disk-io.c 107 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #ifdef CONFIG_X86
  50. #include <asm/cpufeature.h>
  51. #endif
  52. static struct extent_io_ops btree_extent_io_ops;
  53. static void end_workqueue_fn(struct btrfs_work *work);
  54. static void free_fs_root(struct btrfs_root *root);
  55. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  56. int read_only);
  57. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  58. struct btrfs_root *root);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  63. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  64. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  65. struct extent_io_tree *dirty_pages,
  66. int mark);
  67. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  68. struct extent_io_tree *pinned_extents);
  69. /*
  70. * end_io_wq structs are used to do processing in task context when an IO is
  71. * complete. This is used during reads to verify checksums, and it is used
  72. * by writes to insert metadata for new file extents after IO is complete.
  73. */
  74. struct end_io_wq {
  75. struct bio *bio;
  76. bio_end_io_t *end_io;
  77. void *private;
  78. struct btrfs_fs_info *info;
  79. int error;
  80. int metadata;
  81. struct list_head list;
  82. struct btrfs_work work;
  83. };
  84. /*
  85. * async submit bios are used to offload expensive checksumming
  86. * onto the worker threads. They checksum file and metadata bios
  87. * just before they are sent down the IO stack.
  88. */
  89. struct async_submit_bio {
  90. struct inode *inode;
  91. struct bio *bio;
  92. struct list_head list;
  93. extent_submit_bio_hook_t *submit_bio_start;
  94. extent_submit_bio_hook_t *submit_bio_done;
  95. int rw;
  96. int mirror_num;
  97. unsigned long bio_flags;
  98. /*
  99. * bio_offset is optional, can be used if the pages in the bio
  100. * can't tell us where in the file the bio should go
  101. */
  102. u64 bio_offset;
  103. struct btrfs_work work;
  104. int error;
  105. };
  106. /*
  107. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  108. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  109. * the level the eb occupies in the tree.
  110. *
  111. * Different roots are used for different purposes and may nest inside each
  112. * other and they require separate keysets. As lockdep keys should be
  113. * static, assign keysets according to the purpose of the root as indicated
  114. * by btrfs_root->objectid. This ensures that all special purpose roots
  115. * have separate keysets.
  116. *
  117. * Lock-nesting across peer nodes is always done with the immediate parent
  118. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  119. * subclass to avoid triggering lockdep warning in such cases.
  120. *
  121. * The key is set by the readpage_end_io_hook after the buffer has passed
  122. * csum validation but before the pages are unlocked. It is also set by
  123. * btrfs_init_new_buffer on freshly allocated blocks.
  124. *
  125. * We also add a check to make sure the highest level of the tree is the
  126. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  127. * needs update as well.
  128. */
  129. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  130. # if BTRFS_MAX_LEVEL != 8
  131. # error
  132. # endif
  133. static struct btrfs_lockdep_keyset {
  134. u64 id; /* root objectid */
  135. const char *name_stem; /* lock name stem */
  136. char names[BTRFS_MAX_LEVEL + 1][20];
  137. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  138. } btrfs_lockdep_keysets[] = {
  139. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  140. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  141. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  142. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  143. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  144. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  145. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  146. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  147. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  148. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  149. { .id = 0, .name_stem = "tree" },
  150. };
  151. void __init btrfs_init_lockdep(void)
  152. {
  153. int i, j;
  154. /* initialize lockdep class names */
  155. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  156. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  157. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  158. snprintf(ks->names[j], sizeof(ks->names[j]),
  159. "btrfs-%s-%02d", ks->name_stem, j);
  160. }
  161. }
  162. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  163. int level)
  164. {
  165. struct btrfs_lockdep_keyset *ks;
  166. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  167. /* find the matching keyset, id 0 is the default entry */
  168. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  169. if (ks->id == objectid)
  170. break;
  171. lockdep_set_class_and_name(&eb->lock,
  172. &ks->keys[level], ks->names[level]);
  173. }
  174. #endif
  175. /*
  176. * extents on the btree inode are pretty simple, there's one extent
  177. * that covers the entire device
  178. */
  179. static struct extent_map *btree_get_extent(struct inode *inode,
  180. struct page *page, size_t pg_offset, u64 start, u64 len,
  181. int create)
  182. {
  183. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  184. struct extent_map *em;
  185. int ret;
  186. read_lock(&em_tree->lock);
  187. em = lookup_extent_mapping(em_tree, start, len);
  188. if (em) {
  189. em->bdev =
  190. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  191. read_unlock(&em_tree->lock);
  192. goto out;
  193. }
  194. read_unlock(&em_tree->lock);
  195. em = alloc_extent_map();
  196. if (!em) {
  197. em = ERR_PTR(-ENOMEM);
  198. goto out;
  199. }
  200. em->start = 0;
  201. em->len = (u64)-1;
  202. em->block_len = (u64)-1;
  203. em->block_start = 0;
  204. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  205. write_lock(&em_tree->lock);
  206. ret = add_extent_mapping(em_tree, em);
  207. if (ret == -EEXIST) {
  208. free_extent_map(em);
  209. em = lookup_extent_mapping(em_tree, start, len);
  210. if (!em)
  211. em = ERR_PTR(-EIO);
  212. } else if (ret) {
  213. free_extent_map(em);
  214. em = ERR_PTR(ret);
  215. }
  216. write_unlock(&em_tree->lock);
  217. out:
  218. return em;
  219. }
  220. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  221. {
  222. return crc32c(seed, data, len);
  223. }
  224. void btrfs_csum_final(u32 crc, char *result)
  225. {
  226. put_unaligned_le32(~crc, result);
  227. }
  228. /*
  229. * compute the csum for a btree block, and either verify it or write it
  230. * into the csum field of the block.
  231. */
  232. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  233. int verify)
  234. {
  235. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  236. char *result = NULL;
  237. unsigned long len;
  238. unsigned long cur_len;
  239. unsigned long offset = BTRFS_CSUM_SIZE;
  240. char *kaddr;
  241. unsigned long map_start;
  242. unsigned long map_len;
  243. int err;
  244. u32 crc = ~(u32)0;
  245. unsigned long inline_result;
  246. len = buf->len - offset;
  247. while (len > 0) {
  248. err = map_private_extent_buffer(buf, offset, 32,
  249. &kaddr, &map_start, &map_len);
  250. if (err)
  251. return 1;
  252. cur_len = min(len, map_len - (offset - map_start));
  253. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  254. crc, cur_len);
  255. len -= cur_len;
  256. offset += cur_len;
  257. }
  258. if (csum_size > sizeof(inline_result)) {
  259. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  260. if (!result)
  261. return 1;
  262. } else {
  263. result = (char *)&inline_result;
  264. }
  265. btrfs_csum_final(crc, result);
  266. if (verify) {
  267. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  268. u32 val;
  269. u32 found = 0;
  270. memcpy(&found, result, csum_size);
  271. read_extent_buffer(buf, &val, 0, csum_size);
  272. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  273. "failed on %llu wanted %X found %X "
  274. "level %d\n",
  275. root->fs_info->sb->s_id,
  276. (unsigned long long)buf->start, val, found,
  277. btrfs_header_level(buf));
  278. if (result != (char *)&inline_result)
  279. kfree(result);
  280. return 1;
  281. }
  282. } else {
  283. write_extent_buffer(buf, result, 0, csum_size);
  284. }
  285. if (result != (char *)&inline_result)
  286. kfree(result);
  287. return 0;
  288. }
  289. /*
  290. * we can't consider a given block up to date unless the transid of the
  291. * block matches the transid in the parent node's pointer. This is how we
  292. * detect blocks that either didn't get written at all or got written
  293. * in the wrong place.
  294. */
  295. static int verify_parent_transid(struct extent_io_tree *io_tree,
  296. struct extent_buffer *eb, u64 parent_transid,
  297. int atomic)
  298. {
  299. struct extent_state *cached_state = NULL;
  300. int ret;
  301. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  302. return 0;
  303. if (atomic)
  304. return -EAGAIN;
  305. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  306. 0, &cached_state);
  307. if (extent_buffer_uptodate(eb) &&
  308. btrfs_header_generation(eb) == parent_transid) {
  309. ret = 0;
  310. goto out;
  311. }
  312. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  313. "found %llu\n",
  314. (unsigned long long)eb->start,
  315. (unsigned long long)parent_transid,
  316. (unsigned long long)btrfs_header_generation(eb));
  317. ret = 1;
  318. clear_extent_buffer_uptodate(eb);
  319. out:
  320. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  321. &cached_state, GFP_NOFS);
  322. return ret;
  323. }
  324. /*
  325. * helper to read a given tree block, doing retries as required when
  326. * the checksums don't match and we have alternate mirrors to try.
  327. */
  328. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  329. struct extent_buffer *eb,
  330. u64 start, u64 parent_transid)
  331. {
  332. struct extent_io_tree *io_tree;
  333. int failed = 0;
  334. int ret;
  335. int num_copies = 0;
  336. int mirror_num = 0;
  337. int failed_mirror = 0;
  338. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  339. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  340. while (1) {
  341. ret = read_extent_buffer_pages(io_tree, eb, start,
  342. WAIT_COMPLETE,
  343. btree_get_extent, mirror_num);
  344. if (!ret) {
  345. if (!verify_parent_transid(io_tree, eb,
  346. parent_transid, 0))
  347. break;
  348. else
  349. ret = -EIO;
  350. }
  351. /*
  352. * This buffer's crc is fine, but its contents are corrupted, so
  353. * there is no reason to read the other copies, they won't be
  354. * any less wrong.
  355. */
  356. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  357. break;
  358. num_copies = btrfs_num_copies(root->fs_info,
  359. eb->start, eb->len);
  360. if (num_copies == 1)
  361. break;
  362. if (!failed_mirror) {
  363. failed = 1;
  364. failed_mirror = eb->read_mirror;
  365. }
  366. mirror_num++;
  367. if (mirror_num == failed_mirror)
  368. mirror_num++;
  369. if (mirror_num > num_copies)
  370. break;
  371. }
  372. if (failed && !ret && failed_mirror)
  373. repair_eb_io_failure(root, eb, failed_mirror);
  374. return ret;
  375. }
  376. /*
  377. * checksum a dirty tree block before IO. This has extra checks to make sure
  378. * we only fill in the checksum field in the first page of a multi-page block
  379. */
  380. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  381. {
  382. struct extent_io_tree *tree;
  383. u64 start = page_offset(page);
  384. u64 found_start;
  385. struct extent_buffer *eb;
  386. tree = &BTRFS_I(page->mapping->host)->io_tree;
  387. eb = (struct extent_buffer *)page->private;
  388. if (page != eb->pages[0])
  389. return 0;
  390. found_start = btrfs_header_bytenr(eb);
  391. if (found_start != start) {
  392. WARN_ON(1);
  393. return 0;
  394. }
  395. if (!PageUptodate(page)) {
  396. WARN_ON(1);
  397. return 0;
  398. }
  399. csum_tree_block(root, eb, 0);
  400. return 0;
  401. }
  402. static int check_tree_block_fsid(struct btrfs_root *root,
  403. struct extent_buffer *eb)
  404. {
  405. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  406. u8 fsid[BTRFS_UUID_SIZE];
  407. int ret = 1;
  408. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  409. BTRFS_FSID_SIZE);
  410. while (fs_devices) {
  411. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  412. ret = 0;
  413. break;
  414. }
  415. fs_devices = fs_devices->seed;
  416. }
  417. return ret;
  418. }
  419. #define CORRUPT(reason, eb, root, slot) \
  420. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  421. "root=%llu, slot=%d\n", reason, \
  422. (unsigned long long)btrfs_header_bytenr(eb), \
  423. (unsigned long long)root->objectid, slot)
  424. static noinline int check_leaf(struct btrfs_root *root,
  425. struct extent_buffer *leaf)
  426. {
  427. struct btrfs_key key;
  428. struct btrfs_key leaf_key;
  429. u32 nritems = btrfs_header_nritems(leaf);
  430. int slot;
  431. if (nritems == 0)
  432. return 0;
  433. /* Check the 0 item */
  434. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  435. BTRFS_LEAF_DATA_SIZE(root)) {
  436. CORRUPT("invalid item offset size pair", leaf, root, 0);
  437. return -EIO;
  438. }
  439. /*
  440. * Check to make sure each items keys are in the correct order and their
  441. * offsets make sense. We only have to loop through nritems-1 because
  442. * we check the current slot against the next slot, which verifies the
  443. * next slot's offset+size makes sense and that the current's slot
  444. * offset is correct.
  445. */
  446. for (slot = 0; slot < nritems - 1; slot++) {
  447. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  448. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  449. /* Make sure the keys are in the right order */
  450. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  451. CORRUPT("bad key order", leaf, root, slot);
  452. return -EIO;
  453. }
  454. /*
  455. * Make sure the offset and ends are right, remember that the
  456. * item data starts at the end of the leaf and grows towards the
  457. * front.
  458. */
  459. if (btrfs_item_offset_nr(leaf, slot) !=
  460. btrfs_item_end_nr(leaf, slot + 1)) {
  461. CORRUPT("slot offset bad", leaf, root, slot);
  462. return -EIO;
  463. }
  464. /*
  465. * Check to make sure that we don't point outside of the leaf,
  466. * just incase all the items are consistent to eachother, but
  467. * all point outside of the leaf.
  468. */
  469. if (btrfs_item_end_nr(leaf, slot) >
  470. BTRFS_LEAF_DATA_SIZE(root)) {
  471. CORRUPT("slot end outside of leaf", leaf, root, slot);
  472. return -EIO;
  473. }
  474. }
  475. return 0;
  476. }
  477. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  478. struct page *page, int max_walk)
  479. {
  480. struct extent_buffer *eb;
  481. u64 start = page_offset(page);
  482. u64 target = start;
  483. u64 min_start;
  484. if (start < max_walk)
  485. min_start = 0;
  486. else
  487. min_start = start - max_walk;
  488. while (start >= min_start) {
  489. eb = find_extent_buffer(tree, start, 0);
  490. if (eb) {
  491. /*
  492. * we found an extent buffer and it contains our page
  493. * horray!
