slub.c 125 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <linux/memcontrol.h>
  34. #include <trace/events/kmem.h>
  35. #include "internal.h"
  36. /*
  37. * Lock order:
  38. * 1. slab_mutex (Global Mutex)
  39. * 2. node->list_lock
  40. * 3. slab_lock(page) (Only on some arches and for debugging)
  41. *
  42. * slab_mutex
  43. *
  44. * The role of the slab_mutex is to protect the list of all the slabs
  45. * and to synchronize major metadata changes to slab cache structures.
  46. *
  47. * The slab_lock is only used for debugging and on arches that do not
  48. * have the ability to do a cmpxchg_double. It only protects the second
  49. * double word in the page struct. Meaning
  50. * A. page->freelist -> List of object free in a page
  51. * B. page->counters -> Counters of objects
  52. * C. page->frozen -> frozen state
  53. *
  54. * If a slab is frozen then it is exempt from list management. It is not
  55. * on any list. The processor that froze the slab is the one who can
  56. * perform list operations on the page. Other processors may put objects
  57. * onto the freelist but the processor that froze the slab is the only
  58. * one that can retrieve the objects from the page's freelist.
  59. *
  60. * The list_lock protects the partial and full list on each node and
  61. * the partial slab counter. If taken then no new slabs may be added or
  62. * removed from the lists nor make the number of partial slabs be modified.
  63. * (Note that the total number of slabs is an atomic value that may be
  64. * modified without taking the list lock).
  65. *
  66. * The list_lock is a centralized lock and thus we avoid taking it as
  67. * much as possible. As long as SLUB does not have to handle partial
  68. * slabs, operations can continue without any centralized lock. F.e.
  69. * allocating a long series of objects that fill up slabs does not require
  70. * the list lock.
  71. * Interrupts are disabled during allocation and deallocation in order to
  72. * make the slab allocator safe to use in the context of an irq. In addition
  73. * interrupts are disabled to ensure that the processor does not change
  74. * while handling per_cpu slabs, due to kernel preemption.
  75. *
  76. * SLUB assigns one slab for allocation to each processor.
  77. * Allocations only occur from these slabs called cpu slabs.
  78. *
  79. * Slabs with free elements are kept on a partial list and during regular
  80. * operations no list for full slabs is used. If an object in a full slab is
  81. * freed then the slab will show up again on the partial lists.
  82. * We track full slabs for debugging purposes though because otherwise we
  83. * cannot scan all objects.
  84. *
  85. * Slabs are freed when they become empty. Teardown and setup is
  86. * minimal so we rely on the page allocators per cpu caches for
  87. * fast frees and allocs.
  88. *
  89. * Overloading of page flags that are otherwise used for LRU management.
  90. *
  91. * PageActive The slab is frozen and exempt from list processing.
  92. * This means that the slab is dedicated to a purpose
  93. * such as satisfying allocations for a specific
  94. * processor. Objects may be freed in the slab while
  95. * it is frozen but slab_free will then skip the usual
  96. * list operations. It is up to the processor holding
  97. * the slab to integrate the slab into the slab lists
  98. * when the slab is no longer needed.
  99. *
  100. * One use of this flag is to mark slabs that are
  101. * used for allocations. Then such a slab becomes a cpu
  102. * slab. The cpu slab may be equipped with an additional
  103. * freelist that allows lockless access to
  104. * free objects in addition to the regular freelist
  105. * that requires the slab lock.
  106. *
  107. * PageError Slab requires special handling due to debug
  108. * options set. This moves slab handling out of
  109. * the fast path and disables lockless freelists.
  110. */
  111. static inline int kmem_cache_debug(struct kmem_cache *s)
  112. {
  113. #ifdef CONFIG_SLUB_DEBUG
  114. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  115. #else
  116. return 0;
  117. #endif
  118. }
  119. /*
  120. * Issues still to be resolved:
  121. *
  122. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  123. *
  124. * - Variable sizing of the per node arrays
  125. */
  126. /* Enable to test recovery from slab corruption on boot */
  127. #undef SLUB_RESILIENCY_TEST
  128. /* Enable to log cmpxchg failures */
  129. #undef SLUB_DEBUG_CMPXCHG
  130. /*
  131. * Mininum number of partial slabs. These will be left on the partial
  132. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  133. */
  134. #define MIN_PARTIAL 5
  135. /*
  136. * Maximum number of desirable partial slabs.
  137. * The existence of more partial slabs makes kmem_cache_shrink
  138. * sort the partial list by the number of objects in the.
  139. */
  140. #define MAX_PARTIAL 10
  141. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  142. SLAB_POISON | SLAB_STORE_USER)
  143. /*
  144. * Debugging flags that require metadata to be stored in the slab. These get
  145. * disabled when slub_debug=O is used and a cache's min order increases with
  146. * metadata.
  147. */
  148. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  149. /*
  150. * Set of flags that will prevent slab merging
  151. */
  152. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  153. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  154. SLAB_FAILSLAB)
  155. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  156. SLAB_CACHE_DMA | SLAB_NOTRACK)
  157. #define OO_SHIFT 16
  158. #define OO_MASK ((1 << OO_SHIFT) - 1)
  159. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  160. /* Internal SLUB flags */
  161. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  162. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  163. #ifdef CONFIG_SMP
  164. static struct notifier_block slab_notifier;
  165. #endif
  166. /*
  167. * Tracking user of a slab.
  168. */
  169. #define TRACK_ADDRS_COUNT 16
  170. struct track {
  171. unsigned long addr; /* Called from address */
  172. #ifdef CONFIG_STACKTRACE
  173. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  174. #endif
  175. int cpu; /* Was running on cpu */
  176. int pid; /* Pid context */
  177. unsigned long when; /* When did the operation occur */
  178. };
  179. enum track_item { TRACK_ALLOC, TRACK_FREE };
  180. #ifdef CONFIG_SYSFS
  181. static int sysfs_slab_add(struct kmem_cache *);
  182. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  183. static void sysfs_slab_remove(struct kmem_cache *);
  184. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  185. #else
  186. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  187. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  188. { return 0; }
  189. static inline void sysfs_slab_remove(struct kmem_cache *s) { }
  190. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  191. #endif
  192. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  193. {
  194. #ifdef CONFIG_SLUB_STATS
  195. __this_cpu_inc(s->cpu_slab->stat[si]);
  196. #endif
  197. }
  198. /********************************************************************
  199. * Core slab cache functions
  200. *******************************************************************/
  201. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  202. {
  203. return s->node[node];
  204. }
  205. /* Verify that a pointer has an address that is valid within a slab page */
  206. static inline int check_valid_pointer(struct kmem_cache *s,
  207. struct page *page, const void *object)
  208. {
  209. void *base;
  210. if (!object)
  211. return 1;
  212. base = page_address(page);
  213. if (object < base || object >= base + page->objects * s->size ||
  214. (object - base) % s->size) {
  215. return 0;
  216. }
  217. return 1;
  218. }
  219. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  220. {
  221. return *(void **)(object + s->offset);
  222. }
  223. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  224. {
  225. prefetch(object + s->offset);
  226. }
  227. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  228. {
  229. void *p;
  230. #ifdef CONFIG_DEBUG_PAGEALLOC
  231. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  232. #else
  233. p = get_freepointer(s, object);
  234. #endif
  235. return p;
  236. }
  237. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  238. {
  239. *(void **)(object + s->offset) = fp;
  240. }
  241. /* Loop over all objects in a slab */
  242. #define for_each_object(__p, __s, __addr, __objects) \
  243. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  244. __p += (__s)->size)
  245. /* Determine object index from a given position */
  246. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  247. {
  248. return (p - addr) / s->size;
  249. }
  250. static inline size_t slab_ksize(const struct kmem_cache *s)
  251. {
  252. #ifdef CONFIG_SLUB_DEBUG
  253. /*
  254. * Debugging requires use of the padding between object
  255. * and whatever may come after it.
  256. */
  257. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  258. return s->object_size;
  259. #endif
  260. /*
  261. * If we have the need to store the freelist pointer
  262. * back there or track user information then we can
  263. * only use the space before that information.
  264. */
  265. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  266. return s->inuse;
  267. /*
  268. * Else we can use all the padding etc for the allocation
  269. */
  270. return s->size;
  271. }
  272. static inline int order_objects(int order, unsigned long size, int reserved)
  273. {
  274. return ((PAGE_SIZE << order) - reserved) / size;
  275. }
  276. static inline struct kmem_cache_order_objects oo_make(int order,
  277. unsigned long size, int reserved)
  278. {
  279. struct kmem_cache_order_objects x = {
  280. (order << OO_SHIFT) + order_objects(order, size, reserved)
  281. };
  282. return x;
  283. }
  284. static inline int oo_order(struct kmem_cache_order_objects x)
  285. {
  286. return x.x >> OO_SHIFT;
  287. }
  288. static inline int oo_objects(struct kmem_cache_order_objects x)
  289. {
  290. return x.x & OO_MASK;
  291. }
  292. /*
  293. * Per slab locking using the pagelock
  294. */
  295. static __always_inline void slab_lock(struct page *page)
  296. {
  297. bit_spin_lock(PG_locked, &page->flags);
  298. }
  299. static __always_inline void slab_unlock(struct page *page)
  300. {
  301. __bit_spin_unlock(PG_locked, &page->flags);
  302. }
  303. /* Interrupts must be disabled (for the fallback code to work right) */
  304. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  305. void *freelist_old, unsigned long counters_old,
  306. void *freelist_new, unsigned long counters_new,
  307. const char *n)
  308. {
  309. VM_BUG_ON(!irqs_disabled());
  310. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  311. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  312. if (s->flags & __CMPXCHG_DOUBLE) {
  313. if (cmpxchg_double(&page->freelist, &page->counters,
  314. freelist_old, counters_old,
  315. freelist_new, counters_new))
  316. return 1;
  317. } else
  318. #endif
  319. {
  320. slab_lock(page);
  321. if (page->freelist == freelist_old && page->counters == counters_old) {
  322. page->freelist = freelist_new;
  323. page->counters = counters_new;
  324. slab_unlock(page);
  325. return 1;
  326. }
  327. slab_unlock(page);
  328. }
  329. cpu_relax();
  330. stat(s, CMPXCHG_DOUBLE_FAIL);
  331. #ifdef SLUB_DEBUG_CMPXCHG
  332. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  333. #endif
  334. return 0;
  335. }
  336. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  337. void *freelist_old, unsigned long counters_old,
  338. void *freelist_new, unsigned long counters_new,
  339. const char *n)
  340. {
  341. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  342. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  343. if (s->flags & __CMPXCHG_DOUBLE) {
  344. if (cmpxchg_double(&page->freelist, &page->counters,
  345. freelist_old, counters_old,
  346. freelist_new, counters_new))
  347. return 1;
  348. } else
  349. #endif
  350. {
  351. unsigned long flags;
  352. local_irq_save(flags);
  353. slab_lock(page);
  354. if (page->freelist == freelist_old && page->counters == counters_old) {
  355. page->freelist = freelist_new;
  356. page->counters = counters_new;
  357. slab_unlock(page);
  358. local_irq_restore(flags);
  359. return 1;
  360. }
  361. slab_unlock(page);
  362. local_irq_restore(flags);
  363. }
  364. cpu_relax();
  365. stat(s, CMPXCHG_DOUBLE_FAIL);
  366. #ifdef SLUB_DEBUG_CMPXCHG
  367. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  368. #endif
  369. return 0;
  370. }
  371. #ifdef CONFIG_SLUB_DEBUG
  372. /*
  373. * Determine a map of object in use on a page.
  374. *
  375. * Node listlock must be held to guarantee that the page does
  376. * not vanish from under us.
  377. */
  378. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  379. {
  380. void *p;
  381. void *addr = page_address(page);
  382. for (p = page->freelist; p; p = get_freepointer(s, p))
  383. set_bit(slab_index(p, s, addr), map);
  384. }
  385. /*
  386. * Debug settings:
  387. */
  388. #ifdef CONFIG_SLUB_DEBUG_ON
  389. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  390. #else
  391. static int slub_debug;
  392. #endif
  393. static char *slub_debug_slabs;
  394. static int disable_higher_order_debug;
  395. /*
  396. * Object debugging
  397. */
  398. static void print_section(char *text, u8 *addr, unsigned int length)
  399. {
  400. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  401. length, 1);
  402. }
  403. static struct track *get_track(struct kmem_cache *s, void *object,
  404. enum track_item alloc)
  405. {
  406. struct track *p;
  407. if (s->offset)
  408. p = object + s->offset + sizeof(void *);
  409. else
  410. p = object + s->inuse;
  411. return p + alloc;
  412. }
  413. static void set_track(struct kmem_cache *s, void *object,
  414. enum track_item alloc, unsigned long addr)
  415. {
  416. struct track *p = get_track(s, object, alloc);
  417. if (addr) {
  418. #ifdef CONFIG_STACKTRACE
  419. struct stack_trace trace;
  420. int i;
  421. trace.nr_entries = 0;
  422. trace.max_entries = TRACK_ADDRS_COUNT;
  423. trace.entries = p->addrs;
  424. trace.skip = 3;
  425. save_stack_trace(&trace);
  426. /* See rant in lockdep.c */
  427. if (trace.nr_entries != 0 &&
  428. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  429. trace.nr_entries--;
  430. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  431. p->addrs[i] = 0;
  432. #endif
  433. p->addr = addr;
  434. p->cpu = smp_processor_id();
  435. p->pid = current->pid;
  436. p->when = jiffies;
  437. } else
  438. memset(p, 0, sizeof(struct track));
  439. }
  440. static void init_tracking(struct kmem_cache *s, void *object)
  441. {
  442. if (!(s->flags & SLAB_STORE_USER))
  443. return;
  444. set_track(s, object, TRACK_FREE, 0UL);
  445. set_track(s, object, TRACK_ALLOC, 0UL);
  446. }
  447. static void print_track(const char *s, struct track *t)
  448. {
  449. if (!t->addr)
  450. return;
  451. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  452. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  453. #ifdef CONFIG_STACKTRACE
  454. {
  455. int i;
  456. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  457. if (t->addrs[i])
  458. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  459. else
  460. break;
  461. }
  462. #endif
  463. }
  464. static void print_tracking(struct kmem_cache *s, void *object)
  465. {
  466. if (!(s->flags & SLAB_STORE_USER))
  467. return;
  468. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  469. print_track("Freed", get_track(s, object, TRACK_FREE));
  470. }
  471. static void print_page_info(struct page *page)
  472. {
  473. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  474. page, page->objects, page->inuse, page->freelist, page->flags);
  475. }
  476. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  477. {
  478. va_list args;
  479. char buf[100];
  480. va_start(args, fmt);
  481. vsnprintf(buf, sizeof(buf), fmt, args);
  482. va_end(args);
  483. printk(KERN_ERR "========================================"
  484. "=====================================\n");
  485. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  486. printk(KERN_ERR "----------------------------------------"
  487. "-------------------------------------\n\n");
  488. add_taint(TAINT_BAD_PAGE);
  489. }
  490. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  491. {
  492. va_list args;
  493. char buf[100];
  494. va_start(args, fmt);
  495. vsnprintf(buf, sizeof(buf), fmt, args);
  496. va_end(args);
  497. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  498. }
  499. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  500. {
  501. unsigned int off; /* Offset of last byte */
  502. u8 *addr = page_address(page);
  503. print_tracking(s, p);
  504. print_page_info(page);
  505. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  506. p, p - addr, get_freepointer(s, p));
  507. if (p > addr + 16)
  508. print_section("Bytes b4 ", p - 16, 16);
  509. print_section("Object ", p, min_t(unsigned long, s->object_size,
  510. PAGE_SIZE));
  511. if (s->flags & SLAB_RED_ZONE)
  512. print_section("Redzone ", p + s->object_size,
  513. s->inuse - s->object_size);
  514. if (s->offset)
  515. off = s->offset + sizeof(void *);
  516. else
  517. off = s->inuse;
  518. if (s->flags & SLAB_STORE_USER)
  519. off += 2 * sizeof(struct track);
  520. if (off != s->size)
  521. /* Beginning of the filler is the free pointer */
  522. print_section("Padding ", p + off, s->size - off);
  523. dump_stack();
  524. }
  525. static void object_err(struct kmem_cache *s, struct page *page,
  526. u8 *object, char *reason)
  527. {
  528. slab_bug(s, "%s", reason);
  529. print_trailer(s, page, object);
  530. }
  531. static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
  532. {
  533. va_list args;
  534. char buf[100];
  535. va_start(args, fmt);
  536. vsnprintf(buf, sizeof(buf), fmt, args);
  537. va_end(args);
  538. slab_bug(s, "%s", buf);
  539. print_page_info(page);
  540. dump_stack();
  541. }
  542. static void init_object(struct kmem_cache *s, void *object, u8 val)
  543. {
  544. u8 *p = object;
  545. if (s->flags & __OBJECT_POISON) {
  546. memset(p, POISON_FREE, s->object_size - 1);
  547. p[s->object_size - 1] = POISON_END;
  548. }
  549. if (s->flags & SLAB_RED_ZONE)
  550. memset(p + s->object_size, val, s->inuse - s->object_size);
  551. }
  552. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  553. void *from, void *to)
  554. {
  555. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  556. memset(from, data, to - from);
  557. }
  558. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  559. u8 *object, char *what,
  560. u8 *start, unsigned int value, unsigned int bytes)
  561. {
  562. u8 *fault;
  563. u8 *end;
  564. fault = memchr_inv(start, value, bytes);
  565. if (!fault)
  566. return 1;
  567. end = start + bytes;
  568. while (end > fault && end[-1] == value)
  569. end--;
  570. slab_bug(s, "%s overwritten", what);
  571. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  572. fault, end - 1, fault[0], value);
  573. print_trailer(s, page, object);
  574. restore_bytes(s, what, value, fault, end);
  575. return 0;
  576. }
  577. /*
  578. * Object layout:
  579. *
  580. * object address
  581. * Bytes of the object to be managed.
  582. * If the freepointer may overlay the object then the free
  583. * pointer is the first word of the object.
  584. *
  585. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  586. * 0xa5 (POISON_END)
  587. *
  588. * object + s->object_size
  589. * Padding to reach word boundary. This is also used for Redzoning.
  590. * Padding is extended by another word if Redzoning is enabled and
  591. * object_size == inuse.
  592. *
  593. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  594. * 0xcc (RED_ACTIVE) for objects in use.
  595. *
  596. * object + s->inuse
  597. * Meta data starts here.
  598. *
  599. * A. Free pointer (if we cannot overwrite object on free)
  600. * B. Tracking data for SLAB_STORE_USER
  601. * C. Padding to reach required alignment boundary or at mininum
  602. * one word if debugging is on to be able to detect writes
  603. * before the word boundary.
