760. cursor_sr = i965_cursor_wm_info.fifo_size -
  2761. (sr_entries + i965_cursor_wm_info.guard_size);
  2762. if (cursor_sr > i965_cursor_wm_info.max_wm)
  2763. cursor_sr = i965_cursor_wm_info.max_wm;
  2764. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2765. "cursor %d\n", srwm, cursor_sr);
  2766. if (IS_I965GM(dev))
  2767. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2768. } else {
  2769. /* Turn off self refresh if both pipes are enabled */
  2770. if (IS_I965GM(dev))
  2771. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2772. & ~FW_BLC_SELF_EN);
  2773. }
  2774. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  2775. srwm);
  2776. /* 965 has limitations... */
  2777. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
  2778. (8 << 0));
  2779. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  2780. /* update cursor SR watermark */
  2781. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  2782. }
  2783. static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
  2784. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2785. int pixel_size)
  2786. {
  2787. struct drm_i915_private *dev_priv = dev->dev_private;
  2788. uint32_t fwater_lo;
  2789. uint32_t fwater_hi;
  2790. int total_size, cacheline_size, cwm, srwm = 1;
  2791. int planea_wm, planeb_wm;
  2792. struct intel_watermark_params planea_params, planeb_params;
  2793. unsigned long line_time_us;
  2794. int sr_clock, sr_entries = 0;
  2795. /* Create copies of the base settings for each pipe */
  2796. if (IS_I965GM(dev) || IS_I945GM(dev))
  2797. planea_params = planeb_params = i945_wm_info;
  2798. else if (IS_I9XX(dev))
  2799. planea_params = planeb_params = i915_wm_info;
  2800. else
  2801. planea_params = planeb_params = i855_wm_info;
  2802. /* Grab a couple of global values before we overwrite them */
  2803. total_size = planea_params.fifo_size;
  2804. cacheline_size = planea_params.cacheline_size;
  2805. /* Update per-plane FIFO sizes */
  2806. planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2807. planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  2808. planea_wm = intel_calculate_wm(planea_clock, &planea_params,
  2809. pixel_size, latency_ns);
  2810. planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
  2811. pixel_size, latency_ns);
  2812. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2813. /*
  2814. * Overlay gets an aggressive default since video jitter is bad.
  2815. */
  2816. cwm = 2;
  2817. /* Calc sr entries for one plane configs */
  2818. if (HAS_FW_BLC(dev) && sr_hdisplay &&
  2819. (!planea_clock || !planeb_clock)) {
  2820. /* self-refresh has much higher latency */
  2821. static const int sr_latency_ns = 6000;
  2822. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2823. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2824. /* Use ns/us then divide to preserve precision */
  2825. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2826. pixel_size * sr_hdisplay;
  2827. sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
  2828. DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
  2829. srwm = total_size - sr_entries;
  2830. if (srwm < 0)
  2831. srwm = 1;
  2832. if (IS_I945G(dev) || IS_I945GM(dev))
  2833. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  2834. else if (IS_I915GM(dev)) {
  2835. /* 915M has a smaller SRWM field */
  2836. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  2837. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  2838. }
  2839. } else {
  2840. /* Turn off self refresh if both pipes are enabled */
  2841. if (IS_I945G(dev) || IS_I945GM(dev)) {
  2842. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2843. & ~FW_BLC_SELF_EN);
  2844. } else if (IS_I915GM(dev)) {
  2845. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  2846. }
  2847. }
  2848. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  2849. planea_wm, planeb_wm, cwm, srwm);
  2850. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  2851. fwater_hi = (cwm & 0x1f);
  2852. /* Set request length to 8 cachelines per fetch */
  2853. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  2854. fwater_hi = fwater_hi | (1 << 8);
  2855. I915_WRITE(FW_BLC, fwater_lo);
  2856. I915_WRITE(FW_BLC2, fwater_hi);
  2857. }
  2858. static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
  2859. int unused2, int unused3, int pixel_size)
  2860. {
  2861. struct drm_i915_private *dev_priv = dev->dev_private;
  2862. uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  2863. int planea_wm;
  2864. i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2865. planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
  2866. pixel_size, latency_ns);
  2867. fwater_lo |= (3<<8) | planea_wm;
  2868. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  2869. I915_WRITE(FW_BLC, fwater_lo);
  2870. }
  2871. #define ILK_LP0_PLANE_LATENCY 700
  2872. #define ILK_LP0_CURSOR_LATENCY 1300
  2873. static bool ironlake_compute_wm0(struct drm_device *dev,
  2874. int pipe,
  2875. int *plane_wm,
  2876. int *cursor_wm)
  2877. {
  2878. struct drm_crtc *crtc;
  2879. int htotal, hdisplay, clock, pixel_size = 0;
  2880. int line_time_us, line_count, entries;
  2881. crtc = intel_get_crtc_for_pipe(dev, pipe);
  2882. if (crtc->fb == NULL || !crtc->enabled)
  2883. return false;
  2884. htotal = crtc->mode.htotal;
  2885. hdisplay = crtc->mode.hdisplay;
  2886. clock = crtc->mode.clock;
  2887. pixel_size = crtc->fb->bits_per_pixel / 8;
  2888. /* Use the small buffer method to calculate plane watermark */
  2889. entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
  2890. entries = DIV_ROUND_UP(entries,
  2891. ironlake_display_wm_info.cacheline_size);
  2892. *plane_wm = entries + ironlake_display_wm_info.guard_size;
  2893. if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
  2894. *plane_wm = ironlake_display_wm_info.max_wm;
  2895. /* Use the large buffer method to calculate cursor watermark */
  2896. line_time_us = ((htotal * 1000) / clock);
  2897. line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
  2898. entries = line_count * 64 * pixel_size;
  2899. entries = DIV_ROUND_UP(entries,
  2900. ironlake_cursor_wm_info.cacheline_size);
  2901. *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
  2902. if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
  2903. *cursor_wm = ironlake_cursor_wm_info.max_wm;
  2904. return true;
  2905. }
  2906. static void ironlake_update_wm(struct drm_device *dev,
  2907. int planea_clock, int planeb_clock,
  2908. int sr_hdisplay, int sr_htotal,
  2909. int pixel_size)
  2910. {
  2911. struct drm_i915_private *dev_priv = dev->dev_private;
  2912. int plane_wm, cursor_wm, enabled;
  2913. int tmp;
  2914. enabled = 0;
  2915. if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
  2916. I915_WRITE(WM0_PIPEA_ILK,
  2917. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  2918. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  2919. " plane %d, " "cursor: %d\n",
  2920. plane_wm, cursor_wm);
  2921. enabled++;
  2922. }
  2923. if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
  2924. I915_WRITE(WM0_PIPEB_ILK,
  2925. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  2926. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  2927. " plane %d, cursor: %d\n",
  2928. plane_wm, cursor_wm);
  2929. enabled++;
  2930. }
  2931. /*
  2932. * Calculate and update the self-refresh watermark only when one
  2933. * display plane is used.
  2934. */
  2935. tmp = 0;
  2936. if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
  2937. unsigned long line_time_us;
  2938. int small, large, plane_fbc;
  2939. int sr_clock, entries;
  2940. int line_count, line_size;
  2941. /* Read the self-refresh latency. The unit is 0.5us */
  2942. int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
  2943. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2944. line_time_us = (sr_htotal * 1000) / sr_clock;
  2945. /* Use ns/us then divide to preserve precision */
  2946. line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
  2947. / 1000;
  2948. line_size = sr_hdisplay * pixel_size;
  2949. /* Use the minimum of the small and large buffer method for primary */
  2950. small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
  2951. large = line_count * line_size;
  2952. entries = DIV_ROUND_UP(min(small, large),
  2953. ironlake_display_srwm_info.cacheline_size);
  2954. plane_fbc = entries * 64;
  2955. plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
  2956. plane_wm = entries + ironlake_display_srwm_info.guard_size;
  2957. if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
  2958. plane_wm = ironlake_display_srwm_info.max_wm;
  2959. /* calculate the self-refresh watermark for display cursor */
  2960. entries = line_count * pixel_size * 64;
  2961. entries = DIV_ROUND_UP(entries,
  2962. ironlake_cursor_srwm_info.cacheline_size);
  2963. cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
  2964. if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
  2965. cursor_wm = ironlake_cursor_srwm_info.max_wm;
  2966. /* configure watermark and enable self-refresh */
  2967. tmp = (WM1_LP_SR_EN |
  2968. (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
  2969. (plane_fbc << WM1_LP_FBC_SHIFT) |
  2970. (plane_wm << WM1_LP_SR_SHIFT) |
  2971. cursor_wm);
  2972. DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
  2973. " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
  2974. }
  2975. I915_WRITE(WM1_LP_ILK, tmp);
  2976. /* XXX setup WM2 and WM3 */
  2977. }
  2978. /**
  2979. * intel_update_watermarks - update FIFO watermark values based on current modes
  2980. *
  2981. * Calculate watermark values for the various WM regs based on current mode
  2982. * and plane configuration.
  2983. *
  2984. * There are several cases to deal with here:
  2985. * - normal (i.e. non-self-refresh)
  2986. * - self-refresh (SR) mode
  2987. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2988. * - lines are small relative to FIFO size (buffer can hold more than 2
  2989. * lines), so need to account for TLB latency
  2990. *
  2991. * The normal calculation is:
  2992. * watermark = dotclock * bytes per pixel * latency
  2993. * where latency is platform & configuration dependent (we assume pessimal
  2994. * values here).
  2995. *
  2996. * The SR calculation is:
  2997. * watermark = (trunc(latency/line time)+1) * surface width *
  2998. * bytes per pixel
  2999. * where
  3000. * line time = htotal / dotclock
  3001. * surface width = hdisplay for normal plane and 64 for cursor
  3002. * and latency is assumed to be high, as above.
  3003. *
  3004. * The final value programmed to the register should always be rounded up,
  3005. * and include an extra 2 entries to account for clock crossings.
  3006. *
  3007. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3008. * to set the non-SR watermarks to 8.