  494. */
  495. if (eb->start <= target &&
  496. eb->start + eb->len > target)
  497. return eb;
  498. /* we found an extent buffer that wasn't for us */
  499. free_extent_buffer(eb);
  500. return NULL;
  501. }
  502. if (start == 0)
  503. break;
  504. start -= PAGE_CACHE_SIZE;
  505. }
  506. return NULL;
  507. }
  508. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  509. struct extent_state *state, int mirror)
  510. {
  511. struct extent_io_tree *tree;
  512. u64 found_start;
  513. int found_level;
  514. struct extent_buffer *eb;
  515. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  516. int ret = 0;
  517. int reads_done;
  518. if (!page->private)
  519. goto out;
  520. tree = &BTRFS_I(page->mapping->host)->io_tree;
  521. eb = (struct extent_buffer *)page->private;
  522. /* the pending IO might have been the only thing that kept this buffer
  523. * in memory. Make sure we have a ref for all this other checks
  524. */
  525. extent_buffer_get(eb);
  526. reads_done = atomic_dec_and_test(&eb->io_pages);
  527. if (!reads_done)
  528. goto err;
  529. eb->read_mirror = mirror;
  530. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  531. ret = -EIO;
  532. goto err;
  533. }
  534. found_start = btrfs_header_bytenr(eb);
  535. if (found_start != eb->start) {
  536. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  537. "%llu %llu\n",
  538. (unsigned long long)found_start,
  539. (unsigned long long)eb->start);
  540. ret = -EIO;
  541. goto err;
  542. }
  543. if (check_tree_block_fsid(root, eb)) {
  544. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  545. (unsigned long long)eb->start);
  546. ret = -EIO;
  547. goto err;
  548. }
  549. found_level = btrfs_header_level(eb);
  550. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  551. eb, found_level);
  552. ret = csum_tree_block(root, eb, 1);
  553. if (ret) {
  554. ret = -EIO;
  555. goto err;
  556. }
  557. /*
  558. * If this is a leaf block and it is corrupt, set the corrupt bit so
  559. * that we don't try and read the other copies of this block, just
  560. * return -EIO.
  561. */
  562. if (found_level == 0 && check_leaf(root, eb)) {
  563. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  564. ret = -EIO;
  565. }
  566. if (!ret)
  567. set_extent_buffer_uptodate(eb);
  568. err:
  569. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  570. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  571. btree_readahead_hook(root, eb, eb->start, ret);
  572. }
  573. if (ret) {
  574. /*
  575. * our io error hook is going to dec the io pages
  576. * again, we have to make sure it has something
  577. * to decrement
  578. */
  579. atomic_inc(&eb->io_pages);
  580. clear_extent_buffer_uptodate(eb);
  581. }
  582. free_extent_buffer(eb);
  583. out:
  584. return ret;
  585. }
  586. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  587. {
  588. struct extent_buffer *eb;
  589. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  590. eb = (struct extent_buffer *)page->private;
  591. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  592. eb->read_mirror = failed_mirror;
  593. atomic_dec(&eb->io_pages);
  594. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  595. btree_readahead_hook(root, eb, eb->start, -EIO);
  596. return -EIO; /* we fixed nothing */
  597. }
  598. static void end_workqueue_bio(struct bio *bio, int err)
  599. {
  600. struct end_io_wq *end_io_wq = bio->bi_private;
  601. struct btrfs_fs_info *fs_info;
  602. fs_info = end_io_wq->info;
  603. end_io_wq->error = err;
  604. end_io_wq->work.func = end_workqueue_fn;
  605. end_io_wq->work.flags = 0;
  606. if (bio->bi_rw & REQ_WRITE) {
  607. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  608. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  609. &end_io_wq->work);
  610. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  611. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  612. &end_io_wq->work);
  613. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  614. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  615. &end_io_wq->work);
  616. else
  617. btrfs_queue_worker(&fs_info->endio_write_workers,
  618. &end_io_wq->work);
  619. } else {
  620. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  621. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  622. &end_io_wq->work);
  623. else if (end_io_wq->metadata)
  624. btrfs_queue_worker(&fs_info->endio_meta_workers,
  625. &end_io_wq->work);
  626. else
  627. btrfs_queue_worker(&fs_info->endio_workers,
  628. &end_io_wq->work);
  629. }
  630. }
  631. /*
  632. * For the metadata arg you want
  633. *
  634. * 0 - if data
  635. * 1 - if normal metadta
  636. * 2 - if writing to the free space cache area
  637. * 3 - raid parity work
  638. */
  639. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  640. int metadata)
  641. {
  642. struct end_io_wq *end_io_wq;
  643. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  644. if (!end_io_wq)
  645. return -ENOMEM;
  646. end_io_wq->private = bio->bi_private;
  647. end_io_wq->end_io = bio->bi_end_io;
  648. end_io_wq->info = info;
  649. end_io_wq->error = 0;
  650. end_io_wq->bio = bio;
  651. end_io_wq->metadata = metadata;
  652. bio->bi_private = end_io_wq;
  653. bio->bi_end_io = end_workqueue_bio;
  654. return 0;
  655. }
  656. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  657. {
  658. unsigned long limit = min_t(unsigned long,
  659. info->workers.max_workers,
  660. info->fs_devices->open_devices);
  661. return 256 * limit;
  662. }
  663. static void run_one_async_start(struct btrfs_work *work)
  664. {
  665. struct async_submit_bio *async;
  666. int ret;
  667. async = container_of(work, struct async_submit_bio, work);
  668. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  669. async->mirror_num, async->bio_flags,
  670. async->bio_offset);
  671. if (ret)
  672. async->error = ret;
  673. }
  674. static void run_one_async_done(struct btrfs_work *work)
  675. {
  676. struct btrfs_fs_info *fs_info;
  677. struct async_submit_bio *async;
  678. int limit;
  679. async = container_of(work, struct async_submit_bio, work);
  680. fs_info = BTRFS_I(async->inode)->root->fs_info;
  681. limit = btrfs_async_submit_limit(fs_info);
  682. limit = limit * 2 / 3;
  683. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  684. waitqueue_active(&fs_info->async_submit_wait))
  685. wake_up(&fs_info->async_submit_wait);
  686. /* If an error occured we just want to clean up the bio and move on */
  687. if (async->error) {
  688. bio_endio(async->bio, async->error);
  689. return;
  690. }
  691. async->submit_bio_done(async->inode, async->rw, async->bio,
  692. async->mirror_num, async->bio_flags,
  693. async->bio_offset);
  694. }
  695. static void run_one_async_free(struct btrfs_work *work)
  696. {
  697. struct async_submit_bio *async;
  698. async = container_of(work, struct async_submit_bio, work);
  699. kfree(async);
  700. }
  701. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  702. int rw, struct bio *bio, int mirror_num,
  703. unsigned long bio_flags,
  704. u64 bio_offset,
  705. extent_submit_bio_hook_t *submit_bio_start,
  706. extent_submit_bio_hook_t *submit_bio_done)
  707. {
  708. struct async_submit_bio *async;
  709. async = kmalloc(sizeof(*async), GFP_NOFS);
  710. if (!async)
  711. return -ENOMEM;
  712. async->inode = inode;
  713. async->rw = rw;
  714. async->bio = bio;
  715. async->mirror_num = mirror_num;
  716. async->submit_bio_start = submit_bio_start;
  717. async->submit_bio_done = submit_bio_done;
  718. async->work.func = run_one_async_start;
  719. async->work.ordered_func = run_one_async_done;
  720. async->work.ordered_free = run_one_async_free;
  721. async->work.flags = 0;
  722. async->bio_flags = bio_flags;
  723. async->bio_offset = bio_offset;
  724. async->error = 0;
  725. atomic_inc(&fs_info->nr_async_submits);
  726. if (rw & REQ_SYNC)
  727. btrfs_set_work_high_prio(&async->work);
  728. btrfs_queue_worker(&fs_info->workers, &async->work);
  729. while (atomic_read(&fs_info->async_submit_draining) &&
  730. atomic_read(&fs_info->nr_async_submits)) {
  731. wait_event(fs_info->async_submit_wait,
  732. (atomic_read(&fs_info->nr_async_submits) == 0));
  733. }
  734. return 0;
  735. }
  736. static int btree_csum_one_bio(struct bio *bio)
  737. {
  738. struct bio_vec *bvec = bio->bi_io_vec;
  739. int bio_index = 0;
  740. struct btrfs_root *root;
  741. int ret = 0;
  742. WARN_ON(bio->bi_vcnt <= 0);
  743. while (bio_index < bio->bi_vcnt) {
  744. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  745. ret = csum_dirty_buffer(root, bvec->bv_page);
  746. if (ret)
  747. break;
  748. bio_index++;
  749. bvec++;
  750. }
  751. return ret;
  752. }
  753. static int __btree_submit_bio_start(struct inode *inode, int rw,
  754. struct bio *bio, int mirror_num,
  755. unsigned long bio_flags,
  756. u64 bio_offset)
  757. {
  758. /*
  759. * when we're called for a write, we're already in the async
  760. * submission context. Just jump into btrfs_map_bio
  761. */
  762. return btree_csum_one_bio(bio);
  763. }
  764. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  765. int mirror_num, unsigned long bio_flags,
  766. u64 bio_offset)
  767. {
  768. int ret;
  769. /*
  770. * when we're called for a write, we're already in the async
  771. * submission context. Just jump into btrfs_map_bio
  772. */
  773. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  774. if (ret)
  775. bio_endio(bio, ret);
  776. return ret;
  777. }
  778. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  779. {
  780. if (bio_flags & EXTENT_BIO_TREE_LOG)
  781. return 0;
  782. #ifdef CONFIG_X86
  783. if (cpu_has_xmm4_2)
  784. return 0;
  785. #endif
  786. return 1;
  787. }
  788. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  789. int mirror_num, unsigned long bio_flags,
  790. u64 bio_offset)
  791. {
  792. int async = check_async_write(inode, bio_flags);
  793. int ret;
  794. if (!(rw & REQ_WRITE)) {
  795. /*
  796. * called for a read, do the setup so that checksum validation
  797. * can happen in the async kernel threads
  798. */
  799. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  800. bio, 1);
  801. if (ret)
  802. goto out_w_error;
  803. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  804. mirror_num, 0);
  805. } else if (!async) {
  806. ret = btree_csum_one_bio(bio);
  807. if (ret)
  808. goto out_w_error;
  809. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  810. mirror_num, 0);
  811. } else {
  812. /*
  813. * kthread helpers are used to submit writes so that
  814. * checksumming can happen in parallel across all CPUs
  815. */
  816. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  817. inode, rw, bio, mirror_num, 0,
  818. bio_offset,
  819. __btree_submit_bio_start,
  820. __btree_submit_bio_done);
  821. }
  822. if (ret) {
  823. out_w_error:
  824. bio_endio(bio, ret);
  825. }
  826. return ret;
  827. }
  828. #ifdef CONFIG_MIGRATION
  829. static int btree_migratepage(struct address_space *mapping,
  830. struct page *newpage, struct page *page,
  831. enum migrate_mode mode)
  832. {
  833. /*
  834. * we can't safely write a btree page from here,
  835. * we haven't done the locking hook
  836. */
  837. if (PageDirty(page))
  838. return -EAGAIN;
  839. /*
  840. * Buffers may be managed in a filesystem specific way.
  841. * We must have no buffers or drop them.
  842. */
  843. if (page_has_private(page) &&
  844. !try_to_release_page(page, GFP_KERNEL))
  845. return -EAGAIN;
  846. return migrate_page(mapping, newpage, page, mode);
  847. }
  848. #endif
  849. static int btree_writepages(struct address_space *mapping,
  850. struct writeback_control *wbc)
  851. {
  852. struct extent_io_tree *tree;
  853. struct btrfs_fs_info *fs_info;
  854. int ret;
  855. tree = &BTRFS_I(mapping->host)->io_tree;
  856. if (wbc->sync_mode == WB_SYNC_NONE) {
  857. if (wbc->for_kupdate)
  858. return 0;
  859. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  860. /* this is a bit racy, but that's ok */
  861. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  862. BTRFS_DIRTY_METADATA_THRESH);
  863. if (ret < 0)
  864. return 0;
  865. }
  866. return btree_write_cache_pages(mapping, wbc);
  867. }
  868. static int btree_readpage(struct file *file, struct page *page)
  869. {
  870. struct extent_io_tree *tree;
  871. tree = &BTRFS_I(page->mapping->host)->io_tree;
  872. return extent_read_full_page(tree, page, btree_get_extent, 0);
  873. }
  874. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  875. {
  876. if (PageWriteback(page) || PageDirty(page))
  877. return 0;
  878. /*
  879. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  880. * slab allocation from alloc_extent_state down the callchain where
  881. * it'd hit a BUG_ON as those flags are not allowed.