  604. *
  605. * Padding is done using 0x5a (POISON_INUSE)
  606. *
  607. * object + s->size
  608. * Nothing is used beyond s->size.
  609. *
  610. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  611. * ignored. And therefore no slab options that rely on these boundaries
  612. * may be used with merged slabcaches.
  613. */
  614. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  615. {
  616. unsigned long off = s->inuse; /* The end of info */
  617. if (s->offset)
  618. /* Freepointer is placed after the object. */
  619. off += sizeof(void *);
  620. if (s->flags & SLAB_STORE_USER)
  621. /* We also have user information there */
  622. off += 2 * sizeof(struct track);
  623. if (s->size == off)
  624. return 1;
  625. return check_bytes_and_report(s, page, p, "Object padding",
  626. p + off, POISON_INUSE, s->size - off);
  627. }
  628. /* Check the pad bytes at the end of a slab page */
  629. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  630. {
  631. u8 *start;
  632. u8 *fault;
  633. u8 *end;
  634. int length;
  635. int remainder;
  636. if (!(s->flags & SLAB_POISON))
  637. return 1;
  638. start = page_address(page);
  639. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  640. end = start + length;
  641. remainder = length % s->size;
  642. if (!remainder)
  643. return 1;
  644. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  645. if (!fault)
  646. return 1;
  647. while (end > fault && end[-1] == POISON_INUSE)
  648. end--;
  649. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  650. print_section("Padding ", end - remainder, remainder);
  651. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  652. return 0;
  653. }
  654. static int check_object(struct kmem_cache *s, struct page *page,
  655. void *object, u8 val)
  656. {
  657. u8 *p = object;
  658. u8 *endobject = object + s->object_size;
  659. if (s->flags & SLAB_RED_ZONE) {
  660. if (!check_bytes_and_report(s, page, object, "Redzone",
  661. endobject, val, s->inuse - s->object_size))
  662. return 0;
  663. } else {
  664. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  665. check_bytes_and_report(s, page, p, "Alignment padding",
  666. endobject, POISON_INUSE, s->inuse - s->object_size);
  667. }
  668. }
  669. if (s->flags & SLAB_POISON) {
  670. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  671. (!check_bytes_and_report(s, page, p, "Poison", p,
  672. POISON_FREE, s->object_size - 1) ||
  673. !check_bytes_and_report(s, page, p, "Poison",
  674. p + s->object_size - 1, POISON_END, 1)))
  675. return 0;
  676. /*
  677. * check_pad_bytes cleans up on its own.
  678. */
  679. check_pad_bytes(s, page, p);
  680. }
  681. if (!s->offset && val == SLUB_RED_ACTIVE)
  682. /*
  683. * Object and freepointer overlap. Cannot check
  684. * freepointer while object is allocated.
  685. */
  686. return 1;
  687. /* Check free pointer validity */
  688. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  689. object_err(s, page, p, "Freepointer corrupt");
  690. /*
  691. * No choice but to zap it and thus lose the remainder
  692. * of the free objects in this slab. May cause
  693. * another error because the object count is now wrong.
  694. */
  695. set_freepointer(s, p, NULL);
  696. return 0;
  697. }
  698. return 1;
  699. }
  700. static int check_slab(struct kmem_cache *s, struct page *page)
  701. {
  702. int maxobj;
  703. VM_BUG_ON(!irqs_disabled());
  704. if (!PageSlab(page)) {
  705. slab_err(s, page, "Not a valid slab page");
  706. return 0;
  707. }
  708. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  709. if (page->objects > maxobj) {
  710. slab_err(s, page, "objects %u > max %u",
  711. s->name, page->objects, maxobj);
  712. return 0;
  713. }
  714. if (page->inuse > page->objects) {
  715. slab_err(s, page, "inuse %u > max %u",
  716. s->name, page->inuse, page->objects);
  717. return 0;
  718. }
  719. /* Slab_pad_check fixes things up after itself */
  720. slab_pad_check(s, page);
  721. return 1;
  722. }
  723. /*
  724. * Determine if a certain object on a page is on the freelist. Must hold the
  725. * slab lock to guarantee that the chains are in a consistent state.
  726. */
  727. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  728. {
  729. int nr = 0;
  730. void *fp;
  731. void *object = NULL;
  732. unsigned long max_objects;
  733. fp = page->freelist;
  734. while (fp && nr <= page->objects) {
  735. if (fp == search)
  736. return 1;
  737. if (!check_valid_pointer(s, page, fp)) {
  738. if (object) {
  739. object_err(s, page, object,
  740. "Freechain corrupt");
  741. set_freepointer(s, object, NULL);
  742. break;
  743. } else {
  744. slab_err(s, page, "Freepointer corrupt");
  745. page->freelist = NULL;
  746. page->inuse = page->objects;
  747. slab_fix(s, "Freelist cleared");
  748. return 0;
  749. }
  750. break;
  751. }
  752. object = fp;
  753. fp = get_freepointer(s, object);
  754. nr++;
  755. }
  756. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  757. if (max_objects > MAX_OBJS_PER_PAGE)
  758. max_objects = MAX_OBJS_PER_PAGE;
  759. if (page->objects != max_objects) {
  760. slab_err(s, page, "Wrong number of objects. Found %d but "
  761. "should be %d", page->objects, max_objects);
  762. page->objects = max_objects;
  763. slab_fix(s, "Number of objects adjusted.");
  764. }
  765. if (page->inuse != page->objects - nr) {
  766. slab_err(s, page, "Wrong object count. Counter is %d but "
  767. "counted were %d", page->inuse, page->objects - nr);
  768. page->inuse = page->objects - nr;
  769. slab_fix(s, "Object count adjusted.");
  770. }
  771. return search == NULL;
  772. }
  773. static void trace(struct kmem_cache *s, struct page *page, void *object,
  774. int alloc)
  775. {
  776. if (s->flags & SLAB_TRACE) {
  777. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  778. s->name,
  779. alloc ? "alloc" : "free",
  780. object, page->inuse,
  781. page->freelist);
  782. if (!alloc)
  783. print_section("Object ", (void *)object, s->object_size);
  784. dump_stack();
  785. }
  786. }
  787. /*
  788. * Hooks for other subsystems that check memory allocations. In a typical
  789. * production configuration these hooks all should produce no code at all.
  790. */
  791. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  792. {
  793. flags &= gfp_allowed_mask;
  794. lockdep_trace_alloc(flags);
  795. might_sleep_if(flags & __GFP_WAIT);
  796. return should_failslab(s->object_size, flags, s->flags);
  797. }
  798. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  799. {
  800. flags &= gfp_allowed_mask;
  801. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  802. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  803. }
  804. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  805. {
  806. kmemleak_free_recursive(x, s->flags);
  807. /*
  808. * Trouble is that we may no longer disable interupts in the fast path
  809. * So in order to make the debug calls that expect irqs to be
  810. * disabled we need to disable interrupts temporarily.
  811. */
  812. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  813. {
  814. unsigned long flags;
  815. local_irq_save(flags);
  816. kmemcheck_slab_free(s, x, s->object_size);
  817. debug_check_no_locks_freed(x, s->object_size);
  818. local_irq_restore(flags);
  819. }
  820. #endif
  821. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  822. debug_check_no_obj_freed(x, s->object_size);
  823. }
  824. /*
  825. * Tracking of fully allocated slabs for debugging purposes.
  826. *
  827. * list_lock must be held.
  828. */
  829. static void add_full(struct kmem_cache *s,
  830. struct kmem_cache_node *n, struct page *page)
  831. {
  832. if (!(s->flags & SLAB_STORE_USER))
  833. return;
  834. list_add(&page->lru, &n->full);
  835. }
  836. /*
  837. * list_lock must be held.
  838. */
  839. static void remove_full(struct kmem_cache *s, struct page *page)
  840. {
  841. if (!(s->flags & SLAB_STORE_USER))
  842. return;
  843. list_del(&page->lru);
  844. }
  845. /* Tracking of the number of slabs for debugging purposes */
  846. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  847. {
  848. struct kmem_cache_node *n = get_node(s, node);
  849. return atomic_long_read(&n->nr_slabs);
  850. }
  851. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  852. {
  853. return atomic_long_read(&n->nr_slabs);
  854. }
  855. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  856. {
  857. struct kmem_cache_node *n = get_node(s, node);
  858. /*
  859. * May be called early in order to allocate a slab for the
  860. * kmem_cache_node structure. Solve the chicken-egg
  861. * dilemma by deferring the increment of the count during
  862. * bootstrap (see early_kmem_cache_node_alloc).
  863. */
  864. if (n) {
  865. atomic_long_inc(&n->nr_slabs);
  866. atomic_long_add(objects, &n->total_objects);
  867. }
  868. }
  869. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  870. {
  871. struct kmem_cache_node *n = get_node(s, node);
  872. atomic_long_dec(&n->nr_slabs);
  873. atomic_long_sub(objects, &n->total_objects);
  874. }
  875. /* Object debug checks for alloc/free paths */
  876. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  877. void *object)
  878. {
  879. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  880. return;
  881. init_object(s, object, SLUB_RED_INACTIVE);
  882. init_tracking(s, object);
  883. }
  884. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  885. void *object, unsigned long addr)
  886. {
  887. if (!check_slab(s, page))
  888. goto bad;
  889. if (!check_valid_pointer(s, page, object)) {
  890. object_err(s, page, object, "Freelist Pointer check fails");
  891. goto bad;
  892. }
  893. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  894. goto bad;
  895. /* Success perform special debug activities for allocs */
  896. if (s->flags & SLAB_STORE_USER)
  897. set_track(s, object, TRACK_ALLOC, addr);
  898. trace(s, page, object, 1);
  899. init_object(s, object, SLUB_RED_ACTIVE);
  900. return 1;
  901. bad:
  902. if (PageSlab(page)) {
  903. /*
  904. * If this is a slab page then lets do the best we can
  905. * to avoid issues in the future. Marking all objects
  906. * as used avoids touching the remaining objects.
  907. */
  908. slab_fix(s, "Marking all objects used");
  909. page->inuse = page->objects;
  910. page->freelist = NULL;
  911. }
  912. return 0;
  913. }
  914. static noinline struct kmem_cache_node *free_debug_processing(
  915. struct kmem_cache *s, struct page *page, void *object,
  916. unsigned long addr, unsigned long *flags)
  917. {
  918. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  919. spin_lock_irqsave(&n->list_lock, *flags);
  920. slab_lock(page);
  921. if (!check_slab(s, page))
  922. goto fail;
  923. if (!check_valid_pointer(s, page, object)) {
  924. slab_err(s, page, "Invalid object pointer 0x%p", object);
  925. goto fail;
  926. }
  927. if (on_freelist(s, page, object)) {
  928. object_err(s, page, object, "Object already free");
  929. goto fail;
  930. }
  931. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  932. goto out;
  933. if (unlikely(s != page->slab_cache)) {
  934. if (!PageSlab(page)) {
  935. slab_err(s, page, "Attempt to free object(0x%p) "
  936. "outside of slab", object);
  937. } else if (!page->slab_cache) {
  938. printk(KERN_ERR
  939. "SLUB <none>: no slab for object 0x%p.\n",
  940. object);
  941. dump_stack();
  942. } else
  943. object_err(s, page, object,
  944. "page slab pointer corrupt.");
  945. goto fail;
  946. }
  947. if (s->flags & SLAB_STORE_USER)
  948. set_track(s, object, TRACK_FREE, addr);
  949. trace(s, page, object, 0);
  950. init_object(s, object, SLUB_RED_INACTIVE);
  951. out:
  952. slab_unlock(page);
  953. /*
  954. * Keep node_lock to preserve integrity
  955. * until the object is actually freed
  956. */
  957. return n;
  958. fail:
  959. slab_unlock(page);
  960. spin_unlock_irqrestore(&n->list_lock, *flags);
  961. slab_fix(s, "Object at 0x%p not freed", object);
  962. return NULL;
  963. }
  964. static int __init setup_slub_debug(char *str)
  965. {
  966. slub_debug = DEBUG_DEFAULT_FLAGS;
  967. if (*str++ != '=' || !*str)
  968. /*
  969. * No options specified. Switch on full debugging.
  970. */
  971. goto out;
  972. if (*str == ',')
  973. /*
  974. * No options but restriction on slabs. This means full
  975. * debugging for slabs matching a pattern.
  976. */
  977. goto check_slabs;
  978. if (tolower(*str) == 'o') {
  979. /*
  980. * Avoid enabling debugging on caches if its minimum order
  981. * would increase as a result.
  982. */
  983. disable_higher_order_debug = 1;
  984. goto out;
  985. }
  986. slub_debug = 0;
  987. if (*str == '-')
  988. /*
  989. * Switch off all debugging measures.
  990. */
  991. goto out;
  992. /*
  993. * Determine which debug features should be switched on
  994. */
  995. for (; *str && *str != ','; str++) {
  996. switch (tolower(*str)) {
  997. case 'f':
  998. slub_debug |= SLAB_DEBUG_FREE;
  999. break;
  1000. case 'z':
  1001. slub_debug |= SLAB_RED_ZONE;
  1002. break;
  1003. case 'p':
  1004. slub_debug |= SLAB_POISON;
  1005. break;
  1006. case 'u':
  1007. slub_debug |= SLAB_STORE_USER;
  1008. break;
  1009. case 't':
  1010. slub_debug |= SLAB_TRACE;
  1011. break;
  1012. case 'a':
  1013. slub_debug |= SLAB_FAILSLAB;
  1014. break;
  1015. default:
  1016. printk(KERN_ERR "slub_debug option '%c' "
  1017. "unknown. skipped\n", *str);
  1018. }
  1019. }
  1020. check_slabs:
  1021. if (*str == ',')
  1022. slub_debug_slabs = str + 1;
  1023. out:
  1024. return 1;
  1025. }
  1026. __setup("slub_debug", setup_slub_debug);
  1027. static unsigned long kmem_cache_flags(unsigned long object_size,
  1028. unsigned long flags, const char *name,
  1029. void (*ctor)(void *))
  1030. {
  1031. /*
  1032. * Enable debugging if selected on the kernel commandline.
  1033. */
  1034. if (slub_debug && (!slub_debug_slabs ||
  1035. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1036. flags |= slub_debug;
  1037. return flags;
  1038. }
  1039. #else
  1040. static inline void setup_object_debug(struct kmem_cache *s,
  1041. struct page *page, void *object) {}
  1042. static inline int alloc_debug_processing(struct kmem_cache *s,
  1043. struct page *page, void *object, unsigned long addr) { return 0; }
  1044. static inline struct kmem_cache_node *free_debug_processing(
  1045. struct kmem_cache *s, struct page *page, void *object,
  1046. unsigned long addr, unsigned long *flags) { return NULL; }
  1047. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1048. { return 1; }
  1049. static inline int check_object(struct kmem_cache *s, struct page *page,
  1050. void *object, u8 val) { return 1; }
  1051. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1052. struct page *page) {}
  1053. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1054. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1055. unsigned long flags, const char *name,
  1056. void (*ctor)(void *))
  1057. {
  1058. return flags;
  1059. }
  1060. #define slub_debug 0
  1061. #define disable_higher_order_debug 0
  1062. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1063. { return 0; }
  1064. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1065. { return 0; }
  1066. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1067. int objects) {}
  1068. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1069. int objects) {}
  1070. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1071. { return 0; }
  1072. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1073. void *object) {}
  1074. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1075. #endif /* CONFIG_SLUB_DEBUG */
  1076. /*
  1077. * Slab allocation and freeing
  1078. */
  1079. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1080. struct kmem_cache_order_objects oo)
  1081. {
  1082. int order = oo_order(oo);
  1083. flags |= __GFP_NOTRACK;
  1084. if (node == NUMA_NO_NODE)
  1085. return alloc_pages(flags, order);
  1086. else
  1087. return alloc_pages_exact_node(node, flags, order);
  1088. }
  1089. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1090. {
  1091. struct page *page;
  1092. struct kmem_cache_order_objects oo = s->oo;
  1093. gfp_t alloc_gfp;
  1094. flags &= gfp_allowed_mask;
  1095. if (flags & __GFP_WAIT)
  1096. local_irq_enable();
  1097. flags |= s->allocflags;
  1098. /*
  1099. * Let the initial higher-order allocation fail under memory pressure
  1100. * so we fall-back to the minimum order allocation.
  1101. */
  1102. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1103. page = alloc_slab_page(alloc_gfp, node, oo);
  1104. if (unlikely(!page)) {
  1105. oo = s->min;
  1106. /*
  1107. * Allocation may have failed due to fragmentation.
  1108. * Try a lower order alloc if possible
  1109. */
  1110. page = alloc_slab_page(flags, node, oo);
  1111. if (page)
  1112. stat(s, ORDER_FALLBACK);
  1113. }
  1114. if (kmemcheck_enabled && page
  1115. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1116. int pages = 1 << oo_order(oo);
  1117. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1118. /*
  1119. * Objects from caches that have a constructor don't get
  1120. * cleared when they're allocated, so we need to do it here.