  3009. */
  3010. static void intel_update_watermarks(struct drm_device *dev)
  3011. {
  3012. struct drm_i915_private *dev_priv = dev->dev_private;
  3013. struct drm_crtc *crtc;
  3014. int sr_hdisplay = 0;
  3015. unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
  3016. int enabled = 0, pixel_size = 0;
  3017. int sr_htotal = 0;
  3018. if (!dev_priv->display.update_wm)
  3019. return;
  3020. /* Get the clock config from both planes */
  3021. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3022. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3023. if (intel_crtc->active) {
  3024. enabled++;
  3025. if (intel_crtc->plane == 0) {
  3026. DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
  3027. intel_crtc->pipe, crtc->mode.clock);
  3028. planea_clock = crtc->mode.clock;
  3029. } else {
  3030. DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
  3031. intel_crtc->pipe, crtc->mode.clock);
  3032. planeb_clock = crtc->mode.clock;
  3033. }
  3034. sr_hdisplay = crtc->mode.hdisplay;
  3035. sr_clock = crtc->mode.clock;
  3036. sr_htotal = crtc->mode.htotal;
  3037. if (crtc->fb)
  3038. pixel_size = crtc->fb->bits_per_pixel / 8;
  3039. else
  3040. pixel_size = 4; /* by default */
  3041. }
  3042. }
  3043. if (enabled <= 0)
  3044. return;
  3045. dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
  3046. sr_hdisplay, sr_htotal, pixel_size);
  3047. }
  3048. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  3049. struct drm_display_mode *mode,
  3050. struct drm_display_mode *adjusted_mode,
  3051. int x, int y,
  3052. struct drm_framebuffer *old_fb)
  3053. {
  3054. struct drm_device *dev = crtc->dev;
  3055. struct drm_i915_private *dev_priv = dev->dev_private;
  3056. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3057. int pipe = intel_crtc->pipe;
  3058. int plane = intel_crtc->plane;
  3059. u32 fp_reg, dpll_reg;
  3060. int refclk, num_connectors = 0;
  3061. intel_clock_t clock, reduced_clock;
  3062. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  3063. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  3064. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  3065. struct intel_encoder *has_edp_encoder = NULL;
  3066. struct drm_mode_config *mode_config = &dev->mode_config;
  3067. struct intel_encoder *encoder;
  3068. const intel_limit_t *limit;
  3069. int ret;
  3070. struct fdi_m_n m_n = {0};
  3071. u32 reg, temp;
  3072. int target_clock;
  3073. drm_vblank_pre_modeset(dev, pipe);
  3074. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  3075. if (encoder->base.crtc != crtc)
  3076. continue;
  3077. switch (encoder->type) {
  3078. case INTEL_OUTPUT_LVDS:
  3079. is_lvds = true;
  3080. break;
  3081. case INTEL_OUTPUT_SDVO:
  3082. case INTEL_OUTPUT_HDMI:
  3083. is_sdvo = true;
  3084. if (encoder->needs_tv_clock)
  3085. is_tv = true;
  3086. break;
  3087. case INTEL_OUTPUT_DVO:
  3088. is_dvo = true;
  3089. break;
  3090. case INTEL_OUTPUT_TVOUT:
  3091. is_tv = true;
  3092. break;
  3093. case INTEL_OUTPUT_ANALOG:
  3094. is_crt = true;
  3095. break;
  3096. case INTEL_OUTPUT_DISPLAYPORT:
  3097. is_dp = true;
  3098. break;
  3099. case INTEL_OUTPUT_EDP:
  3100. has_edp_encoder = encoder;
  3101. break;
  3102. }
  3103. num_connectors++;
  3104. }
  3105. if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
  3106. refclk = dev_priv->lvds_ssc_freq * 1000;
  3107. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3108. refclk / 1000);
  3109. } else if (IS_I9XX(dev)) {
  3110. refclk = 96000;
  3111. if (HAS_PCH_SPLIT(dev))
  3112. refclk = 120000; /* 120Mhz refclk */
  3113. } else {
  3114. refclk = 48000;
  3115. }
  3116. /*
  3117. * Returns a set of divisors for the desired target clock with the given
  3118. * refclk, or FALSE. The returned values represent the clock equation:
  3119. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3120. */
  3121. limit = intel_limit(crtc);
  3122. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  3123. if (!ok) {
  3124. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3125. drm_vblank_post_modeset(dev, pipe);
  3126. return -EINVAL;
  3127. }
  3128. /* Ensure that the cursor is valid for the new mode before changing... */
  3129. intel_crtc_update_cursor(crtc, true);
  3130. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3131. has_reduced_clock = limit->find_pll(limit, crtc,
  3132. dev_priv->lvds_downclock,
  3133. refclk,
  3134. &reduced_clock);
  3135. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  3136. /*
  3137. * If the different P is found, it means that we can't
  3138. * switch the display clock by using the FP0/FP1.
  3139. * In such case we will disable the LVDS downclock
  3140. * feature.
  3141. */
  3142. DRM_DEBUG_KMS("Different P is found for "
  3143. "LVDS clock/downclock\n");
  3144. has_reduced_clock = 0;
  3145. }
  3146. }
  3147. /* SDVO TV has fixed PLL values depend on its clock range,
  3148. this mirrors vbios setting. */
  3149. if (is_sdvo && is_tv) {
  3150. if (adjusted_mode->clock >= 100000
  3151. && adjusted_mode->clock < 140500) {
  3152. clock.p1 = 2;
  3153. clock.p2 = 10;
  3154. clock.n = 3;
  3155. clock.m1 = 16;
  3156. clock.m2 = 8;
  3157. } else if (adjusted_mode->clock >= 140500
  3158. && adjusted_mode->clock <= 200000) {
  3159. clock.p1 = 1;
  3160. clock.p2 = 10;
  3161. clock.n = 6;
  3162. clock.m1 = 12;
  3163. clock.m2 = 8;
  3164. }
  3165. }
  3166. /* FDI link */
  3167. if (HAS_PCH_SPLIT(dev)) {
  3168. int lane = 0, link_bw, bpp;
  3169. /* eDP doesn't require FDI link, so just set DP M/N
  3170. according to current link config */
  3171. if (has_edp_encoder) {
  3172. target_clock = mode->clock;
  3173. intel_edp_link_config(has_edp_encoder,
  3174. &lane, &link_bw);
  3175. } else {
  3176. /* DP over FDI requires target mode clock
  3177. instead of link clock */
  3178. if (is_dp)
  3179. target_clock = mode->clock;
  3180. else
  3181. target_clock = adjusted_mode->clock;
  3182. /* FDI is a binary signal running at ~2.7GHz, encoding
  3183. * each output octet as 10 bits. The actual frequency
  3184. * is stored as a divider into a 100MHz clock, and the
  3185. * mode pixel clock is stored in units of 1KHz.
  3186. * Hence the bw of each lane in terms of the mode signal
  3187. * is:
  3188. */
  3189. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3190. }
  3191. /* determine panel color depth */
  3192. temp = I915_READ(PIPECONF(pipe));
  3193. temp &= ~PIPE_BPC_MASK;
  3194. if (is_lvds) {
  3195. /* the BPC will be 6 if it is 18-bit LVDS panel */
  3196. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
  3197. temp |= PIPE_8BPC;
  3198. else
  3199. temp |= PIPE_6BPC;
  3200. } else if (has_edp_encoder || (is_dp && intel_pch_has_edp(crtc))) {
  3201. switch (dev_priv->edp_bpp/3) {
  3202. case 8:
  3203. temp |= PIPE_8BPC;
  3204. break;
  3205. case 10:
  3206. temp |= PIPE_10BPC;
  3207. break;
  3208. case 6:
  3209. temp |= PIPE_6BPC;
  3210. break;
  3211. case 12:
  3212. temp |= PIPE_12BPC;
  3213. break;
  3214. }
  3215. } else
  3216. temp |= PIPE_8BPC;
  3217. I915_WRITE(PIPECONF(pipe), temp);
  3218. switch (temp & PIPE_BPC_MASK) {
  3219. case PIPE_8BPC:
  3220. bpp = 24;
  3221. break;
  3222. case PIPE_10BPC:
  3223. bpp = 30;
  3224. break;
  3225. case PIPE_6BPC:
  3226. bpp = 18;
  3227. break;
  3228. case PIPE_12BPC:
  3229. bpp = 36;
  3230. break;
  3231. default:
  3232. DRM_ERROR("unknown pipe bpc value\n");
  3233. bpp = 24;
  3234. }
  3235. if (!lane) {
  3236. /*
  3237. * Account for spread spectrum to avoid
  3238. * oversubscribing the link. Max center spread
  3239. * is 2.5%; use 5% for safety's sake.
  3240. */
  3241. u32 bps = target_clock * bpp * 21 / 20;
  3242. lane = bps / (link_bw * 8) + 1;
  3243. }
  3244. intel_crtc->fdi_lanes = lane;
  3245. ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
  3246. }
  3247. /* Ironlake: try to setup display ref clock before DPLL
  3248. * enabling. This is only under driver's control after
  3249. * PCH B stepping, previous chipset stepping should be
  3250. * ignoring this setting.
  3251. */
  3252. if (HAS_PCH_SPLIT(dev)) {
  3253. temp = I915_READ(PCH_DREF_CONTROL);
  3254. /* Always enable nonspread source */
  3255. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  3256. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  3257. temp &= ~DREF_SSC_SOURCE_MASK;
  3258. temp |= DREF_SSC_SOURCE_ENABLE;
  3259. I915_WRITE(PCH_DREF_CONTROL, temp);
  3260. POSTING_READ(PCH_DREF_CONTROL);
  3261. udelay(200);
  3262. if (has_edp_encoder) {
  3263. if (dev_priv->lvds_use_ssc) {
  3264. temp |= DREF_SSC1_ENABLE;
  3265. I915_WRITE(PCH_DREF_CONTROL, temp);
  3266. POSTING_READ(PCH_DREF_CONTROL);
  3267. udelay(200);
  3268. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3269. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  3270. } else {
  3271. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  3272. }
  3273. I915_WRITE(PCH_DREF_CONTROL, temp);
  3274. }
  3275. }
  3276. if (IS_PINEVIEW(dev)) {
  3277. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  3278. if (has_reduced_clock)
  3279. fp2 = (1 << reduced_clock.n) << 16 |
  3280. reduced_clock.m1 << 8 | reduced_clock.m2;
  3281. } else {
  3282. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  3283. if (has_reduced_clock)
  3284. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  3285. reduced_clock.m2;
  3286. }
  3287. dpll = 0;
  3288. if (!HAS_PCH_SPLIT(dev))
  3289. dpll = DPLL_VGA_MODE_DIS;
  3290. if (IS_I9XX(dev)) {
  3291. if (is_lvds)
  3292. dpll |= DPLLB_MODE_LVDS;
  3293. else
  3294. dpll |= DPLLB_MODE_DAC_SERIAL;
  3295. if (is_sdvo) {
  3296. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3297. if (pixel_multiplier > 1) {
  3298. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3299. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3300. else if (HAS_PCH_SPLIT(dev))
  3301. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  3302. }
  3303. dpll |= DPLL_DVO_HIGH_SPEED;
  3304. }
  3305. if (is_dp)
  3306. dpll |= DPLL_DVO_HIGH_SPEED;
  3307. /* compute bitmask from p1 value */
  3308. if (IS_PINEVIEW(dev))
  3309. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3310. else {
  3311. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3312. /* also FPA1 */
  3313. if (HAS_PCH_SPLIT(dev))
  3314. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3315. if (IS_G4X(dev) && has_reduced_clock)
  3316. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3317. }
  3318. switch (clock.p2) {
  3319. case 5:
  3320. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3321. break;
  3322. case 7:
  3323. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3324. break;
  3325. case 10:
  3326. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3327. break;
  3328. case 14:
  3329. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3330. break;
  3331. }
  3332. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
  3333. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3334. } else {
  3335. if (is_lvds) {
  3336. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3337. } else {
  3338. if (clock.p1 == 2)
  3339. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3340. else
  3341. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3342. if (clock.p2 == 4)
  3343. dpll |= PLL_P2_DIVIDE_BY_4;
  3344. }
  3345. }
  3346. if (is_sdvo && is_tv)
  3347. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3348. else if (is_tv)
  3349. /* XXX: just matching BIOS for now */
  3350. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3351. dpll |= 3;
  3352. else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
  3353. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3354. else
  3355. dpll |= PLL_REF_INPUT_DREFCLK;
  3356. /* setup pipeconf */
  3357. pipeconf = I915_READ(PIPECONF(pipe));
  3358. /* Set up the display plane register */
  3359. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3360. /* Ironlake's plane is forced to pipe, bit 24 is to
  3361. enable color space conversion */
  3362. if (!HAS_PCH_SPLIT(dev)) {
  3363. if (pipe == 0)
  3364. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3365. else
  3366. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3367. }
  3368. if (pipe == 0 && !IS_I965G(dev)) {
  3369. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3370. * core speed.
  3371. *
  3372. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3373. * pipe == 0 check?
  3374. */
  3375. if (mode->clock >
  3376. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3377. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3378. else
  3379. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  3380. }
  3381. dspcntr |= DISPLAY_PLANE_ENABLE;
  3382. pipeconf |= PIPECONF_ENABLE;
  3383. dpll |= DPLL_VCO_ENABLE;
  3384. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3385. drm_mode_debug_printmodeline(mode);
  3386. /* assign to Ironlake registers */
  3387. if (HAS_PCH_SPLIT(dev)) {
  3388. fp_reg = PCH_FP0(pipe);
  3389. dpll_reg = PCH_DPLL(pipe);
  3390. } else {
  3391. fp_reg = FP0(pipe);
  3392. dpll_reg = DPLL(pipe);
  3393. }
  3394. if (!has_edp_encoder) {
  3395. I915_WRITE(fp_reg, fp);
  3396. I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
  3397. POSTING_READ(dpll_reg);
  3398. udelay(150);
  3399. }
  3400. /* enable transcoder DPLL */
  3401. if (HAS_PCH_CPT(dev)) {
  3402. temp = I915_READ(PCH_DPLL_SEL);
  3403. if (pipe == 0)
  3404. temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
  3405. else
  3406. temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
  3407. I915_WRITE(PCH_DPLL_SEL, temp);
  3408. POSTING_READ(PCH_DPLL_SEL);
  3409. udelay(150);
  3410. }
  3411. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3412. * This is an exception to the general rule that mode_set doesn't turn
  3413. * things on.