  882. */
  883. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  884. return try_release_extent_buffer(page, gfp_flags);
  885. }
  886. static void btree_invalidatepage(struct page *page, unsigned long offset)
  887. {
  888. struct extent_io_tree *tree;
  889. tree = &BTRFS_I(page->mapping->host)->io_tree;
  890. extent_invalidatepage(tree, page, offset);
  891. btree_releasepage(page, GFP_NOFS);
  892. if (PagePrivate(page)) {
  893. printk(KERN_WARNING "btrfs warning page private not zero "
  894. "on page %llu\n", (unsigned long long)page_offset(page));
  895. ClearPagePrivate(page);
  896. set_page_private(page, 0);
  897. page_cache_release(page);
  898. }
  899. }
  900. static int btree_set_page_dirty(struct page *page)
  901. {
  902. #ifdef DEBUG
  903. struct extent_buffer *eb;
  904. BUG_ON(!PagePrivate(page));
  905. eb = (struct extent_buffer *)page->private;
  906. BUG_ON(!eb);
  907. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  908. BUG_ON(!atomic_read(&eb->refs));
  909. btrfs_assert_tree_locked(eb);
  910. #endif
  911. return __set_page_dirty_nobuffers(page);
  912. }
  913. static const struct address_space_operations btree_aops = {
  914. .readpage = btree_readpage,
  915. .writepages = btree_writepages,
  916. .releasepage = btree_releasepage,
  917. .invalidatepage = btree_invalidatepage,
  918. #ifdef CONFIG_MIGRATION
  919. .migratepage = btree_migratepage,
  920. #endif
  921. .set_page_dirty = btree_set_page_dirty,
  922. };
  923. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  924. u64 parent_transid)
  925. {
  926. struct extent_buffer *buf = NULL;
  927. struct inode *btree_inode = root->fs_info->btree_inode;
  928. int ret = 0;
  929. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  930. if (!buf)
  931. return 0;
  932. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  933. buf, 0, WAIT_NONE, btree_get_extent, 0);
  934. free_extent_buffer(buf);
  935. return ret;
  936. }
  937. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  938. int mirror_num, struct extent_buffer **eb)
  939. {
  940. struct extent_buffer *buf = NULL;
  941. struct inode *btree_inode = root->fs_info->btree_inode;
  942. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  943. int ret;
  944. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  945. if (!buf)
  946. return 0;
  947. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  948. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  949. btree_get_extent, mirror_num);
  950. if (ret) {
  951. free_extent_buffer(buf);
  952. return ret;
  953. }
  954. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  955. free_extent_buffer(buf);
  956. return -EIO;
  957. } else if (extent_buffer_uptodate(buf)) {
  958. *eb = buf;
  959. } else {
  960. free_extent_buffer(buf);
  961. }
  962. return 0;
  963. }
  964. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  965. u64 bytenr, u32 blocksize)
  966. {
  967. struct inode *btree_inode = root->fs_info->btree_inode;
  968. struct extent_buffer *eb;
  969. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  970. bytenr, blocksize);
  971. return eb;
  972. }
  973. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  974. u64 bytenr, u32 blocksize)
  975. {
  976. struct inode *btree_inode = root->fs_info->btree_inode;
  977. struct extent_buffer *eb;
  978. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  979. bytenr, blocksize);
  980. return eb;
  981. }
  982. int btrfs_write_tree_block(struct extent_buffer *buf)
  983. {
  984. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  985. buf->start + buf->len - 1);
  986. }
  987. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  988. {
  989. return filemap_fdatawait_range(buf->pages[0]->mapping,
  990. buf->start, buf->start + buf->len - 1);
  991. }
  992. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  993. u32 blocksize, u64 parent_transid)
  994. {
  995. struct extent_buffer *buf = NULL;
  996. int ret;
  997. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  998. if (!buf)
  999. return NULL;
  1000. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1001. return buf;
  1002. }
  1003. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1004. struct extent_buffer *buf)
  1005. {
  1006. struct btrfs_fs_info *fs_info = root->fs_info;
  1007. if (btrfs_header_generation(buf) ==
  1008. fs_info->running_transaction->transid) {
  1009. btrfs_assert_tree_locked(buf);
  1010. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1011. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1012. -buf->len,
  1013. fs_info->dirty_metadata_batch);
  1014. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1015. btrfs_set_lock_blocking(buf);
  1016. clear_extent_buffer_dirty(buf);
  1017. }
  1018. }
  1019. }
  1020. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1021. u32 stripesize, struct btrfs_root *root,
  1022. struct btrfs_fs_info *fs_info,
  1023. u64 objectid)
  1024. {
  1025. root->node = NULL;
  1026. root->commit_root = NULL;
  1027. root->sectorsize = sectorsize;
  1028. root->nodesize = nodesize;
  1029. root->leafsize = leafsize;
  1030. root->stripesize = stripesize;
  1031. root->ref_cows = 0;
  1032. root->track_dirty = 0;
  1033. root->in_radix = 0;
  1034. root->orphan_item_inserted = 0;
  1035. root->orphan_cleanup_state = 0;
  1036. root->objectid = objectid;
  1037. root->last_trans = 0;
  1038. root->highest_objectid = 0;
  1039. root->name = NULL;
  1040. root->inode_tree = RB_ROOT;
  1041. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1042. root->block_rsv = NULL;
  1043. root->orphan_block_rsv = NULL;
  1044. INIT_LIST_HEAD(&root->dirty_list);
  1045. INIT_LIST_HEAD(&root->root_list);
  1046. INIT_LIST_HEAD(&root->logged_list[0]);
  1047. INIT_LIST_HEAD(&root->logged_list[1]);
  1048. spin_lock_init(&root->orphan_lock);
  1049. spin_lock_init(&root->inode_lock);
  1050. spin_lock_init(&root->accounting_lock);
  1051. spin_lock_init(&root->log_extents_lock[0]);
  1052. spin_lock_init(&root->log_extents_lock[1]);
  1053. mutex_init(&root->objectid_mutex);
  1054. mutex_init(&root->log_mutex);
  1055. init_waitqueue_head(&root->log_writer_wait);
  1056. init_waitqueue_head(&root->log_commit_wait[0]);
  1057. init_waitqueue_head(&root->log_commit_wait[1]);
  1058. atomic_set(&root->log_commit[0], 0);
  1059. atomic_set(&root->log_commit[1], 0);
  1060. atomic_set(&root->log_writers, 0);
  1061. atomic_set(&root->log_batch, 0);
  1062. atomic_set(&root->orphan_inodes, 0);
  1063. root->log_transid = 0;
  1064. root->last_log_commit = 0;
  1065. extent_io_tree_init(&root->dirty_log_pages,
  1066. fs_info->btree_inode->i_mapping);
  1067. memset(&root->root_key, 0, sizeof(root->root_key));
  1068. memset(&root->root_item, 0, sizeof(root->root_item));
  1069. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1070. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1071. root->defrag_trans_start = fs_info->generation;
  1072. init_completion(&root->kobj_unregister);
  1073. root->defrag_running = 0;
  1074. root->root_key.objectid = objectid;
  1075. root->anon_dev = 0;
  1076. spin_lock_init(&root->root_item_lock);
  1077. }
  1078. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1079. struct btrfs_fs_info *fs_info,
  1080. u64 objectid,
  1081. struct btrfs_root *root)
  1082. {
  1083. int ret;
  1084. u32 blocksize;
  1085. u64 generation;
  1086. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1087. tree_root->sectorsize, tree_root->stripesize,
  1088. root, fs_info, objectid);
  1089. ret = btrfs_find_last_root(tree_root, objectid,
  1090. &root->root_item, &root->root_key);
  1091. if (ret > 0)
  1092. return -ENOENT;
  1093. else if (ret < 0)
  1094. return ret;
  1095. generation = btrfs_root_generation(&root->root_item);
  1096. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1097. root->commit_root = NULL;
  1098. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1099. blocksize, generation);
  1100. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1101. free_extent_buffer(root->node);
  1102. root->node = NULL;
  1103. return -EIO;
  1104. }
  1105. root->commit_root = btrfs_root_node(root);
  1106. return 0;
  1107. }
  1108. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1109. {
  1110. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1111. if (root)
  1112. root->fs_info = fs_info;
  1113. return root;
  1114. }
  1115. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1116. struct btrfs_fs_info *fs_info,
  1117. u64 objectid)
  1118. {
  1119. struct extent_buffer *leaf;
  1120. struct btrfs_root *tree_root = fs_info->tree_root;
  1121. struct btrfs_root *root;
  1122. struct btrfs_key key;
  1123. int ret = 0;
  1124. u64 bytenr;
  1125. root = btrfs_alloc_root(fs_info);
  1126. if (!root)
  1127. return ERR_PTR(-ENOMEM);
  1128. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1129. tree_root->sectorsize, tree_root->stripesize,
  1130. root, fs_info, objectid);
  1131. root->root_key.objectid = objectid;
  1132. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1133. root->root_key.offset = 0;
  1134. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1135. 0, objectid, NULL, 0, 0, 0);
  1136. if (IS_ERR(leaf)) {
  1137. ret = PTR_ERR(leaf);
  1138. goto fail;
  1139. }
  1140. bytenr = leaf->start;
  1141. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1142. btrfs_set_header_bytenr(leaf, leaf->start);
  1143. btrfs_set_header_generation(leaf, trans->transid);
  1144. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1145. btrfs_set_header_owner(leaf, objectid);
  1146. root->node = leaf;
  1147. write_extent_buffer(leaf, fs_info->fsid,
  1148. (unsigned long)btrfs_header_fsid(leaf),
  1149. BTRFS_FSID_SIZE);
  1150. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1151. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1152. BTRFS_UUID_SIZE);
  1153. btrfs_mark_buffer_dirty(leaf);
  1154. root->commit_root = btrfs_root_node(root);
  1155. root->track_dirty = 1;
  1156. root->root_item.flags = 0;
  1157. root->root_item.byte_limit = 0;
  1158. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1159. btrfs_set_root_generation(&root->root_item, trans->transid);
  1160. btrfs_set_root_level(&root->root_item, 0);
  1161. btrfs_set_root_refs(&root->root_item, 1);
  1162. btrfs_set_root_used(&root->root_item, leaf->len);
  1163. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1164. btrfs_set_root_dirid(&root->root_item, 0);
  1165. root->root_item.drop_level = 0;
  1166. key.objectid = objectid;
  1167. key.type = BTRFS_ROOT_ITEM_KEY;
  1168. key.offset = 0;
  1169. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1170. if (ret)
  1171. goto fail;
  1172. btrfs_tree_unlock(leaf);
  1173. fail:
  1174. if (ret)
  1175. return ERR_PTR(ret);
  1176. return root;
  1177. }
  1178. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1179. struct btrfs_fs_info *fs_info)
  1180. {
  1181. struct btrfs_root *root;
  1182. struct btrfs_root *tree_root = fs_info->tree_root;
  1183. struct extent_buffer *leaf;
  1184. root = btrfs_alloc_root(fs_info);
  1185. if (!root)
  1186. return ERR_PTR(-ENOMEM);
  1187. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1188. tree_root->sectorsize, tree_root->stripesize,
  1189. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1190. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1191. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1192. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1193. /*
  1194. * log trees do not get reference counted because they go away
  1195. * before a real commit is actually done. They do store pointers
  1196. * to file data extents, and those reference counts still get
  1197. * updated (along with back refs to the log tree).
  1198. */
  1199. root->ref_cows = 0;
  1200. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1201. BTRFS_TREE_LOG_OBJECTID, NULL,
  1202. 0, 0, 0);
  1203. if (IS_ERR(leaf)) {
  1204. kfree(root);
  1205. return ERR_CAST(leaf);
  1206. }
  1207. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1208. btrfs_set_header_bytenr(leaf, leaf->start);
  1209. btrfs_set_header_generation(leaf, trans->transid);
  1210. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1211. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1212. root->node = leaf;
  1213. write_extent_buffer(root->node, root->fs_info->fsid,
  1214. (unsigned long)btrfs_header_fsid(root->node),
  1215. BTRFS_FSID_SIZE);
  1216. btrfs_mark_buffer_dirty(root->node);
  1217. btrfs_tree_unlock(root->node);
  1218. return root;
  1219. }
  1220. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1221. struct btrfs_fs_info *fs_info)
  1222. {
  1223. struct btrfs_root *log_root;
  1224. log_root = alloc_log_tree(trans, fs_info);
  1225. if (IS_ERR(log_root))
  1226. return PTR_ERR(log_root);
  1227. WARN_ON(fs_info->log_root_tree);
  1228. fs_info->log_root_tree = log_root;
  1229. return 0;
  1230. }
  1231. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1232. struct btrfs_root *root)
  1233. {
  1234. struct btrfs_root *log_root;
  1235. struct btrfs_inode_item *inode_item;
  1236. log_root = alloc_log_tree(trans, root->fs_info);
  1237. if (IS_ERR(log_root))
  1238. return PTR_ERR(log_root);
  1239. log_root->last_trans = trans->transid;
  1240. log_root->root_key.offset = root->root_key.objectid;
  1241. inode_item = &log_root->root_item.inode;
  1242. inode_item->generation = cpu_to_le64(1);
  1243. inode_item->size = cpu_to_le64(3);
  1244. inode_item->nlink = cpu_to_le32(1);
  1245. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1246. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1247. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1248. WARN_ON(root->log_root);
  1249. root->log_root = log_root;
  1250. root->log_transid = 0;
  1251. root->last_log_commit = 0;
  1252. return 0;
  1253. }
  1254. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1255. struct btrfs_key *location)
  1256. {
  1257. struct btrfs_root *root;
  1258. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1259. struct btrfs_path *path;
  1260. struct extent_buffer *l;
  1261. u64 generation;
  1262. u32 blocksize;
  1263. int ret = 0;
  1264. int slot;
  1265. root = btrfs_alloc_root(fs_info);
  1266. if (!root)
  1267. return ERR_PTR(-ENOMEM);
  1268. if (location->offset == (u64)-1) {
  1269. ret = find_and_setup_root(tree_root, fs_info,
  1270. location->objectid, root);
  1271. if (ret) {
  1272. kfree(root);
  1273. return ERR_PTR(ret);
  1274. }
  1275. goto out;
  1276. }
  1277. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1278. tree_root->sectorsize, tree_root->stripesize,
  1279. root, fs_info, location->objectid);
  1280. path = btrfs_alloc_path();
  1281. if (!path) {
  1282. kfree(root);
  1283. return ERR_PTR(-ENOMEM);
  1284. }
  1285. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1286. if (ret == 0) {
  1287. l = path->nodes[0];
  1288. slot = path->slots[0];
  1289. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1290. memcpy(&root->root_key, location, sizeof(*location));
  1291. }
  1292. btrfs_free_path(path);
  1293. if (ret) {
  1294. kfree(root);
  1295. if (ret > 0)
  1296. ret = -ENOENT;
  1297. return ERR_PTR(ret);
  1298. }
  1299. generation = btrfs_root_generation(&root->root_item);
  1300. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1301. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1302. blocksize, generation);
  1303. root->commit_root = btrfs_root_node(root);
  1304. BUG_ON(!root->node); /* -ENOMEM */
  1305. out:
  1306. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1307. root->ref_cows = 1;
  1308. btrfs_check_and_init_root_item(&root->root_item);
  1309. }
  1310. return root;
  1311. }
  1312. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1313. struct btrfs_key *location)
  1314. {
  1315. struct btrfs_root *root;
  1316. int ret;
  1317. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1318. return fs_info->tree_root;
  1319. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1320. return fs_info->extent_root;
  1321. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1322. return fs_info->chunk_root;
  1323. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1324. return fs_info->dev_root;
  1325. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1326. return fs_info->csum_root;
  1327. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1328. return fs_info->quota_root ? fs_info->quota_root :
  1329. ERR_PTR(-ENOENT);
  1330. again:
  1331. spin_lock(&fs_info->fs_roots_radix_lock);
  1332. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1333. (unsigned long)location->objectid);
  1334. spin_unlock(&fs_info->fs_roots_radix_lock);
  1335. if (root)
  1336. return root;
  1337. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1338. if (IS_ERR(root))
  1339. return root;
  1340. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1341. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1342. GFP_NOFS);
  1343. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1344. ret = -ENOMEM;
  1345. goto fail;
  1346. }
  1347. btrfs_init_free_ino_ctl(root);
  1348. mutex_init(&root->fs_commit_mutex);
  1349. spin_lock_init(&root->cache_lock);
  1350. init_waitqueue_head(&root->cache_wait);
  1351. ret = get_anon_bdev(&root->anon_dev);
  1352. if (ret)
  1353. goto fail;
  1354. if (btrfs_root_refs(&root->root_item) == 0) {
  1355. ret = -ENOENT;
  1356. goto fail;
  1357. }
  1358. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1359. if (ret < 0)
  1360. goto fail;
  1361. if (ret == 0)
  1362. root->orphan_item_inserted = 1;
  1363. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1364. if (ret)
  1365. goto fail;
  1366. spin_lock(&fs_info->fs_roots_radix_lock);
  1367. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1368. (unsigned long)root->root_key.objectid,
  1369. root);
  1370. if (ret == 0)
  1371. root->in_radix = 1;
  1372. spin_unlock(&fs_info->fs_roots_radix_lock);
  1373. radix_tree_preload_end();
  1374. if (ret) {
  1375. if (ret == -EEXIST) {
  1376. free_fs_root(root);
  1377. goto again;
  1378. }
  1379. goto fail;
  1380. }
  1381. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1382. root->root_key.objectid);
  1383. WARN_ON(ret);
  1384. return root;
  1385. fail:
  1386. free_fs_root(root);
  1387. return ERR_PTR(ret);
  1388. }
  1389. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1390. {
  1391. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1392. int ret = 0;
  1393. struct btrfs_device *device;
  1394. struct backing_dev_info *bdi;
  1395. rcu_read_lock();
  1396. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1397. if (!device->bdev)
  1398. continue;
  1399. bdi = blk_get_backing_dev_info(device->bdev);
  1400. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1401. ret = 1;
  1402. break;
  1403. }
  1404. }
  1405. rcu_read_unlock();
  1406. return ret;
  1407. }
  1408. /*
  1409. * If this fails, caller must call bdi_destroy() to get rid of the
  1410. * bdi again.