  1121. */
  1122. if (s->ctor)
  1123. kmemcheck_mark_uninitialized_pages(page, pages);
  1124. else
  1125. kmemcheck_mark_unallocated_pages(page, pages);
  1126. }
  1127. if (flags & __GFP_WAIT)
  1128. local_irq_disable();
  1129. if (!page)
  1130. return NULL;
  1131. page->objects = oo_objects(oo);
  1132. mod_zone_page_state(page_zone(page),
  1133. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1134. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1135. 1 << oo_order(oo));
  1136. return page;
  1137. }
  1138. static void setup_object(struct kmem_cache *s, struct page *page,
  1139. void *object)
  1140. {
  1141. setup_object_debug(s, page, object);
  1142. if (unlikely(s->ctor))
  1143. s->ctor(object);
  1144. }
  1145. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1146. {
  1147. struct page *page;
  1148. void *start;
  1149. void *last;
  1150. void *p;
  1151. int order;
  1152. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1153. page = allocate_slab(s,
  1154. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1155. if (!page)
  1156. goto out;
  1157. order = compound_order(page);
  1158. inc_slabs_node(s, page_to_nid(page), page->objects);
  1159. memcg_bind_pages(s, order);
  1160. page->slab_cache = s;
  1161. __SetPageSlab(page);
  1162. if (page->pfmemalloc)
  1163. SetPageSlabPfmemalloc(page);
  1164. start = page_address(page);
  1165. if (unlikely(s->flags & SLAB_POISON))
  1166. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1167. last = start;
  1168. for_each_object(p, s, start, page->objects) {
  1169. setup_object(s, page, last);
  1170. set_freepointer(s, last, p);
  1171. last = p;
  1172. }
  1173. setup_object(s, page, last);
  1174. set_freepointer(s, last, NULL);
  1175. page->freelist = start;
  1176. page->inuse = page->objects;
  1177. page->frozen = 1;
  1178. out:
  1179. return page;
  1180. }
  1181. static void __free_slab(struct kmem_cache *s, struct page *page)
  1182. {
  1183. int order = compound_order(page);
  1184. int pages = 1 << order;
  1185. if (kmem_cache_debug(s)) {
  1186. void *p;
  1187. slab_pad_check(s, page);
  1188. for_each_object(p, s, page_address(page),
  1189. page->objects)
  1190. check_object(s, page, p, SLUB_RED_INACTIVE);
  1191. }
  1192. kmemcheck_free_shadow(page, compound_order(page));
  1193. mod_zone_page_state(page_zone(page),
  1194. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1195. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1196. -pages);
  1197. __ClearPageSlabPfmemalloc(page);
  1198. __ClearPageSlab(page);
  1199. memcg_release_pages(s, order);
  1200. reset_page_mapcount(page);
  1201. if (current->reclaim_state)
  1202. current->reclaim_state->reclaimed_slab += pages;
  1203. __free_memcg_kmem_pages(page, order);
  1204. }
  1205. #define need_reserve_slab_rcu \
  1206. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1207. static void rcu_free_slab(struct rcu_head *h)
  1208. {
  1209. struct page *page;
  1210. if (need_reserve_slab_rcu)
  1211. page = virt_to_head_page(h);
  1212. else
  1213. page = container_of((struct list_head *)h, struct page, lru);
  1214. __free_slab(page->slab_cache, page);
  1215. }
  1216. static void free_slab(struct kmem_cache *s, struct page *page)
  1217. {
  1218. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1219. struct rcu_head *head;
  1220. if (need_reserve_slab_rcu) {
  1221. int order = compound_order(page);
  1222. int offset = (PAGE_SIZE << order) - s->reserved;
  1223. VM_BUG_ON(s->reserved != sizeof(*head));
  1224. head = page_address(page) + offset;
  1225. } else {
  1226. /*
  1227. * RCU free overloads the RCU head over the LRU
  1228. */
  1229. head = (void *)&page->lru;
  1230. }
  1231. call_rcu(head, rcu_free_slab);
  1232. } else
  1233. __free_slab(s, page);
  1234. }
  1235. static void discard_slab(struct kmem_cache *s, struct page *page)
  1236. {
  1237. dec_slabs_node(s, page_to_nid(page), page->objects);
  1238. free_slab(s, page);
  1239. }
  1240. /*
  1241. * Management of partially allocated slabs.
  1242. *
  1243. * list_lock must be held.
  1244. */
  1245. static inline void add_partial(struct kmem_cache_node *n,
  1246. struct page *page, int tail)
  1247. {
  1248. n->nr_partial++;
  1249. if (tail == DEACTIVATE_TO_TAIL)
  1250. list_add_tail(&page->lru, &n->partial);
  1251. else
  1252. list_add(&page->lru, &n->partial);
  1253. }
  1254. /*
  1255. * list_lock must be held.
  1256. */
  1257. static inline void remove_partial(struct kmem_cache_node *n,
  1258. struct page *page)
  1259. {
  1260. list_del(&page->lru);
  1261. n->nr_partial--;
  1262. }
  1263. /*
  1264. * Remove slab from the partial list, freeze it and
  1265. * return the pointer to the freelist.
  1266. *
  1267. * Returns a list of objects or NULL if it fails.
  1268. *
  1269. * Must hold list_lock since we modify the partial list.
  1270. */
  1271. static inline void *acquire_slab(struct kmem_cache *s,
  1272. struct kmem_cache_node *n, struct page *page,
  1273. int mode)
  1274. {
  1275. void *freelist;
  1276. unsigned long counters;
  1277. struct page new;
  1278. /*
  1279. * Zap the freelist and set the frozen bit.
  1280. * The old freelist is the list of objects for the
  1281. * per cpu allocation list.
  1282. */
  1283. freelist = page->freelist;
  1284. counters = page->counters;
  1285. new.counters = counters;
  1286. if (mode) {
  1287. new.inuse = page->objects;
  1288. new.freelist = NULL;
  1289. } else {
  1290. new.freelist = freelist;
  1291. }
  1292. VM_BUG_ON(new.frozen);
  1293. new.frozen = 1;
  1294. if (!__cmpxchg_double_slab(s, page,
  1295. freelist, counters,
  1296. new.freelist, new.counters,
  1297. "acquire_slab"))
  1298. return NULL;
  1299. remove_partial(n, page);
  1300. WARN_ON(!freelist);
  1301. return freelist;
  1302. }
  1303. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1304. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1305. /*
  1306. * Try to allocate a partial slab from a specific node.
  1307. */
  1308. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1309. struct kmem_cache_cpu *c, gfp_t flags)
  1310. {
  1311. struct page *page, *page2;
  1312. void *object = NULL;
  1313. /*
  1314. * Racy check. If we mistakenly see no partial slabs then we
  1315. * just allocate an empty slab. If we mistakenly try to get a
  1316. * partial slab and there is none available then get_partials()
  1317. * will return NULL.
  1318. */
  1319. if (!n || !n->nr_partial)
  1320. return NULL;
  1321. spin_lock(&n->list_lock);
  1322. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1323. void *t;
  1324. int available;
  1325. if (!pfmemalloc_match(page, flags))
  1326. continue;
  1327. t = acquire_slab(s, n, page, object == NULL);
  1328. if (!t)
  1329. break;
  1330. if (!object) {
  1331. c->page = page;
  1332. stat(s, ALLOC_FROM_PARTIAL);
  1333. object = t;
  1334. available = page->objects - page->inuse;
  1335. } else {
  1336. available = put_cpu_partial(s, page, 0);
  1337. stat(s, CPU_PARTIAL_NODE);
  1338. }
  1339. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1340. break;
  1341. }
  1342. spin_unlock(&n->list_lock);
  1343. return object;
  1344. }
  1345. /*
  1346. * Get a page from somewhere. Search in increasing NUMA distances.
  1347. */
  1348. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1349. struct kmem_cache_cpu *c)
  1350. {
  1351. #ifdef CONFIG_NUMA
  1352. struct zonelist *zonelist;
  1353. struct zoneref *z;
  1354. struct zone *zone;
  1355. enum zone_type high_zoneidx = gfp_zone(flags);
  1356. void *object;
  1357. unsigned int cpuset_mems_cookie;
  1358. /*
  1359. * The defrag ratio allows a configuration of the tradeoffs between
  1360. * inter node defragmentation and node local allocations. A lower
  1361. * defrag_ratio increases the tendency to do local allocations
  1362. * instead of attempting to obtain partial slabs from other nodes.
  1363. *
  1364. * If the defrag_ratio is set to 0 then kmalloc() always
  1365. * returns node local objects. If the ratio is higher then kmalloc()
  1366. * may return off node objects because partial slabs are obtained
  1367. * from other nodes and filled up.
  1368. *
  1369. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1370. * defrag_ratio = 1000) then every (well almost) allocation will
  1371. * first attempt to defrag slab caches on other nodes. This means
  1372. * scanning over all nodes to look for partial slabs which may be
  1373. * expensive if we do it every time we are trying to find a slab
  1374. * with available objects.
  1375. */
  1376. if (!s->remote_node_defrag_ratio ||
  1377. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1378. return NULL;
  1379. do {
  1380. cpuset_mems_cookie = get_mems_allowed();
  1381. zonelist = node_zonelist(slab_node(), flags);
  1382. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1383. struct kmem_cache_node *n;
  1384. n = get_node(s, zone_to_nid(zone));
  1385. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1386. n->nr_partial > s->min_partial) {
  1387. object = get_partial_node(s, n, c, flags);
  1388. if (object) {
  1389. /*
  1390. * Return the object even if
  1391. * put_mems_allowed indicated that
  1392. * the cpuset mems_allowed was
  1393. * updated in parallel. It's a
  1394. * harmless race between the alloc
  1395. * and the cpuset update.
  1396. */
  1397. put_mems_allowed(cpuset_mems_cookie);
  1398. return object;
  1399. }
  1400. }
  1401. }
  1402. } while (!put_mems_allowed(cpuset_mems_cookie));
  1403. #endif
  1404. return NULL;
  1405. }
  1406. /*
  1407. * Get a partial page, lock it and return it.
  1408. */
  1409. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1410. struct kmem_cache_cpu *c)
  1411. {
  1412. void *object;
  1413. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1414. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1415. if (object || node != NUMA_NO_NODE)
  1416. return object;
  1417. return get_any_partial(s, flags, c);
  1418. }
  1419. #ifdef CONFIG_PREEMPT
  1420. /*
  1421. * Calculate the next globally unique transaction for disambiguiation
  1422. * during cmpxchg. The transactions start with the cpu number and are then
  1423. * incremented by CONFIG_NR_CPUS.
  1424. */
  1425. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1426. #else
  1427. /*
  1428. * No preemption supported therefore also no need to check for
  1429. * different cpus.
  1430. */
  1431. #define TID_STEP 1
  1432. #endif
  1433. static inline unsigned long next_tid(unsigned long tid)
  1434. {
  1435. return tid + TID_STEP;
  1436. }
  1437. static inline unsigned int tid_to_cpu(unsigned long tid)
  1438. {
  1439. return tid % TID_STEP;
  1440. }
  1441. static inline unsigned long tid_to_event(unsigned long tid)
  1442. {
  1443. return tid / TID_STEP;
  1444. }
  1445. static inline unsigned int init_tid(int cpu)
  1446. {
  1447. return cpu;
  1448. }
  1449. static inline void note_cmpxchg_failure(const char *n,
  1450. const struct kmem_cache *s, unsigned long tid)
  1451. {
  1452. #ifdef SLUB_DEBUG_CMPXCHG
  1453. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1454. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1455. #ifdef CONFIG_PREEMPT
  1456. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1457. printk("due to cpu change %d -> %d\n",
  1458. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1459. else
  1460. #endif
  1461. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1462. printk("due to cpu running other code. Event %ld->%ld\n",
  1463. tid_to_event(tid), tid_to_event(actual_tid));
  1464. else
  1465. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1466. actual_tid, tid, next_tid(tid));
  1467. #endif
  1468. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1469. }
  1470. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1471. {
  1472. int cpu;
  1473. for_each_possible_cpu(cpu)
  1474. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1475. }
  1476. /*
  1477. * Remove the cpu slab
  1478. */
  1479. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1480. {
  1481. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1482. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1483. int lock = 0;
  1484. enum slab_modes l = M_NONE, m = M_NONE;
  1485. void *nextfree;
  1486. int tail = DEACTIVATE_TO_HEAD;
  1487. struct page new;
  1488. struct page old;
  1489. if (page->freelist) {
  1490. stat(s, DEACTIVATE_REMOTE_FREES);
  1491. tail = DEACTIVATE_TO_TAIL;
  1492. }
  1493. /*
  1494. * Stage one: Free all available per cpu objects back
  1495. * to the page freelist while it is still frozen. Leave the
  1496. * last one.
  1497. *
  1498. * There is no need to take the list->lock because the page
  1499. * is still frozen.
  1500. */
  1501. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1502. void *prior;
  1503. unsigned long counters;
  1504. do {
  1505. prior = page->freelist;
  1506. counters = page->counters;
  1507. set_freepointer(s, freelist, prior);
  1508. new.counters = counters;
  1509. new.inuse--;
  1510. VM_BUG_ON(!new.frozen);
  1511. } while (!__cmpxchg_double_slab(s, page,
  1512. prior, counters,
  1513. freelist, new.counters,
  1514. "drain percpu freelist"));
  1515. freelist = nextfree;
  1516. }
  1517. /*
  1518. * Stage two: Ensure that the page is unfrozen while the
  1519. * list presence reflects the actual number of objects
  1520. * during unfreeze.
  1521. *
  1522. * We setup the list membership and then perform a cmpxchg
  1523. * with the count. If there is a mismatch then the page
  1524. * is not unfrozen but the page is on the wrong list.
  1525. *
  1526. * Then we restart the process which may have to remove
  1527. * the page from the list that we just put it on again
  1528. * because the number of objects in the slab may have
  1529. * changed.
  1530. */
  1531. redo:
  1532. old.freelist = page->freelist;
  1533. old.counters = page->counters;
  1534. VM_BUG_ON(!old.frozen);
  1535. /* Determine target state of the slab */
  1536. new.counters = old.counters;
  1537. if (freelist) {
  1538. new.inuse--;
  1539. set_freepointer(s, freelist, old.freelist);
  1540. new.freelist = freelist;
  1541. } else
  1542. new.freelist = old.freelist;
  1543. new.frozen = 0;
  1544. if (!new.inuse && n->nr_partial > s->min_partial)
  1545. m = M_FREE;
  1546. else if (new.freelist) {
  1547. m = M_PARTIAL;
  1548. if (!lock) {
  1549. lock = 1;
  1550. /*
  1551. * Taking the spinlock removes the possiblity
  1552. * that acquire_slab() will see a slab page that
  1553. * is frozen
  1554. */
  1555. spin_lock(&n->list_lock);
  1556. }
  1557. } else {
  1558. m = M_FULL;
  1559. if (kmem_cache_debug(s) && !lock) {
  1560. lock = 1;
  1561. /*
  1562. * This also ensures that the scanning of full
  1563. * slabs from diagnostic functions will not see
  1564. * any frozen slabs.
  1565. */
  1566. spin_lock(&n->list_lock);
  1567. }
  1568. }
  1569. if (l != m) {
  1570. if (l == M_PARTIAL)
  1571. remove_partial(n, page);
  1572. else if (l == M_FULL)
  1573. remove_full(s, page);
  1574. if (m == M_PARTIAL) {
  1575. add_partial(n, page, tail);
  1576. stat(s, tail);
  1577. } else if (m == M_FULL) {
  1578. stat(s, DEACTIVATE_FULL);
  1579. add_full(s, n, page);
  1580. }
  1581. }
  1582. l = m;
  1583. if (!__cmpxchg_double_slab(s, page,
  1584. old.freelist, old.counters,
  1585. new.freelist, new.counters,
  1586. "unfreezing slab"))
  1587. goto redo;
  1588. if (lock)
  1589. spin_unlock(&n->list_lock);
  1590. if (m == M_FREE) {
  1591. stat(s, DEACTIVATE_EMPTY);
  1592. discard_slab(s, page);
  1593. stat(s, FREE_SLAB);
  1594. }
  1595. }
  1596. /*
  1597. * Unfreeze all the cpu partial slabs.
  1598. *
  1599. * This function must be called with interrupts disabled
  1600. * for the cpu using c (or some other guarantee must be there
  1601. * to guarantee no concurrent accesses).
  1602. */
  1603. static void unfreeze_partials(struct kmem_cache *s,
  1604. struct kmem_cache_cpu *c)
  1605. {
  1606. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1607. struct page *page, *discard_page = NULL;
  1608. while ((page = c->partial)) {
  1609. struct page new;
  1610. struct page old;
  1611. c->partial = page->next;
  1612. n2 = get_node(s, page_to_nid(page));
  1613. if (n != n2) {
  1614. if (n)
  1615. spin_unlock(&n->list_lock);
  1616. n = n2;
  1617. spin_lock(&n->list_lock);
  1618. }
  1619. do {
  1620. old.freelist = page->freelist;
  1621. old.counters = page->counters;
  1622. VM_BUG_ON(!old.frozen);
  1623. new.counters = old.counters;
  1624. new.freelist = old.freelist;
  1625. new.frozen = 0;
  1626. } while (!__cmpxchg_double_slab(s, page,
  1627. old.freelist, old.counters,
  1628. new.freelist, new.counters,
  1629. "unfreezing slab"));
  1630. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1631. page->next = discard_page;
  1632. discard_page = page;
  1633. } else {
  1634. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1635. stat(s, FREE_ADD_PARTIAL);
  1636. }
  1637. }
  1638. if (n)
  1639. spin_unlock(&n->list_lock);
  1640. while (discard_page) {
  1641. page = discard_page;
  1642. discard_page = discard_page->next;
  1643. stat(s, DEACTIVATE_EMPTY);
  1644. discard_slab(s, page);
  1645. stat(s, FREE_SLAB);
  1646. }
  1647. }
  1648. /*
  1649. * Put a page that was just frozen (in __slab_free) into a partial page
  1650. * slot if available. This is done without interrupts disabled and without
  1651. * preemption disabled. The cmpxchg is racy and may put the partial page
  1652. * onto a random cpus partial slot.
  1653. *
  1654. * If we did not find a slot then simply move all the partials to the
  1655. * per node partial list.
  1656. */
  1657. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1658. {
  1659. struct page *oldpage;
  1660. int pages;
  1661. int pobjects;
  1662. do {
  1663. pages = 0;
  1664. pobjects = 0;
  1665. oldpage = this_cpu_read(s->cpu_slab->partial);
  1666. if (oldpage) {
  1667. pobjects = oldpage->pobjects;
  1668. pages = oldpage->pages;
  1669. if (drain && pobjects > s->cpu_partial) {
  1670. unsigned long flags;
  1671. /*
  1672. * partial array is full. Move the existing
  1673. * set to the per node partial list.
  1674. */
  1675. local_irq_save(flags);
  1676. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1677. local_irq_restore(flags);
  1678. oldpage = NULL;
  1679. pobjects = 0;
  1680. pages = 0;
  1681. stat(s, CPU_PARTIAL_DRAIN);
  1682. }
  1683. }
  1684. pages++;
  1685. pobjects += page->objects - page->inuse;
  1686. page->pages = pages;
  1687. page->pobjects = pobjects;
  1688. page->next = oldpage;
  1689. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1690. return pobjects;
  1691. }
  1692. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1693. {
  1694. stat(s, CPUSLAB_FLUSH);
  1695. deactivate_slab(s, c->page, c->freelist);
  1696. c->tid = next_tid(c->tid);
  1697. c->page = NULL;
  1698. c->freelist = NULL;
  1699. }
  1700. /*
  1701. * Flush cpu slab.
  1702. *
  1703. * Called from IPI handler with interrupts disabled.
  1704. */
  1705. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1706. {
  1707. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1708. if (likely(c)) {
  1709. if (c->page)
  1710. flush_slab(s, c);
  1711. unfreeze_partials(s, c);
  1712. }
  1713. }
  1714. static void flush_cpu_slab(void *d)
  1715. {
  1716. struct kmem_cache *s = d;
  1717. __flush_cpu_slab(s, smp_processor_id());
  1718. }
  1719. static bool has_cpu_slab(int cpu, void *info)
  1720. {
  1721. struct kmem_cache *s = info;
  1722. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1723. return c->page || c->partial;
  1724. }
  1725. static void flush_all(struct kmem_cache *s)
  1726. {
  1727. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1728. }
  1729. /*
  1730. * Check if the objects in a per cpu structure fit numa
  1731. * locality expectations.