  3414. */
  3415. if (is_lvds) {
  3416. reg = LVDS;
  3417. if (HAS_PCH_SPLIT(dev))
  3418. reg = PCH_LVDS;
  3419. temp = I915_READ(reg);
  3420. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3421. if (pipe == 1) {
  3422. if (HAS_PCH_CPT(dev))
  3423. temp |= PORT_TRANS_B_SEL_CPT;
  3424. else
  3425. temp |= LVDS_PIPEB_SELECT;
  3426. } else {
  3427. if (HAS_PCH_CPT(dev))
  3428. temp &= ~PORT_TRANS_SEL_MASK;
  3429. else
  3430. temp &= ~LVDS_PIPEB_SELECT;
  3431. }
  3432. /* set the corresponsding LVDS_BORDER bit */
  3433. temp |= dev_priv->lvds_border_bits;
  3434. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3435. * set the DPLLs for dual-channel mode or not.
  3436. */
  3437. if (clock.p2 == 7)
  3438. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3439. else
  3440. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3441. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3442. * appropriately here, but we need to look more thoroughly into how
  3443. * panels behave in the two modes.
  3444. */
  3445. /* set the dithering flag on non-PCH LVDS as needed */
  3446. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
  3447. if (dev_priv->lvds_dither)
  3448. temp |= LVDS_ENABLE_DITHER;
  3449. else
  3450. temp &= ~LVDS_ENABLE_DITHER;
  3451. }
  3452. I915_WRITE(reg, temp);
  3453. }
  3454. /* set the dithering flag and clear for anything other than a panel. */
  3455. if (HAS_PCH_SPLIT(dev)) {
  3456. pipeconf &= ~PIPECONF_DITHER_EN;
  3457. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  3458. if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
  3459. pipeconf |= PIPECONF_DITHER_EN;
  3460. pipeconf |= PIPECONF_DITHER_TYPE_ST1;
  3461. }
  3462. }
  3463. if (is_dp)
  3464. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3465. else if (HAS_PCH_SPLIT(dev)) {
  3466. /* For non-DP output, clear any trans DP clock recovery setting.*/
  3467. if (pipe == 0) {
  3468. I915_WRITE(TRANSA_DATA_M1, 0);
  3469. I915_WRITE(TRANSA_DATA_N1, 0);
  3470. I915_WRITE(TRANSA_DP_LINK_M1, 0);
  3471. I915_WRITE(TRANSA_DP_LINK_N1, 0);
  3472. } else {
  3473. I915_WRITE(TRANSB_DATA_M1, 0);
  3474. I915_WRITE(TRANSB_DATA_N1, 0);
  3475. I915_WRITE(TRANSB_DP_LINK_M1, 0);
  3476. I915_WRITE(TRANSB_DP_LINK_N1, 0);
  3477. }
  3478. }
  3479. if (!has_edp_encoder) {
  3480. I915_WRITE(fp_reg, fp);
  3481. I915_WRITE(dpll_reg, dpll);
  3482. /* Wait for the clocks to stabilize. */
  3483. POSTING_READ(dpll_reg);
  3484. udelay(150);
  3485. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
  3486. temp = 0;
  3487. if (is_sdvo) {
  3488. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3489. if (temp > 1)
  3490. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3491. else
  3492. temp = 0;
  3493. }
  3494. I915_WRITE(DPLL_MD(pipe), temp);
  3495. } else {
  3496. /* write it again -- the BIOS does, after all */
  3497. I915_WRITE(dpll_reg, dpll);
  3498. }
  3499. /* Wait for the clocks to stabilize. */
  3500. POSTING_READ(dpll_reg);
  3501. udelay(150);
  3502. }
  3503. intel_crtc->lowfreq_avail = false;
  3504. if (is_lvds && has_reduced_clock && i915_powersave) {
  3505. I915_WRITE(fp_reg + 4, fp2);
  3506. intel_crtc->lowfreq_avail = true;
  3507. if (HAS_PIPE_CXSR(dev)) {
  3508. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3509. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3510. }
  3511. } else {
  3512. I915_WRITE(fp_reg + 4, fp);
  3513. if (HAS_PIPE_CXSR(dev)) {
  3514. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3515. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3516. }
  3517. }
  3518. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3519. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3520. /* the chip adds 2 halflines automatically */
  3521. adjusted_mode->crtc_vdisplay -= 1;
  3522. adjusted_mode->crtc_vtotal -= 1;
  3523. adjusted_mode->crtc_vblank_start -= 1;
  3524. adjusted_mode->crtc_vblank_end -= 1;
  3525. adjusted_mode->crtc_vsync_end -= 1;
  3526. adjusted_mode->crtc_vsync_start -= 1;
  3527. } else
  3528. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  3529. I915_WRITE(HTOTAL(pipe),
  3530. (adjusted_mode->crtc_hdisplay - 1) |
  3531. ((adjusted_mode->crtc_htotal - 1) << 16));
  3532. I915_WRITE(HBLANK(pipe),
  3533. (adjusted_mode->crtc_hblank_start - 1) |
  3534. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3535. I915_WRITE(HSYNC(pipe),
  3536. (adjusted_mode->crtc_hsync_start - 1) |
  3537. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3538. I915_WRITE(VTOTAL(pipe),
  3539. (adjusted_mode->crtc_vdisplay - 1) |
  3540. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3541. I915_WRITE(VBLANK(pipe),
  3542. (adjusted_mode->crtc_vblank_start - 1) |
  3543. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3544. I915_WRITE(VSYNC(pipe),
  3545. (adjusted_mode->crtc_vsync_start - 1) |
  3546. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3547. /* pipesrc and dspsize control the size that is scaled from,
  3548. * which should always be the user's requested size.
  3549. */
  3550. if (!HAS_PCH_SPLIT(dev)) {
  3551. I915_WRITE(DSPSIZE(plane),
  3552. ((mode->vdisplay - 1) << 16) |
  3553. (mode->hdisplay - 1));
  3554. I915_WRITE(DSPPOS(plane), 0);
  3555. }
  3556. I915_WRITE(PIPESRC(pipe),
  3557. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3558. if (HAS_PCH_SPLIT(dev)) {
  3559. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  3560. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  3561. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  3562. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  3563. if (has_edp_encoder) {
  3564. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  3565. } else {
  3566. /* enable FDI RX PLL too */
  3567. reg = FDI_RX_CTL(pipe);
  3568. temp = I915_READ(reg);
  3569. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  3570. POSTING_READ(reg);
  3571. udelay(200);
  3572. /* enable FDI TX PLL too */
  3573. reg = FDI_TX_CTL(pipe);
  3574. temp = I915_READ(reg);
  3575. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  3576. /* enable FDI RX PCDCLK */
  3577. reg = FDI_RX_CTL(pipe);
  3578. temp = I915_READ(reg);
  3579. I915_WRITE(reg, temp | FDI_PCDCLK);
  3580. POSTING_READ(reg);
  3581. udelay(200);
  3582. }
  3583. }
  3584. I915_WRITE(PIPECONF(pipe), pipeconf);
  3585. POSTING_READ(PIPECONF(pipe));
  3586. intel_wait_for_vblank(dev, pipe);
  3587. if (IS_IRONLAKE(dev)) {
  3588. /* enable address swizzle for tiling buffer */
  3589. temp = I915_READ(DISP_ARB_CTL);
  3590. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  3591. }
  3592. I915_WRITE(DSPCNTR(plane), dspcntr);
  3593. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  3594. intel_update_watermarks(dev);
  3595. drm_vblank_post_modeset(dev, pipe);
  3596. return ret;
  3597. }
  3598. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  3599. void intel_crtc_load_lut(struct drm_crtc *crtc)
  3600. {
  3601. struct drm_device *dev = crtc->dev;
  3602. struct drm_i915_private *dev_priv = dev->dev_private;
  3603. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3604. int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
  3605. int i;
  3606. /* The clocks have to be on to load the palette. */
  3607. if (!crtc->enabled)
  3608. return;
  3609. /* use legacy palette for Ironlake */
  3610. if (HAS_PCH_SPLIT(dev))
  3611. palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
  3612. LGC_PALETTE_B;
  3613. for (i = 0; i < 256; i++) {
  3614. I915_WRITE(palreg + 4 * i,
  3615. (intel_crtc->lut_r[i] << 16) |
  3616. (intel_crtc->lut_g[i] << 8) |
  3617. intel_crtc->lut_b[i]);
  3618. }
  3619. }
  3620. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  3621. {
  3622. struct drm_device *dev = crtc->dev;
  3623. struct drm_i915_private *dev_priv = dev->dev_private;
  3624. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3625. bool visible = base != 0;
  3626. u32 cntl;
  3627. if (intel_crtc->cursor_visible == visible)
  3628. return;
  3629. cntl = I915_READ(CURACNTR);
  3630. if (visible) {
  3631. /* On these chipsets we can only modify the base whilst
  3632. * the cursor is disabled.
  3633. */
  3634. I915_WRITE(CURABASE, base);
  3635. cntl &= ~(CURSOR_FORMAT_MASK);
  3636. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  3637. cntl |= CURSOR_ENABLE |
  3638. CURSOR_GAMMA_ENABLE |
  3639. CURSOR_FORMAT_ARGB;
  3640. } else
  3641. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  3642. I915_WRITE(CURACNTR, cntl);
  3643. intel_crtc->cursor_visible = visible;
  3644. }
  3645. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  3646. {
  3647. struct drm_device *dev = crtc->dev;
  3648. struct drm_i915_private *dev_priv = dev->dev_private;
  3649. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3650. int pipe = intel_crtc->pipe;
  3651. bool visible = base != 0;
  3652. if (intel_crtc->cursor_visible != visible) {
  3653. uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
  3654. if (base) {
  3655. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  3656. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  3657. cntl |= pipe << 28; /* Connect to correct pipe */
  3658. } else {
  3659. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  3660. cntl |= CURSOR_MODE_DISABLE;
  3661. }
  3662. I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
  3663. intel_crtc->cursor_visible = visible;
  3664. }
  3665. /* and commit changes on next vblank */
  3666. I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
  3667. }
  3668. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  3669. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  3670. bool on)
  3671. {
  3672. struct drm_device *dev = crtc->dev;
  3673. struct drm_i915_private *dev_priv = dev->dev_private;
  3674. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3675. int pipe = intel_crtc->pipe;
  3676. int x = intel_crtc->cursor_x;
  3677. int y = intel_crtc->cursor_y;
  3678. u32 base, pos;
  3679. bool visible;
  3680. pos = 0;
  3681. if (on && crtc->enabled && crtc->fb) {
  3682. base = intel_crtc->cursor_addr;
  3683. if (x > (int) crtc->fb->width)
  3684. base = 0;
  3685. if (y > (int) crtc->fb->height)
  3686. base = 0;
  3687. } else
  3688. base = 0;
  3689. if (x < 0) {
  3690. if (x + intel_crtc->cursor_width < 0)
  3691. base = 0;
  3692. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  3693. x = -x;
  3694. }
  3695. pos |= x << CURSOR_X_SHIFT;
  3696. if (y < 0) {
  3697. if (y + intel_crtc->cursor_height < 0)
  3698. base = 0;
  3699. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  3700. y = -y;
  3701. }
  3702. pos |= y << CURSOR_Y_SHIFT;
  3703. visible = base != 0;
  3704. if (!visible && !intel_crtc->cursor_visible)
  3705. return;
  3706. I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
  3707. if (IS_845G(dev) || IS_I865G(dev))
  3708. i845_update_cursor(crtc, base);
  3709. else
  3710. i9xx_update_cursor(crtc, base);
  3711. if (visible)
  3712. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  3713. }
  3714. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  3715. struct drm_file *file_priv,
  3716. uint32_t handle,
  3717. uint32_t width, uint32_t height)
  3718. {
  3719. struct drm_device *dev = crtc->dev;
  3720. struct drm_i915_private *dev_priv = dev->dev_private;
  3721. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3722. struct drm_gem_object *bo;
  3723. struct drm_i915_gem_object *obj_priv;