  1411. */
  1412. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1413. {
  1414. int err;
  1415. bdi->capabilities = BDI_CAP_MAP_COPY;
  1416. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1417. if (err)
  1418. return err;
  1419. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1420. bdi->congested_fn = btrfs_congested_fn;
  1421. bdi->congested_data = info;
  1422. return 0;
  1423. }
  1424. /*
  1425. * called by the kthread helper functions to finally call the bio end_io
  1426. * functions. This is where read checksum verification actually happens
  1427. */
  1428. static void end_workqueue_fn(struct btrfs_work *work)
  1429. {
  1430. struct bio *bio;
  1431. struct end_io_wq *end_io_wq;
  1432. struct btrfs_fs_info *fs_info;
  1433. int error;
  1434. end_io_wq = container_of(work, struct end_io_wq, work);
  1435. bio = end_io_wq->bio;
  1436. fs_info = end_io_wq->info;
  1437. error = end_io_wq->error;
  1438. bio->bi_private = end_io_wq->private;
  1439. bio->bi_end_io = end_io_wq->end_io;
  1440. kfree(end_io_wq);
  1441. bio_endio(bio, error);
  1442. }
  1443. static int cleaner_kthread(void *arg)
  1444. {
  1445. struct btrfs_root *root = arg;
  1446. do {
  1447. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1448. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1449. btrfs_run_delayed_iputs(root);
  1450. btrfs_clean_old_snapshots(root);
  1451. mutex_unlock(&root->fs_info->cleaner_mutex);
  1452. btrfs_run_defrag_inodes(root->fs_info);
  1453. }
  1454. if (!try_to_freeze()) {
  1455. set_current_state(TASK_INTERRUPTIBLE);
  1456. if (!kthread_should_stop())
  1457. schedule();
  1458. __set_current_state(TASK_RUNNING);
  1459. }
  1460. } while (!kthread_should_stop());
  1461. return 0;
  1462. }
  1463. static int transaction_kthread(void *arg)
  1464. {
  1465. struct btrfs_root *root = arg;
  1466. struct btrfs_trans_handle *trans;
  1467. struct btrfs_transaction *cur;
  1468. u64 transid;
  1469. unsigned long now;
  1470. unsigned long delay;
  1471. bool cannot_commit;
  1472. do {
  1473. cannot_commit = false;
  1474. delay = HZ * 30;
  1475. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1476. spin_lock(&root->fs_info->trans_lock);
  1477. cur = root->fs_info->running_transaction;
  1478. if (!cur) {
  1479. spin_unlock(&root->fs_info->trans_lock);
  1480. goto sleep;
  1481. }
  1482. now = get_seconds();
  1483. if (!cur->blocked &&
  1484. (now < cur->start_time || now - cur->start_time < 30)) {
  1485. spin_unlock(&root->fs_info->trans_lock);
  1486. delay = HZ * 5;
  1487. goto sleep;
  1488. }
  1489. transid = cur->transid;
  1490. spin_unlock(&root->fs_info->trans_lock);
  1491. /* If the file system is aborted, this will always fail. */
  1492. trans = btrfs_attach_transaction(root);
  1493. if (IS_ERR(trans)) {
  1494. if (PTR_ERR(trans) != -ENOENT)
  1495. cannot_commit = true;
  1496. goto sleep;
  1497. }
  1498. if (transid == trans->transid) {
  1499. btrfs_commit_transaction(trans, root);
  1500. } else {
  1501. btrfs_end_transaction(trans, root);
  1502. }
  1503. sleep:
  1504. wake_up_process(root->fs_info->cleaner_kthread);
  1505. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1506. if (!try_to_freeze()) {
  1507. set_current_state(TASK_INTERRUPTIBLE);
  1508. if (!kthread_should_stop() &&
  1509. (!btrfs_transaction_blocked(root->fs_info) ||
  1510. cannot_commit))
  1511. schedule_timeout(delay);
  1512. __set_current_state(TASK_RUNNING);
  1513. }
  1514. } while (!kthread_should_stop());
  1515. return 0;
  1516. }
  1517. /*
  1518. * this will find the highest generation in the array of
  1519. * root backups. The index of the highest array is returned,
  1520. * or -1 if we can't find anything.
  1521. *
  1522. * We check to make sure the array is valid by comparing the
  1523. * generation of the latest root in the array with the generation
  1524. * in the super block. If they don't match we pitch it.
  1525. */
  1526. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1527. {
  1528. u64 cur;
  1529. int newest_index = -1;
  1530. struct btrfs_root_backup *root_backup;
  1531. int i;
  1532. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1533. root_backup = info->super_copy->super_roots + i;
  1534. cur = btrfs_backup_tree_root_gen(root_backup);
  1535. if (cur == newest_gen)
  1536. newest_index = i;
  1537. }
  1538. /* check to see if we actually wrapped around */
  1539. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1540. root_backup = info->super_copy->super_roots;
  1541. cur = btrfs_backup_tree_root_gen(root_backup);
  1542. if (cur == newest_gen)
  1543. newest_index = 0;
  1544. }
  1545. return newest_index;
  1546. }
  1547. /*
  1548. * find the oldest backup so we know where to store new entries
  1549. * in the backup array. This will set the backup_root_index
  1550. * field in the fs_info struct
  1551. */
  1552. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1553. u64 newest_gen)
  1554. {
  1555. int newest_index = -1;
  1556. newest_index = find_newest_super_backup(info, newest_gen);
  1557. /* if there was garbage in there, just move along */
  1558. if (newest_index == -1) {
  1559. info->backup_root_index = 0;
  1560. } else {
  1561. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1562. }
  1563. }
  1564. /*
  1565. * copy all the root pointers into the super backup array.
  1566. * this will bump the backup pointer by one when it is
  1567. * done
  1568. */
  1569. static void backup_super_roots(struct btrfs_fs_info *info)
  1570. {
  1571. int next_backup;
  1572. struct btrfs_root_backup *root_backup;
  1573. int last_backup;
  1574. next_backup = info->backup_root_index;
  1575. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1576. BTRFS_NUM_BACKUP_ROOTS;
  1577. /*
  1578. * just overwrite the last backup if we're at the same generation
  1579. * this happens only at umount
  1580. */
  1581. root_backup = info->super_for_commit->super_roots + last_backup;
  1582. if (btrfs_backup_tree_root_gen(root_backup) ==
  1583. btrfs_header_generation(info->tree_root->node))
  1584. next_backup = last_backup;
  1585. root_backup = info->super_for_commit->super_roots + next_backup;
  1586. /*
  1587. * make sure all of our padding and empty slots get zero filled
  1588. * regardless of which ones we use today
  1589. */
  1590. memset(root_backup, 0, sizeof(*root_backup));
  1591. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1592. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1593. btrfs_set_backup_tree_root_gen(root_backup,
  1594. btrfs_header_generation(info->tree_root->node));
  1595. btrfs_set_backup_tree_root_level(root_backup,
  1596. btrfs_header_level(info->tree_root->node));
  1597. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1598. btrfs_set_backup_chunk_root_gen(root_backup,
  1599. btrfs_header_generation(info->chunk_root->node));
  1600. btrfs_set_backup_chunk_root_level(root_backup,
  1601. btrfs_header_level(info->chunk_root->node));
  1602. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1603. btrfs_set_backup_extent_root_gen(root_backup,
  1604. btrfs_header_generation(info->extent_root->node));
  1605. btrfs_set_backup_extent_root_level(root_backup,
  1606. btrfs_header_level(info->extent_root->node));
  1607. /*
  1608. * we might commit during log recovery, which happens before we set
  1609. * the fs_root. Make sure it is valid before we fill it in.
  1610. */
  1611. if (info->fs_root && info->fs_root->node) {
  1612. btrfs_set_backup_fs_root(root_backup,
  1613. info->fs_root->node->start);
  1614. btrfs_set_backup_fs_root_gen(root_backup,
  1615. btrfs_header_generation(info->fs_root->node));
  1616. btrfs_set_backup_fs_root_level(root_backup,
  1617. btrfs_header_level(info->fs_root->node));
  1618. }
  1619. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1620. btrfs_set_backup_dev_root_gen(root_backup,
  1621. btrfs_header_generation(info->dev_root->node));
  1622. btrfs_set_backup_dev_root_level(root_backup,
  1623. btrfs_header_level(info->dev_root->node));
  1624. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1625. btrfs_set_backup_csum_root_gen(root_backup,
  1626. btrfs_header_generation(info->csum_root->node));
  1627. btrfs_set_backup_csum_root_level(root_backup,
  1628. btrfs_header_level(info->csum_root->node));
  1629. btrfs_set_backup_total_bytes(root_backup,
  1630. btrfs_super_total_bytes(info->super_copy));
  1631. btrfs_set_backup_bytes_used(root_backup,
  1632. btrfs_super_bytes_used(info->super_copy));
  1633. btrfs_set_backup_num_devices(root_backup,
  1634. btrfs_super_num_devices(info->super_copy));
  1635. /*
  1636. * if we don't copy this out to the super_copy, it won't get remembered
  1637. * for the next commit
  1638. */
  1639. memcpy(&info->super_copy->super_roots,
  1640. &info->super_for_commit->super_roots,
  1641. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1642. }
  1643. /*
  1644. * this copies info out of the root backup array and back into
  1645. * the in-memory super block. It is meant to help iterate through
  1646. * the array, so you send it the number of backups you've already
  1647. * tried and the last backup index you used.
  1648. *
  1649. * this returns -1 when it has tried all the backups
  1650. */
  1651. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1652. struct btrfs_super_block *super,
  1653. int *num_backups_tried, int *backup_index)
  1654. {
  1655. struct btrfs_root_backup *root_backup;
  1656. int newest = *backup_index;
  1657. if (*num_backups_tried == 0) {
  1658. u64 gen = btrfs_super_generation(super);
  1659. newest = find_newest_super_backup(info, gen);
  1660. if (newest == -1)
  1661. return -1;
  1662. *backup_index = newest;
  1663. *num_backups_tried = 1;
  1664. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1665. /* we've tried all the backups, all done */
  1666. return -1;
  1667. } else {
  1668. /* jump to the next oldest backup */
  1669. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1670. BTRFS_NUM_BACKUP_ROOTS;
  1671. *backup_index = newest;
  1672. *num_backups_tried += 1;
  1673. }
  1674. root_backup = super->super_roots + newest;
  1675. btrfs_set_super_generation(super,
  1676. btrfs_backup_tree_root_gen(root_backup));
  1677. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1678. btrfs_set_super_root_level(super,
  1679. btrfs_backup_tree_root_level(root_backup));
  1680. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1681. /*
  1682. * fixme: the total bytes and num_devices need to match or we should
  1683. * need a fsck
  1684. */
  1685. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1686. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1687. return 0;
  1688. }
  1689. /* helper to cleanup tree roots */
  1690. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1691. {
  1692. free_extent_buffer(info->tree_root->node);
  1693. free_extent_buffer(info->tree_root->commit_root);
  1694. free_extent_buffer(info->dev_root->node);
  1695. free_extent_buffer(info->dev_root->commit_root);
  1696. free_extent_buffer(info->extent_root->node);
  1697. free_extent_buffer(info->extent_root->commit_root);
  1698. free_extent_buffer(info->csum_root->node);
  1699. free_extent_buffer(info->csum_root->commit_root);
  1700. if (info->quota_root) {
  1701. free_extent_buffer(info->quota_root->node);
  1702. free_extent_buffer(info->quota_root->commit_root);
  1703. }
  1704. info->tree_root->node = NULL;
  1705. info->tree_root->commit_root = NULL;
  1706. info->dev_root->node = NULL;
  1707. info->dev_root->commit_root = NULL;
  1708. info->extent_root->node = NULL;
  1709. info->extent_root->commit_root = NULL;
  1710. info->csum_root->node = NULL;
  1711. info->csum_root->commit_root = NULL;
  1712. if (info->quota_root) {
  1713. info->quota_root->node = NULL;
  1714. info->quota_root->commit_root = NULL;
  1715. }
  1716. if (chunk_root) {
  1717. free_extent_buffer(info->chunk_root->node);
  1718. free_extent_buffer(info->chunk_root->commit_root);
  1719. info->chunk_root->node = NULL;
  1720. info->chunk_root->commit_root = NULL;
  1721. }
  1722. }
  1723. int open_ctree(struct super_block *sb,
  1724. struct btrfs_fs_devices *fs_devices,
  1725. char *options)
  1726. {
  1727. u32 sectorsize;
  1728. u32 nodesize;
  1729. u32 leafsize;
  1730. u32 blocksize;
  1731. u32 stripesize;
  1732. u64 generation;
  1733. u64 features;
  1734. struct btrfs_key location;
  1735. struct buffer_head *bh;
  1736. struct btrfs_super_block *disk_super;
  1737. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1738. struct btrfs_root *tree_root;
  1739. struct btrfs_root *extent_root;
  1740. struct btrfs_root *csum_root;
  1741. struct btrfs_root *chunk_root;
  1742. struct btrfs_root *dev_root;
  1743. struct btrfs_root *quota_root;
  1744. struct btrfs_root *log_tree_root;
  1745. int ret;
  1746. int err = -EINVAL;
  1747. int num_backups_tried = 0;
  1748. int backup_index = 0;
  1749. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1750. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1751. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1752. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1753. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1754. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1755. if (!tree_root || !extent_root || !csum_root ||
  1756. !chunk_root || !dev_root || !quota_root) {
  1757. err = -ENOMEM;
  1758. goto fail;
  1759. }
  1760. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1761. if (ret) {
  1762. err = ret;
  1763. goto fail;
  1764. }
  1765. ret = setup_bdi(fs_info, &fs_info->bdi);
  1766. if (ret) {
  1767. err = ret;
  1768. goto fail_srcu;
  1769. }
  1770. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1771. if (ret) {
  1772. err = ret;
  1773. goto fail_bdi;
  1774. }
  1775. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1776. (1 + ilog2(nr_cpu_ids));
  1777. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1778. if (ret) {
  1779. err = ret;
  1780. goto fail_dirty_metadata_bytes;
  1781. }
  1782. fs_info->btree_inode = new_inode(sb);
  1783. if (!fs_info->btree_inode) {
  1784. err = -ENOMEM;
  1785. goto fail_delalloc_bytes;
  1786. }
  1787. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1788. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1789. INIT_LIST_HEAD(&fs_info->trans_list);
  1790. INIT_LIST_HEAD(&fs_info->dead_roots);
  1791. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1792. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1793. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1794. spin_lock_init(&fs_info->delalloc_lock);
  1795. spin_lock_init(&fs_info->trans_lock);
  1796. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1797. spin_lock_init(&fs_info->delayed_iput_lock);
  1798. spin_lock_init(&fs_info->defrag_inodes_lock);
  1799. spin_lock_init(&fs_info->free_chunk_lock);
  1800. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1801. rwlock_init(&fs_info->tree_mod_log_lock);
  1802. mutex_init(&fs_info->reloc_mutex);
  1803. seqlock_init(&fs_info->profiles_lock);
  1804. init_completion(&fs_info->kobj_unregister);
  1805. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1806. INIT_LIST_HEAD(&fs_info->space_info);
  1807. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1808. btrfs_mapping_init(&fs_info->mapping_tree);
  1809. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1810. BTRFS_BLOCK_RSV_GLOBAL);
  1811. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1812. BTRFS_BLOCK_RSV_DELALLOC);
  1813. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1814. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1815. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1816. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1817. BTRFS_BLOCK_RSV_DELOPS);
  1818. atomic_set(&fs_info->nr_async_submits, 0);
  1819. atomic_set(&fs_info->async_delalloc_pages, 0);
  1820. atomic_set(&fs_info->async_submit_draining, 0);
  1821. atomic_set(&fs_info->nr_async_bios, 0);
  1822. atomic_set(&fs_info->defrag_running, 0);
  1823. atomic_set(&fs_info->tree_mod_seq, 0);
  1824. fs_info->sb = sb;
  1825. fs_info->max_inline = 8192 * 1024;
  1826. fs_info->metadata_ratio = 0;
  1827. fs_info->defrag_inodes = RB_ROOT;
  1828. fs_info->trans_no_join = 0;
  1829. fs_info->free_chunk_space = 0;
  1830. fs_info->tree_mod_log = RB_ROOT;
  1831. /* readahead state */
  1832. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1833. spin_lock_init(&fs_info->reada_lock);
  1834. fs_info->thread_pool_size = min_t(unsigned long,
  1835. num_online_cpus() + 2, 8);
  1836. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1837. spin_lock_init(&fs_info->ordered_extent_lock);
  1838. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1839. GFP_NOFS);
  1840. if (!fs_info->delayed_root) {
  1841. err = -ENOMEM;
  1842. goto fail_iput;
  1843. }
  1844. btrfs_init_delayed_root(fs_info->delayed_root);
  1845. mutex_init(&fs_info->scrub_lock);
  1846. atomic_set(&fs_info->scrubs_running, 0);
  1847. atomic_set(&fs_info->scrub_pause_req, 0);
  1848. atomic_set(&fs_info->scrubs_paused, 0);
  1849. atomic_set(&fs_info->scrub_cancel_req, 0);
  1850. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1851. init_rwsem(&fs_info->scrub_super_lock);
  1852. fs_info->scrub_workers_refcnt = 0;
  1853. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1854. fs_info->check_integrity_print_mask = 0;
  1855. #endif
  1856. spin_lock_init(&fs_info->balance_lock);
  1857. mutex_init(&fs_info->balance_mutex);
  1858. atomic_set(&fs_info->balance_running, 0);
  1859. atomic_set(&fs_info->balance_pause_req, 0);
  1860. atomic_set(&fs_info->balance_cancel_req, 0);
  1861. fs_info->balance_ctl = NULL;
  1862. init_waitqueue_head(&fs_info->balance_wait_q);
  1863. sb->s_blocksize = 4096;
  1864. sb->s_blocksize_bits = blksize_bits(4096);
  1865. sb->s_bdi = &fs_info->bdi;
  1866. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1867. set_nlink(fs_info->btree_inode, 1);
  1868. /*
  1869. * we set the i_size on the btree inode to the max possible int.