  1732. */
  1733. static inline int node_match(struct page *page, int node)
  1734. {
  1735. #ifdef CONFIG_NUMA
  1736. if (node != NUMA_NO_NODE && page_to_nid(page) != node)
  1737. return 0;
  1738. #endif
  1739. return 1;
  1740. }
  1741. static int count_free(struct page *page)
  1742. {
  1743. return page->objects - page->inuse;
  1744. }
  1745. static unsigned long count_partial(struct kmem_cache_node *n,
  1746. int (*get_count)(struct page *))
  1747. {
  1748. unsigned long flags;
  1749. unsigned long x = 0;
  1750. struct page *page;
  1751. spin_lock_irqsave(&n->list_lock, flags);
  1752. list_for_each_entry(page, &n->partial, lru)
  1753. x += get_count(page);
  1754. spin_unlock_irqrestore(&n->list_lock, flags);
  1755. return x;
  1756. }
  1757. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1758. {
  1759. #ifdef CONFIG_SLUB_DEBUG
  1760. return atomic_long_read(&n->total_objects);
  1761. #else
  1762. return 0;
  1763. #endif
  1764. }
  1765. static noinline void
  1766. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1767. {
  1768. int node;
  1769. printk(KERN_WARNING
  1770. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1771. nid, gfpflags);
  1772. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1773. "default order: %d, min order: %d\n", s->name, s->object_size,
  1774. s->size, oo_order(s->oo), oo_order(s->min));
  1775. if (oo_order(s->min) > get_order(s->object_size))
  1776. printk(KERN_WARNING " %s debugging increased min order, use "
  1777. "slub_debug=O to disable.\n", s->name);
  1778. for_each_online_node(node) {
  1779. struct kmem_cache_node *n = get_node(s, node);
  1780. unsigned long nr_slabs;
  1781. unsigned long nr_objs;
  1782. unsigned long nr_free;
  1783. if (!n)
  1784. continue;
  1785. nr_free = count_partial(n, count_free);
  1786. nr_slabs = node_nr_slabs(n);
  1787. nr_objs = node_nr_objs(n);
  1788. printk(KERN_WARNING
  1789. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1790. node, nr_slabs, nr_objs, nr_free);
  1791. }
  1792. }
  1793. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1794. int node, struct kmem_cache_cpu **pc)
  1795. {
  1796. void *freelist;
  1797. struct kmem_cache_cpu *c = *pc;
  1798. struct page *page;
  1799. freelist = get_partial(s, flags, node, c);
  1800. if (freelist)
  1801. return freelist;
  1802. page = new_slab(s, flags, node);
  1803. if (page) {
  1804. c = __this_cpu_ptr(s->cpu_slab);
  1805. if (c->page)
  1806. flush_slab(s, c);
  1807. /*
  1808. * No other reference to the page yet so we can
  1809. * muck around with it freely without cmpxchg
  1810. */
  1811. freelist = page->freelist;
  1812. page->freelist = NULL;
  1813. stat(s, ALLOC_SLAB);
  1814. c->page = page;
  1815. *pc = c;
  1816. } else
  1817. freelist = NULL;
  1818. return freelist;
  1819. }
  1820. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1821. {
  1822. if (unlikely(PageSlabPfmemalloc(page)))
  1823. return gfp_pfmemalloc_allowed(gfpflags);
  1824. return true;
  1825. }
  1826. /*
  1827. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1828. * or deactivate the page.
  1829. *
  1830. * The page is still frozen if the return value is not NULL.
  1831. *
  1832. * If this function returns NULL then the page has been unfrozen.
  1833. *
  1834. * This function must be called with interrupt disabled.
  1835. */
  1836. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1837. {
  1838. struct page new;
  1839. unsigned long counters;
  1840. void *freelist;
  1841. do {
  1842. freelist = page->freelist;
  1843. counters = page->counters;
  1844. new.counters = counters;
  1845. VM_BUG_ON(!new.frozen);
  1846. new.inuse = page->objects;
  1847. new.frozen = freelist != NULL;
  1848. } while (!__cmpxchg_double_slab(s, page,
  1849. freelist, counters,
  1850. NULL, new.counters,
  1851. "get_freelist"));
  1852. return freelist;
  1853. }
  1854. /*
  1855. * Slow path. The lockless freelist is empty or we need to perform
  1856. * debugging duties.
  1857. *
  1858. * Processing is still very fast if new objects have been freed to the
  1859. * regular freelist. In that case we simply take over the regular freelist
  1860. * as the lockless freelist and zap the regular freelist.
  1861. *
  1862. * If that is not working then we fall back to the partial lists. We take the
  1863. * first element of the freelist as the object to allocate now and move the
  1864. * rest of the freelist to the lockless freelist.
  1865. *
  1866. * And if we were unable to get a new slab from the partial slab lists then
  1867. * we need to allocate a new slab. This is the slowest path since it involves
  1868. * a call to the page allocator and the setup of a new slab.
  1869. */
  1870. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1871. unsigned long addr, struct kmem_cache_cpu *c)
  1872. {
  1873. void *freelist;
  1874. struct page *page;
  1875. unsigned long flags;
  1876. local_irq_save(flags);
  1877. #ifdef CONFIG_PREEMPT
  1878. /*
  1879. * We may have been preempted and rescheduled on a different
  1880. * cpu before disabling interrupts. Need to reload cpu area
  1881. * pointer.
  1882. */
  1883. c = this_cpu_ptr(s->cpu_slab);
  1884. #endif
  1885. page = c->page;
  1886. if (!page)
  1887. goto new_slab;
  1888. redo:
  1889. if (unlikely(!node_match(page, node))) {
  1890. stat(s, ALLOC_NODE_MISMATCH);
  1891. deactivate_slab(s, page, c->freelist);
  1892. c->page = NULL;
  1893. c->freelist = NULL;
  1894. goto new_slab;
  1895. }
  1896. /*
  1897. * By rights, we should be searching for a slab page that was
  1898. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1899. * information when the page leaves the per-cpu allocator
  1900. */
  1901. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1902. deactivate_slab(s, page, c->freelist);
  1903. c->page = NULL;
  1904. c->freelist = NULL;
  1905. goto new_slab;
  1906. }
  1907. /* must check again c->freelist in case of cpu migration or IRQ */
  1908. freelist = c->freelist;
  1909. if (freelist)
  1910. goto load_freelist;
  1911. stat(s, ALLOC_SLOWPATH);
  1912. freelist = get_freelist(s, page);
  1913. if (!freelist) {
  1914. c->page = NULL;
  1915. stat(s, DEACTIVATE_BYPASS);
  1916. goto new_slab;
  1917. }
  1918. stat(s, ALLOC_REFILL);
  1919. load_freelist:
  1920. /*
  1921. * freelist is pointing to the list of objects to be used.
  1922. * page is pointing to the page from which the objects are obtained.
  1923. * That page must be frozen for per cpu allocations to work.
  1924. */
  1925. VM_BUG_ON(!c->page->frozen);
  1926. c->freelist = get_freepointer(s, freelist);
  1927. c->tid = next_tid(c->tid);
  1928. local_irq_restore(flags);
  1929. return freelist;
  1930. new_slab:
  1931. if (c->partial) {
  1932. page = c->page = c->partial;
  1933. c->partial = page->next;
  1934. stat(s, CPU_PARTIAL_ALLOC);
  1935. c->freelist = NULL;
  1936. goto redo;
  1937. }
  1938. freelist = new_slab_objects(s, gfpflags, node, &c);
  1939. if (unlikely(!freelist)) {
  1940. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1941. slab_out_of_memory(s, gfpflags, node);
  1942. local_irq_restore(flags);
  1943. return NULL;
  1944. }
  1945. page = c->page;
  1946. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1947. goto load_freelist;
  1948. /* Only entered in the debug case */
  1949. if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
  1950. goto new_slab; /* Slab failed checks. Next slab needed */
  1951. deactivate_slab(s, page, get_freepointer(s, freelist));
  1952. c->page = NULL;
  1953. c->freelist = NULL;
  1954. local_irq_restore(flags);
  1955. return freelist;
  1956. }
  1957. /*
  1958. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1959. * have the fastpath folded into their functions. So no function call
  1960. * overhead for requests that can be satisfied on the fastpath.
  1961. *
  1962. * The fastpath works by first checking if the lockless freelist can be used.
  1963. * If not then __slab_alloc is called for slow processing.
  1964. *
  1965. * Otherwise we can simply pick the next object from the lockless free list.
  1966. */
  1967. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  1968. gfp_t gfpflags, int node, unsigned long addr)
  1969. {
  1970. void **object;
  1971. struct kmem_cache_cpu *c;
  1972. struct page *page;
  1973. unsigned long tid;
  1974. if (slab_pre_alloc_hook(s, gfpflags))
  1975. return NULL;
  1976. s = memcg_kmem_get_cache(s, gfpflags);
  1977. redo:
  1978. /*
  1979. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1980. * enabled. We may switch back and forth between cpus while
  1981. * reading from one cpu area. That does not matter as long
  1982. * as we end up on the original cpu again when doing the cmpxchg.
  1983. */
  1984. c = __this_cpu_ptr(s->cpu_slab);
  1985. /*
  1986. * The transaction ids are globally unique per cpu and per operation on
  1987. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1988. * occurs on the right processor and that there was no operation on the
  1989. * linked list in between.
  1990. */
  1991. tid = c->tid;
  1992. barrier();
  1993. object = c->freelist;
  1994. page = c->page;
  1995. if (unlikely(!object || !node_match(page, node)))
  1996. object = __slab_alloc(s, gfpflags, node, addr, c);
  1997. else {
  1998. void *next_object = get_freepointer_safe(s, object);
  1999. /*
  2000. * The cmpxchg will only match if there was no additional
  2001. * operation and if we are on the right processor.
  2002. *
  2003. * The cmpxchg does the following atomically (without lock semantics!)
  2004. * 1. Relocate first pointer to the current per cpu area.
  2005. * 2. Verify that tid and freelist have not been changed
  2006. * 3. If they were not changed replace tid and freelist
  2007. *
  2008. * Since this is without lock semantics the protection is only against
  2009. * code executing on this cpu *not* from access by other cpus.
  2010. */
  2011. if (unlikely(!this_cpu_cmpxchg_double(
  2012. s->cpu_slab->freelist, s->cpu_slab->tid,
  2013. object, tid,
  2014. next_object, next_tid(tid)))) {
  2015. note_cmpxchg_failure("slab_alloc", s, tid);
  2016. goto redo;
  2017. }
  2018. prefetch_freepointer(s, next_object);
  2019. stat(s, ALLOC_FASTPATH);
  2020. }
  2021. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2022. memset(object, 0, s->object_size);
  2023. slab_post_alloc_hook(s, gfpflags, object);
  2024. return object;
  2025. }
  2026. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2027. gfp_t gfpflags, unsigned long addr)
  2028. {
  2029. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2030. }
  2031. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2032. {
  2033. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2034. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2035. return ret;
  2036. }
  2037. EXPORT_SYMBOL(kmem_cache_alloc);
  2038. #ifdef CONFIG_TRACING
  2039. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2040. {
  2041. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2042. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2043. return ret;
  2044. }
  2045. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2046. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2047. {
  2048. void *ret = kmalloc_order(size, flags, order);
  2049. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2050. return ret;
  2051. }
  2052. EXPORT_SYMBOL(kmalloc_order_trace);
  2053. #endif
  2054. #ifdef CONFIG_NUMA
  2055. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2056. {
  2057. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2058. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2059. s->object_size, s->size, gfpflags, node);
  2060. return ret;
  2061. }
  2062. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2063. #ifdef CONFIG_TRACING
  2064. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2065. gfp_t gfpflags,
  2066. int node, size_t size)
  2067. {
  2068. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2069. trace_kmalloc_node(_RET_IP_, ret,
  2070. size, s->size, gfpflags, node);
  2071. return ret;
  2072. }
  2073. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2074. #endif
  2075. #endif
  2076. /*
  2077. * Slow patch handling. This may still be called frequently since objects
  2078. * have a longer lifetime than the cpu slabs in most processing loads.
  2079. *
  2080. * So we still attempt to reduce cache line usage. Just take the slab
  2081. * lock and free the item. If there is no additional partial page
  2082. * handling required then we can return immediately.
  2083. */
  2084. static void __slab_free(struct kmem_cache *s, struct page *page,
  2085. void *x, unsigned long addr)
  2086. {
  2087. void *prior;
  2088. void **object = (void *)x;
  2089. int was_frozen;
  2090. struct page new;
  2091. unsigned long counters;
  2092. struct kmem_cache_node *n = NULL;
  2093. unsigned long uninitialized_var(flags);
  2094. stat(s, FREE_SLOWPATH);
  2095. if (kmem_cache_debug(s) &&
  2096. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2097. return;
  2098. do {
  2099. if (unlikely(n)) {
  2100. spin_unlock_irqrestore(&n->list_lock, flags);
  2101. n = NULL;
  2102. }
  2103. prior = page->freelist;
  2104. counters = page->counters;
  2105. set_freepointer(s, object, prior);
  2106. new.counters = counters;
  2107. was_frozen = new.frozen;
  2108. new.inuse--;
  2109. if ((!new.inuse || !prior) && !was_frozen) {
  2110. if (!kmem_cache_debug(s) && !prior)
  2111. /*
  2112. * Slab was on no list before and will be partially empty
  2113. * We can defer the list move and instead freeze it.
  2114. */
  2115. new.frozen = 1;
  2116. else { /* Needs to be taken off a list */
  2117. n = get_node(s, page_to_nid(page));
  2118. /*
  2119. * Speculatively acquire the list_lock.
  2120. * If the cmpxchg does not succeed then we may
  2121. * drop the list_lock without any processing.
  2122. *
  2123. * Otherwise the list_lock will synchronize with
  2124. * other processors updating the list of slabs.
  2125. */
  2126. spin_lock_irqsave(&n->list_lock, flags);
  2127. }
  2128. }
  2129. } while (!cmpxchg_double_slab(s, page,
  2130. prior, counters,
  2131. object, new.counters,
  2132. "__slab_free"));
  2133. if (likely(!n)) {
  2134. /*
  2135. * If we just froze the page then put it onto the
  2136. * per cpu partial list.
  2137. */
  2138. if (new.frozen && !was_frozen) {
  2139. put_cpu_partial(s, page, 1);
  2140. stat(s, CPU_PARTIAL_FREE);
  2141. }
  2142. /*
  2143. * The list lock was not taken therefore no list
  2144. * activity can be necessary.
  2145. */
  2146. if (was_frozen)
  2147. stat(s, FREE_FROZEN);
  2148. return;
  2149. }
  2150. if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
  2151. goto slab_empty;
  2152. /*
  2153. * Objects left in the slab. If it was not on the partial list before
  2154. * then add it.
  2155. */
  2156. if (kmem_cache_debug(s) && unlikely(!prior)) {
  2157. remove_full(s, page);
  2158. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2159. stat(s, FREE_ADD_PARTIAL);
  2160. }
  2161. spin_unlock_irqrestore(&n->list_lock, flags);
  2162. return;
  2163. slab_empty:
  2164. if (prior) {
  2165. /*
  2166. * Slab on the partial list.
  2167. */
  2168. remove_partial(n, page);
  2169. stat(s, FREE_REMOVE_PARTIAL);
  2170. } else
  2171. /* Slab must be on the full list */
  2172. remove_full(s, page);
  2173. spin_unlock_irqrestore(&n->list_lock, flags);
  2174. stat(s, FREE_SLAB);
  2175. discard_slab(s, page);
  2176. }
  2177. /*
  2178. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2179. * can perform fastpath freeing without additional function calls.
  2180. *
  2181. * The fastpath is only possible if we are freeing to the current cpu slab
  2182. * of this processor. This typically the case if we have just allocated
  2183. * the item before.
  2184. *
  2185. * If fastpath is not possible then fall back to __slab_free where we deal
  2186. * with all sorts of special processing.
  2187. */
  2188. static __always_inline void slab_free(struct kmem_cache *s,
  2189. struct page *page, void *x, unsigned long addr)
  2190. {
  2191. void **object = (void *)x;
  2192. struct kmem_cache_cpu *c;
  2193. unsigned long tid;
  2194. slab_free_hook(s, x);
  2195. redo:
  2196. /*
  2197. * Determine the currently cpus per cpu slab.
  2198. * The cpu may change afterward. However that does not matter since
  2199. * data is retrieved via this pointer. If we are on the same cpu
  2200. * during the cmpxchg then the free will succedd.
  2201. */
  2202. c = __this_cpu_ptr(s->cpu_slab);
  2203. tid = c->tid;
  2204. barrier();
  2205. if (likely(page == c->page)) {
  2206. set_freepointer(s, object, c->freelist);
  2207. if (unlikely(!this_cpu_cmpxchg_double(
  2208. s->cpu_slab->freelist, s->cpu_slab->tid,
  2209. c->freelist, tid,
  2210. object, next_tid(tid)))) {
  2211. note_cmpxchg_failure("slab_free", s, tid);
  2212. goto redo;
  2213. }
  2214. stat(s, FREE_FASTPATH);
  2215. } else
  2216. __slab_free(s, page, x, addr);
  2217. }
  2218. void kmem_cache_free(struct kmem_cache *s, void *x)
  2219. {
  2220. s = cache_from_obj(s, x);
  2221. if (!s)
  2222. return;
  2223. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2224. trace_kmem_cache_free(_RET_IP_, x);
  2225. }
  2226. EXPORT_SYMBOL(kmem_cache_free);
  2227. /*
  2228. * Object placement in a slab is made very easy because we always start at
  2229. * offset 0. If we tune the size of the object to the alignment then we can
  2230. * get the required alignment by putting one properly sized object after
  2231. * another.
  2232. *
  2233. * Notice that the allocation order determines the sizes of the per cpu
  2234. * caches. Each processor has always one slab available for allocations.
  2235. * Increasing the allocation order reduces the number of times that slabs
  2236. * must be moved on and off the partial lists and is therefore a factor in
  2237. * locking overhead.
  2238. */
  2239. /*
  2240. * Mininum / Maximum order of slab pages. This influences locking overhead
  2241. * and slab fragmentation. A higher order reduces the number of partial slabs
  2242. * and increases the number of allocations possible without having to
  2243. * take the list_lock.
  2244. */
  2245. static int slub_min_order;
  2246. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2247. static int slub_min_objects;
  2248. /*
  2249. * Merge control. If this is set then no merging of slab caches will occur.
  2250. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2251. */
  2252. static int slub_nomerge;
  2253. /*
  2254. * Calculate the order of allocation given an slab object size.
  2255. *
  2256. * The order of allocation has significant impact on performance and other
  2257. * system components. Generally order 0 allocations should be preferred since
  2258. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2259. * be problematic to put into order 0 slabs because there may be too much
  2260. * unused space left. We go to a higher order if more than 1/16th of the slab
  2261. * would be wasted.