  3724. uint32_t addr;
  3725. int ret;
  3726. DRM_DEBUG_KMS("\n");
  3727. /* if we want to turn off the cursor ignore width and height */
  3728. if (!handle) {
  3729. DRM_DEBUG_KMS("cursor off\n");
  3730. addr = 0;
  3731. bo = NULL;
  3732. mutex_lock(&dev->struct_mutex);
  3733. goto finish;
  3734. }
  3735. /* Currently we only support 64x64 cursors */
  3736. if (width != 64 || height != 64) {
  3737. DRM_ERROR("we currently only support 64x64 cursors\n");
  3738. return -EINVAL;
  3739. }
  3740. bo = drm_gem_object_lookup(dev, file_priv, handle);
  3741. if (!bo)
  3742. return -ENOENT;
  3743. obj_priv = to_intel_bo(bo);
  3744. if (bo->size < width * height * 4) {
  3745. DRM_ERROR("buffer is to small\n");
  3746. ret = -ENOMEM;
  3747. goto fail;
  3748. }
  3749. /* we only need to pin inside GTT if cursor is non-phy */
  3750. mutex_lock(&dev->struct_mutex);
  3751. if (!dev_priv->info->cursor_needs_physical) {
  3752. ret = i915_gem_object_pin(bo, PAGE_SIZE);
  3753. if (ret) {
  3754. DRM_ERROR("failed to pin cursor bo\n");
  3755. goto fail_locked;
  3756. }
  3757. ret = i915_gem_object_set_to_gtt_domain(bo, 0);
  3758. if (ret) {
  3759. DRM_ERROR("failed to move cursor bo into the GTT\n");
  3760. goto fail_unpin;
  3761. }
  3762. addr = obj_priv->gtt_offset;
  3763. } else {
  3764. int align = IS_I830(dev) ? 16 * 1024 : 256;
  3765. ret = i915_gem_attach_phys_object(dev, bo,
  3766. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  3767. align);
  3768. if (ret) {
  3769. DRM_ERROR("failed to attach phys object\n");
  3770. goto fail_locked;
  3771. }
  3772. addr = obj_priv->phys_obj->handle->busaddr;
  3773. }
  3774. if (!IS_I9XX(dev))
  3775. I915_WRITE(CURSIZE, (height << 12) | width);
  3776. finish:
  3777. if (intel_crtc->cursor_bo) {
  3778. if (dev_priv->info->cursor_needs_physical) {
  3779. if (intel_crtc->cursor_bo != bo)
  3780. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  3781. } else
  3782. i915_gem_object_unpin(intel_crtc->cursor_bo);
  3783. drm_gem_object_unreference(intel_crtc->cursor_bo);
  3784. }
  3785. mutex_unlock(&dev->struct_mutex);
  3786. intel_crtc->cursor_addr = addr;
  3787. intel_crtc->cursor_bo = bo;
  3788. intel_crtc->cursor_width = width;
  3789. intel_crtc->cursor_height = height;
  3790. intel_crtc_update_cursor(crtc, true);
  3791. return 0;
  3792. fail_unpin:
  3793. i915_gem_object_unpin(bo);
  3794. fail_locked:
  3795. mutex_unlock(&dev->struct_mutex);
  3796. fail:
  3797. drm_gem_object_unreference_unlocked(bo);
  3798. return ret;
  3799. }
  3800. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  3801. {
  3802. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3803. intel_crtc->cursor_x = x;
  3804. intel_crtc->cursor_y = y;
  3805. intel_crtc_update_cursor(crtc, true);
  3806. return 0;
  3807. }
  3808. /** Sets the color ramps on behalf of RandR */
  3809. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  3810. u16 blue, int regno)
  3811. {
  3812. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3813. intel_crtc->lut_r[regno] = red >> 8;
  3814. intel_crtc->lut_g[regno] = green >> 8;
  3815. intel_crtc->lut_b[regno] = blue >> 8;
  3816. }
  3817. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  3818. u16 *blue, int regno)
  3819. {
  3820. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3821. *red = intel_crtc->lut_r[regno] << 8;
  3822. *green = intel_crtc->lut_g[regno] << 8;
  3823. *blue = intel_crtc->lut_b[regno] << 8;
  3824. }
  3825. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  3826. u16 *blue, uint32_t start, uint32_t size)
  3827. {
  3828. int end = (start + size > 256) ? 256 : start + size, i;
  3829. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3830. for (i = start; i < end; i++) {
  3831. intel_crtc->lut_r[i] = red[i] >> 8;
  3832. intel_crtc->lut_g[i] = green[i] >> 8;
  3833. intel_crtc->lut_b[i] = blue[i] >> 8;
  3834. }
  3835. intel_crtc_load_lut(crtc);
  3836. }
  3837. /**
  3838. * Get a pipe with a simple mode set on it for doing load-based monitor
  3839. * detection.
  3840. *
  3841. * It will be up to the load-detect code to adjust the pipe as appropriate for
  3842. * its requirements. The pipe will be connected to no other encoders.
  3843. *
  3844. * Currently this code will only succeed if there is a pipe with no encoders
  3845. * configured for it. In the future, it could choose to temporarily disable
  3846. * some outputs to free up a pipe for its use.
  3847. *
  3848. * \return crtc, or NULL if no pipes are available.
  3849. */
  3850. /* VESA 640x480x72Hz mode to set on the pipe */
  3851. static struct drm_display_mode load_detect_mode = {
  3852. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  3853. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  3854. };
  3855. struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  3856. struct drm_connector *connector,
  3857. struct drm_display_mode *mode,
  3858. int *dpms_mode)
  3859. {
  3860. struct intel_crtc *intel_crtc;
  3861. struct drm_crtc *possible_crtc;
  3862. struct drm_crtc *supported_crtc =NULL;
  3863. struct drm_encoder *encoder = &intel_encoder->base;
  3864. struct drm_crtc *crtc = NULL;
  3865. struct drm_device *dev = encoder->dev;
  3866. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3867. struct drm_crtc_helper_funcs *crtc_funcs;
  3868. int i = -1;
  3869. /*
  3870. * Algorithm gets a little messy:
  3871. * - if the connector already has an assigned crtc, use it (but make
  3872. * sure it's on first)
  3873. * - try to find the first unused crtc that can drive this connector,
  3874. * and use that if we find one
  3875. * - if there are no unused crtcs available, try to use the first
  3876. * one we found that supports the connector
  3877. */
  3878. /* See if we already have a CRTC for this connector */
  3879. if (encoder->crtc) {
  3880. crtc = encoder->crtc;
  3881. /* Make sure the crtc and connector are running */
  3882. intel_crtc = to_intel_crtc(crtc);
  3883. *dpms_mode = intel_crtc->dpms_mode;
  3884. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3885. crtc_funcs = crtc->helper_private;
  3886. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3887. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  3888. }
  3889. return crtc;
  3890. }
  3891. /* Find an unused one (if possible) */
  3892. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  3893. i++;
  3894. if (!(encoder->possible_crtcs & (1 << i)))
  3895. continue;
  3896. if (!possible_crtc->enabled) {
  3897. crtc = possible_crtc;
  3898. break;
  3899. }
  3900. if (!supported_crtc)
  3901. supported_crtc = possible_crtc;
  3902. }
  3903. /*
  3904. * If we didn't find an unused CRTC, don't use any.
  3905. */
  3906. if (!crtc) {
  3907. return NULL;
  3908. }
  3909. encoder->crtc = crtc;
  3910. connector->encoder = encoder;
  3911. intel_encoder->load_detect_temp = true;
  3912. intel_crtc = to_intel_crtc(crtc);
  3913. *dpms_mode = intel_crtc->dpms_mode;
  3914. if (!crtc->enabled) {
  3915. if (!mode)
  3916. mode = &load_detect_mode;
  3917. drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
  3918. } else {
  3919. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3920. crtc_funcs = crtc->helper_private;
  3921. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3922. }
  3923. /* Add this connector to the crtc */
  3924. encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
  3925. encoder_funcs->commit(encoder);
  3926. }
  3927. /* let the connector get through one full cycle before testing */
  3928. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3929. return crtc;
  3930. }
  3931. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  3932. struct drm_connector *connector, int dpms_mode)
  3933. {
  3934. struct drm_encoder *encoder = &intel_encoder->base;
  3935. struct drm_device *dev = encoder->dev;
  3936. struct drm_crtc *crtc = encoder->crtc;
  3937. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3938. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  3939. if (intel_encoder->load_detect_temp) {
  3940. encoder->crtc = NULL;
  3941. connector->encoder = NULL;
  3942. intel_encoder->load_detect_temp = false;
  3943. crtc->enabled = drm_helper_crtc_in_use(crtc);
  3944. drm_helper_disable_unused_functions(dev);
  3945. }
  3946. /* Switch crtc and encoder back off if necessary */
  3947. if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
  3948. if (encoder->crtc == crtc)
  3949. encoder_funcs->dpms(encoder, dpms_mode);
  3950. crtc_funcs->dpms(crtc, dpms_mode);
  3951. }
  3952. }
  3953. /* Returns the clock of the currently programmed mode of the given pipe. */
  3954. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  3955. {
  3956. struct drm_i915_private *dev_priv = dev->dev_private;
  3957. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3958. int pipe = intel_crtc->pipe;
  3959. u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
  3960. u32 fp;
  3961. intel_clock_t clock;
  3962. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  3963. fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
  3964. else
  3965. fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
  3966. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  3967. if (IS_PINEVIEW(dev)) {
  3968. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  3969. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3970. } else {
  3971. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  3972. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3973. }
  3974. if (IS_I9XX(dev)) {
  3975. if (IS_PINEVIEW(dev))
  3976. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  3977. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  3978. else
  3979. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  3980. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3981. switch (dpll & DPLL_MODE_MASK) {
  3982. case DPLLB_MODE_DAC_SERIAL:
  3983. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  3984. 5 : 10;
  3985. break;
  3986. case DPLLB_MODE_LVDS:
  3987. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  3988. 7 : 14;
  3989. break;
  3990. default:
  3991. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  3992. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  3993. return 0;
  3994. }
  3995. /* XXX: Handle the 100Mhz refclk */
  3996. intel_clock(dev, 96000, &clock);
  3997. } else {
  3998. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  3999. if (is_lvds) {
  4000. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  4001. DPLL_FPA01_P1_POST_DIV_SHIFT);
  4002. clock.p2 = 14;
  4003. if ((dpll & PLL_REF_INPUT_MASK) ==
  4004. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  4005. /* XXX: might not be 66MHz */
  4006. intel_clock(dev, 66000, &clock);
  4007. } else
  4008. intel_clock(dev, 48000, &clock);
  4009. } else {
  4010. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  4011. clock.p1 = 2;
  4012. else {
  4013. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  4014. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  4015. }
  4016. if (dpll & PLL_P2_DIVIDE_BY_4)
  4017. clock.p2 = 4;
  4018. else
  4019. clock.p2 = 2;
  4020. intel_clock(dev, 48000, &clock);
  4021. }
  4022. }
  4023. /* XXX: It would be nice to validate the clocks, but we can't reuse
  4024. * i830PllIsValid() because it relies on the xf86_config connector
  4025. * configuration being accurate, which it isn't necessarily.