  1870. * the real end of the address space is determined by all of
  1871. * the devices in the system
  1872. */
  1873. fs_info->btree_inode->i_size = OFFSET_MAX;
  1874. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1875. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1876. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1877. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1878. fs_info->btree_inode->i_mapping);
  1879. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1880. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1881. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1882. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1883. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1884. sizeof(struct btrfs_key));
  1885. set_bit(BTRFS_INODE_DUMMY,
  1886. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1887. insert_inode_hash(fs_info->btree_inode);
  1888. spin_lock_init(&fs_info->block_group_cache_lock);
  1889. fs_info->block_group_cache_tree = RB_ROOT;
  1890. fs_info->first_logical_byte = (u64)-1;
  1891. extent_io_tree_init(&fs_info->freed_extents[0],
  1892. fs_info->btree_inode->i_mapping);
  1893. extent_io_tree_init(&fs_info->freed_extents[1],
  1894. fs_info->btree_inode->i_mapping);
  1895. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1896. fs_info->do_barriers = 1;
  1897. mutex_init(&fs_info->ordered_operations_mutex);
  1898. mutex_init(&fs_info->tree_log_mutex);
  1899. mutex_init(&fs_info->chunk_mutex);
  1900. mutex_init(&fs_info->transaction_kthread_mutex);
  1901. mutex_init(&fs_info->cleaner_mutex);
  1902. mutex_init(&fs_info->volume_mutex);
  1903. init_rwsem(&fs_info->extent_commit_sem);
  1904. init_rwsem(&fs_info->cleanup_work_sem);
  1905. init_rwsem(&fs_info->subvol_sem);
  1906. fs_info->dev_replace.lock_owner = 0;
  1907. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1908. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1909. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1910. mutex_init(&fs_info->dev_replace.lock);
  1911. spin_lock_init(&fs_info->qgroup_lock);
  1912. fs_info->qgroup_tree = RB_ROOT;
  1913. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1914. fs_info->qgroup_seq = 1;
  1915. fs_info->quota_enabled = 0;
  1916. fs_info->pending_quota_state = 0;
  1917. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1918. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1919. init_waitqueue_head(&fs_info->transaction_throttle);
  1920. init_waitqueue_head(&fs_info->transaction_wait);
  1921. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1922. init_waitqueue_head(&fs_info->async_submit_wait);
  1923. ret = btrfs_alloc_stripe_hash_table(fs_info);
  1924. if (ret) {
  1925. err = ret;
  1926. goto fail_alloc;
  1927. }
  1928. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1929. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1930. invalidate_bdev(fs_devices->latest_bdev);
  1931. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1932. if (!bh) {
  1933. err = -EINVAL;
  1934. goto fail_alloc;
  1935. }
  1936. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1937. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1938. sizeof(*fs_info->super_for_commit));
  1939. brelse(bh);
  1940. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1941. disk_super = fs_info->super_copy;
  1942. if (!btrfs_super_root(disk_super))
  1943. goto fail_alloc;
  1944. /* check FS state, whether FS is broken. */
  1945. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  1946. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  1947. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1948. if (ret) {
  1949. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1950. err = ret;
  1951. goto fail_alloc;
  1952. }
  1953. /*
  1954. * run through our array of backup supers and setup
  1955. * our ring pointer to the oldest one
  1956. */
  1957. generation = btrfs_super_generation(disk_super);
  1958. find_oldest_super_backup(fs_info, generation);
  1959. /*
  1960. * In the long term, we'll store the compression type in the super
  1961. * block, and it'll be used for per file compression control.
  1962. */
  1963. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1964. ret = btrfs_parse_options(tree_root, options);
  1965. if (ret) {
  1966. err = ret;
  1967. goto fail_alloc;
  1968. }
  1969. features = btrfs_super_incompat_flags(disk_super) &
  1970. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1971. if (features) {
  1972. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1973. "unsupported optional features (%Lx).\n",
  1974. (unsigned long long)features);
  1975. err = -EINVAL;
  1976. goto fail_alloc;
  1977. }
  1978. if (btrfs_super_leafsize(disk_super) !=
  1979. btrfs_super_nodesize(disk_super)) {
  1980. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1981. "blocksizes don't match. node %d leaf %d\n",
  1982. btrfs_super_nodesize(disk_super),
  1983. btrfs_super_leafsize(disk_super));
  1984. err = -EINVAL;
  1985. goto fail_alloc;
  1986. }
  1987. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1988. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1989. "blocksize (%d) was too large\n",
  1990. btrfs_super_leafsize(disk_super));
  1991. err = -EINVAL;
  1992. goto fail_alloc;
  1993. }
  1994. features = btrfs_super_incompat_flags(disk_super);
  1995. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1996. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  1997. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1998. /*
  1999. * flag our filesystem as having big metadata blocks if
  2000. * they are bigger than the page size
  2001. */
  2002. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2003. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2004. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2005. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2006. }
  2007. nodesize = btrfs_super_nodesize(disk_super);
  2008. leafsize = btrfs_super_leafsize(disk_super);
  2009. sectorsize = btrfs_super_sectorsize(disk_super);
  2010. stripesize = btrfs_super_stripesize(disk_super);
  2011. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2012. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2013. /*
  2014. * mixed block groups end up with duplicate but slightly offset
  2015. * extent buffers for the same range. It leads to corruptions
  2016. */
  2017. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2018. (sectorsize != leafsize)) {
  2019. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2020. "are not allowed for mixed block groups on %s\n",
  2021. sb->s_id);
  2022. goto fail_alloc;
  2023. }
  2024. btrfs_set_super_incompat_flags(disk_super, features);
  2025. features = btrfs_super_compat_ro_flags(disk_super) &
  2026. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2027. if (!(sb->s_flags & MS_RDONLY) && features) {
  2028. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2029. "unsupported option features (%Lx).\n",
  2030. (unsigned long long)features);
  2031. err = -EINVAL;
  2032. goto fail_alloc;
  2033. }
  2034. btrfs_init_workers(&fs_info->generic_worker,
  2035. "genwork", 1, NULL);
  2036. btrfs_init_workers(&fs_info->workers, "worker",
  2037. fs_info->thread_pool_size,
  2038. &fs_info->generic_worker);
  2039. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2040. fs_info->thread_pool_size,
  2041. &fs_info->generic_worker);
  2042. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2043. fs_info->thread_pool_size,
  2044. &fs_info->generic_worker);
  2045. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2046. min_t(u64, fs_devices->num_devices,
  2047. fs_info->thread_pool_size),
  2048. &fs_info->generic_worker);
  2049. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2050. 2, &fs_info->generic_worker);
  2051. /* a higher idle thresh on the submit workers makes it much more
  2052. * likely that bios will be send down in a sane order to the
  2053. * devices
  2054. */
  2055. fs_info->submit_workers.idle_thresh = 64;
  2056. fs_info->workers.idle_thresh = 16;
  2057. fs_info->workers.ordered = 1;
  2058. fs_info->delalloc_workers.idle_thresh = 2;
  2059. fs_info->delalloc_workers.ordered = 1;
  2060. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2061. &fs_info->generic_worker);
  2062. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2063. fs_info->thread_pool_size,
  2064. &fs_info->generic_worker);
  2065. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2066. fs_info->thread_pool_size,
  2067. &fs_info->generic_worker);
  2068. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2069. "endio-meta-write", fs_info->thread_pool_size,
  2070. &fs_info->generic_worker);
  2071. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2072. "endio-raid56", fs_info->thread_pool_size,
  2073. &fs_info->generic_worker);
  2074. btrfs_init_workers(&fs_info->rmw_workers,
  2075. "rmw", fs_info->thread_pool_size,
  2076. &fs_info->generic_worker);
  2077. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2078. fs_info->thread_pool_size,
  2079. &fs_info->generic_worker);
  2080. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2081. 1, &fs_info->generic_worker);
  2082. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2083. fs_info->thread_pool_size,
  2084. &fs_info->generic_worker);
  2085. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2086. fs_info->thread_pool_size,
  2087. &fs_info->generic_worker);
  2088. /*
  2089. * endios are largely parallel and should have a very
  2090. * low idle thresh
  2091. */
  2092. fs_info->endio_workers.idle_thresh = 4;
  2093. fs_info->endio_meta_workers.idle_thresh = 4;
  2094. fs_info->endio_raid56_workers.idle_thresh = 4;
  2095. fs_info->rmw_workers.idle_thresh = 2;
  2096. fs_info->endio_write_workers.idle_thresh = 2;
  2097. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2098. fs_info->readahead_workers.idle_thresh = 2;
  2099. /*
  2100. * btrfs_start_workers can really only fail because of ENOMEM so just
  2101. * return -ENOMEM if any of these fail.