  2262. *
  2263. * In order to reach satisfactory performance we must ensure that a minimum
  2264. * number of objects is in one slab. Otherwise we may generate too much
  2265. * activity on the partial lists which requires taking the list_lock. This is
  2266. * less a concern for large slabs though which are rarely used.
  2267. *
  2268. * slub_max_order specifies the order where we begin to stop considering the
  2269. * number of objects in a slab as critical. If we reach slub_max_order then
  2270. * we try to keep the page order as low as possible. So we accept more waste
  2271. * of space in favor of a small page order.
  2272. *
  2273. * Higher order allocations also allow the placement of more objects in a
  2274. * slab and thereby reduce object handling overhead. If the user has
  2275. * requested a higher mininum order then we start with that one instead of
  2276. * the smallest order which will fit the object.
  2277. */
  2278. static inline int slab_order(int size, int min_objects,
  2279. int max_order, int fract_leftover, int reserved)
  2280. {
  2281. int order;
  2282. int rem;
  2283. int min_order = slub_min_order;
  2284. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2285. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2286. for (order = max(min_order,
  2287. fls(min_objects * size - 1) - PAGE_SHIFT);
  2288. order <= max_order; order++) {
  2289. unsigned long slab_size = PAGE_SIZE << order;
  2290. if (slab_size < min_objects * size + reserved)
  2291. continue;
  2292. rem = (slab_size - reserved) % size;
  2293. if (rem <= slab_size / fract_leftover)
  2294. break;
  2295. }
  2296. return order;
  2297. }
  2298. static inline int calculate_order(int size, int reserved)
  2299. {
  2300. int order;
  2301. int min_objects;
  2302. int fraction;
  2303. int max_objects;
  2304. /*
  2305. * Attempt to find best configuration for a slab. This
  2306. * works by first attempting to generate a layout with
  2307. * the best configuration and backing off gradually.
  2308. *
  2309. * First we reduce the acceptable waste in a slab. Then
  2310. * we reduce the minimum objects required in a slab.
  2311. */
  2312. min_objects = slub_min_objects;
  2313. if (!min_objects)
  2314. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2315. max_objects = order_objects(slub_max_order, size, reserved);
  2316. min_objects = min(min_objects, max_objects);
  2317. while (min_objects > 1) {
  2318. fraction = 16;
  2319. while (fraction >= 4) {
  2320. order = slab_order(size, min_objects,
  2321. slub_max_order, fraction, reserved);
  2322. if (order <= slub_max_order)
  2323. return order;
  2324. fraction /= 2;
  2325. }
  2326. min_objects--;
  2327. }
  2328. /*
  2329. * We were unable to place multiple objects in a slab. Now
  2330. * lets see if we can place a single object there.
  2331. */
  2332. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2333. if (order <= slub_max_order)
  2334. return order;
  2335. /*
  2336. * Doh this slab cannot be placed using slub_max_order.
  2337. */
  2338. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2339. if (order < MAX_ORDER)
  2340. return order;
  2341. return -ENOSYS;
  2342. }
  2343. static void
  2344. init_kmem_cache_node(struct kmem_cache_node *n)
  2345. {
  2346. n->nr_partial = 0;
  2347. spin_lock_init(&n->list_lock);
  2348. INIT_LIST_HEAD(&n->partial);
  2349. #ifdef CONFIG_SLUB_DEBUG
  2350. atomic_long_set(&n->nr_slabs, 0);
  2351. atomic_long_set(&n->total_objects, 0);
  2352. INIT_LIST_HEAD(&n->full);
  2353. #endif
  2354. }
  2355. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2356. {
  2357. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2358. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2359. /*
  2360. * Must align to double word boundary for the double cmpxchg
  2361. * instructions to work; see __pcpu_double_call_return_bool().
  2362. */
  2363. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2364. 2 * sizeof(void *));
  2365. if (!s->cpu_slab)
  2366. return 0;
  2367. init_kmem_cache_cpus(s);
  2368. return 1;
  2369. }
  2370. static struct kmem_cache *kmem_cache_node;
  2371. /*
  2372. * No kmalloc_node yet so do it by hand. We know that this is the first
  2373. * slab on the node for this slabcache. There are no concurrent accesses
  2374. * possible.
  2375. *
  2376. * Note that this function only works on the kmalloc_node_cache
  2377. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2378. * memory on a fresh node that has no slab structures yet.
  2379. */
  2380. static void early_kmem_cache_node_alloc(int node)
  2381. {
  2382. struct page *page;
  2383. struct kmem_cache_node *n;
  2384. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2385. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2386. BUG_ON(!page);
  2387. if (page_to_nid(page) != node) {
  2388. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2389. "node %d\n", node);
  2390. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2391. "in order to be able to continue\n");
  2392. }
  2393. n = page->freelist;
  2394. BUG_ON(!n);
  2395. page->freelist = get_freepointer(kmem_cache_node, n);
  2396. page->inuse = 1;
  2397. page->frozen = 0;
  2398. kmem_cache_node->node[node] = n;
  2399. #ifdef CONFIG_SLUB_DEBUG
  2400. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2401. init_tracking(kmem_cache_node, n);
  2402. #endif
  2403. init_kmem_cache_node(n);
  2404. inc_slabs_node(kmem_cache_node, node, page->objects);
  2405. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2406. }
  2407. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2408. {
  2409. int node;
  2410. for_each_node_state(node, N_NORMAL_MEMORY) {
  2411. struct kmem_cache_node *n = s->node[node];
  2412. if (n)
  2413. kmem_cache_free(kmem_cache_node, n);
  2414. s->node[node] = NULL;
  2415. }
  2416. }
  2417. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2418. {
  2419. int node;
  2420. for_each_node_state(node, N_NORMAL_MEMORY) {
  2421. struct kmem_cache_node *n;
  2422. if (slab_state == DOWN) {
  2423. early_kmem_cache_node_alloc(node);
  2424. continue;
  2425. }
  2426. n = kmem_cache_alloc_node(kmem_cache_node,
  2427. GFP_KERNEL, node);
  2428. if (!n) {
  2429. free_kmem_cache_nodes(s);
  2430. return 0;
  2431. }
  2432. s->node[node] = n;
  2433. init_kmem_cache_node(n);
  2434. }
  2435. return 1;
  2436. }
  2437. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2438. {
  2439. if (min < MIN_PARTIAL)
  2440. min = MIN_PARTIAL;
  2441. else if (min > MAX_PARTIAL)
  2442. min = MAX_PARTIAL;
  2443. s->min_partial = min;
  2444. }
  2445. /*
  2446. * calculate_sizes() determines the order and the distribution of data within
  2447. * a slab object.
  2448. */
  2449. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2450. {
  2451. unsigned long flags = s->flags;
  2452. unsigned long size = s->object_size;
  2453. int order;
  2454. /*
  2455. * Round up object size to the next word boundary. We can only
  2456. * place the free pointer at word boundaries and this determines
  2457. * the possible location of the free pointer.
  2458. */
  2459. size = ALIGN(size, sizeof(void *));
  2460. #ifdef CONFIG_SLUB_DEBUG
  2461. /*
  2462. * Determine if we can poison the object itself. If the user of
  2463. * the slab may touch the object after free or before allocation
  2464. * then we should never poison the object itself.
  2465. */
  2466. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2467. !s->ctor)
  2468. s->flags |= __OBJECT_POISON;
  2469. else
  2470. s->flags &= ~__OBJECT_POISON;
  2471. /*
  2472. * If we are Redzoning then check if there is some space between the
  2473. * end of the object and the free pointer. If not then add an
  2474. * additional word to have some bytes to store Redzone information.
  2475. */
  2476. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2477. size += sizeof(void *);
  2478. #endif
  2479. /*
  2480. * With that we have determined the number of bytes in actual use
  2481. * by the object. This is the potential offset to the free pointer.
  2482. */
  2483. s->inuse = size;
  2484. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2485. s->ctor)) {
  2486. /*
  2487. * Relocate free pointer after the object if it is not
  2488. * permitted to overwrite the first word of the object on
  2489. * kmem_cache_free.
  2490. *
  2491. * This is the case if we do RCU, have a constructor or
  2492. * destructor or are poisoning the objects.
  2493. */
  2494. s->offset = size;
  2495. size += sizeof(void *);
  2496. }
  2497. #ifdef CONFIG_SLUB_DEBUG
  2498. if (flags & SLAB_STORE_USER)
  2499. /*
  2500. * Need to store information about allocs and frees after
  2501. * the object.
  2502. */
  2503. size += 2 * sizeof(struct track);
  2504. if (flags & SLAB_RED_ZONE)
  2505. /*
  2506. * Add some empty padding so that we can catch
  2507. * overwrites from earlier objects rather than let
  2508. * tracking information or the free pointer be
  2509. * corrupted if a user writes before the start
  2510. * of the object.
  2511. */
  2512. size += sizeof(void *);
  2513. #endif
  2514. /*
  2515. * SLUB stores one object immediately after another beginning from
  2516. * offset 0. In order to align the objects we have to simply size
  2517. * each object to conform to the alignment.
  2518. */
  2519. size = ALIGN(size, s->align);
  2520. s->size = size;
  2521. if (forced_order >= 0)
  2522. order = forced_order;
  2523. else
  2524. order = calculate_order(size, s->reserved);
  2525. if (order < 0)
  2526. return 0;
  2527. s->allocflags = 0;
  2528. if (order)
  2529. s->allocflags |= __GFP_COMP;
  2530. if (s->flags & SLAB_CACHE_DMA)
  2531. s->allocflags |= GFP_DMA;
  2532. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2533. s->allocflags |= __GFP_RECLAIMABLE;
  2534. /*
  2535. * Determine the number of objects per slab
  2536. */
  2537. s->oo = oo_make(order, size, s->reserved);
  2538. s->min = oo_make(get_order(size), size, s->reserved);
  2539. if (oo_objects(s->oo) > oo_objects(s->max))
  2540. s->max = s->oo;
  2541. return !!oo_objects(s->oo);
  2542. }
  2543. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2544. {
  2545. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2546. s->reserved = 0;
  2547. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2548. s->reserved = sizeof(struct rcu_head);
  2549. if (!calculate_sizes(s, -1))
  2550. goto error;
  2551. if (disable_higher_order_debug) {
  2552. /*
  2553. * Disable debugging flags that store metadata if the min slab
  2554. * order increased.
  2555. */
  2556. if (get_order(s->size) > get_order(s->object_size)) {
  2557. s->flags &= ~DEBUG_METADATA_FLAGS;
  2558. s->offset = 0;
  2559. if (!calculate_sizes(s, -1))
  2560. goto error;
  2561. }
  2562. }
  2563. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2564. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2565. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2566. /* Enable fast mode */
  2567. s->flags |= __CMPXCHG_DOUBLE;
  2568. #endif
  2569. /*
  2570. * The larger the object size is, the more pages we want on the partial
  2571. * list to avoid pounding the page allocator excessively.
  2572. */
  2573. set_min_partial(s, ilog2(s->size) / 2);
  2574. /*
  2575. * cpu_partial determined the maximum number of objects kept in the
  2576. * per cpu partial lists of a processor.
  2577. *
  2578. * Per cpu partial lists mainly contain slabs that just have one
  2579. * object freed. If they are used for allocation then they can be
  2580. * filled up again with minimal effort. The slab will never hit the
  2581. * per node partial lists and therefore no locking will be required.
  2582. *
  2583. * This setting also determines
  2584. *
  2585. * A) The number of objects from per cpu partial slabs dumped to the
  2586. * per node list when we reach the limit.
  2587. * B) The number of objects in cpu partial slabs to extract from the
  2588. * per node list when we run out of per cpu objects. We only fetch 50%
  2589. * to keep some capacity around for frees.
  2590. */
  2591. if (kmem_cache_debug(s))
  2592. s->cpu_partial = 0;
  2593. else if (s->size >= PAGE_SIZE)
  2594. s->cpu_partial = 2;
  2595. else if (s->size >= 1024)
  2596. s->cpu_partial = 6;
  2597. else if (s->size >= 256)
  2598. s->cpu_partial = 13;
  2599. else
  2600. s->cpu_partial = 30;
  2601. #ifdef CONFIG_NUMA
  2602. s->remote_node_defrag_ratio = 1000;
  2603. #endif
  2604. if (!init_kmem_cache_nodes(s))
  2605. goto error;
  2606. if (alloc_kmem_cache_cpus(s))
  2607. return 0;
  2608. free_kmem_cache_nodes(s);
  2609. error:
  2610. if (flags & SLAB_PANIC)
  2611. panic("Cannot create slab %s size=%lu realsize=%u "
  2612. "order=%u offset=%u flags=%lx\n",
  2613. s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
  2614. s->offset, flags);
  2615. return -EINVAL;
  2616. }
  2617. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2618. const char *text)
  2619. {
  2620. #ifdef CONFIG_SLUB_DEBUG
  2621. void *addr = page_address(page);
  2622. void *p;
  2623. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2624. sizeof(long), GFP_ATOMIC);
  2625. if (!map)
  2626. return;
  2627. slab_err(s, page, text, s->name);
  2628. slab_lock(page);
  2629. get_map(s, page, map);
  2630. for_each_object(p, s, addr, page->objects) {
  2631. if (!test_bit(slab_index(p, s, addr), map)) {
  2632. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2633. p, p - addr);
  2634. print_tracking(s, p);
  2635. }
  2636. }
  2637. slab_unlock(page);
  2638. kfree(map);
  2639. #endif
  2640. }
  2641. /*
  2642. * Attempt to free all partial slabs on a node.
  2643. * This is called from kmem_cache_close(). We must be the last thread
  2644. * using the cache and therefore we do not need to lock anymore.
  2645. */
  2646. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2647. {
  2648. struct page *page, *h;
  2649. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2650. if (!page->inuse) {
  2651. remove_partial(n, page);
  2652. discard_slab(s, page);
  2653. } else {
  2654. list_slab_objects(s, page,
  2655. "Objects remaining in %s on kmem_cache_close()");
  2656. }
  2657. }
  2658. }
  2659. /*
  2660. * Release all resources used by a slab cache.
  2661. */
  2662. static inline int kmem_cache_close(struct kmem_cache *s)
  2663. {
  2664. int node;
  2665. flush_all(s);
  2666. /* Attempt to free all objects */
  2667. for_each_node_state(node, N_NORMAL_MEMORY) {
  2668. struct kmem_cache_node *n = get_node(s, node);
  2669. free_partial(s, n);
  2670. if (n->nr_partial || slabs_node(s, node))
  2671. return 1;
  2672. }
  2673. free_percpu(s->cpu_slab);
  2674. free_kmem_cache_nodes(s);
  2675. return 0;
  2676. }
  2677. int __kmem_cache_shutdown(struct kmem_cache *s)
  2678. {
  2679. int rc = kmem_cache_close(s);
  2680. if (!rc) {
  2681. /*
  2682. * We do the same lock strategy around sysfs_slab_add, see
  2683. * __kmem_cache_create. Because this is pretty much the last
  2684. * operation we do and the lock will be released shortly after
  2685. * that in slab_common.c, we could just move sysfs_slab_remove
  2686. * to a later point in common code. We should do that when we
  2687. * have a common sysfs framework for all allocators.
  2688. */
  2689. mutex_unlock(&slab_mutex);
  2690. sysfs_slab_remove(s);
  2691. mutex_lock(&slab_mutex);
  2692. }
  2693. return rc;
  2694. }
  2695. /********************************************************************
  2696. * Kmalloc subsystem
  2697. *******************************************************************/
  2698. static int __init setup_slub_min_order(char *str)
  2699. {
  2700. get_option(&str, &slub_min_order);
  2701. return 1;
  2702. }
  2703. __setup("slub_min_order=", setup_slub_min_order);
  2704. static int __init setup_slub_max_order(char *str)
  2705. {
  2706. get_option(&str, &slub_max_order);
  2707. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2708. return 1;
  2709. }
  2710. __setup("slub_max_order=", setup_slub_max_order);
  2711. static int __init setup_slub_min_objects(char *str)
  2712. {
  2713. get_option(&str, &slub_min_objects);
  2714. return 1;
  2715. }
  2716. __setup("slub_min_objects=", setup_slub_min_objects);
  2717. static int __init setup_slub_nomerge(char *str)
  2718. {
  2719. slub_nomerge = 1;
  2720. return 1;
  2721. }
  2722. __setup("slub_nomerge", setup_slub_nomerge);
  2723. void *__kmalloc(size_t size, gfp_t flags)
  2724. {
  2725. struct kmem_cache *s;
  2726. void *ret;
  2727. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2728. return kmalloc_large(size, flags);
  2729. s = kmalloc_slab(size, flags);
  2730. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2731. return s;
  2732. ret = slab_alloc(s, flags, _RET_IP_);
  2733. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2734. return ret;
  2735. }
  2736. EXPORT_SYMBOL(__kmalloc);
  2737. #ifdef CONFIG_NUMA
  2738. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2739. {
  2740. struct page *page;
  2741. void *ptr = NULL;
  2742. flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
  2743. page = alloc_pages_node(node, flags, get_order(size));
  2744. if (page)
  2745. ptr = page_address(page);
  2746. kmemleak_alloc(ptr, size, 1, flags);
  2747. return ptr;
  2748. }
  2749. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2750. {
  2751. struct kmem_cache *s;
  2752. void *ret;
  2753. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2754. ret = kmalloc_large_node(size, flags, node);
  2755. trace_kmalloc_node(_RET_IP_, ret,
  2756. size, PAGE_SIZE << get_order(size),
  2757. flags, node);
  2758. return ret;
  2759. }
  2760. s = kmalloc_slab(size, flags);
  2761. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2762. return s;
  2763. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2764. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2765. return ret;
  2766. }
  2767. EXPORT_SYMBOL(__kmalloc_node);
  2768. #endif
  2769. size_t ksize(const void *object)
  2770. {
  2771. struct page *page;
  2772. if (unlikely(object == ZERO_SIZE_PTR))
  2773. return 0;
  2774. page = virt_to_head_page(object);
  2775. if (unlikely(!PageSlab(page))) {
  2776. WARN_ON(!PageCompound(page));
  2777. return PAGE_SIZE << compound_order(page);
  2778. }
  2779. return slab_ksize(page->slab_cache);
  2780. }
  2781. EXPORT_SYMBOL(ksize);
  2782. #ifdef CONFIG_SLUB_DEBUG
  2783. bool verify_mem_not_deleted(const void *x)
  2784. {
  2785. struct page *page;
  2786. void *object = (void *)x;
  2787. unsigned long flags;
  2788. bool rv;
  2789. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2790. return false;
  2791. local_irq_save(flags);
  2792. page = virt_to_head_page(x);
  2793. if (unlikely(!PageSlab(page))) {
  2794. /* maybe it was from stack? */
  2795. rv = true;
  2796. goto out_unlock;
  2797. }
  2798. slab_lock(page);
  2799. if (on_freelist(page->slab_cache, page, object)) {
  2800. object_err(page->slab_cache, page, object, "Object is on free-list");
  2801. rv = false;
  2802. } else {
  2803. rv = true;
  2804. }
  2805. slab_unlock(page);
  2806. out_unlock:
  2807. local_irq_restore(flags);
  2808. return rv;
  2809. }
  2810. EXPORT_SYMBOL(verify_mem_not_deleted);
  2811. #endif
  2812. void kfree(const void *x)
  2813. {
  2814. struct page *page;
  2815. void *object = (void *)x;
  2816. trace_kfree(_RET_IP_, x);
  2817. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2818. return;
  2819. page = virt_to_head_page(x);
  2820. if (unlikely(!PageSlab(page))) {
  2821. BUG_ON(!PageCompound(page));
  2822. kmemleak_free(x);
  2823. __free_memcg_kmem_pages(page, compound_order(page));
  2824. return;
  2825. }
  2826. slab_free(page->slab_cache, page, object, _RET_IP_);
  2827. }
  2828. EXPORT_SYMBOL(kfree);
  2829. /*
  2830. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2831. * the remaining slabs by the number of items in use. The slabs with the
  2832. * most items in use come first. New allocations will then fill those up
  2833. * and thus they can be removed from the partial lists.