  4026. */
  4027. return clock.dot;
  4028. }
  4029. /** Returns the currently programmed mode of the given pipe. */
  4030. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  4031. struct drm_crtc *crtc)
  4032. {
  4033. struct drm_i915_private *dev_priv = dev->dev_private;
  4034. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4035. int pipe = intel_crtc->pipe;
  4036. struct drm_display_mode *mode;
  4037. int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
  4038. int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
  4039. int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
  4040. int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
  4041. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  4042. if (!mode)
  4043. return NULL;
  4044. mode->clock = intel_crtc_clock_get(dev, crtc);
  4045. mode->hdisplay = (htot & 0xffff) + 1;
  4046. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  4047. mode->hsync_start = (hsync & 0xffff) + 1;
  4048. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  4049. mode->vdisplay = (vtot & 0xffff) + 1;
  4050. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  4051. mode->vsync_start = (vsync & 0xffff) + 1;
  4052. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  4053. drm_mode_set_name(mode);
  4054. drm_mode_set_crtcinfo(mode, 0);
  4055. return mode;
  4056. }
  4057. #define GPU_IDLE_TIMEOUT 500 /* ms */
  4058. /* When this timer fires, we've been idle for awhile */
  4059. static void intel_gpu_idle_timer(unsigned long arg)
  4060. {
  4061. struct drm_device *dev = (struct drm_device *)arg;
  4062. drm_i915_private_t *dev_priv = dev->dev_private;
  4063. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  4064. dev_priv->busy = false;
  4065. queue_work(dev_priv->wq, &dev_priv->idle_work);
  4066. }
  4067. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  4068. static void intel_crtc_idle_timer(unsigned long arg)
  4069. {
  4070. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  4071. struct drm_crtc *crtc = &intel_crtc->base;
  4072. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  4073. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  4074. intel_crtc->busy = false;
  4075. queue_work(dev_priv->wq, &dev_priv->idle_work);
  4076. }
  4077. static void intel_increase_pllclock(struct drm_crtc *crtc)
  4078. {
  4079. struct drm_device *dev = crtc->dev;
  4080. drm_i915_private_t *dev_priv = dev->dev_private;
  4081. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4082. int pipe = intel_crtc->pipe;
  4083. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  4084. int dpll = I915_READ(dpll_reg);
  4085. if (HAS_PCH_SPLIT(dev))
  4086. return;
  4087. if (!dev_priv->lvds_downclock_avail)
  4088. return;
  4089. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  4090. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  4091. /* Unlock panel regs */
  4092. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  4093. PANEL_UNLOCK_REGS);
  4094. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  4095. I915_WRITE(dpll_reg, dpll);
  4096. dpll = I915_READ(dpll_reg);
  4097. intel_wait_for_vblank(dev, pipe);
  4098. dpll = I915_READ(dpll_reg);
  4099. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  4100. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  4101. /* ...and lock them again */
  4102. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  4103. }
  4104. /* Schedule downclock */
  4105. mod_timer(&intel_crtc->idle_timer, jiffies +
  4106. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  4107. }
  4108. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  4109. {
  4110. struct drm_device *dev = crtc->dev;
  4111. drm_i915_private_t *dev_priv = dev->dev_private;
  4112. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4113. int pipe = intel_crtc->pipe;
  4114. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  4115. int dpll = I915_READ(dpll_reg);
  4116. if (HAS_PCH_SPLIT(dev))
  4117. return;
  4118. if (!dev_priv->lvds_downclock_avail)
  4119. return;
  4120. /*
  4121. * Since this is called by a timer, we should never get here in
  4122. * the manual case.
  4123. */
  4124. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  4125. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  4126. /* Unlock panel regs */
  4127. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  4128. PANEL_UNLOCK_REGS);
  4129. dpll |= DISPLAY_RATE_SELECT_FPA1;
  4130. I915_WRITE(dpll_reg, dpll);
  4131. dpll = I915_READ(dpll_reg);
  4132. intel_wait_for_vblank(dev, pipe);
  4133. dpll = I915_READ(dpll_reg);
  4134. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  4135. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  4136. /* ...and lock them again */
  4137. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  4138. }
  4139. }
  4140. /**
  4141. * intel_idle_update - adjust clocks for idleness
  4142. * @work: work struct
  4143. *
  4144. * Either the GPU or display (or both) went idle. Check the busy status
  4145. * here and adjust the CRTC and GPU clocks as necessary.
  4146. */
  4147. static void intel_idle_update(struct work_struct *work)
  4148. {
  4149. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  4150. idle_work);
  4151. struct drm_device *dev = dev_priv->dev;
  4152. struct drm_crtc *crtc;
  4153. struct intel_crtc *intel_crtc;
  4154. int enabled = 0;
  4155. if (!i915_powersave)
  4156. return;
  4157. mutex_lock(&dev->struct_mutex);
  4158. i915_update_gfx_val(dev_priv);
  4159. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4160. /* Skip inactive CRTCs */
  4161. if (!crtc->fb)
  4162. continue;
  4163. enabled++;
  4164. intel_crtc = to_intel_crtc(crtc);
  4165. if (!intel_crtc->busy)
  4166. intel_decrease_pllclock(crtc);
  4167. }
  4168. if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
  4169. DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
  4170. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  4171. }
  4172. mutex_unlock(&dev->struct_mutex);
  4173. }
  4174. /**
  4175. * intel_mark_busy - mark the GPU and possibly the display busy
  4176. * @dev: drm device
  4177. * @obj: object we're operating on
  4178. *
  4179. * Callers can use this function to indicate that the GPU is busy processing
  4180. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  4181. * buffer), we'll also mark the display as busy, so we know to increase its
  4182. * clock frequency.
  4183. */
  4184. void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
  4185. {
  4186. drm_i915_private_t *dev_priv = dev->dev_private;
  4187. struct drm_crtc *crtc = NULL;
  4188. struct intel_framebuffer *intel_fb;
  4189. struct intel_crtc *intel_crtc;
  4190. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4191. return;
  4192. if (!dev_priv->busy) {
  4193. if (IS_I945G(dev) || IS_I945GM(dev)) {
  4194. u32 fw_blc_self;
  4195. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  4196. fw_blc_self = I915_READ(FW_BLC_SELF);
  4197. fw_blc_self &= ~FW_BLC_SELF_EN;
  4198. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  4199. }
  4200. dev_priv->busy = true;
  4201. } else
  4202. mod_timer(&dev_priv->idle_timer, jiffies +
  4203. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  4204. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4205. if (!crtc->fb)
  4206. continue;
  4207. intel_crtc = to_intel_crtc(crtc);
  4208. intel_fb = to_intel_framebuffer(crtc->fb);
  4209. if (intel_fb->obj == obj) {
  4210. if (!intel_crtc->busy) {
  4211. if (IS_I945G(dev) || IS_I945GM(dev)) {
  4212. u32 fw_blc_self;
  4213. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  4214. fw_blc_self = I915_READ(FW_BLC_SELF);
  4215. fw_blc_self &= ~FW_BLC_SELF_EN;
  4216. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  4217. }
  4218. /* Non-busy -> busy, upclock */
  4219. intel_increase_pllclock(crtc);
  4220. intel_crtc->busy = true;
  4221. } else {
  4222. /* Busy -> busy, put off timer */
  4223. mod_timer(&intel_crtc->idle_timer, jiffies +
  4224. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  4225. }
  4226. }
  4227. }
  4228. }
  4229. static void intel_crtc_destroy(struct drm_crtc *crtc)
  4230. {
  4231. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4232. struct drm_device *dev = crtc->dev;
  4233. struct intel_unpin_work *work;
  4234. unsigned long flags;
  4235. spin_lock_irqsave(&dev->event_lock, flags);
  4236. work = intel_crtc->unpin_work;
  4237. intel_crtc->unpin_work = NULL;
  4238. spin_unlock_irqrestore(&dev->event_lock, flags);
  4239. if (work) {
  4240. cancel_work_sync(&work->work);
  4241. kfree(work);
  4242. }
  4243. drm_crtc_cleanup(crtc);
  4244. kfree(intel_crtc);
  4245. }
  4246. static void intel_unpin_work_fn(struct work_struct *__work)
  4247. {
  4248. struct intel_unpin_work *work =
  4249. container_of(__work, struct intel_unpin_work, work);
  4250. mutex_lock(&work->dev->struct_mutex);
  4251. i915_gem_object_unpin(work->old_fb_obj);
  4252. drm_gem_object_unreference(work->pending_flip_obj);
  4253. drm_gem_object_unreference(work->old_fb_obj);
  4254. mutex_unlock(&work->dev->struct_mutex);
  4255. kfree(work);
  4256. }
  4257. static void do_intel_finish_page_flip(struct drm_device *dev,
  4258. struct drm_crtc *crtc)
  4259. {
  4260. drm_i915_private_t *dev_priv = dev->dev_private;
  4261. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4262. struct intel_unpin_work *work;
  4263. struct drm_i915_gem_object *obj_priv;
  4264. struct drm_pending_vblank_event *e;
  4265. struct timeval now;
  4266. unsigned long flags;
  4267. /* Ignore early vblank irqs */
  4268. if (intel_crtc == NULL)
  4269. return;
  4270. spin_lock_irqsave(&dev->event_lock, flags);
  4271. work = intel_crtc->unpin_work;
  4272. if (work == NULL || !work->pending) {
  4273. spin_unlock_irqrestore(&dev->event_lock, flags);
  4274. return;
  4275. }
  4276. intel_crtc->unpin_work = NULL;
  4277. drm_vblank_put(dev, intel_crtc->pipe);
  4278. if (work->event) {
  4279. e = work->event;
  4280. do_gettimeofday(&now);
  4281. e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
  4282. e->event.tv_sec = now.tv_sec;
  4283. e->event.tv_usec = now.tv_usec;
  4284. list_add_tail(&e->base.link,
  4285. &e->base.file_priv->event_list);
  4286. wake_up_interruptible(&e->base.file_priv->event_wait);
  4287. }
  4288. spin_unlock_irqrestore(&dev->event_lock, flags);
  4289. obj_priv = to_intel_bo(work->pending_flip_obj);
  4290. /* Initial scanout buffer will have a 0 pending flip count */
  4291. if ((atomic_read(&obj_priv->pending_flip) == 0) ||
  4292. atomic_dec_and_test(&obj_priv->pending_flip))
  4293. DRM_WAKEUP(&dev_priv->pending_flip_queue);
  4294. schedule_work(&work->work);
  4295. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  4296. }
  4297. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  4298. {
  4299. drm_i915_private_t *dev_priv = dev->dev_private;
  4300. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  4301. do_intel_finish_page_flip(dev, crtc);
  4302. }
  4303. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  4304. {
  4305. drm_i915_private_t *dev_priv = dev->dev_private;
  4306. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  4307. do_intel_finish_page_flip(dev, crtc);
  4308. }
  4309. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  4310. {
  4311. drm_i915_private_t *dev_priv = dev->dev_private;
  4312. struct intel_crtc *intel_crtc =
  4313. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  4314. unsigned long flags;
  4315. spin_lock_irqsave(&dev->event_lock, flags);
  4316. if (intel_crtc->unpin_work) {
  4317. if ((++intel_crtc->unpin_work->pending) > 1)
  4318. DRM_ERROR("Prepared flip multiple times\n");
  4319. } else {
  4320. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  4321. }
  4322. spin_unlock_irqrestore(&dev->event_lock, flags);
  4323. }
  4324. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  4325. struct drm_framebuffer *fb,
  4326. struct drm_pending_vblank_event *event)
  4327. {
  4328. struct drm_device *dev = crtc->dev;
  4329. struct drm_i915_private *dev_priv = dev->dev_private;
  4330. struct intel_framebuffer *intel_fb;
  4331. struct drm_i915_gem_object *obj_priv;
  4332. struct drm_gem_object *obj;
  4333. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4334. struct intel_unpin_work *work;
  4335. unsigned long flags, offset;
  4336. int pipe = intel_crtc->pipe;
  4337. u32 was_dirty, pf, pipesrc;
  4338. int ret;
  4339. work = kzalloc(sizeof *work, GFP_KERNEL);
  4340. if (work == NULL)
  4341. return -ENOMEM;
  4342. work->event = event;
  4343. work->dev = crtc->dev;
  4344. intel_fb = to_intel_framebuffer(crtc->fb);
  4345. work->old_fb_obj = intel_fb->obj;
  4346. INIT_WORK(&work->work, intel_unpin_work_fn);
  4347. /* We borrow the event spin lock for protecting unpin_work */
  4348. spin_lock_irqsave(&dev->event_lock, flags);
  4349. if (intel_crtc->unpin_work) {
  4350. spin_unlock_irqrestore(&dev->event_lock, flags);
  4351. kfree(work);
  4352. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  4353. return -EBUSY;
  4354. }
  4355. intel_crtc->unpin_work = work;
  4356. spin_unlock_irqrestore(&dev->event_lock, flags);
  4357. intel_fb = to_intel_framebuffer(fb);
  4358. obj = intel_fb->obj;
  4359. mutex_lock(&dev->struct_mutex);
  4360. was_dirty = obj->write_domain & I915_GEM_GPU_DOMAINS;
  4361. ret = intel_pin_and_fence_fb_obj(dev, obj, true);
  4362. if (ret)
  4363. goto cleanup_work;
  4364. /* Reference the objects for the scheduled work. */
  4365. drm_gem_object_reference(work->old_fb_obj);
  4366. drm_gem_object_reference(obj);
  4367. crtc->fb = fb;
  4368. ret = drm_vblank_get(dev, intel_crtc->pipe);
  4369. if (ret)
  4370. goto cleanup_objs;
  4371. obj_priv = to_intel_bo(obj);
  4372. atomic_inc(&obj_priv->pending_flip);
  4373. work->pending_flip_obj = obj;
  4374. if (was_dirty || IS_GEN3(dev) || IS_GEN2(dev)) {
  4375. BEGIN_LP_RING(2);
  4376. if (IS_GEN3(dev) || IS_GEN2(dev)) {
  4377. u32 flip_mask;
  4378. /* Can't queue multiple flips, so wait for the previous
  4379. * one to finish before executing the next.