  2102. */
  2103. ret = btrfs_start_workers(&fs_info->workers);
  2104. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2105. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2106. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2107. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2108. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2109. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2110. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2111. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2112. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2113. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2114. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2115. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2116. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2117. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2118. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2119. if (ret) {
  2120. err = -ENOMEM;
  2121. goto fail_sb_buffer;
  2122. }
  2123. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2124. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2125. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2126. tree_root->nodesize = nodesize;
  2127. tree_root->leafsize = leafsize;
  2128. tree_root->sectorsize = sectorsize;
  2129. tree_root->stripesize = stripesize;
  2130. sb->s_blocksize = sectorsize;
  2131. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2132. if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2133. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2134. goto fail_sb_buffer;
  2135. }
  2136. if (sectorsize != PAGE_SIZE) {
  2137. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2138. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2139. goto fail_sb_buffer;
  2140. }
  2141. mutex_lock(&fs_info->chunk_mutex);
  2142. ret = btrfs_read_sys_array(tree_root);
  2143. mutex_unlock(&fs_info->chunk_mutex);
  2144. if (ret) {
  2145. printk(KERN_WARNING "btrfs: failed to read the system "
  2146. "array on %s\n", sb->s_id);
  2147. goto fail_sb_buffer;
  2148. }
  2149. blocksize = btrfs_level_size(tree_root,
  2150. btrfs_super_chunk_root_level(disk_super));
  2151. generation = btrfs_super_chunk_root_generation(disk_super);
  2152. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2153. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2154. chunk_root->node = read_tree_block(chunk_root,
  2155. btrfs_super_chunk_root(disk_super),
  2156. blocksize, generation);
  2157. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2158. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2159. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2160. sb->s_id);
  2161. goto fail_tree_roots;
  2162. }
  2163. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2164. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2165. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2166. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2167. BTRFS_UUID_SIZE);
  2168. ret = btrfs_read_chunk_tree(chunk_root);
  2169. if (ret) {
  2170. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2171. sb->s_id);
  2172. goto fail_tree_roots;
  2173. }
  2174. /*
  2175. * keep the device that is marked to be the target device for the
  2176. * dev_replace procedure
  2177. */
  2178. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2179. if (!fs_devices->latest_bdev) {
  2180. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2181. sb->s_id);
  2182. goto fail_tree_roots;
  2183. }
  2184. retry_root_backup:
  2185. blocksize = btrfs_level_size(tree_root,
  2186. btrfs_super_root_level(disk_super));
  2187. generation = btrfs_super_generation(disk_super);
  2188. tree_root->node = read_tree_block(tree_root,
  2189. btrfs_super_root(disk_super),
  2190. blocksize, generation);
  2191. if (!tree_root->node ||
  2192. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2193. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2194. sb->s_id);
  2195. goto recovery_tree_root;
  2196. }
  2197. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2198. tree_root->commit_root = btrfs_root_node(tree_root);
  2199. ret = find_and_setup_root(tree_root, fs_info,
  2200. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2201. if (ret)
  2202. goto recovery_tree_root;
  2203. extent_root->track_dirty = 1;
  2204. ret = find_and_setup_root(tree_root, fs_info,
  2205. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2206. if (ret)
  2207. goto recovery_tree_root;
  2208. dev_root->track_dirty = 1;
  2209. ret = find_and_setup_root(tree_root, fs_info,
  2210. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2211. if (ret)
  2212. goto recovery_tree_root;
  2213. csum_root->track_dirty = 1;
  2214. ret = find_and_setup_root(tree_root, fs_info,
  2215. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2216. if (ret) {
  2217. kfree(quota_root);
  2218. quota_root = fs_info->quota_root = NULL;
  2219. } else {
  2220. quota_root->track_dirty = 1;
  2221. fs_info->quota_enabled = 1;
  2222. fs_info->pending_quota_state = 1;
  2223. }
  2224. fs_info->generation = generation;
  2225. fs_info->last_trans_committed = generation;
  2226. ret = btrfs_recover_balance(fs_info);
  2227. if (ret) {
  2228. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2229. goto fail_block_groups;
  2230. }
  2231. ret = btrfs_init_dev_stats(fs_info);
  2232. if (ret) {
  2233. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2234. ret);
  2235. goto fail_block_groups;
  2236. }
  2237. ret = btrfs_init_dev_replace(fs_info);
  2238. if (ret) {
  2239. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2240. goto fail_block_groups;
  2241. }
  2242. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2243. ret = btrfs_init_space_info(fs_info);
  2244. if (ret) {
  2245. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2246. goto fail_block_groups;
  2247. }
  2248. ret = btrfs_read_block_groups(extent_root);
  2249. if (ret) {
  2250. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2251. goto fail_block_groups;
  2252. }
  2253. fs_info->num_tolerated_disk_barrier_failures =
  2254. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2255. if (fs_info->fs_devices->missing_devices >
  2256. fs_info->num_tolerated_disk_barrier_failures &&
  2257. !(sb->s_flags & MS_RDONLY)) {
  2258. printk(KERN_WARNING
  2259. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2260. goto fail_block_groups;
  2261. }
  2262. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2263. "btrfs-cleaner");
  2264. if (IS_ERR(fs_info->cleaner_kthread))
  2265. goto fail_block_groups;
  2266. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2267. tree_root,
  2268. "btrfs-transaction");
  2269. if (IS_ERR(fs_info->transaction_kthread))
  2270. goto fail_cleaner;
  2271. if (!btrfs_test_opt(tree_root, SSD) &&
  2272. !btrfs_test_opt(tree_root, NOSSD) &&
  2273. !fs_info->fs_devices->rotating) {
  2274. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2275. "mode\n");
  2276. btrfs_set_opt(fs_info->mount_opt, SSD);
  2277. }
  2278. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2279. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2280. ret = btrfsic_mount(tree_root, fs_devices,
  2281. btrfs_test_opt(tree_root,
  2282. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2283. 1 : 0,
  2284. fs_info->check_integrity_print_mask);
  2285. if (ret)
  2286. printk(KERN_WARNING "btrfs: failed to initialize"
  2287. " integrity check module %s\n", sb->s_id);
  2288. }
  2289. #endif
  2290. ret = btrfs_read_qgroup_config(fs_info);
  2291. if (ret)
  2292. goto fail_trans_kthread;
  2293. /* do not make disk changes in broken FS */
  2294. if (btrfs_super_log_root(disk_super) != 0) {
  2295. u64 bytenr = btrfs_super_log_root(disk_super);
  2296. if (fs_devices->rw_devices == 0) {
  2297. printk(KERN_WARNING "Btrfs log replay required "
  2298. "on RO media\n");
  2299. err = -EIO;
  2300. goto fail_qgroup;
  2301. }
  2302. blocksize =
  2303. btrfs_level_size(tree_root,
  2304. btrfs_super_log_root_level(disk_super));
  2305. log_tree_root = btrfs_alloc_root(fs_info);
  2306. if (!log_tree_root) {
  2307. err = -ENOMEM;
  2308. goto fail_qgroup;
  2309. }
  2310. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2311. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2312. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2313. blocksize,
  2314. generation + 1);
  2315. /* returns with log_tree_root freed on success */
  2316. ret = btrfs_recover_log_trees(log_tree_root);
  2317. if (ret) {
  2318. btrfs_error(tree_root->fs_info, ret,
  2319. "Failed to recover log tree");
  2320. free_extent_buffer(log_tree_root->node);
  2321. kfree(log_tree_root);
  2322. goto fail_trans_kthread;
  2323. }
  2324. if (sb->s_flags & MS_RDONLY) {
  2325. ret = btrfs_commit_super(tree_root);
  2326. if (ret)
  2327. goto fail_trans_kthread;
  2328. }
  2329. }
  2330. ret = btrfs_find_orphan_roots(tree_root);
  2331. if (ret)
  2332. goto fail_trans_kthread;
  2333. if (!(sb->s_flags & MS_RDONLY)) {
  2334. ret = btrfs_cleanup_fs_roots(fs_info);
  2335. if (ret)
  2336. goto fail_trans_kthread;
  2337. ret = btrfs_recover_relocation(tree_root);
  2338. if (ret < 0) {
  2339. printk(KERN_WARNING
  2340. "btrfs: failed to recover relocation\n");
  2341. err = -EINVAL;
  2342. goto fail_qgroup;
  2343. }
  2344. }
  2345. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2346. location.type = BTRFS_ROOT_ITEM_KEY;
  2347. location.offset = (u64)-1;
  2348. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2349. if (!fs_info->fs_root)
  2350. goto fail_qgroup;
  2351. if (IS_ERR(fs_info->fs_root)) {
  2352. err = PTR_ERR(fs_info->fs_root);
  2353. goto fail_qgroup;
  2354. }
  2355. if (sb->s_flags & MS_RDONLY)
  2356. return 0;
  2357. down_read(&fs_info->cleanup_work_sem);
  2358. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2359. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2360. up_read(&fs_info->cleanup_work_sem);
  2361. close_ctree(tree_root);
  2362. return ret;
  2363. }
  2364. up_read(&fs_info->cleanup_work_sem);
  2365. ret = btrfs_resume_balance_async(fs_info);
  2366. if (ret) {
  2367. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2368. close_ctree(tree_root);
  2369. return ret;
  2370. }
  2371. ret = btrfs_resume_dev_replace_async(fs_info);
  2372. if (ret) {
  2373. pr_warn("btrfs: failed to resume dev_replace\n");
  2374. close_ctree(tree_root);
  2375. return ret;
  2376. }
  2377. return 0;
  2378. fail_qgroup:
  2379. btrfs_free_qgroup_config(fs_info);
  2380. fail_trans_kthread:
  2381. kthread_stop(fs_info->transaction_kthread);
  2382. fail_cleaner:
  2383. kthread_stop(fs_info->cleaner_kthread);
  2384. /*
  2385. * make sure we're done with the btree inode before we stop our
  2386. * kthreads
  2387. */
  2388. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2389. fail_block_groups:
  2390. btrfs_free_block_groups(fs_info);
  2391. fail_tree_roots:
  2392. free_root_pointers(fs_info, 1);
  2393. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2394. fail_sb_buffer:
  2395. btrfs_stop_workers(&fs_info->generic_worker);
  2396. btrfs_stop_workers(&fs_info->readahead_workers);
  2397. btrfs_stop_workers(&fs_info->fixup_workers);
  2398. btrfs_stop_workers(&fs_info->delalloc_workers);
  2399. btrfs_stop_workers(&fs_info->workers);
  2400. btrfs_stop_workers(&fs_info->endio_workers);
  2401. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2402. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  2403. btrfs_stop_workers(&fs_info->rmw_workers);
  2404. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2405. btrfs_stop_workers(&fs_info->endio_write_workers);
  2406. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2407. btrfs_stop_workers(&fs_info->submit_workers);
  2408. btrfs_stop_workers(&fs_info->delayed_workers);
  2409. btrfs_stop_workers(&fs_info->caching_workers);
  2410. btrfs_stop_workers(&fs_info->flush_workers);
  2411. fail_alloc:
  2412. fail_iput:
  2413. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2414. iput(fs_info->btree_inode);
  2415. fail_delalloc_bytes:
  2416. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2417. fail_dirty_metadata_bytes:
  2418. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2419. fail_bdi:
  2420. bdi_destroy(&fs_info->bdi);
  2421. fail_srcu:
  2422. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2423. fail:
  2424. btrfs_free_stripe_hash_table(fs_info);
  2425. btrfs_close_devices(fs_info->fs_devices);
  2426. return err;
  2427. recovery_tree_root:
  2428. if (!btrfs_test_opt(tree_root, RECOVERY))
  2429. goto fail_tree_roots;
  2430. free_root_pointers(fs_info, 0);
  2431. /* don't use the log in recovery mode, it won't be valid */
  2432. btrfs_set_super_log_root(disk_super, 0);
  2433. /* we can't trust the free space cache either */
  2434. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2435. ret = next_root_backup(fs_info, fs_info->super_copy,
  2436. &num_backups_tried, &backup_index);
  2437. if (ret == -1)
  2438. goto fail_block_groups;
  2439. goto retry_root_backup;
  2440. }
  2441. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2442. {
  2443. if (uptodate) {
  2444. set_buffer_uptodate(bh);
  2445. } else {
  2446. struct btrfs_device *device = (struct btrfs_device *)
  2447. bh->b_private;
  2448. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2449. "I/O error on %s\n",
  2450. rcu_str_deref(device->name));
  2451. /* note, we dont' set_buffer_write_io_error because we have
  2452. * our own ways of dealing with the IO errors
  2453. */
  2454. clear_buffer_uptodate(bh);
  2455. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2456. }
  2457. unlock_buffer(bh);
  2458. put_bh(bh);
  2459. }
  2460. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2461. {
  2462. struct buffer_head *bh;
  2463. struct buffer_head *latest = NULL;
  2464. struct btrfs_super_block *super;
  2465. int i;
  2466. u64 transid = 0;
  2467. u64 bytenr;
  2468. /* we would like to check all the supers, but that would make
  2469. * a btrfs mount succeed after a mkfs from a different FS.
  2470. * So, we need to add a special mount option to scan for
  2471. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2472. */
  2473. for (i = 0; i < 1; i++) {
  2474. bytenr = btrfs_sb_offset(i);
  2475. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2476. break;
  2477. bh = __bread(bdev, bytenr / 4096, 4096);
  2478. if (!bh)
  2479. continue;
  2480. super = (struct btrfs_super_block *)bh->b_data;
  2481. if (btrfs_super_bytenr(super) != bytenr ||
  2482. super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2483. brelse(bh);
  2484. continue;
  2485. }
  2486. if (!latest || btrfs_super_generation(super) > transid) {
  2487. brelse(latest);
  2488. latest = bh;
  2489. transid = btrfs_super_generation(super);
  2490. } else {
  2491. brelse(bh);
  2492. }
  2493. }
  2494. return latest;
  2495. }
  2496. /*
  2497. * this should be called twice, once with wait == 0 and
  2498. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2499. * we write are pinned.
  2500. *
  2501. * They are released when wait == 1 is done.
  2502. * max_mirrors must be the same for both runs, and it indicates how
  2503. * many supers on this one device should be written.
  2504. *
  2505. * max_mirrors == 0 means to write them all.
  2506. */
  2507. static int write_dev_supers(struct btrfs_device *device,
  2508. struct btrfs_super_block *sb,
  2509. int do_barriers, int wait, int max_mirrors)
  2510. {
  2511. struct buffer_head *bh;
  2512. int i;
  2513. int ret;
  2514. int errors = 0;
  2515. u32 crc;
  2516. u64 bytenr;
  2517. if (max_mirrors == 0)
  2518. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2519. for (i = 0; i < max_mirrors; i++) {
  2520. bytenr = btrfs_sb_offset(i);
  2521. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2522. break;
  2523. if (wait) {
  2524. bh = __find_get_block(device->bdev, bytenr / 4096,
  2525. BTRFS_SUPER_INFO_SIZE);
  2526. BUG_ON(!bh);
  2527. wait_on_buffer(bh);
  2528. if (!buffer_uptodate(bh))
  2529. errors++;
  2530. /* drop our reference */
  2531. brelse(bh);
  2532. /* drop the reference from the wait == 0 run */
  2533. brelse(bh);
  2534. continue;
  2535. } else {
  2536. btrfs_set_super_bytenr(sb, bytenr);
  2537. crc = ~(u32)0;
  2538. crc = btrfs_csum_data(NULL, (char *)sb +
  2539. BTRFS_CSUM_SIZE, crc,
  2540. BTRFS_SUPER_INFO_SIZE -
  2541. BTRFS_CSUM_SIZE);
  2542. btrfs_csum_final(crc, sb->csum);
  2543. /*
  2544. * one reference for us, and we leave it for the
  2545. * caller
  2546. */
  2547. bh = __getblk(device->bdev, bytenr / 4096,
  2548. BTRFS_SUPER_INFO_SIZE);
  2549. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2550. /* one reference for submit_bh */
  2551. get_bh(bh);
  2552. set_buffer_uptodate(bh);
  2553. lock_buffer(bh);
  2554. bh->b_end_io = btrfs_end_buffer_write_sync;
  2555. bh->b_private = device;
  2556. }
  2557. /*
  2558. * we fua the first super. The others we allow
  2559. * to go down lazy.
  2560. */
  2561. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2562. if (ret)
  2563. errors++;
  2564. }
  2565. return errors < i ? 0 : -1;
  2566. }
  2567. /*
  2568. * endio for the write_dev_flush, this will wake anyone waiting
  2569. * for the barrier when it is done
  2570. */
  2571. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2572. {
  2573. if (err) {
  2574. if (err == -EOPNOTSUPP)
  2575. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2576. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2577. }
  2578. if (bio->bi_private)
  2579. complete(bio->bi_private);
  2580. bio_put(bio);
  2581. }
  2582. /*
  2583. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2584. * sent down. With wait == 1, it waits for the previous flush.