  2834. *
  2835. * The slabs with the least items are placed last. This results in them
  2836. * being allocated from last increasing the chance that the last objects
  2837. * are freed in them.
  2838. */
  2839. int kmem_cache_shrink(struct kmem_cache *s)
  2840. {
  2841. int node;
  2842. int i;
  2843. struct kmem_cache_node *n;
  2844. struct page *page;
  2845. struct page *t;
  2846. int objects = oo_objects(s->max);
  2847. struct list_head *slabs_by_inuse =
  2848. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2849. unsigned long flags;
  2850. if (!slabs_by_inuse)
  2851. return -ENOMEM;
  2852. flush_all(s);
  2853. for_each_node_state(node, N_NORMAL_MEMORY) {
  2854. n = get_node(s, node);
  2855. if (!n->nr_partial)
  2856. continue;
  2857. for (i = 0; i < objects; i++)
  2858. INIT_LIST_HEAD(slabs_by_inuse + i);
  2859. spin_lock_irqsave(&n->list_lock, flags);
  2860. /*
  2861. * Build lists indexed by the items in use in each slab.
  2862. *
  2863. * Note that concurrent frees may occur while we hold the
  2864. * list_lock. page->inuse here is the upper limit.
  2865. */
  2866. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2867. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2868. if (!page->inuse)
  2869. n->nr_partial--;
  2870. }
  2871. /*
  2872. * Rebuild the partial list with the slabs filled up most
  2873. * first and the least used slabs at the end.
  2874. */
  2875. for (i = objects - 1; i > 0; i--)
  2876. list_splice(slabs_by_inuse + i, n->partial.prev);
  2877. spin_unlock_irqrestore(&n->list_lock, flags);
  2878. /* Release empty slabs */
  2879. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2880. discard_slab(s, page);
  2881. }
  2882. kfree(slabs_by_inuse);
  2883. return 0;
  2884. }
  2885. EXPORT_SYMBOL(kmem_cache_shrink);
  2886. #if defined(CONFIG_MEMORY_HOTPLUG)
  2887. static int slab_mem_going_offline_callback(void *arg)
  2888. {
  2889. struct kmem_cache *s;
  2890. mutex_lock(&slab_mutex);
  2891. list_for_each_entry(s, &slab_caches, list)
  2892. kmem_cache_shrink(s);
  2893. mutex_unlock(&slab_mutex);
  2894. return 0;
  2895. }
  2896. static void slab_mem_offline_callback(void *arg)
  2897. {
  2898. struct kmem_cache_node *n;
  2899. struct kmem_cache *s;
  2900. struct memory_notify *marg = arg;
  2901. int offline_node;
  2902. offline_node = marg->status_change_nid_normal;
  2903. /*
  2904. * If the node still has available memory. we need kmem_cache_node
  2905. * for it yet.
  2906. */
  2907. if (offline_node < 0)
  2908. return;
  2909. mutex_lock(&slab_mutex);
  2910. list_for_each_entry(s, &slab_caches, list) {
  2911. n = get_node(s, offline_node);
  2912. if (n) {
  2913. /*
  2914. * if n->nr_slabs > 0, slabs still exist on the node
  2915. * that is going down. We were unable to free them,
  2916. * and offline_pages() function shouldn't call this
  2917. * callback. So, we must fail.
  2918. */
  2919. BUG_ON(slabs_node(s, offline_node));
  2920. s->node[offline_node] = NULL;
  2921. kmem_cache_free(kmem_cache_node, n);
  2922. }
  2923. }
  2924. mutex_unlock(&slab_mutex);
  2925. }
  2926. static int slab_mem_going_online_callback(void *arg)
  2927. {
  2928. struct kmem_cache_node *n;
  2929. struct kmem_cache *s;
  2930. struct memory_notify *marg = arg;
  2931. int nid = marg->status_change_nid_normal;
  2932. int ret = 0;
  2933. /*
  2934. * If the node's memory is already available, then kmem_cache_node is
  2935. * already created. Nothing to do.
  2936. */
  2937. if (nid < 0)
  2938. return 0;
  2939. /*
  2940. * We are bringing a node online. No memory is available yet. We must
  2941. * allocate a kmem_cache_node structure in order to bring the node
  2942. * online.
  2943. */
  2944. mutex_lock(&slab_mutex);
  2945. list_for_each_entry(s, &slab_caches, list) {
  2946. /*
  2947. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2948. * since memory is not yet available from the node that
  2949. * is brought up.
  2950. */
  2951. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2952. if (!n) {
  2953. ret = -ENOMEM;
  2954. goto out;
  2955. }
  2956. init_kmem_cache_node(n);
  2957. s->node[nid] = n;
  2958. }
  2959. out:
  2960. mutex_unlock(&slab_mutex);
  2961. return ret;
  2962. }
  2963. static int slab_memory_callback(struct notifier_block *self,
  2964. unsigned long action, void *arg)
  2965. {
  2966. int ret = 0;
  2967. switch (action) {
  2968. case MEM_GOING_ONLINE:
  2969. ret = slab_mem_going_online_callback(arg);
  2970. break;
  2971. case MEM_GOING_OFFLINE:
  2972. ret = slab_mem_going_offline_callback(arg);
  2973. break;
  2974. case MEM_OFFLINE:
  2975. case MEM_CANCEL_ONLINE:
  2976. slab_mem_offline_callback(arg);
  2977. break;
  2978. case MEM_ONLINE:
  2979. case MEM_CANCEL_OFFLINE:
  2980. break;
  2981. }
  2982. if (ret)
  2983. ret = notifier_from_errno(ret);
  2984. else
  2985. ret = NOTIFY_OK;
  2986. return ret;
  2987. }
  2988. #endif /* CONFIG_MEMORY_HOTPLUG */
  2989. /********************************************************************
  2990. * Basic setup of slabs
  2991. *******************************************************************/
  2992. /*
  2993. * Used for early kmem_cache structures that were allocated using
  2994. * the page allocator. Allocate them properly then fix up the pointers
  2995. * that may be pointing to the wrong kmem_cache structure.
  2996. */
  2997. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  2998. {
  2999. int node;
  3000. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3001. memcpy(s, static_cache, kmem_cache->object_size);
  3002. for_each_node_state(node, N_NORMAL_MEMORY) {
  3003. struct kmem_cache_node *n = get_node(s, node);
  3004. struct page *p;
  3005. if (n) {
  3006. list_for_each_entry(p, &n->partial, lru)
  3007. p->slab_cache = s;
  3008. #ifdef CONFIG_SLUB_DEBUG
  3009. list_for_each_entry(p, &n->full, lru)
  3010. p->slab_cache = s;
  3011. #endif
  3012. }
  3013. }
  3014. list_add(&s->list, &slab_caches);
  3015. return s;
  3016. }
  3017. void __init kmem_cache_init(void)
  3018. {
  3019. static __initdata struct kmem_cache boot_kmem_cache,
  3020. boot_kmem_cache_node;
  3021. if (debug_guardpage_minorder())
  3022. slub_max_order = 0;
  3023. kmem_cache_node = &boot_kmem_cache_node;
  3024. kmem_cache = &boot_kmem_cache;
  3025. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3026. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3027. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3028. /* Able to allocate the per node structures */
  3029. slab_state = PARTIAL;
  3030. create_boot_cache(kmem_cache, "kmem_cache",
  3031. offsetof(struct kmem_cache, node) +
  3032. nr_node_ids * sizeof(struct kmem_cache_node *),
  3033. SLAB_HWCACHE_ALIGN);
  3034. kmem_cache = bootstrap(&boot_kmem_cache);
  3035. /*
  3036. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3037. * kmem_cache_node is separately allocated so no need to
  3038. * update any list pointers.
  3039. */
  3040. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3041. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3042. create_kmalloc_caches(0);
  3043. #ifdef CONFIG_SMP
  3044. register_cpu_notifier(&slab_notifier);
  3045. #endif
  3046. printk(KERN_INFO
  3047. "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3048. " CPUs=%d, Nodes=%d\n",
  3049. cache_line_size(),
  3050. slub_min_order, slub_max_order, slub_min_objects,
  3051. nr_cpu_ids, nr_node_ids);
  3052. }
  3053. void __init kmem_cache_init_late(void)
  3054. {
  3055. }
  3056. /*
  3057. * Find a mergeable slab cache
  3058. */
  3059. static int slab_unmergeable(struct kmem_cache *s)
  3060. {
  3061. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3062. return 1;
  3063. if (s->ctor)
  3064. return 1;
  3065. /*
  3066. * We may have set a slab to be unmergeable during bootstrap.
  3067. */
  3068. if (s->refcount < 0)
  3069. return 1;
  3070. return 0;
  3071. }
  3072. static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
  3073. size_t align, unsigned long flags, const char *name,
  3074. void (*ctor)(void *))
  3075. {
  3076. struct kmem_cache *s;
  3077. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3078. return NULL;
  3079. if (ctor)
  3080. return NULL;
  3081. size = ALIGN(size, sizeof(void *));
  3082. align = calculate_alignment(flags, align, size);
  3083. size = ALIGN(size, align);
  3084. flags = kmem_cache_flags(size, flags, name, NULL);
  3085. list_for_each_entry(s, &slab_caches, list) {
  3086. if (slab_unmergeable(s))
  3087. continue;
  3088. if (size > s->size)
  3089. continue;
  3090. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3091. continue;
  3092. /*
  3093. * Check if alignment is compatible.
  3094. * Courtesy of Adrian Drzewiecki
  3095. */
  3096. if ((s->size & ~(align - 1)) != s->size)
  3097. continue;
  3098. if (s->size - size >= sizeof(void *))
  3099. continue;
  3100. if (!cache_match_memcg(s, memcg))
  3101. continue;
  3102. return s;
  3103. }
  3104. return NULL;
  3105. }
  3106. struct kmem_cache *
  3107. __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
  3108. size_t align, unsigned long flags, void (*ctor)(void *))
  3109. {
  3110. struct kmem_cache *s;
  3111. s = find_mergeable(memcg, size, align, flags, name, ctor);
  3112. if (s) {
  3113. s->refcount++;
  3114. /*
  3115. * Adjust the object sizes so that we clear
  3116. * the complete object on kzalloc.
  3117. */
  3118. s->object_size = max(s->object_size, (int)size);
  3119. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3120. if (sysfs_slab_alias(s, name)) {
  3121. s->refcount--;
  3122. s = NULL;
  3123. }
  3124. }
  3125. return s;
  3126. }
  3127. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3128. {
  3129. int err;
  3130. err = kmem_cache_open(s, flags);
  3131. if (err)
  3132. return err;
  3133. /* Mutex is not taken during early boot */
  3134. if (slab_state <= UP)
  3135. return 0;
  3136. memcg_propagate_slab_attrs(s);
  3137. mutex_unlock(&slab_mutex);
  3138. err = sysfs_slab_add(s);
  3139. mutex_lock(&slab_mutex);
  3140. if (err)
  3141. kmem_cache_close(s);
  3142. return err;
  3143. }
  3144. #ifdef CONFIG_SMP
  3145. /*
  3146. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3147. * necessary.
  3148. */
  3149. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3150. unsigned long action, void *hcpu)
  3151. {
  3152. long cpu = (long)hcpu;
  3153. struct kmem_cache *s;
  3154. unsigned long flags;
  3155. switch (action) {
  3156. case CPU_UP_CANCELED:
  3157. case CPU_UP_CANCELED_FROZEN:
  3158. case CPU_DEAD:
  3159. case CPU_DEAD_FROZEN:
  3160. mutex_lock(&slab_mutex);
  3161. list_for_each_entry(s, &slab_caches, list) {
  3162. local_irq_save(flags);
  3163. __flush_cpu_slab(s, cpu);
  3164. local_irq_restore(flags);
  3165. }
  3166. mutex_unlock(&slab_mutex);
  3167. break;
  3168. default:
  3169. break;
  3170. }
  3171. return NOTIFY_OK;
  3172. }
  3173. static struct notifier_block __cpuinitdata slab_notifier = {
  3174. .notifier_call = slab_cpuup_callback
  3175. };
  3176. #endif
  3177. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3178. {
  3179. struct kmem_cache *s;
  3180. void *ret;
  3181. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3182. return kmalloc_large(size, gfpflags);
  3183. s = kmalloc_slab(size, gfpflags);
  3184. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3185. return s;
  3186. ret = slab_alloc(s, gfpflags, caller);
  3187. /* Honor the call site pointer we received. */
  3188. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3189. return ret;
  3190. }
  3191. #ifdef CONFIG_NUMA
  3192. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3193. int node, unsigned long caller)
  3194. {
  3195. struct kmem_cache *s;
  3196. void *ret;
  3197. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3198. ret = kmalloc_large_node(size, gfpflags, node);
  3199. trace_kmalloc_node(caller, ret,
  3200. size, PAGE_SIZE << get_order(size),
  3201. gfpflags, node);
  3202. return ret;
  3203. }
  3204. s = kmalloc_slab(size, gfpflags);
  3205. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3206. return s;
  3207. ret = slab_alloc_node(s, gfpflags, node, caller);
  3208. /* Honor the call site pointer we received. */
  3209. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3210. return ret;
  3211. }
  3212. #endif
  3213. #ifdef CONFIG_SYSFS
  3214. static int count_inuse(struct page *page)
  3215. {
  3216. return page->inuse;
  3217. }
  3218. static int count_total(struct page *page)
  3219. {
  3220. return page->objects;
  3221. }
  3222. #endif
  3223. #ifdef CONFIG_SLUB_DEBUG
  3224. static int validate_slab(struct kmem_cache *s, struct page *page,
  3225. unsigned long *map)
  3226. {
  3227. void *p;
  3228. void *addr = page_address(page);
  3229. if (!check_slab(s, page) ||
  3230. !on_freelist(s, page, NULL))
  3231. return 0;
  3232. /* Now we know that a valid freelist exists */
  3233. bitmap_zero(map, page->objects);
  3234. get_map(s, page, map);
  3235. for_each_object(p, s, addr, page->objects) {
  3236. if (test_bit(slab_index(p, s, addr), map))
  3237. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3238. return 0;
  3239. }
  3240. for_each_object(p, s, addr, page->objects)
  3241. if (!test_bit(slab_index(p, s, addr), map))
  3242. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3243. return 0;
  3244. return 1;
  3245. }
  3246. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3247. unsigned long *map)
  3248. {
  3249. slab_lock(page);
  3250. validate_slab(s, page, map);
  3251. slab_unlock(page);
  3252. }
  3253. static int validate_slab_node(struct kmem_cache *s,
  3254. struct kmem_cache_node *n, unsigned long *map)
  3255. {
  3256. unsigned long count = 0;
  3257. struct page *page;
  3258. unsigned long flags;
  3259. spin_lock_irqsave(&n->list_lock, flags);
  3260. list_for_each_entry(page, &n->partial, lru) {
  3261. validate_slab_slab(s, page, map);
  3262. count++;
  3263. }
  3264. if (count != n->nr_partial)
  3265. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3266. "counter=%ld\n", s->name, count, n->nr_partial);
  3267. if (!(s->flags & SLAB_STORE_USER))
  3268. goto out;
  3269. list_for_each_entry(page, &n->full, lru) {
  3270. validate_slab_slab(s, page, map);
  3271. count++;
  3272. }
  3273. if (count != atomic_long_read(&n->nr_slabs))
  3274. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3275. "counter=%ld\n", s->name, count,
  3276. atomic_long_read(&n->nr_slabs));
  3277. out:
  3278. spin_unlock_irqrestore(&n->list_lock, flags);
  3279. return count;
  3280. }
  3281. static long validate_slab_cache(struct kmem_cache *s)
  3282. {
  3283. int node;
  3284. unsigned long count = 0;
  3285. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3286. sizeof(unsigned long), GFP_KERNEL);
  3287. if (!map)
  3288. return -ENOMEM;
  3289. flush_all(s);
  3290. for_each_node_state(node, N_NORMAL_MEMORY) {
  3291. struct kmem_cache_node *n = get_node(s, node);
  3292. count += validate_slab_node(s, n, map);
  3293. }
  3294. kfree(map);
  3295. return count;
  3296. }
  3297. /*
  3298. * Generate lists of code addresses where slabcache objects are allocated
  3299. * and freed.
  3300. */
  3301. struct location {
  3302. unsigned long count;
  3303. unsigned long addr;
  3304. long long sum_time;
  3305. long min_time;
  3306. long max_time;
  3307. long min_pid;
  3308. long max_pid;
  3309. DECLARE_BITMAP(cpus, NR_CPUS);
  3310. nodemask_t nodes;
  3311. };
  3312. struct loc_track {
  3313. unsigned long max;
  3314. unsigned long count;
  3315. struct location *loc;
  3316. };
  3317. static void free_loc_track(struct loc_track *t)
  3318. {
  3319. if (t->max)
  3320. free_pages((unsigned long)t->loc,
  3321. get_order(sizeof(struct location) * t->max));
  3322. }
  3323. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3324. {
  3325. struct location *l;
  3326. int order;
  3327. order = get_order(sizeof(struct location) * max);
  3328. l = (void *)__get_free_pages(flags, order);
  3329. if (!l)
  3330. return 0;
  3331. if (t->count) {
  3332. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3333. free_loc_track(t);
  3334. }
  3335. t->max = max;
  3336. t->loc = l;
  3337. return 1;
  3338. }
  3339. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3340. const struct track *track)
  3341. {
  3342. long start, end, pos;
  3343. struct location *l;
  3344. unsigned long caddr;
  3345. unsigned long age = jiffies - track->when;
  3346. start = -1;
  3347. end = t->count;
  3348. for ( ; ; ) {
  3349. pos = start + (end - start + 1) / 2;
  3350. /*
  3351. * There is nothing at "end". If we end up there
  3352. * we need to add something to before end.