  4380. */
  4381. if (intel_crtc->plane)
  4382. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  4383. else
  4384. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  4385. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  4386. } else
  4387. OUT_RING(MI_NOOP);
  4388. OUT_RING(MI_FLUSH);
  4389. ADVANCE_LP_RING();
  4390. }
  4391. work->enable_stall_check = true;
  4392. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  4393. offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
  4394. BEGIN_LP_RING(4);
  4395. switch(INTEL_INFO(dev)->gen) {
  4396. case 2:
  4397. OUT_RING(MI_DISPLAY_FLIP |
  4398. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4399. OUT_RING(fb->pitch);
  4400. OUT_RING(obj_priv->gtt_offset + offset);
  4401. OUT_RING(MI_NOOP);
  4402. break;
  4403. case 3:
  4404. OUT_RING(MI_DISPLAY_FLIP_I915 |
  4405. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4406. OUT_RING(fb->pitch);
  4407. OUT_RING(obj_priv->gtt_offset + offset);
  4408. OUT_RING(MI_NOOP);
  4409. break;
  4410. case 4:
  4411. case 5:
  4412. /* i965+ uses the linear or tiled offsets from the
  4413. * Display Registers (which do not change across a page-flip)
  4414. * so we need only reprogram the base address.
  4415. */
  4416. OUT_RING(MI_DISPLAY_FLIP |
  4417. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4418. OUT_RING(fb->pitch);
  4419. OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
  4420. /* XXX Enabling the panel-fitter across page-flip is so far
  4421. * untested on non-native modes, so ignore it for now.
  4422. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  4423. */
  4424. pf = 0;
  4425. pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
  4426. OUT_RING(pf | pipesrc);
  4427. break;
  4428. case 6:
  4429. OUT_RING(MI_DISPLAY_FLIP |
  4430. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4431. OUT_RING(fb->pitch | obj_priv->tiling_mode);
  4432. OUT_RING(obj_priv->gtt_offset);
  4433. pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  4434. pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
  4435. OUT_RING(pf | pipesrc);
  4436. break;
  4437. }
  4438. ADVANCE_LP_RING();
  4439. mutex_unlock(&dev->struct_mutex);
  4440. trace_i915_flip_request(intel_crtc->plane, obj);
  4441. return 0;
  4442. cleanup_objs:
  4443. drm_gem_object_unreference(work->old_fb_obj);
  4444. drm_gem_object_unreference(obj);
  4445. cleanup_work:
  4446. mutex_unlock(&dev->struct_mutex);
  4447. spin_lock_irqsave(&dev->event_lock, flags);
  4448. intel_crtc->unpin_work = NULL;
  4449. spin_unlock_irqrestore(&dev->event_lock, flags);
  4450. kfree(work);
  4451. return ret;
  4452. }
  4453. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  4454. .dpms = intel_crtc_dpms,
  4455. .mode_fixup = intel_crtc_mode_fixup,
  4456. .mode_set = intel_crtc_mode_set,
  4457. .mode_set_base = intel_pipe_set_base,
  4458. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  4459. .load_lut = intel_crtc_load_lut,
  4460. };
  4461. static const struct drm_crtc_funcs intel_crtc_funcs = {
  4462. .cursor_set = intel_crtc_cursor_set,
  4463. .cursor_move = intel_crtc_cursor_move,
  4464. .gamma_set = intel_crtc_gamma_set,
  4465. .set_config = drm_crtc_helper_set_config,
  4466. .destroy = intel_crtc_destroy,
  4467. .page_flip = intel_crtc_page_flip,
  4468. };
  4469. static void intel_crtc_init(struct drm_device *dev, int pipe)
  4470. {
  4471. drm_i915_private_t *dev_priv = dev->dev_private;
  4472. struct intel_crtc *intel_crtc;
  4473. int i;
  4474. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  4475. if (intel_crtc == NULL)
  4476. return;
  4477. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  4478. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  4479. for (i = 0; i < 256; i++) {
  4480. intel_crtc->lut_r[i] = i;
  4481. intel_crtc->lut_g[i] = i;
  4482. intel_crtc->lut_b[i] = i;
  4483. }
  4484. /* Swap pipes & planes for FBC on pre-965 */
  4485. intel_crtc->pipe = pipe;
  4486. intel_crtc->plane = pipe;
  4487. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  4488. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  4489. intel_crtc->plane = !pipe;
  4490. }
  4491. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  4492. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  4493. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  4494. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  4495. intel_crtc->cursor_addr = 0;
  4496. intel_crtc->dpms_mode = -1;
  4497. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  4498. if (HAS_PCH_SPLIT(dev)) {
  4499. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  4500. intel_helper_funcs.commit = ironlake_crtc_commit;
  4501. } else {
  4502. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  4503. intel_helper_funcs.commit = i9xx_crtc_commit;
  4504. }
  4505. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  4506. intel_crtc->busy = false;
  4507. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  4508. (unsigned long)intel_crtc);
  4509. }
  4510. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  4511. struct drm_file *file_priv)
  4512. {
  4513. drm_i915_private_t *dev_priv = dev->dev_private;
  4514. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  4515. struct drm_mode_object *drmmode_obj;
  4516. struct intel_crtc *crtc;
  4517. if (!dev_priv) {
  4518. DRM_ERROR("called with no initialization\n");
  4519. return -EINVAL;
  4520. }
  4521. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  4522. DRM_MODE_OBJECT_CRTC);
  4523. if (!drmmode_obj) {
  4524. DRM_ERROR("no such CRTC id\n");
  4525. return -EINVAL;
  4526. }
  4527. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  4528. pipe_from_crtc_id->pipe = crtc->pipe;
  4529. return 0;
  4530. }
  4531. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  4532. {
  4533. struct intel_encoder *encoder;
  4534. int index_mask = 0;
  4535. int entry = 0;
  4536. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  4537. if (type_mask & encoder->clone_mask)
  4538. index_mask |= (1 << entry);
  4539. entry++;
  4540. }
  4541. return index_mask;
  4542. }
  4543. static void intel_setup_outputs(struct drm_device *dev)
  4544. {
  4545. struct drm_i915_private *dev_priv = dev->dev_private;
  4546. struct intel_encoder *encoder;
  4547. bool dpd_is_edp = false;
  4548. if (IS_MOBILE(dev) && !IS_I830(dev))
  4549. intel_lvds_init(dev);
  4550. if (HAS_PCH_SPLIT(dev)) {
  4551. dpd_is_edp = intel_dpd_is_edp(dev);
  4552. if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
  4553. intel_dp_init(dev, DP_A);
  4554. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  4555. intel_dp_init(dev, PCH_DP_D);
  4556. }
  4557. intel_crt_init(dev);
  4558. if (HAS_PCH_SPLIT(dev)) {
  4559. int found;
  4560. if (I915_READ(HDMIB) & PORT_DETECTED) {
  4561. /* PCH SDVOB multiplex with HDMIB */
  4562. found = intel_sdvo_init(dev, PCH_SDVOB);
  4563. if (!found)
  4564. intel_hdmi_init(dev, HDMIB);
  4565. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  4566. intel_dp_init(dev, PCH_DP_B);
  4567. }
  4568. if (I915_READ(HDMIC) & PORT_DETECTED)
  4569. intel_hdmi_init(dev, HDMIC);
  4570. if (I915_READ(HDMID) & PORT_DETECTED)
  4571. intel_hdmi_init(dev, HDMID);
  4572. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  4573. intel_dp_init(dev, PCH_DP_C);
  4574. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  4575. intel_dp_init(dev, PCH_DP_D);
  4576. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  4577. bool found = false;
  4578. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4579. DRM_DEBUG_KMS("probing SDVOB\n");
  4580. found = intel_sdvo_init(dev, SDVOB);
  4581. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  4582. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  4583. intel_hdmi_init(dev, SDVOB);
  4584. }
  4585. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  4586. DRM_DEBUG_KMS("probing DP_B\n");
  4587. intel_dp_init(dev, DP_B);
  4588. }
  4589. }
  4590. /* Before G4X SDVOC doesn't have its own detect register */
  4591. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4592. DRM_DEBUG_KMS("probing SDVOC\n");
  4593. found = intel_sdvo_init(dev, SDVOC);
  4594. }
  4595. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  4596. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  4597. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  4598. intel_hdmi_init(dev, SDVOC);
  4599. }
  4600. if (SUPPORTS_INTEGRATED_DP(dev)) {
  4601. DRM_DEBUG_KMS("probing DP_C\n");
  4602. intel_dp_init(dev, DP_C);
  4603. }
  4604. }
  4605. if (SUPPORTS_INTEGRATED_DP(dev) &&
  4606. (I915_READ(DP_D) & DP_DETECTED)) {
  4607. DRM_DEBUG_KMS("probing DP_D\n");
  4608. intel_dp_init(dev, DP_D);
  4609. }
  4610. } else if (IS_GEN2(dev))
  4611. intel_dvo_init(dev);
  4612. if (SUPPORTS_TV(dev))
  4613. intel_tv_init(dev);
  4614. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  4615. encoder->base.possible_crtcs = encoder->crtc_mask;
  4616. encoder->base.possible_clones =
  4617. intel_encoder_clones(dev, encoder->clone_mask);
  4618. }
  4619. }
  4620. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  4621. {
  4622. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4623. drm_framebuffer_cleanup(fb);
  4624. drm_gem_object_unreference_unlocked(intel_fb->obj);
  4625. kfree(intel_fb);
  4626. }
  4627. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  4628. struct drm_file *file_priv,
  4629. unsigned int *handle)
  4630. {
  4631. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4632. struct drm_gem_object *object = intel_fb->obj;
  4633. return drm_gem_handle_create(file_priv, object, handle);
  4634. }
  4635. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  4636. .destroy = intel_user_framebuffer_destroy,
  4637. .create_handle = intel_user_framebuffer_create_handle,
  4638. };
  4639. int intel_framebuffer_init(struct drm_device *dev,
  4640. struct intel_framebuffer *intel_fb,
  4641. struct drm_mode_fb_cmd *mode_cmd,
  4642. struct drm_gem_object *obj)
  4643. {
  4644. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4645. int ret;
  4646. if (obj_priv->tiling_mode == I915_TILING_Y)
  4647. return -EINVAL;
  4648. if (mode_cmd->pitch & 63)
  4649. return -EINVAL;
  4650. switch (mode_cmd->bpp) {
  4651. case 8:
  4652. case 16:
  4653. case 24:
  4654. case 32:
  4655. break;
  4656. default:
  4657. return -EINVAL;
  4658. }
  4659. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  4660. if (ret) {
  4661. DRM_ERROR("framebuffer init failed %d\n", ret);
  4662. return ret;
  4663. }
  4664. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  4665. intel_fb->obj = obj;
  4666. return 0;
  4667. }
  4668. static struct drm_framebuffer *
  4669. intel_user_framebuffer_create(struct drm_device *dev,
  4670. struct drm_file *filp,
  4671. struct drm_mode_fb_cmd *mode_cmd)
  4672. {
  4673. struct drm_gem_object *obj;
  4674. struct intel_framebuffer *intel_fb;
  4675. int ret;
  4676. obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
  4677. if (!obj)
  4678. return ERR_PTR(-ENOENT);
  4679. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  4680. if (!intel_fb)