  2585. *
  2586. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2587. * capable
  2588. */
  2589. static int write_dev_flush(struct btrfs_device *device, int wait)
  2590. {
  2591. struct bio *bio;
  2592. int ret = 0;
  2593. if (device->nobarriers)
  2594. return 0;
  2595. if (wait) {
  2596. bio = device->flush_bio;
  2597. if (!bio)
  2598. return 0;
  2599. wait_for_completion(&device->flush_wait);
  2600. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2601. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2602. rcu_str_deref(device->name));
  2603. device->nobarriers = 1;
  2604. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2605. ret = -EIO;
  2606. btrfs_dev_stat_inc_and_print(device,
  2607. BTRFS_DEV_STAT_FLUSH_ERRS);
  2608. }
  2609. /* drop the reference from the wait == 0 run */
  2610. bio_put(bio);
  2611. device->flush_bio = NULL;
  2612. return ret;
  2613. }
  2614. /*
  2615. * one reference for us, and we leave it for the
  2616. * caller
  2617. */
  2618. device->flush_bio = NULL;
  2619. bio = bio_alloc(GFP_NOFS, 0);
  2620. if (!bio)
  2621. return -ENOMEM;
  2622. bio->bi_end_io = btrfs_end_empty_barrier;
  2623. bio->bi_bdev = device->bdev;
  2624. init_completion(&device->flush_wait);
  2625. bio->bi_private = &device->flush_wait;
  2626. device->flush_bio = bio;
  2627. bio_get(bio);
  2628. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2629. return 0;
  2630. }
  2631. /*
  2632. * send an empty flush down to each device in parallel,
  2633. * then wait for them
  2634. */
  2635. static int barrier_all_devices(struct btrfs_fs_info *info)
  2636. {
  2637. struct list_head *head;
  2638. struct btrfs_device *dev;
  2639. int errors_send = 0;
  2640. int errors_wait = 0;
  2641. int ret;
  2642. /* send down all the barriers */
  2643. head = &info->fs_devices->devices;
  2644. list_for_each_entry_rcu(dev, head, dev_list) {
  2645. if (!dev->bdev) {
  2646. errors_send++;
  2647. continue;
  2648. }
  2649. if (!dev->in_fs_metadata || !dev->writeable)
  2650. continue;
  2651. ret = write_dev_flush(dev, 0);
  2652. if (ret)
  2653. errors_send++;
  2654. }
  2655. /* wait for all the barriers */
  2656. list_for_each_entry_rcu(dev, head, dev_list) {
  2657. if (!dev->bdev) {
  2658. errors_wait++;
  2659. continue;
  2660. }
  2661. if (!dev->in_fs_metadata || !dev->writeable)
  2662. continue;
  2663. ret = write_dev_flush(dev, 1);
  2664. if (ret)
  2665. errors_wait++;
  2666. }
  2667. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2668. errors_wait > info->num_tolerated_disk_barrier_failures)
  2669. return -EIO;
  2670. return 0;
  2671. }
  2672. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2673. struct btrfs_fs_info *fs_info)
  2674. {
  2675. struct btrfs_ioctl_space_info space;
  2676. struct btrfs_space_info *sinfo;
  2677. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2678. BTRFS_BLOCK_GROUP_SYSTEM,
  2679. BTRFS_BLOCK_GROUP_METADATA,
  2680. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2681. int num_types = 4;
  2682. int i;
  2683. int c;
  2684. int num_tolerated_disk_barrier_failures =
  2685. (int)fs_info->fs_devices->num_devices;
  2686. for (i = 0; i < num_types; i++) {
  2687. struct btrfs_space_info *tmp;
  2688. sinfo = NULL;
  2689. rcu_read_lock();
  2690. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2691. if (tmp->flags == types[i]) {
  2692. sinfo = tmp;
  2693. break;
  2694. }
  2695. }
  2696. rcu_read_unlock();
  2697. if (!sinfo)
  2698. continue;
  2699. down_read(&sinfo->groups_sem);
  2700. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2701. if (!list_empty(&sinfo->block_groups[c])) {
  2702. u64 flags;
  2703. btrfs_get_block_group_info(
  2704. &sinfo->block_groups[c], &space);
  2705. if (space.total_bytes == 0 ||
  2706. space.used_bytes == 0)
  2707. continue;
  2708. flags = space.flags;
  2709. /*
  2710. * return
  2711. * 0: if dup, single or RAID0 is configured for
  2712. * any of metadata, system or data, else
  2713. * 1: if RAID5 is configured, or if RAID1 or
  2714. * RAID10 is configured and only two mirrors
  2715. * are used, else
  2716. * 2: if RAID6 is configured, else
  2717. * num_mirrors - 1: if RAID1 or RAID10 is
  2718. * configured and more than
  2719. * 2 mirrors are used.
  2720. */
  2721. if (num_tolerated_disk_barrier_failures > 0 &&
  2722. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2723. BTRFS_BLOCK_GROUP_RAID0)) ||
  2724. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2725. == 0)))
  2726. num_tolerated_disk_barrier_failures = 0;
  2727. else if (num_tolerated_disk_barrier_failures > 1) {
  2728. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2729. BTRFS_BLOCK_GROUP_RAID5 |
  2730. BTRFS_BLOCK_GROUP_RAID10)) {
  2731. num_tolerated_disk_barrier_failures = 1;
  2732. } else if (flags &
  2733. BTRFS_BLOCK_GROUP_RAID5) {
  2734. num_tolerated_disk_barrier_failures = 2;
  2735. }
  2736. }
  2737. }
  2738. }
  2739. up_read(&sinfo->groups_sem);
  2740. }
  2741. return num_tolerated_disk_barrier_failures;
  2742. }
  2743. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2744. {
  2745. struct list_head *head;
  2746. struct btrfs_device *dev;
  2747. struct btrfs_super_block *sb;
  2748. struct btrfs_dev_item *dev_item;
  2749. int ret;
  2750. int do_barriers;
  2751. int max_errors;
  2752. int total_errors = 0;
  2753. u64 flags;
  2754. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2755. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2756. backup_super_roots(root->fs_info);
  2757. sb = root->fs_info->super_for_commit;
  2758. dev_item = &sb->dev_item;
  2759. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2760. head = &root->fs_info->fs_devices->devices;
  2761. if (do_barriers) {
  2762. ret = barrier_all_devices(root->fs_info);
  2763. if (ret) {
  2764. mutex_unlock(
  2765. &root->fs_info->fs_devices->device_list_mutex);
  2766. btrfs_error(root->fs_info, ret,
  2767. "errors while submitting device barriers.");
  2768. return ret;
  2769. }
  2770. }
  2771. list_for_each_entry_rcu(dev, head, dev_list) {
  2772. if (!dev->bdev) {
  2773. total_errors++;
  2774. continue;
  2775. }
  2776. if (!dev->in_fs_metadata || !dev->writeable)
  2777. continue;
  2778. btrfs_set_stack_device_generation(dev_item, 0);
  2779. btrfs_set_stack_device_type(dev_item, dev->type);
  2780. btrfs_set_stack_device_id(dev_item, dev->devid);
  2781. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2782. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2783. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2784. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2785. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2786. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2787. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2788. flags = btrfs_super_flags(sb);
  2789. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2790. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2791. if (ret)
  2792. total_errors++;
  2793. }
  2794. if (total_errors > max_errors) {
  2795. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2796. total_errors);
  2797. /* This shouldn't happen. FUA is masked off if unsupported */
  2798. BUG();
  2799. }
  2800. total_errors = 0;
  2801. list_for_each_entry_rcu(dev, head, dev_list) {
  2802. if (!dev->bdev)
  2803. continue;
  2804. if (!dev->in_fs_metadata || !dev->writeable)
  2805. continue;
  2806. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2807. if (ret)
  2808. total_errors++;
  2809. }
  2810. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2811. if (total_errors > max_errors) {
  2812. btrfs_error(root->fs_info, -EIO,
  2813. "%d errors while writing supers", total_errors);
  2814. return -EIO;
  2815. }
  2816. return 0;
  2817. }
  2818. int write_ctree_super(struct btrfs_trans_handle *trans,
  2819. struct btrfs_root *root, int max_mirrors)
  2820. {
  2821. int ret;
  2822. ret = write_all_supers(root, max_mirrors);
  2823. return ret;
  2824. }
  2825. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2826. {
  2827. spin_lock(&fs_info->fs_roots_radix_lock);
  2828. radix_tree_delete(&fs_info->fs_roots_radix,
  2829. (unsigned long)root->root_key.objectid);
  2830. spin_unlock(&fs_info->fs_roots_radix_lock);
  2831. if (btrfs_root_refs(&root->root_item) == 0)
  2832. synchronize_srcu(&fs_info->subvol_srcu);
  2833. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2834. btrfs_free_log(NULL, root);
  2835. btrfs_free_log_root_tree(NULL, fs_info);
  2836. }
  2837. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2838. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2839. free_fs_root(root);
  2840. }
  2841. static void free_fs_root(struct btrfs_root *root)
  2842. {
  2843. iput(root->cache_inode);
  2844. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2845. if (root->anon_dev)
  2846. free_anon_bdev(root->anon_dev);
  2847. free_extent_buffer(root->node);
  2848. free_extent_buffer(root->commit_root);
  2849. kfree(root->free_ino_ctl);
  2850. kfree(root->free_ino_pinned);
  2851. kfree(root->name);
  2852. kfree(root);
  2853. }
  2854. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2855. {
  2856. int ret;
  2857. struct btrfs_root *gang[8];
  2858. int i;
  2859. while (!list_empty(&fs_info->dead_roots)) {
  2860. gang[0] = list_entry(fs_info->dead_roots.next,
  2861. struct btrfs_root, root_list);
  2862. list_del(&gang[0]->root_list);
  2863. if (gang[0]->in_radix) {
  2864. btrfs_free_fs_root(fs_info, gang[0]);
  2865. } else {
  2866. free_extent_buffer(gang[0]->node);
  2867. free_extent_buffer(gang[0]->commit_root);
  2868. kfree(gang[0]);
  2869. }
  2870. }
  2871. while (1) {
  2872. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2873. (void **)gang, 0,
  2874. ARRAY_SIZE(gang));
  2875. if (!ret)
  2876. break;
  2877. for (i = 0; i < ret; i++)
  2878. btrfs_free_fs_root(fs_info, gang[i]);
  2879. }
  2880. }
  2881. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2882. {
  2883. u64 root_objectid = 0;
  2884. struct btrfs_root *gang[8];
  2885. int i;
  2886. int ret;
  2887. while (1) {
  2888. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2889. (void **)gang, root_objectid,
  2890. ARRAY_SIZE(gang));
  2891. if (!ret)
  2892. break;
  2893. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2894. for (i = 0; i < ret; i++) {
  2895. int err;
  2896. root_objectid = gang[i]->root_key.objectid;
  2897. err = btrfs_orphan_cleanup(gang[i]);
  2898. if (err)
  2899. return err;
  2900. }
  2901. root_objectid++;
  2902. }
  2903. return 0;
  2904. }
  2905. int btrfs_commit_super(struct btrfs_root *root)
  2906. {
  2907. struct btrfs_trans_handle *trans;
  2908. int ret;
  2909. mutex_lock(&root->fs_info->cleaner_mutex);
  2910. btrfs_run_delayed_iputs(root);
  2911. btrfs_clean_old_snapshots(root);
  2912. mutex_unlock(&root->fs_info->cleaner_mutex);
  2913. /* wait until ongoing cleanup work done */
  2914. down_write(&root->fs_info->cleanup_work_sem);
  2915. up_write(&root->fs_info->cleanup_work_sem);
  2916. trans = btrfs_join_transaction(root);
  2917. if (IS_ERR(trans))
  2918. return PTR_ERR(trans);
  2919. ret = btrfs_commit_transaction(trans, root);
  2920. if (ret)
  2921. return ret;
  2922. /* run commit again to drop the original snapshot */
  2923. trans = btrfs_join_transaction(root);
  2924. if (IS_ERR(trans))
  2925. return PTR_ERR(trans);
  2926. ret = btrfs_commit_transaction(trans, root);
  2927. if (ret)
  2928. return ret;
  2929. ret = btrfs_write_and_wait_transaction(NULL, root);
  2930. if (ret) {
  2931. btrfs_error(root->fs_info, ret,
  2932. "Failed to sync btree inode to disk.");
  2933. return ret;
  2934. }
  2935. ret = write_ctree_super(NULL, root, 0);
  2936. return ret;
  2937. }
  2938. int close_ctree(struct btrfs_root *root)
  2939. {
  2940. struct btrfs_fs_info *fs_info = root->fs_info;
  2941. int ret;
  2942. fs_info->closing = 1;
  2943. smp_mb();
  2944. /* pause restriper - we want to resume on mount */
  2945. btrfs_pause_balance(fs_info);
  2946. btrfs_dev_replace_suspend_for_unmount(fs_info);
  2947. btrfs_scrub_cancel(fs_info);
  2948. /* wait for any defraggers to finish */
  2949. wait_event(fs_info->transaction_wait,
  2950. (atomic_read(&fs_info->defrag_running) == 0));
  2951. /* clear out the rbtree of defraggable inodes */
  2952. btrfs_cleanup_defrag_inodes(fs_info);
  2953. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2954. ret = btrfs_commit_super(root);
  2955. if (ret)
  2956. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2957. }
  2958. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  2959. btrfs_error_commit_super(root);
  2960. btrfs_put_block_group_cache(fs_info);
  2961. kthread_stop(fs_info->transaction_kthread);
  2962. kthread_stop(fs_info->cleaner_kthread);
  2963. fs_info->closing = 2;
  2964. smp_mb();
  2965. btrfs_free_qgroup_config(root->fs_info);
  2966. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  2967. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  2968. percpu_counter_sum(&fs_info->delalloc_bytes));
  2969. }
  2970. free_extent_buffer(fs_info->extent_root->node);
  2971. free_extent_buffer(fs_info->extent_root->commit_root);
  2972. free_extent_buffer(fs_info->tree_root->node);
  2973. free_extent_buffer(fs_info->tree_root->commit_root);
  2974. free_extent_buffer(fs_info->chunk_root->node);
  2975. free_extent_buffer(fs_info->chunk_root->commit_root);
  2976. free_extent_buffer(fs_info->dev_root->node);
  2977. free_extent_buffer(fs_info->dev_root->commit_root);
  2978. free_extent_buffer(fs_info->csum_root->node);
  2979. free_extent_buffer(fs_info->csum_root->commit_root);
  2980. if (fs_info->quota_root) {
  2981. free_extent_buffer(fs_info->quota_root->node);
  2982. free_extent_buffer(fs_info->quota_root->commit_root);
  2983. }
  2984. btrfs_free_block_groups(fs_info);
  2985. del_fs_roots(fs_info);
  2986. iput(fs_info->btree_inode);
  2987. btrfs_stop_workers(&fs_info->generic_worker);
  2988. btrfs_stop_workers(&fs_info->fixup_workers);
  2989. btrfs_stop_workers(&fs_info->delalloc_workers);
  2990. btrfs_stop_workers(&fs_info->workers);
  2991. btrfs_stop_workers(&fs_info->endio_workers);
  2992. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2993. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  2994. btrfs_stop_workers(&fs_info->rmw_workers);