  3353. */
  3354. if (pos == end)
  3355. break;
  3356. caddr = t->loc[pos].addr;
  3357. if (track->addr == caddr) {
  3358. l = &t->loc[pos];
  3359. l->count++;
  3360. if (track->when) {
  3361. l->sum_time += age;
  3362. if (age < l->min_time)
  3363. l->min_time = age;
  3364. if (age > l->max_time)
  3365. l->max_time = age;
  3366. if (track->pid < l->min_pid)
  3367. l->min_pid = track->pid;
  3368. if (track->pid > l->max_pid)
  3369. l->max_pid = track->pid;
  3370. cpumask_set_cpu(track->cpu,
  3371. to_cpumask(l->cpus));
  3372. }
  3373. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3374. return 1;
  3375. }
  3376. if (track->addr < caddr)
  3377. end = pos;
  3378. else
  3379. start = pos;
  3380. }
  3381. /*
  3382. * Not found. Insert new tracking element.
  3383. */
  3384. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3385. return 0;
  3386. l = t->loc + pos;
  3387. if (pos < t->count)
  3388. memmove(l + 1, l,
  3389. (t->count - pos) * sizeof(struct location));
  3390. t->count++;
  3391. l->count = 1;
  3392. l->addr = track->addr;
  3393. l->sum_time = age;
  3394. l->min_time = age;
  3395. l->max_time = age;
  3396. l->min_pid = track->pid;
  3397. l->max_pid = track->pid;
  3398. cpumask_clear(to_cpumask(l->cpus));
  3399. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3400. nodes_clear(l->nodes);
  3401. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3402. return 1;
  3403. }
  3404. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3405. struct page *page, enum track_item alloc,
  3406. unsigned long *map)
  3407. {
  3408. void *addr = page_address(page);
  3409. void *p;
  3410. bitmap_zero(map, page->objects);
  3411. get_map(s, page, map);
  3412. for_each_object(p, s, addr, page->objects)
  3413. if (!test_bit(slab_index(p, s, addr), map))
  3414. add_location(t, s, get_track(s, p, alloc));
  3415. }
  3416. static int list_locations(struct kmem_cache *s, char *buf,
  3417. enum track_item alloc)
  3418. {
  3419. int len = 0;
  3420. unsigned long i;
  3421. struct loc_track t = { 0, 0, NULL };
  3422. int node;
  3423. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3424. sizeof(unsigned long), GFP_KERNEL);
  3425. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3426. GFP_TEMPORARY)) {
  3427. kfree(map);
  3428. return sprintf(buf, "Out of memory\n");
  3429. }
  3430. /* Push back cpu slabs */
  3431. flush_all(s);
  3432. for_each_node_state(node, N_NORMAL_MEMORY) {
  3433. struct kmem_cache_node *n = get_node(s, node);
  3434. unsigned long flags;
  3435. struct page *page;
  3436. if (!atomic_long_read(&n->nr_slabs))
  3437. continue;
  3438. spin_lock_irqsave(&n->list_lock, flags);
  3439. list_for_each_entry(page, &n->partial, lru)
  3440. process_slab(&t, s, page, alloc, map);
  3441. list_for_each_entry(page, &n->full, lru)
  3442. process_slab(&t, s, page, alloc, map);
  3443. spin_unlock_irqrestore(&n->list_lock, flags);
  3444. }
  3445. for (i = 0; i < t.count; i++) {
  3446. struct location *l = &t.loc[i];
  3447. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3448. break;
  3449. len += sprintf(buf + len, "%7ld ", l->count);
  3450. if (l->addr)
  3451. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3452. else
  3453. len += sprintf(buf + len, "<not-available>");
  3454. if (l->sum_time != l->min_time) {
  3455. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3456. l->min_time,
  3457. (long)div_u64(l->sum_time, l->count),
  3458. l->max_time);
  3459. } else
  3460. len += sprintf(buf + len, " age=%ld",
  3461. l->min_time);
  3462. if (l->min_pid != l->max_pid)
  3463. len += sprintf(buf + len, " pid=%ld-%ld",
  3464. l->min_pid, l->max_pid);
  3465. else
  3466. len += sprintf(buf + len, " pid=%ld",
  3467. l->min_pid);
  3468. if (num_online_cpus() > 1 &&
  3469. !cpumask_empty(to_cpumask(l->cpus)) &&
  3470. len < PAGE_SIZE - 60) {
  3471. len += sprintf(buf + len, " cpus=");
  3472. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3473. to_cpumask(l->cpus));
  3474. }
  3475. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3476. len < PAGE_SIZE - 60) {
  3477. len += sprintf(buf + len, " nodes=");
  3478. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3479. l->nodes);
  3480. }
  3481. len += sprintf(buf + len, "\n");
  3482. }
  3483. free_loc_track(&t);
  3484. kfree(map);
  3485. if (!t.count)
  3486. len += sprintf(buf, "No data\n");
  3487. return len;
  3488. }
  3489. #endif
  3490. #ifdef SLUB_RESILIENCY_TEST
  3491. static void resiliency_test(void)
  3492. {
  3493. u8 *p;
  3494. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3495. printk(KERN_ERR "SLUB resiliency testing\n");
  3496. printk(KERN_ERR "-----------------------\n");
  3497. printk(KERN_ERR "A. Corruption after allocation\n");
  3498. p = kzalloc(16, GFP_KERNEL);
  3499. p[16] = 0x12;
  3500. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3501. " 0x12->0x%p\n\n", p + 16);
  3502. validate_slab_cache(kmalloc_caches[4]);
  3503. /* Hmmm... The next two are dangerous */
  3504. p = kzalloc(32, GFP_KERNEL);
  3505. p[32 + sizeof(void *)] = 0x34;
  3506. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3507. " 0x34 -> -0x%p\n", p);
  3508. printk(KERN_ERR
  3509. "If allocated object is overwritten then not detectable\n\n");
  3510. validate_slab_cache(kmalloc_caches[5]);
  3511. p = kzalloc(64, GFP_KERNEL);
  3512. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3513. *p = 0x56;
  3514. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3515. p);
  3516. printk(KERN_ERR
  3517. "If allocated object is overwritten then not detectable\n\n");
  3518. validate_slab_cache(kmalloc_caches[6]);
  3519. printk(KERN_ERR "\nB. Corruption after free\n");
  3520. p = kzalloc(128, GFP_KERNEL);
  3521. kfree(p);
  3522. *p = 0x78;
  3523. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3524. validate_slab_cache(kmalloc_caches[7]);
  3525. p = kzalloc(256, GFP_KERNEL);
  3526. kfree(p);
  3527. p[50] = 0x9a;
  3528. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3529. p);
  3530. validate_slab_cache(kmalloc_caches[8]);
  3531. p = kzalloc(512, GFP_KERNEL);
  3532. kfree(p);
  3533. p[512] = 0xab;
  3534. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3535. validate_slab_cache(kmalloc_caches[9]);
  3536. }
  3537. #else
  3538. #ifdef CONFIG_SYSFS
  3539. static void resiliency_test(void) {};
  3540. #endif
  3541. #endif
  3542. #ifdef CONFIG_SYSFS
  3543. enum slab_stat_type {
  3544. SL_ALL, /* All slabs */
  3545. SL_PARTIAL, /* Only partially allocated slabs */
  3546. SL_CPU, /* Only slabs used for cpu caches */
  3547. SL_OBJECTS, /* Determine allocated objects not slabs */
  3548. SL_TOTAL /* Determine object capacity not slabs */
  3549. };
  3550. #define SO_ALL (1 << SL_ALL)
  3551. #define SO_PARTIAL (1 << SL_PARTIAL)
  3552. #define SO_CPU (1 << SL_CPU)
  3553. #define SO_OBJECTS (1 << SL_OBJECTS)
  3554. #define SO_TOTAL (1 << SL_TOTAL)
  3555. static ssize_t show_slab_objects(struct kmem_cache *s,
  3556. char *buf, unsigned long flags)
  3557. {
  3558. unsigned long total = 0;
  3559. int node;
  3560. int x;
  3561. unsigned long *nodes;
  3562. unsigned long *per_cpu;
  3563. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3564. if (!nodes)
  3565. return -ENOMEM;
  3566. per_cpu = nodes + nr_node_ids;
  3567. if (flags & SO_CPU) {
  3568. int cpu;
  3569. for_each_possible_cpu(cpu) {
  3570. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3571. int node;
  3572. struct page *page;
  3573. page = ACCESS_ONCE(c->page);
  3574. if (!page)
  3575. continue;
  3576. node = page_to_nid(page);
  3577. if (flags & SO_TOTAL)
  3578. x = page->objects;
  3579. else if (flags & SO_OBJECTS)
  3580. x = page->inuse;
  3581. else
  3582. x = 1;
  3583. total += x;
  3584. nodes[node] += x;
  3585. page = ACCESS_ONCE(c->partial);
  3586. if (page) {
  3587. x = page->pobjects;
  3588. total += x;
  3589. nodes[node] += x;
  3590. }
  3591. per_cpu[node]++;
  3592. }
  3593. }
  3594. lock_memory_hotplug();
  3595. #ifdef CONFIG_SLUB_DEBUG
  3596. if (flags & SO_ALL) {
  3597. for_each_node_state(node, N_NORMAL_MEMORY) {
  3598. struct kmem_cache_node *n = get_node(s, node);
  3599. if (flags & SO_TOTAL)
  3600. x = atomic_long_read(&n->total_objects);
  3601. else if (flags & SO_OBJECTS)
  3602. x = atomic_long_read(&n->total_objects) -
  3603. count_partial(n, count_free);
  3604. else
  3605. x = atomic_long_read(&n->nr_slabs);
  3606. total += x;
  3607. nodes[node] += x;
  3608. }
  3609. } else
  3610. #endif
  3611. if (flags & SO_PARTIAL) {
  3612. for_each_node_state(node, N_NORMAL_MEMORY) {
  3613. struct kmem_cache_node *n = get_node(s, node);
  3614. if (flags & SO_TOTAL)
  3615. x = count_partial(n, count_total);
  3616. else if (flags & SO_OBJECTS)
  3617. x = count_partial(n, count_inuse);
  3618. else
  3619. x = n->nr_partial;
  3620. total += x;
  3621. nodes[node] += x;
  3622. }
  3623. }
  3624. x = sprintf(buf, "%lu", total);
  3625. #ifdef CONFIG_NUMA
  3626. for_each_node_state(node, N_NORMAL_MEMORY)
  3627. if (nodes[node])
  3628. x += sprintf(buf + x, " N%d=%lu",
  3629. node, nodes[node]);
  3630. #endif
  3631. unlock_memory_hotplug();
  3632. kfree(nodes);
  3633. return x + sprintf(buf + x, "\n");
  3634. }
  3635. #ifdef CONFIG_SLUB_DEBUG
  3636. static int any_slab_objects(struct kmem_cache *s)
  3637. {
  3638. int node;
  3639. for_each_online_node(node) {
  3640. struct kmem_cache_node *n = get_node(s, node);
  3641. if (!n)
  3642. continue;
  3643. if (atomic_long_read(&n->total_objects))
  3644. return 1;
  3645. }
  3646. return 0;
  3647. }
  3648. #endif
  3649. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3650. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3651. struct slab_attribute {
  3652. struct attribute attr;
  3653. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3654. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3655. };
  3656. #define SLAB_ATTR_RO(_name) \
  3657. static struct slab_attribute _name##_attr = \
  3658. __ATTR(_name, 0400, _name##_show, NULL)
  3659. #define SLAB_ATTR(_name) \
  3660. static struct slab_attribute _name##_attr = \
  3661. __ATTR(_name, 0600, _name##_show, _name##_store)
  3662. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3663. {
  3664. return sprintf(buf, "%d\n", s->size);
  3665. }
  3666. SLAB_ATTR_RO(slab_size);
  3667. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3668. {
  3669. return sprintf(buf, "%d\n", s->align);
  3670. }
  3671. SLAB_ATTR_RO(align);
  3672. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3673. {
  3674. return sprintf(buf, "%d\n", s->object_size);
  3675. }
  3676. SLAB_ATTR_RO(object_size);
  3677. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3678. {
  3679. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3680. }
  3681. SLAB_ATTR_RO(objs_per_slab);
  3682. static ssize_t order_store(struct kmem_cache *s,
  3683. const char *buf, size_t length)
  3684. {
  3685. unsigned long order;
  3686. int err;
  3687. err = strict_strtoul(buf, 10, &order);
  3688. if (err)
  3689. return err;
  3690. if (order > slub_max_order || order < slub_min_order)
  3691. return -EINVAL;
  3692. calculate_sizes(s, order);
  3693. return length;
  3694. }
  3695. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3696. {
  3697. return sprintf(buf, "%d\n", oo_order(s->oo));
  3698. }
  3699. SLAB_ATTR(order);
  3700. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3701. {
  3702. return sprintf(buf, "%lu\n", s->min_partial);
  3703. }
  3704. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3705. size_t length)
  3706. {
  3707. unsigned long min;
  3708. int err;
  3709. err = strict_strtoul(buf, 10, &min);
  3710. if (err)
  3711. return err;
  3712. set_min_partial(s, min);
  3713. return length;
  3714. }
  3715. SLAB_ATTR(min_partial);
  3716. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3717. {
  3718. return sprintf(buf, "%u\n", s->cpu_partial);
  3719. }
  3720. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3721. size_t length)
  3722. {
  3723. unsigned long objects;
  3724. int err;
  3725. err = strict_strtoul(buf, 10, &objects);
  3726. if (err)
  3727. return err;
  3728. if (objects && kmem_cache_debug(s))
  3729. return -EINVAL;
  3730. s->cpu_partial = objects;
  3731. flush_all(s);
  3732. return length;
  3733. }
  3734. SLAB_ATTR(cpu_partial);
  3735. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3736. {
  3737. if (!s->ctor)
  3738. return 0;
  3739. return sprintf(buf, "%pS\n", s->ctor);
  3740. }
  3741. SLAB_ATTR_RO(ctor);
  3742. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3743. {
  3744. return sprintf(buf, "%d\n", s->refcount - 1);
  3745. }
  3746. SLAB_ATTR_RO(aliases);
  3747. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3748. {
  3749. return show_slab_objects(s, buf, SO_PARTIAL);
  3750. }
  3751. SLAB_ATTR_RO(partial);
  3752. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3753. {
  3754. return show_slab_objects(s, buf, SO_CPU);
  3755. }
  3756. SLAB_ATTR_RO(cpu_slabs);
  3757. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3758. {
  3759. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3760. }
  3761. SLAB_ATTR_RO(objects);
  3762. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3763. {
  3764. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3765. }
  3766. SLAB_ATTR_RO(objects_partial);
  3767. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3768. {
  3769. int objects = 0;
  3770. int pages = 0;
  3771. int cpu;
  3772. int len;
  3773. for_each_online_cpu(cpu) {
  3774. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3775. if (page) {
  3776. pages += page->pages;
  3777. objects += page->pobjects;
  3778. }
  3779. }
  3780. len = sprintf(buf, "%d(%d)", objects, pages);
  3781. #ifdef CONFIG_SMP
  3782. for_each_online_cpu(cpu) {
  3783. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3784. if (page && len < PAGE_SIZE - 20)
  3785. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3786. page->pobjects, page->pages);
  3787. }
  3788. #endif
  3789. return len + sprintf(buf + len, "\n");
  3790. }
  3791. SLAB_ATTR_RO(slabs_cpu_partial);
  3792. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3793. {
  3794. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3795. }
  3796. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3797. const char *buf, size_t length)
  3798. {
  3799. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3800. if (buf[0] == '1')
  3801. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3802. return length;
  3803. }
  3804. SLAB_ATTR(reclaim_account);
  3805. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3806. {
  3807. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3808. }
  3809. SLAB_ATTR_RO(hwcache_align);
  3810. #ifdef CONFIG_ZONE_DMA
  3811. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3812. {
  3813. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3814. }
  3815. SLAB_ATTR_RO(cache_dma);
  3816. #endif
  3817. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3818. {
  3819. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3820. }
  3821. SLAB_ATTR_RO(destroy_by_rcu);
  3822. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3823. {
  3824. return sprintf(buf, "%d\n", s->reserved);
  3825. }
  3826. SLAB_ATTR_RO(reserved);
  3827. #ifdef CONFIG_SLUB_DEBUG
  3828. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3829. {
  3830. return show_slab_objects(s, buf, SO_ALL);
  3831. }
  3832. SLAB_ATTR_RO(slabs);
  3833. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3834. {
  3835. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3836. }
  3837. SLAB_ATTR_RO(total_objects);
  3838. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3839. {
  3840. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3841. }
  3842. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3843. const char *buf, size_t length)
  3844. {
  3845. s->flags &= ~SLAB_DEBUG_FREE;
  3846. if (buf[0] == '1') {
  3847. s->flags &= ~__CMPXCHG_DOUBLE;
  3848. s->flags |= SLAB_DEBUG_FREE;
  3849. }
  3850. return length;
  3851. }
  3852. SLAB_ATTR(sanity_checks);
  3853. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3854. {
  3855. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3856. }
  3857. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3858. size_t length)
  3859. {
  3860. s->flags &= ~SLAB_TRACE;
  3861. if (buf[0] == '1') {
  3862. s->flags &= ~__CMPXCHG_DOUBLE;
  3863. s->flags |= SLAB_TRACE;
  3864. }
  3865. return length;
  3866. }
  3867. SLAB_ATTR(trace);
  3868. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3869. {
  3870. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3871. }
  3872. static ssize_t red_zone_store(struct kmem_cache *s,
  3873. const char *buf, size_t length)
  3874. {
  3875. if (any_slab_objects(s))
  3876. return -EBUSY;
  3877. s->flags &= ~SLAB_RED_ZONE;
  3878. if (buf[0] == '1') {
  3879. s->flags &= ~__CMPXCHG_DOUBLE;
  3880. s->flags |= SLAB_RED_ZONE;
  3881. }
  3882. calculate_sizes(s, -1);
  3883. return length;
  3884. }
  3885. SLAB_ATTR(red_zone);
  3886. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3887. {
  3888. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3889. }
  3890. static ssize_t poison_store(struct kmem_cache *s,
  3891. const char *buf, size_t length)
  3892. {
  3893. if (any_slab_objects(s))
  3894. return -EBUSY;
  3895. s->flags &= ~SLAB_POISON;
  3896. if (buf[0] == '1') {
  3897. s->flags &= ~__CMPXCHG_DOUBLE;
  3898. s->flags |= SLAB_POISON;
  3899. }
  3900. calculate_sizes(s, -1);
  3901. return length;
  3902. }
  3903. SLAB_ATTR(poison);
  3904. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3905. {
  3906. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3907. }