  4681. return ERR_PTR(-ENOMEM);
  4682. ret = intel_framebuffer_init(dev, intel_fb,
  4683. mode_cmd, obj);
  4684. if (ret) {
  4685. drm_gem_object_unreference_unlocked(obj);
  4686. kfree(intel_fb);
  4687. return ERR_PTR(ret);
  4688. }
  4689. return &intel_fb->base;
  4690. }
  4691. static const struct drm_mode_config_funcs intel_mode_funcs = {
  4692. .fb_create = intel_user_framebuffer_create,
  4693. .output_poll_changed = intel_fb_output_poll_changed,
  4694. };
  4695. static struct drm_gem_object *
  4696. intel_alloc_context_page(struct drm_device *dev)
  4697. {
  4698. struct drm_gem_object *ctx;
  4699. int ret;
  4700. ctx = i915_gem_alloc_object(dev, 4096);
  4701. if (!ctx) {
  4702. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  4703. return NULL;
  4704. }
  4705. mutex_lock(&dev->struct_mutex);
  4706. ret = i915_gem_object_pin(ctx, 4096);
  4707. if (ret) {
  4708. DRM_ERROR("failed to pin power context: %d\n", ret);
  4709. goto err_unref;
  4710. }
  4711. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  4712. if (ret) {
  4713. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  4714. goto err_unpin;
  4715. }
  4716. mutex_unlock(&dev->struct_mutex);
  4717. return ctx;
  4718. err_unpin:
  4719. i915_gem_object_unpin(ctx);
  4720. err_unref:
  4721. drm_gem_object_unreference(ctx);
  4722. mutex_unlock(&dev->struct_mutex);
  4723. return NULL;
  4724. }
  4725. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  4726. {
  4727. struct drm_i915_private *dev_priv = dev->dev_private;
  4728. u16 rgvswctl;
  4729. rgvswctl = I915_READ16(MEMSWCTL);
  4730. if (rgvswctl & MEMCTL_CMD_STS) {
  4731. DRM_DEBUG("gpu busy, RCS change rejected\n");
  4732. return false; /* still busy with another command */
  4733. }
  4734. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  4735. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  4736. I915_WRITE16(MEMSWCTL, rgvswctl);
  4737. POSTING_READ16(MEMSWCTL);
  4738. rgvswctl |= MEMCTL_CMD_STS;
  4739. I915_WRITE16(MEMSWCTL, rgvswctl);
  4740. return true;
  4741. }
  4742. void ironlake_enable_drps(struct drm_device *dev)
  4743. {
  4744. struct drm_i915_private *dev_priv = dev->dev_private;
  4745. u32 rgvmodectl = I915_READ(MEMMODECTL);
  4746. u8 fmax, fmin, fstart, vstart;
  4747. /* Enable temp reporting */
  4748. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  4749. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  4750. /* 100ms RC evaluation intervals */
  4751. I915_WRITE(RCUPEI, 100000);
  4752. I915_WRITE(RCDNEI, 100000);
  4753. /* Set max/min thresholds to 90ms and 80ms respectively */
  4754. I915_WRITE(RCBMAXAVG, 90000);
  4755. I915_WRITE(RCBMINAVG, 80000);
  4756. I915_WRITE(MEMIHYST, 1);
  4757. /* Set up min, max, and cur for interrupt handling */
  4758. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  4759. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  4760. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  4761. MEMMODE_FSTART_SHIFT;
  4762. fstart = fmax;
  4763. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  4764. PXVFREQ_PX_SHIFT;
  4765. dev_priv->fmax = fstart; /* IPS callback will increase this */
  4766. dev_priv->fstart = fstart;
  4767. dev_priv->max_delay = fmax;
  4768. dev_priv->min_delay = fmin;
  4769. dev_priv->cur_delay = fstart;
  4770. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
  4771. fstart);
  4772. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  4773. /*
  4774. * Interrupts will be enabled in ironlake_irq_postinstall
  4775. */
  4776. I915_WRITE(VIDSTART, vstart);
  4777. POSTING_READ(VIDSTART);
  4778. rgvmodectl |= MEMMODE_SWMODE_EN;
  4779. I915_WRITE(MEMMODECTL, rgvmodectl);
  4780. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  4781. DRM_ERROR("stuck trying to change perf mode\n");
  4782. msleep(1);
  4783. ironlake_set_drps(dev, fstart);
  4784. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  4785. I915_READ(0x112e0);
  4786. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  4787. dev_priv->last_count2 = I915_READ(0x112f4);
  4788. getrawmonotonic(&dev_priv->last_time2);
  4789. }
  4790. void ironlake_disable_drps(struct drm_device *dev)
  4791. {
  4792. struct drm_i915_private *dev_priv = dev->dev_private;
  4793. u16 rgvswctl = I915_READ16(MEMSWCTL);
  4794. /* Ack interrupts, disable EFC interrupt */
  4795. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  4796. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  4797. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  4798. I915_WRITE(DEIIR, DE_PCU_EVENT);
  4799. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  4800. /* Go back to the starting frequency */
  4801. ironlake_set_drps(dev, dev_priv->fstart);
  4802. msleep(1);
  4803. rgvswctl |= MEMCTL_CMD_STS;
  4804. I915_WRITE(MEMSWCTL, rgvswctl);
  4805. msleep(1);
  4806. }
  4807. static unsigned long intel_pxfreq(u32 vidfreq)
  4808. {
  4809. unsigned long freq;
  4810. int div = (vidfreq & 0x3f0000) >> 16;
  4811. int post = (vidfreq & 0x3000) >> 12;
  4812. int pre = (vidfreq & 0x7);
  4813. if (!pre)
  4814. return 0;
  4815. freq = ((div * 133333) / ((1<<post) * pre));
  4816. return freq;
  4817. }
  4818. void intel_init_emon(struct drm_device *dev)
  4819. {
  4820. struct drm_i915_private *dev_priv = dev->dev_private;
  4821. u32 lcfuse;
  4822. u8 pxw[16];
  4823. int i;
  4824. /* Disable to program */
  4825. I915_WRITE(ECR, 0);
  4826. POSTING_READ(ECR);
  4827. /* Program energy weights for various events */
  4828. I915_WRITE(SDEW, 0x15040d00);
  4829. I915_WRITE(CSIEW0, 0x007f0000);
  4830. I915_WRITE(CSIEW1, 0x1e220004);
  4831. I915_WRITE(CSIEW2, 0x04000004);
  4832. for (i = 0; i < 5; i++)
  4833. I915_WRITE(PEW + (i * 4), 0);
  4834. for (i = 0; i < 3; i++)
  4835. I915_WRITE(DEW + (i * 4), 0);
  4836. /* Program P-state weights to account for frequency power adjustment */
  4837. for (i = 0; i < 16; i++) {
  4838. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4839. unsigned long freq = intel_pxfreq(pxvidfreq);
  4840. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4841. PXVFREQ_PX_SHIFT;
  4842. unsigned long val;
  4843. val = vid * vid;
  4844. val *= (freq / 1000);
  4845. val *= 255;
  4846. val /= (127*127*900);
  4847. if (val > 0xff)
  4848. DRM_ERROR("bad pxval: %ld\n", val);
  4849. pxw[i] = val;
  4850. }
  4851. /* Render standby states get 0 weight */
  4852. pxw[14] = 0;
  4853. pxw[15] = 0;
  4854. for (i = 0; i < 4; i++) {
  4855. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4856. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4857. I915_WRITE(PXW + (i * 4), val);
  4858. }
  4859. /* Adjust magic regs to magic values (more experimental results) */
  4860. I915_WRITE(OGW0, 0);
  4861. I915_WRITE(OGW1, 0);
  4862. I915_WRITE(EG0, 0x00007f00);
  4863. I915_WRITE(EG1, 0x0000000e);
  4864. I915_WRITE(EG2, 0x000e0000);
  4865. I915_WRITE(EG3, 0x68000300);
  4866. I915_WRITE(EG4, 0x42000000);
  4867. I915_WRITE(EG5, 0x00140031);
  4868. I915_WRITE(EG6, 0);
  4869. I915_WRITE(EG7, 0);
  4870. for (i = 0; i < 8; i++)
  4871. I915_WRITE(PXWL + (i * 4), 0);
  4872. /* Enable PMON + select events */
  4873. I915_WRITE(ECR, 0x80000019);
  4874. lcfuse = I915_READ(LCFUSE02);
  4875. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  4876. }
  4877. void intel_init_clock_gating(struct drm_device *dev)
  4878. {
  4879. struct drm_i915_private *dev_priv = dev->dev_private;
  4880. /*
  4881. * Disable clock gating reported to work incorrectly according to the
  4882. * specs, but enable as much else as we can.
  4883. */
  4884. if (HAS_PCH_SPLIT(dev)) {
  4885. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  4886. if (IS_IRONLAKE(dev)) {
  4887. /* Required for FBC */
  4888. dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
  4889. /* Required for CxSR */
  4890. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  4891. I915_WRITE(PCH_3DCGDIS0,
  4892. MARIUNIT_CLOCK_GATE_DISABLE |
  4893. SVSMUNIT_CLOCK_GATE_DISABLE);
  4894. }
  4895. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  4896. /*
  4897. * According to the spec the following bits should be set in
  4898. * order to enable memory self-refresh
  4899. * The bit 22/21 of 0x42004
  4900. * The bit 5 of 0x42020
  4901. * The bit 15 of 0x45000
  4902. */
  4903. if (IS_IRONLAKE(dev)) {
  4904. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4905. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4906. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4907. I915_WRITE(ILK_DSPCLK_GATE,
  4908. (I915_READ(ILK_DSPCLK_GATE) |
  4909. ILK_DPARB_CLK_GATE));
  4910. I915_WRITE(DISP_ARB_CTL,
  4911. (I915_READ(DISP_ARB_CTL) |
  4912. DISP_FBC_WM_DIS));
  4913. I915_WRITE(WM3_LP_ILK, 0);
  4914. I915_WRITE(WM2_LP_ILK, 0);
  4915. I915_WRITE(WM1_LP_ILK, 0);
  4916. }
  4917. /*
  4918. * Based on the document from hardware guys the following bits
  4919. * should be set unconditionally in order to enable FBC.
  4920. * The bit 22 of 0x42000
  4921. * The bit 22 of 0x42004
  4922. * The bit 7,8,9 of 0x42020.
  4923. */
  4924. if (IS_IRONLAKE_M(dev)) {
  4925. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4926. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4927. ILK_FBCQ_DIS);
  4928. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4929. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4930. ILK_DPARB_GATE);
  4931. I915_WRITE(ILK_DSPCLK_GATE,
  4932. I915_READ(ILK_DSPCLK_GATE) |
  4933. ILK_DPFC_DIS1 |
  4934. ILK_DPFC_DIS2 |
  4935. ILK_CLK_FBC);
  4936. }
  4937. return;
  4938. } else if (IS_G4X(dev)) {
  4939. uint32_t dspclk_gate;
  4940. I915_WRITE(RENCLK_GATE_D1, 0);
  4941. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4942. GS_UNIT_CLOCK_GATE_DISABLE |
  4943. CL_UNIT_CLOCK_GATE_DISABLE);
  4944. I915_WRITE(RAMCLK_GATE_D, 0);
  4945. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4946. OVRUNIT_CLOCK_GATE_DISABLE |
  4947. OVCUNIT_CLOCK_GATE_DISABLE;
  4948. if (IS_GM45(dev))
  4949. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4950. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4951. } else if (IS_I965GM(dev)) {
  4952. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4953. I915_WRITE(RENCLK_GATE_D2, 0);
  4954. I915_WRITE(DSPCLK_GATE_D, 0);
  4955. I915_WRITE(RAMCLK_GATE_D, 0);
  4956. I915_WRITE16(DEUC, 0);
  4957. } else if (IS_I965G(dev)) {
  4958. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4959. I965_RCC_CLOCK_GATE_DISABLE |
  4960. I965_RCPB_CLOCK_GATE_DISABLE |
  4961. I965_ISC_CLOCK_GATE_DISABLE |
  4962. I965_FBC_CLOCK_GATE_DISABLE);
  4963. I915_WRITE(RENCLK_GATE_D2, 0);
  4964. } else if (IS_I9XX(dev)) {
  4965. u32 dstate = I915_READ(D_STATE);
  4966. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4967. DSTATE_DOT_CLOCK_GATING;
  4968. I915_WRITE(D_STATE, dstate);
  4969. } else if (IS_I85X(dev) || IS_I865G(dev)) {
  4970. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4971. } else if (IS_I830(dev)) {
  4972. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4973. }
  4974. /*
  4975. * GPU can automatically power down the render unit if given a page
  4976. * to save state.