  2995. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2996. btrfs_stop_workers(&fs_info->endio_write_workers);
  2997. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2998. btrfs_stop_workers(&fs_info->submit_workers);
  2999. btrfs_stop_workers(&fs_info->delayed_workers);
  3000. btrfs_stop_workers(&fs_info->caching_workers);
  3001. btrfs_stop_workers(&fs_info->readahead_workers);
  3002. btrfs_stop_workers(&fs_info->flush_workers);
  3003. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3004. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3005. btrfsic_unmount(root, fs_info->fs_devices);
  3006. #endif
  3007. btrfs_close_devices(fs_info->fs_devices);
  3008. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3009. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3010. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3011. bdi_destroy(&fs_info->bdi);
  3012. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3013. btrfs_free_stripe_hash_table(fs_info);
  3014. return 0;
  3015. }
  3016. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3017. int atomic)
  3018. {
  3019. int ret;
  3020. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3021. ret = extent_buffer_uptodate(buf);
  3022. if (!ret)
  3023. return ret;
  3024. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3025. parent_transid, atomic);
  3026. if (ret == -EAGAIN)
  3027. return ret;
  3028. return !ret;
  3029. }
  3030. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3031. {
  3032. return set_extent_buffer_uptodate(buf);
  3033. }
  3034. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3035. {
  3036. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3037. u64 transid = btrfs_header_generation(buf);
  3038. int was_dirty;
  3039. btrfs_assert_tree_locked(buf);
  3040. if (transid != root->fs_info->generation)
  3041. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3042. "found %llu running %llu\n",
  3043. (unsigned long long)buf->start,
  3044. (unsigned long long)transid,
  3045. (unsigned long long)root->fs_info->generation);
  3046. was_dirty = set_extent_buffer_dirty(buf);
  3047. if (!was_dirty)
  3048. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3049. buf->len,
  3050. root->fs_info->dirty_metadata_batch);
  3051. }
  3052. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3053. int flush_delayed)
  3054. {
  3055. /*
  3056. * looks as though older kernels can get into trouble with
  3057. * this code, they end up stuck in balance_dirty_pages forever
  3058. */
  3059. int ret;
  3060. if (current->flags & PF_MEMALLOC)
  3061. return;
  3062. if (flush_delayed)
  3063. btrfs_balance_delayed_items(root);
  3064. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3065. BTRFS_DIRTY_METADATA_THRESH);
  3066. if (ret > 0) {
  3067. balance_dirty_pages_ratelimited(
  3068. root->fs_info->btree_inode->i_mapping);
  3069. }
  3070. return;
  3071. }
  3072. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3073. {
  3074. __btrfs_btree_balance_dirty(root, 1);
  3075. }
  3076. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3077. {
  3078. __btrfs_btree_balance_dirty(root, 0);
  3079. }
  3080. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3081. {
  3082. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3083. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3084. }
  3085. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3086. int read_only)
  3087. {
  3088. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  3089. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  3090. return -EINVAL;
  3091. }
  3092. if (read_only)
  3093. return 0;
  3094. return 0;
  3095. }
  3096. void btrfs_error_commit_super(struct btrfs_root *root)
  3097. {
  3098. mutex_lock(&root->fs_info->cleaner_mutex);
  3099. btrfs_run_delayed_iputs(root);
  3100. mutex_unlock(&root->fs_info->cleaner_mutex);
  3101. down_write(&root->fs_info->cleanup_work_sem);
  3102. up_write(&root->fs_info->cleanup_work_sem);
  3103. /* cleanup FS via transaction */
  3104. btrfs_cleanup_transaction(root);
  3105. }
  3106. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3107. struct btrfs_root *root)
  3108. {
  3109. struct btrfs_inode *btrfs_inode;
  3110. struct list_head splice;
  3111. INIT_LIST_HEAD(&splice);
  3112. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3113. spin_lock(&root->fs_info->ordered_extent_lock);
  3114. list_splice_init(&t->ordered_operations, &splice);
  3115. while (!list_empty(&splice)) {
  3116. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3117. ordered_operations);
  3118. list_del_init(&btrfs_inode->ordered_operations);
  3119. btrfs_invalidate_inodes(btrfs_inode->root);
  3120. }
  3121. spin_unlock(&root->fs_info->ordered_extent_lock);
  3122. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3123. }
  3124. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3125. {
  3126. struct btrfs_ordered_extent *ordered;
  3127. spin_lock(&root->fs_info->ordered_extent_lock);
  3128. /*
  3129. * This will just short circuit the ordered completion stuff which will
  3130. * make sure the ordered extent gets properly cleaned up.
  3131. */
  3132. list_for_each_entry(ordered, &root->fs_info->ordered_extents,
  3133. root_extent_list)
  3134. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3135. spin_unlock(&root->fs_info->ordered_extent_lock);
  3136. }
  3137. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3138. struct btrfs_root *root)
  3139. {
  3140. struct rb_node *node;
  3141. struct btrfs_delayed_ref_root *delayed_refs;
  3142. struct btrfs_delayed_ref_node *ref;
  3143. int ret = 0;
  3144. delayed_refs = &trans->delayed_refs;
  3145. spin_lock(&delayed_refs->lock);
  3146. if (delayed_refs->num_entries == 0) {
  3147. spin_unlock(&delayed_refs->lock);
  3148. printk(KERN_INFO "delayed_refs has NO entry\n");
  3149. return ret;
  3150. }
  3151. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3152. struct btrfs_delayed_ref_head *head = NULL;
  3153. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3154. atomic_set(&ref->refs, 1);
  3155. if (btrfs_delayed_ref_is_head(ref)) {
  3156. head = btrfs_delayed_node_to_head(ref);
  3157. if (!mutex_trylock(&head->mutex)) {
  3158. atomic_inc(&ref->refs);
  3159. spin_unlock(&delayed_refs->lock);
  3160. /* Need to wait for the delayed ref to run */
  3161. mutex_lock(&head->mutex);
  3162. mutex_unlock(&head->mutex);
  3163. btrfs_put_delayed_ref(ref);
  3164. spin_lock(&delayed_refs->lock);
  3165. continue;
  3166. }
  3167. btrfs_free_delayed_extent_op(head->extent_op);
  3168. delayed_refs->num_heads--;
  3169. if (list_empty(&head->cluster))
  3170. delayed_refs->num_heads_ready--;
  3171. list_del_init(&head->cluster);
  3172. }
  3173. ref->in_tree = 0;
  3174. rb_erase(&ref->rb_node, &delayed_refs->root);
  3175. delayed_refs->num_entries--;
  3176. if (head)
  3177. mutex_unlock(&head->mutex);
  3178. spin_unlock(&delayed_refs->lock);
  3179. btrfs_put_delayed_ref(ref);
  3180. cond_resched();
  3181. spin_lock(&delayed_refs->lock);
  3182. }
  3183. spin_unlock(&delayed_refs->lock);
  3184. return ret;
  3185. }
  3186. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3187. {
  3188. struct btrfs_pending_snapshot *snapshot;
  3189. struct list_head splice;
  3190. INIT_LIST_HEAD(&splice);
  3191. list_splice_init(&t->pending_snapshots, &splice);
  3192. while (!list_empty(&splice)) {
  3193. snapshot = list_entry(splice.next,
  3194. struct btrfs_pending_snapshot,
  3195. list);
  3196. snapshot->error = -ECANCELED;
  3197. list_del_init(&snapshot->list);
  3198. }
  3199. }
  3200. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3201. {
  3202. struct btrfs_inode *btrfs_inode;
  3203. struct list_head splice;
  3204. INIT_LIST_HEAD(&splice);
  3205. spin_lock(&root->fs_info->delalloc_lock);
  3206. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3207. while (!list_empty(&splice)) {
  3208. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3209. delalloc_inodes);
  3210. list_del_init(&btrfs_inode->delalloc_inodes);
  3211. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3212. &btrfs_inode->runtime_flags);
  3213. btrfs_invalidate_inodes(btrfs_inode->root);
  3214. }
  3215. spin_unlock(&root->fs_info->delalloc_lock);
  3216. }
  3217. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3218. struct extent_io_tree *dirty_pages,
  3219. int mark)
  3220. {
  3221. int ret;
  3222. struct page *page;
  3223. struct inode *btree_inode = root->fs_info->btree_inode;
  3224. struct extent_buffer *eb;
  3225. u64 start = 0;
  3226. u64 end;
  3227. u64 offset;
  3228. unsigned long index;
  3229. while (1) {
  3230. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3231. mark, NULL);
  3232. if (ret)
  3233. break;
  3234. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3235. while (start <= end) {
  3236. index = start >> PAGE_CACHE_SHIFT;
  3237. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3238. page = find_get_page(btree_inode->i_mapping, index);
  3239. if (!page)
  3240. continue;
  3241. offset = page_offset(page);
  3242. spin_lock(&dirty_pages->buffer_lock);
  3243. eb = radix_tree_lookup(
  3244. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3245. offset >> PAGE_CACHE_SHIFT);
  3246. spin_unlock(&dirty_pages->buffer_lock);
  3247. if (eb)
  3248. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3249. &eb->bflags);
  3250. if (PageWriteback(page))
  3251. end_page_writeback(page);
  3252. lock_page(page);
  3253. if (PageDirty(page)) {
  3254. clear_page_dirty_for_io(page);
  3255. spin_lock_irq(&page->mapping->tree_lock);
  3256. radix_tree_tag_clear(&page->mapping->page_tree,
  3257. page_index(page),
  3258. PAGECACHE_TAG_DIRTY);
  3259. spin_unlock_irq(&page->mapping->tree_lock);
  3260. }
  3261. unlock_page(page);
  3262. page_cache_release(page);
  3263. }
  3264. }
  3265. return ret;
  3266. }
  3267. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3268. struct extent_io_tree *pinned_extents)
  3269. {
  3270. struct extent_io_tree *unpin;
  3271. u64 start;
  3272. u64 end;
  3273. int ret;
  3274. bool loop = true;
  3275. unpin = pinned_extents;
  3276. again:
  3277. while (1) {
  3278. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3279. EXTENT_DIRTY, NULL);
  3280. if (ret)
  3281. break;
  3282. /* opt_discard */
  3283. if (btrfs_test_opt(root, DISCARD))
  3284. ret = btrfs_error_discard_extent(root, start,
  3285. end + 1 - start,
  3286. NULL);
  3287. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3288. btrfs_error_unpin_extent_range(root, start, end);
  3289. cond_resched();
  3290. }
  3291. if (loop) {
  3292. if (unpin == &root->fs_info->freed_extents[0])
  3293. unpin = &root->fs_info->freed_extents[1];
  3294. else
  3295. unpin = &root->fs_info->freed_extents[0];
  3296. loop = false;
  3297. goto again;
  3298. }
  3299. return 0;
  3300. }
  3301. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3302. struct btrfs_root *root)
  3303. {
  3304. btrfs_destroy_delayed_refs(cur_trans, root);
  3305. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3306. cur_trans->dirty_pages.dirty_bytes);
  3307. /* FIXME: cleanup wait for commit */
  3308. cur_trans->in_commit = 1;
  3309. cur_trans->blocked = 1;
  3310. wake_up(&root->fs_info->transaction_blocked_wait);
  3311. btrfs_evict_pending_snapshots(cur_trans);
  3312. cur_trans->blocked = 0;
  3313. wake_up(&root->fs_info->transaction_wait);
  3314. cur_trans->commit_done = 1;
  3315. wake_up(&cur_trans->commit_wait);
  3316. btrfs_destroy_delayed_inodes(root);
  3317. btrfs_assert_delayed_root_empty(root);
  3318. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3319. EXTENT_DIRTY);
  3320. btrfs_destroy_pinned_extent(root,
  3321. root->fs_info->pinned_extents);
  3322. /*
  3323. memset(cur_trans, 0, sizeof(*cur_trans));
  3324. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3325. */
  3326. }
  3327. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3328. {
  3329. struct btrfs_transaction *t;
  3330. LIST_HEAD(list);
  3331. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3332. spin_lock(&root->fs_info->trans_lock);
  3333. list_splice_init(&root->fs_info->trans_list, &list);
  3334. root->fs_info->trans_no_join = 1;
  3335. spin_unlock(&root->fs_info->trans_lock);
  3336. while (!list_empty(&list)) {
  3337. t = list_entry(list.next, struct btrfs_transaction, list);
  3338. btrfs_destroy_ordered_operations(t, root);
  3339. btrfs_destroy_ordered_extents(root);
  3340. btrfs_destroy_delayed_refs(t, root);
  3341. btrfs_block_rsv_release(root,
  3342. &root->fs_info->trans_block_rsv,
  3343. t->dirty_pages.dirty_bytes);
  3344. /* FIXME: cleanup wait for commit */
  3345. t->in_commit = 1;
  3346. t->blocked = 1;
  3347. smp_mb();
  3348. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3349. wake_up(&root->fs_info->transaction_blocked_wait);
  3350. btrfs_evict_pending_snapshots(t);
  3351. t->blocked = 0;
  3352. smp_mb();
  3353. if (waitqueue_active(&root->fs_info->transaction_wait))
  3354. wake_up(&root->fs_info->transaction_wait);
  3355. t->commit_done = 1;
  3356. smp_mb();
  3357. if (waitqueue_active(&t->commit_wait))
  3358. wake_up(&t->commit_wait);
  3359. btrfs_destroy_delayed_inodes(root);
  3360. btrfs_assert_delayed_root_empty(root);
  3361. btrfs_destroy_delalloc_inodes(root);
  3362. spin_lock(&root->fs_info->trans_lock);
  3363. root->fs_info->running_transaction = NULL;
  3364. spin_unlock(&root->fs_info->trans_lock);
  3365. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3366. EXTENT_DIRTY);
  3367. btrfs_destroy_pinned_extent(root,
  3368. root->fs_info->pinned_extents);
  3369. atomic_set(&t->use_count, 0);
  3370. list_del_init(&t->list);
  3371. memset(t, 0, sizeof(*t));
  3372. kmem_cache_free(btrfs_transaction_cachep, t);
  3373. }
  3374. spin_lock(&root->fs_info->trans_lock);
  3375. root->fs_info->trans_no_join = 0;
  3376. spin_unlock(&root->fs_info->trans_lock);
  3377. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3378. return 0;
  3379. }
  3380. static struct extent_io_ops btree_extent_io_ops = {
  3381. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3382. .readpage_io_failed_hook = btree_io_failed_hook,
  3383. .submit_bio_hook = btree_submit_bio_hook,
  3384. /* note we're sharing with inode.c for the merge bio hook */
  3385. .merge_bio_hook = btrfs_merge_bio_hook,
  3386. };