  3908. static ssize_t store_user_store(struct kmem_cache *s,
  3909. const char *buf, size_t length)
  3910. {
  3911. if (any_slab_objects(s))
  3912. return -EBUSY;
  3913. s->flags &= ~SLAB_STORE_USER;
  3914. if (buf[0] == '1') {
  3915. s->flags &= ~__CMPXCHG_DOUBLE;
  3916. s->flags |= SLAB_STORE_USER;
  3917. }
  3918. calculate_sizes(s, -1);
  3919. return length;
  3920. }
  3921. SLAB_ATTR(store_user);
  3922. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3923. {
  3924. return 0;
  3925. }
  3926. static ssize_t validate_store(struct kmem_cache *s,
  3927. const char *buf, size_t length)
  3928. {
  3929. int ret = -EINVAL;
  3930. if (buf[0] == '1') {
  3931. ret = validate_slab_cache(s);
  3932. if (ret >= 0)
  3933. ret = length;
  3934. }
  3935. return ret;
  3936. }
  3937. SLAB_ATTR(validate);
  3938. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3939. {
  3940. if (!(s->flags & SLAB_STORE_USER))
  3941. return -ENOSYS;
  3942. return list_locations(s, buf, TRACK_ALLOC);
  3943. }
  3944. SLAB_ATTR_RO(alloc_calls);
  3945. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3946. {
  3947. if (!(s->flags & SLAB_STORE_USER))
  3948. return -ENOSYS;
  3949. return list_locations(s, buf, TRACK_FREE);
  3950. }
  3951. SLAB_ATTR_RO(free_calls);
  3952. #endif /* CONFIG_SLUB_DEBUG */
  3953. #ifdef CONFIG_FAILSLAB
  3954. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3955. {
  3956. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3957. }
  3958. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3959. size_t length)
  3960. {
  3961. s->flags &= ~SLAB_FAILSLAB;
  3962. if (buf[0] == '1')
  3963. s->flags |= SLAB_FAILSLAB;
  3964. return length;
  3965. }
  3966. SLAB_ATTR(failslab);
  3967. #endif
  3968. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3969. {
  3970. return 0;
  3971. }
  3972. static ssize_t shrink_store(struct kmem_cache *s,
  3973. const char *buf, size_t length)
  3974. {
  3975. if (buf[0] == '1') {
  3976. int rc = kmem_cache_shrink(s);
  3977. if (rc)
  3978. return rc;
  3979. } else
  3980. return -EINVAL;
  3981. return length;
  3982. }
  3983. SLAB_ATTR(shrink);
  3984. #ifdef CONFIG_NUMA
  3985. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3986. {
  3987. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3988. }
  3989. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3990. const char *buf, size_t length)
  3991. {
  3992. unsigned long ratio;
  3993. int err;
  3994. err = strict_strtoul(buf, 10, &ratio);
  3995. if (err)
  3996. return err;
  3997. if (ratio <= 100)
  3998. s->remote_node_defrag_ratio = ratio * 10;
  3999. return length;
  4000. }
  4001. SLAB_ATTR(remote_node_defrag_ratio);
  4002. #endif
  4003. #ifdef CONFIG_SLUB_STATS
  4004. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4005. {
  4006. unsigned long sum = 0;
  4007. int cpu;
  4008. int len;
  4009. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4010. if (!data)
  4011. return -ENOMEM;
  4012. for_each_online_cpu(cpu) {
  4013. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4014. data[cpu] = x;
  4015. sum += x;
  4016. }
  4017. len = sprintf(buf, "%lu", sum);
  4018. #ifdef CONFIG_SMP
  4019. for_each_online_cpu(cpu) {
  4020. if (data[cpu] && len < PAGE_SIZE - 20)
  4021. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4022. }
  4023. #endif
  4024. kfree(data);
  4025. return len + sprintf(buf + len, "\n");
  4026. }
  4027. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4028. {
  4029. int cpu;
  4030. for_each_online_cpu(cpu)
  4031. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4032. }
  4033. #define STAT_ATTR(si, text) \
  4034. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4035. { \
  4036. return show_stat(s, buf, si); \
  4037. } \
  4038. static ssize_t text##_store(struct kmem_cache *s, \
  4039. const char *buf, size_t length) \
  4040. { \
  4041. if (buf[0] != '0') \
  4042. return -EINVAL; \
  4043. clear_stat(s, si); \
  4044. return length; \
  4045. } \
  4046. SLAB_ATTR(text); \
  4047. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4048. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4049. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4050. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4051. STAT_ATTR(FREE_FROZEN, free_frozen);
  4052. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4053. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4054. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4055. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4056. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4057. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4058. STAT_ATTR(FREE_SLAB, free_slab);
  4059. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4060. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4061. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4062. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4063. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4064. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4065. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4066. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4067. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4068. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4069. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4070. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4071. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4072. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4073. #endif
  4074. static struct attribute *slab_attrs[] = {
  4075. &slab_size_attr.attr,
  4076. &object_size_attr.attr,
  4077. &objs_per_slab_attr.attr,
  4078. &order_attr.attr,
  4079. &min_partial_attr.attr,
  4080. &cpu_partial_attr.attr,
  4081. &objects_attr.attr,
  4082. &objects_partial_attr.attr,
  4083. &partial_attr.attr,
  4084. &cpu_slabs_attr.attr,
  4085. &ctor_attr.attr,
  4086. &aliases_attr.attr,
  4087. &align_attr.attr,
  4088. &hwcache_align_attr.attr,
  4089. &reclaim_account_attr.attr,
  4090. &destroy_by_rcu_attr.attr,
  4091. &shrink_attr.attr,
  4092. &reserved_attr.attr,
  4093. &slabs_cpu_partial_attr.attr,
  4094. #ifdef CONFIG_SLUB_DEBUG
  4095. &total_objects_attr.attr,
  4096. &slabs_attr.attr,
  4097. &sanity_checks_attr.attr,
  4098. &trace_attr.attr,
  4099. &red_zone_attr.attr,
  4100. &poison_attr.attr,
  4101. &store_user_attr.attr,
  4102. &validate_attr.attr,
  4103. &alloc_calls_attr.attr,
  4104. &free_calls_attr.attr,
  4105. #endif
  4106. #ifdef CONFIG_ZONE_DMA
  4107. &cache_dma_attr.attr,
  4108. #endif
  4109. #ifdef CONFIG_NUMA
  4110. &remote_node_defrag_ratio_attr.attr,
  4111. #endif
  4112. #ifdef CONFIG_SLUB_STATS
  4113. &alloc_fastpath_attr.attr,
  4114. &alloc_slowpath_attr.attr,
  4115. &free_fastpath_attr.attr,
  4116. &free_slowpath_attr.attr,
  4117. &free_frozen_attr.attr,
  4118. &free_add_partial_attr.attr,
  4119. &free_remove_partial_attr.attr,
  4120. &alloc_from_partial_attr.attr,
  4121. &alloc_slab_attr.attr,
  4122. &alloc_refill_attr.attr,
  4123. &alloc_node_mismatch_attr.attr,
  4124. &free_slab_attr.attr,
  4125. &cpuslab_flush_attr.attr,
  4126. &deactivate_full_attr.attr,
  4127. &deactivate_empty_attr.attr,
  4128. &deactivate_to_head_attr.attr,
  4129. &deactivate_to_tail_attr.attr,
  4130. &deactivate_remote_frees_attr.attr,
  4131. &deactivate_bypass_attr.attr,
  4132. &order_fallback_attr.attr,
  4133. &cmpxchg_double_fail_attr.attr,
  4134. &cmpxchg_double_cpu_fail_attr.attr,
  4135. &cpu_partial_alloc_attr.attr,
  4136. &cpu_partial_free_attr.attr,
  4137. &cpu_partial_node_attr.attr,
  4138. &cpu_partial_drain_attr.attr,
  4139. #endif
  4140. #ifdef CONFIG_FAILSLAB
  4141. &failslab_attr.attr,
  4142. #endif
  4143. NULL
  4144. };
  4145. static struct attribute_group slab_attr_group = {
  4146. .attrs = slab_attrs,
  4147. };
  4148. static ssize_t slab_attr_show(struct kobject *kobj,
  4149. struct attribute *attr,
  4150. char *buf)
  4151. {
  4152. struct slab_attribute *attribute;
  4153. struct kmem_cache *s;
  4154. int err;
  4155. attribute = to_slab_attr(attr);
  4156. s = to_slab(kobj);
  4157. if (!attribute->show)
  4158. return -EIO;
  4159. err = attribute->show(s, buf);
  4160. return err;
  4161. }
  4162. static ssize_t slab_attr_store(struct kobject *kobj,
  4163. struct attribute *attr,
  4164. const char *buf, size_t len)
  4165. {
  4166. struct slab_attribute *attribute;
  4167. struct kmem_cache *s;
  4168. int err;
  4169. attribute = to_slab_attr(attr);
  4170. s = to_slab(kobj);
  4171. if (!attribute->store)
  4172. return -EIO;
  4173. err = attribute->store(s, buf, len);
  4174. #ifdef CONFIG_MEMCG_KMEM
  4175. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4176. int i;
  4177. mutex_lock(&slab_mutex);
  4178. if (s->max_attr_size < len)
  4179. s->max_attr_size = len;
  4180. /*
  4181. * This is a best effort propagation, so this function's return
  4182. * value will be determined by the parent cache only. This is
  4183. * basically because not all attributes will have a well
  4184. * defined semantics for rollbacks - most of the actions will
  4185. * have permanent effects.
  4186. *
  4187. * Returning the error value of any of the children that fail
  4188. * is not 100 % defined, in the sense that users seeing the
  4189. * error code won't be able to know anything about the state of
  4190. * the cache.
  4191. *
  4192. * Only returning the error code for the parent cache at least
  4193. * has well defined semantics. The cache being written to
  4194. * directly either failed or succeeded, in which case we loop
  4195. * through the descendants with best-effort propagation.
  4196. */
  4197. for_each_memcg_cache_index(i) {
  4198. struct kmem_cache *c = cache_from_memcg(s, i);
  4199. if (c)
  4200. attribute->store(c, buf, len);
  4201. }
  4202. mutex_unlock(&slab_mutex);
  4203. }
  4204. #endif
  4205. return err;
  4206. }
  4207. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4208. {
  4209. #ifdef CONFIG_MEMCG_KMEM
  4210. int i;
  4211. char *buffer = NULL;
  4212. if (!is_root_cache(s))
  4213. return;
  4214. /*
  4215. * This mean this cache had no attribute written. Therefore, no point
  4216. * in copying default values around
  4217. */
  4218. if (!s->max_attr_size)
  4219. return;
  4220. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4221. char mbuf[64];
  4222. char *buf;
  4223. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4224. if (!attr || !attr->store || !attr->show)
  4225. continue;
  4226. /*
  4227. * It is really bad that we have to allocate here, so we will
  4228. * do it only as a fallback. If we actually allocate, though,
  4229. * we can just use the allocated buffer until the end.
  4230. *
  4231. * Most of the slub attributes will tend to be very small in
  4232. * size, but sysfs allows buffers up to a page, so they can
  4233. * theoretically happen.
  4234. */
  4235. if (buffer)
  4236. buf = buffer;
  4237. else if (s->max_attr_size < ARRAY_SIZE(mbuf))
  4238. buf = mbuf;
  4239. else {
  4240. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4241. if (WARN_ON(!buffer))
  4242. continue;
  4243. buf = buffer;
  4244. }
  4245. attr->show(s->memcg_params->root_cache, buf);
  4246. attr->store(s, buf, strlen(buf));
  4247. }
  4248. if (buffer)
  4249. free_page((unsigned long)buffer);
  4250. #endif
  4251. }
  4252. static const struct sysfs_ops slab_sysfs_ops = {
  4253. .show = slab_attr_show,
  4254. .store = slab_attr_store,
  4255. };
  4256. static struct kobj_type slab_ktype = {
  4257. .sysfs_ops = &slab_sysfs_ops,
  4258. };
  4259. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4260. {
  4261. struct kobj_type *ktype = get_ktype(kobj);
  4262. if (ktype == &slab_ktype)
  4263. return 1;
  4264. return 0;
  4265. }
  4266. static const struct kset_uevent_ops slab_uevent_ops = {
  4267. .filter = uevent_filter,
  4268. };
  4269. static struct kset *slab_kset;
  4270. #define ID_STR_LENGTH 64
  4271. /* Create a unique string id for a slab cache:
  4272. *
  4273. * Format :[flags-]size
  4274. */
  4275. static char *create_unique_id(struct kmem_cache *s)
  4276. {
  4277. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4278. char *p = name;
  4279. BUG_ON(!name);
  4280. *p++ = ':';
  4281. /*
  4282. * First flags affecting slabcache operations. We will only
  4283. * get here for aliasable slabs so we do not need to support
  4284. * too many flags. The flags here must cover all flags that
  4285. * are matched during merging to guarantee that the id is
  4286. * unique.
  4287. */
  4288. if (s->flags & SLAB_CACHE_DMA)
  4289. *p++ = 'd';
  4290. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4291. *p++ = 'a';
  4292. if (s->flags & SLAB_DEBUG_FREE)
  4293. *p++ = 'F';
  4294. if (!(s->flags & SLAB_NOTRACK))
  4295. *p++ = 't';
  4296. if (p != name + 1)
  4297. *p++ = '-';
  4298. p += sprintf(p, "%07d", s->size);
  4299. #ifdef CONFIG_MEMCG_KMEM
  4300. if (!is_root_cache(s))
  4301. p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
  4302. #endif
  4303. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4304. return name;
  4305. }
  4306. static int sysfs_slab_add(struct kmem_cache *s)
  4307. {
  4308. int err;
  4309. const char *name;
  4310. int unmergeable = slab_unmergeable(s);
  4311. if (unmergeable) {
  4312. /*
  4313. * Slabcache can never be merged so we can use the name proper.
  4314. * This is typically the case for debug situations. In that
  4315. * case we can catch duplicate names easily.
  4316. */
  4317. sysfs_remove_link(&slab_kset->kobj, s->name);
  4318. name = s->name;
  4319. } else {
  4320. /*
  4321. * Create a unique name for the slab as a target
  4322. * for the symlinks.
  4323. */
  4324. name = create_unique_id(s);
  4325. }
  4326. s->kobj.kset = slab_kset;
  4327. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4328. if (err) {
  4329. kobject_put(&s->kobj);
  4330. return err;
  4331. }
  4332. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4333. if (err) {
  4334. kobject_del(&s->kobj);
  4335. kobject_put(&s->kobj);
  4336. return err;
  4337. }
  4338. kobject_uevent(&s->kobj, KOBJ_ADD);
  4339. if (!unmergeable) {
  4340. /* Setup first alias */
  4341. sysfs_slab_alias(s, s->name);
  4342. kfree(name);
  4343. }
  4344. return 0;
  4345. }
  4346. static void sysfs_slab_remove(struct kmem_cache *s)
  4347. {
  4348. if (slab_state < FULL)
  4349. /*
  4350. * Sysfs has not been setup yet so no need to remove the
  4351. * cache from sysfs.
  4352. */
  4353. return;
  4354. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4355. kobject_del(&s->kobj);
  4356. kobject_put(&s->kobj);
  4357. }
  4358. /*
  4359. * Need to buffer aliases during bootup until sysfs becomes
  4360. * available lest we lose that information.
  4361. */
  4362. struct saved_alias {
  4363. struct kmem_cache *s;
  4364. const char *name;
  4365. struct saved_alias *next;
  4366. };
  4367. static struct saved_alias *alias_list;
  4368. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4369. {
  4370. struct saved_alias *al;
  4371. if (slab_state == FULL) {
  4372. /*
  4373. * If we have a leftover link then remove it.
  4374. */
  4375. sysfs_remove_link(&slab_kset->kobj, name);
  4376. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4377. }
  4378. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4379. if (!al)
  4380. return -ENOMEM;
  4381. al->s = s;
  4382. al->name = name;
  4383. al->next = alias_list;
  4384. alias_list = al;
  4385. return 0;
  4386. }
  4387. static int __init slab_sysfs_init(void)
  4388. {
  4389. struct kmem_cache *s;
  4390. int err;
  4391. mutex_lock(&slab_mutex);
  4392. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4393. if (!slab_kset) {
  4394. mutex_unlock(&slab_mutex);
  4395. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4396. return -ENOSYS;
  4397. }
  4398. slab_state = FULL;
  4399. list_for_each_entry(s, &slab_caches, list) {
  4400. err = sysfs_slab_add(s);
  4401. if (err)
  4402. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4403. " to sysfs\n", s->name);
  4404. }
  4405. while (alias_list) {
  4406. struct saved_alias *al = alias_list;
  4407. alias_list = alias_list->next;
  4408. err = sysfs_slab_alias(al->s, al->name);
  4409. if (err)
  4410. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4411. " %s to sysfs\n", al->name);
  4412. kfree(al);
  4413. }
  4414. mutex_unlock(&slab_mutex);
  4415. resiliency_test();
  4416. return 0;
  4417. }
  4418. __initcall(slab_sysfs_init);
  4419. #endif /* CONFIG_SYSFS */
  4420. /*
  4421. * The /proc/slabinfo ABI
  4422. */
  4423. #ifdef CONFIG_SLABINFO
  4424. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4425. {
  4426. unsigned long nr_partials = 0;
  4427. unsigned long nr_slabs = 0;
  4428. unsigned long nr_objs = 0;
  4429. unsigned long nr_free = 0;
  4430. int node;
  4431. for_each_online_node(node) {
  4432. struct kmem_cache_node *n = get_node(s, node);
  4433. if (!n)
  4434. continue;
  4435. nr_partials += n->nr_partial;
  4436. nr_slabs += atomic_long_read(&n->nr_slabs);
  4437. nr_objs += atomic_long_read(&n->total_objects);
  4438. nr_free += count_partial(n, count_free);
  4439. }
  4440. sinfo->active_objs = nr_objs - nr_free;
  4441. sinfo->num_objs = nr_objs;
  4442. sinfo->active_slabs = nr_slabs;
  4443. sinfo->num_slabs = nr_slabs;
  4444. sinfo->objects_per_slab = oo_objects(s->oo);
  4445. sinfo->cache_order = oo_order(s->oo);
  4446. }
  4447. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4448. {
  4449. }
  4450. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4451. size_t count, loff_t *ppos)
  4452. {
  4453. return -EIO;
  4454. }
  4455. #endif /* CONFIG_SLABINFO */