  4977. */
  4978. if (IS_IRONLAKE_M(dev)) {
  4979. if (dev_priv->renderctx == NULL)
  4980. dev_priv->renderctx = intel_alloc_context_page(dev);
  4981. if (dev_priv->renderctx) {
  4982. struct drm_i915_gem_object *obj_priv;
  4983. obj_priv = to_intel_bo(dev_priv->renderctx);
  4984. if (obj_priv) {
  4985. BEGIN_LP_RING(4);
  4986. OUT_RING(MI_SET_CONTEXT);
  4987. OUT_RING(obj_priv->gtt_offset |
  4988. MI_MM_SPACE_GTT |
  4989. MI_SAVE_EXT_STATE_EN |
  4990. MI_RESTORE_EXT_STATE_EN |
  4991. MI_RESTORE_INHIBIT);
  4992. OUT_RING(MI_NOOP);
  4993. OUT_RING(MI_FLUSH);
  4994. ADVANCE_LP_RING();
  4995. }
  4996. } else
  4997. DRM_DEBUG_KMS("Failed to allocate render context."
  4998. "Disable RC6\n");
  4999. }
  5000. if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
  5001. struct drm_i915_gem_object *obj_priv = NULL;
  5002. if (dev_priv->pwrctx) {
  5003. obj_priv = to_intel_bo(dev_priv->pwrctx);
  5004. } else {
  5005. struct drm_gem_object *pwrctx;
  5006. pwrctx = intel_alloc_context_page(dev);
  5007. if (pwrctx) {
  5008. dev_priv->pwrctx = pwrctx;
  5009. obj_priv = to_intel_bo(pwrctx);
  5010. }
  5011. }
  5012. if (obj_priv) {
  5013. I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
  5014. I915_WRITE(MCHBAR_RENDER_STANDBY,
  5015. I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
  5016. }
  5017. }
  5018. }
  5019. /* Set up chip specific display functions */
  5020. static void intel_init_display(struct drm_device *dev)
  5021. {
  5022. struct drm_i915_private *dev_priv = dev->dev_private;
  5023. /* We always want a DPMS function */
  5024. if (HAS_PCH_SPLIT(dev))
  5025. dev_priv->display.dpms = ironlake_crtc_dpms;
  5026. else
  5027. dev_priv->display.dpms = i9xx_crtc_dpms;
  5028. if (I915_HAS_FBC(dev)) {
  5029. if (IS_IRONLAKE_M(dev)) {
  5030. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5031. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  5032. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5033. } else if (IS_GM45(dev)) {
  5034. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  5035. dev_priv->display.enable_fbc = g4x_enable_fbc;
  5036. dev_priv->display.disable_fbc = g4x_disable_fbc;
  5037. } else if (IS_I965GM(dev)) {
  5038. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  5039. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  5040. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  5041. }
  5042. /* 855GM needs testing */
  5043. }
  5044. /* Returns the core display clock speed */
  5045. if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
  5046. dev_priv->display.get_display_clock_speed =
  5047. i945_get_display_clock_speed;
  5048. else if (IS_I915G(dev))
  5049. dev_priv->display.get_display_clock_speed =
  5050. i915_get_display_clock_speed;
  5051. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  5052. dev_priv->display.get_display_clock_speed =
  5053. i9xx_misc_get_display_clock_speed;
  5054. else if (IS_I915GM(dev))
  5055. dev_priv->display.get_display_clock_speed =
  5056. i915gm_get_display_clock_speed;
  5057. else if (IS_I865G(dev))
  5058. dev_priv->display.get_display_clock_speed =
  5059. i865_get_display_clock_speed;
  5060. else if (IS_I85X(dev))
  5061. dev_priv->display.get_display_clock_speed =
  5062. i855_get_display_clock_speed;
  5063. else /* 852, 830 */
  5064. dev_priv->display.get_display_clock_speed =
  5065. i830_get_display_clock_speed;
  5066. /* For FIFO watermark updates */
  5067. if (HAS_PCH_SPLIT(dev)) {
  5068. if (IS_IRONLAKE(dev)) {
  5069. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  5070. dev_priv->display.update_wm = ironlake_update_wm;
  5071. else {
  5072. DRM_DEBUG_KMS("Failed to get proper latency. "
  5073. "Disable CxSR\n");
  5074. dev_priv->display.update_wm = NULL;
  5075. }
  5076. } else
  5077. dev_priv->display.update_wm = NULL;
  5078. } else if (IS_PINEVIEW(dev)) {
  5079. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5080. dev_priv->is_ddr3,
  5081. dev_priv->fsb_freq,
  5082. dev_priv->mem_freq)) {
  5083. DRM_INFO("failed to find known CxSR latency "
  5084. "(found ddr%s fsb freq %d, mem freq %d), "
  5085. "disabling CxSR\n",
  5086. (dev_priv->is_ddr3 == 1) ? "3": "2",
  5087. dev_priv->fsb_freq, dev_priv->mem_freq);
  5088. /* Disable CxSR and never update its watermark again */
  5089. pineview_disable_cxsr(dev);
  5090. dev_priv->display.update_wm = NULL;
  5091. } else
  5092. dev_priv->display.update_wm = pineview_update_wm;
  5093. } else if (IS_G4X(dev))
  5094. dev_priv->display.update_wm = g4x_update_wm;
  5095. else if (IS_I965G(dev))
  5096. dev_priv->display.update_wm = i965_update_wm;
  5097. else if (IS_I9XX(dev)) {
  5098. dev_priv->display.update_wm = i9xx_update_wm;
  5099. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5100. } else if (IS_I85X(dev)) {
  5101. dev_priv->display.update_wm = i9xx_update_wm;
  5102. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  5103. } else {
  5104. dev_priv->display.update_wm = i830_update_wm;
  5105. if (IS_845G(dev))
  5106. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5107. else
  5108. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5109. }
  5110. }
  5111. /*
  5112. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  5113. * resume, or other times. This quirk makes sure that's the case for
  5114. * affected systems.
  5115. */
  5116. static void quirk_pipea_force (struct drm_device *dev)
  5117. {
  5118. struct drm_i915_private *dev_priv = dev->dev_private;
  5119. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  5120. DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
  5121. }
  5122. struct intel_quirk {
  5123. int device;
  5124. int subsystem_vendor;
  5125. int subsystem_device;
  5126. void (*hook)(struct drm_device *dev);
  5127. };
  5128. struct intel_quirk intel_quirks[] = {
  5129. /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
  5130. { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
  5131. /* HP Mini needs pipe A force quirk (LP: #322104) */
  5132. { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
  5133. /* Thinkpad R31 needs pipe A force quirk */
  5134. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  5135. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  5136. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  5137. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  5138. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  5139. /* ThinkPad X40 needs pipe A force quirk */
  5140. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  5141. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  5142. /* 855 & before need to leave pipe A & dpll A up */
  5143. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  5144. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  5145. };
  5146. static void intel_init_quirks(struct drm_device *dev)
  5147. {
  5148. struct pci_dev *d = dev->pdev;
  5149. int i;
  5150. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  5151. struct intel_quirk *q = &intel_quirks[i];
  5152. if (d->device == q->device &&
  5153. (d->subsystem_vendor == q->subsystem_vendor ||
  5154. q->subsystem_vendor == PCI_ANY_ID) &&
  5155. (d->subsystem_device == q->subsystem_device ||
  5156. q->subsystem_device == PCI_ANY_ID))
  5157. q->hook(dev);
  5158. }
  5159. }
  5160. /* Disable the VGA plane that we never use */
  5161. static void i915_disable_vga(struct drm_device *dev)
  5162. {
  5163. struct drm_i915_private *dev_priv = dev->dev_private;
  5164. u8 sr1;
  5165. u32 vga_reg;
  5166. if (HAS_PCH_SPLIT(dev))
  5167. vga_reg = CPU_VGACNTRL;
  5168. else
  5169. vga_reg = VGACNTRL;
  5170. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  5171. outb(1, VGA_SR_INDEX);
  5172. sr1 = inb(VGA_SR_DATA);
  5173. outb(sr1 | 1<<5, VGA_SR_DATA);
  5174. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  5175. udelay(300);
  5176. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  5177. POSTING_READ(vga_reg);
  5178. }
  5179. void intel_modeset_init(struct drm_device *dev)
  5180. {
  5181. struct drm_i915_private *dev_priv = dev->dev_private;
  5182. int i;
  5183. drm_mode_config_init(dev);
  5184. dev->mode_config.min_width = 0;
  5185. dev->mode_config.min_height = 0;
  5186. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  5187. intel_init_quirks(dev);
  5188. intel_init_display(dev);
  5189. if (IS_I965G(dev)) {
  5190. dev->mode_config.max_width = 8192;
  5191. dev->mode_config.max_height = 8192;
  5192. } else if (IS_I9XX(dev)) {
  5193. dev->mode_config.max_width = 4096;
  5194. dev->mode_config.max_height = 4096;
  5195. } else {
  5196. dev->mode_config.max_width = 2048;
  5197. dev->mode_config.max_height = 2048;
  5198. }
  5199. /* set memory base */
  5200. if (IS_I9XX(dev))
  5201. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
  5202. else
  5203. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
  5204. if (IS_MOBILE(dev) || IS_I9XX(dev))
  5205. dev_priv->num_pipe = 2;
  5206. else
  5207. dev_priv->num_pipe = 1;
  5208. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  5209. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  5210. for (i = 0; i < dev_priv->num_pipe; i++) {
  5211. intel_crtc_init(dev, i);
  5212. }
  5213. intel_setup_outputs(dev);
  5214. intel_init_clock_gating(dev);
  5215. /* Just disable it once at startup */
  5216. i915_disable_vga(dev);
  5217. if (IS_IRONLAKE_M(dev)) {
  5218. ironlake_enable_drps(dev);
  5219. intel_init_emon(dev);
  5220. }
  5221. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  5222. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  5223. (unsigned long)dev);
  5224. intel_setup_overlay(dev);
  5225. }
  5226. void intel_modeset_cleanup(struct drm_device *dev)
  5227. {
  5228. struct drm_i915_private *dev_priv = dev->dev_private;
  5229. struct drm_crtc *crtc;
  5230. struct intel_crtc *intel_crtc;
  5231. mutex_lock(&dev->struct_mutex);
  5232. drm_kms_helper_poll_fini(dev);
  5233. intel_fbdev_fini(dev);
  5234. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5235. /* Skip inactive CRTCs */
  5236. if (!crtc->fb)
  5237. continue;
  5238. intel_crtc = to_intel_crtc(crtc);
  5239. intel_increase_pllclock(crtc);
  5240. }
  5241. if (dev_priv->display.disable_fbc)
  5242. dev_priv->display.disable_fbc(dev);
  5243. if (dev_priv->renderctx) {
  5244. struct drm_i915_gem_object *obj_priv;
  5245. obj_priv = to_intel_bo(dev_priv->renderctx);
  5246. I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
  5247. I915_READ(CCID);
  5248. i915_gem_object_unpin(dev_priv->renderctx);
  5249. drm_gem_object_unreference(dev_priv->renderctx);
  5250. }
  5251. if (dev_priv->pwrctx) {
  5252. struct drm_i915_gem_object *obj_priv;
  5253. obj_priv = to_intel_bo(dev_priv->pwrctx);
  5254. I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
  5255. I915_READ(PWRCTXA);
  5256. i915_gem_object_unpin(dev_priv->pwrctx);
  5257. drm_gem_object_unreference(dev_priv->pwrctx);
  5258. }
  5259. if (IS_IRONLAKE_M(dev))
  5260. ironlake_disable_drps(dev);
  5261. mutex_unlock(&dev->struct_mutex);
  5262. /* Disable the irq before mode object teardown, for the irq might
  5263. * enqueue unpin/hotplug work. */
  5264. drm_irq_uninstall(dev);
  5265. cancel_work_sync(&dev_priv->hotplug_work);
  5266. /* Shut off idle work before the crtcs get freed. */
  5267. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5268. intel_crtc = to_intel_crtc(crtc);
  5269. del_timer_sync(&intel_crtc->idle_timer);
  5270. }
  5271. del_timer_sync(&dev_priv->idle_timer);
  5272. cancel_work_sync(&dev_priv->idle_work);
  5273. drm_mode_config_cleanup(dev);
  5274. }
  5275. /*
  5276. * Return which encoder is currently attached for connector.
  5277. */
  5278. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  5279. {
  5280. return &intel_attached_encoder(connector)->base;
  5281. }
  5282. void intel_connector_attach_encoder(struct intel_connector *connector,
  5283. struct intel_encoder *encoder)
  5284. {
  5285. connector->encoder = encoder;
  5286. drm_mode_connector_attach_encoder(&connector->base,
  5287. &encoder->base);
  5288. }
  5289. /*
  5290. * set vga decode state - true == enable VGA decode
  5291. */
  5292. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  5293. {
  5294. struct drm_i915_private *dev_priv = dev->dev_private;
  5295. u16 gmch_ctrl;
  5296. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  5297. if (state)
  5298. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  5299. else
  5300. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  5301. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  5302. return 0;
  5303. }