namespace.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/acct.h> /* acct_auto_close_mnt */
  19. #include <linux/ramfs.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_fs.h>
  24. #include "pnode.h"
  25. #include "internal.h"
  26. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  27. #define HASH_SIZE (1UL << HASH_SHIFT)
  28. static int event;
  29. static DEFINE_IDA(mnt_id_ida);
  30. static DEFINE_IDA(mnt_group_ida);
  31. static DEFINE_SPINLOCK(mnt_id_lock);
  32. static int mnt_id_start = 0;
  33. static int mnt_group_start = 1;
  34. static struct list_head *mount_hashtable __read_mostly;
  35. static struct kmem_cache *mnt_cache __read_mostly;
  36. static struct rw_semaphore namespace_sem;
  37. /* /sys/fs */
  38. struct kobject *fs_kobj;
  39. EXPORT_SYMBOL_GPL(fs_kobj);
  40. /*
  41. * vfsmount lock may be taken for read to prevent changes to the
  42. * vfsmount hash, ie. during mountpoint lookups or walking back
  43. * up the tree.
  44. *
  45. * It should be taken for write in all cases where the vfsmount
  46. * tree or hash is modified or when a vfsmount structure is modified.
  47. */
  48. DEFINE_BRLOCK(vfsmount_lock);
  49. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  50. {
  51. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  52. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  53. tmp = tmp + (tmp >> HASH_SHIFT);
  54. return tmp & (HASH_SIZE - 1);
  55. }
  56. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  57. /*
  58. * allocation is serialized by namespace_sem, but we need the spinlock to
  59. * serialize with freeing.
  60. */
  61. static int mnt_alloc_id(struct mount *mnt)
  62. {
  63. int res;
  64. retry:
  65. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  66. spin_lock(&mnt_id_lock);
  67. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  68. if (!res)
  69. mnt_id_start = mnt->mnt_id + 1;
  70. spin_unlock(&mnt_id_lock);
  71. if (res == -EAGAIN)
  72. goto retry;
  73. return res;
  74. }
  75. static void mnt_free_id(struct mount *mnt)
  76. {
  77. int id = mnt->mnt_id;
  78. spin_lock(&mnt_id_lock);
  79. ida_remove(&mnt_id_ida, id);
  80. if (mnt_id_start > id)
  81. mnt_id_start = id;
  82. spin_unlock(&mnt_id_lock);
  83. }
  84. /*
  85. * Allocate a new peer group ID
  86. *
  87. * mnt_group_ida is protected by namespace_sem
  88. */
  89. static int mnt_alloc_group_id(struct mount *mnt)
  90. {
  91. int res;
  92. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  93. return -ENOMEM;
  94. res = ida_get_new_above(&mnt_group_ida,
  95. mnt_group_start,
  96. &mnt->mnt_group_id);
  97. if (!res)
  98. mnt_group_start = mnt->mnt_group_id + 1;
  99. return res;
  100. }
  101. /*
  102. * Release a peer group ID
  103. */
  104. void mnt_release_group_id(struct mount *mnt)
  105. {
  106. int id = mnt->mnt_group_id;
  107. ida_remove(&mnt_group_ida, id);
  108. if (mnt_group_start > id)
  109. mnt_group_start = id;
  110. mnt->mnt_group_id = 0;
  111. }
  112. /*
  113. * vfsmount lock must be held for read
  114. */
  115. static inline void mnt_add_count(struct mount *mnt, int n)
  116. {
  117. #ifdef CONFIG_SMP
  118. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  119. #else
  120. preempt_disable();
  121. mnt->mnt_count += n;
  122. preempt_enable();
  123. #endif
  124. }
  125. /*
  126. * vfsmount lock must be held for write
  127. */
  128. unsigned int mnt_get_count(struct mount *mnt)
  129. {
  130. #ifdef CONFIG_SMP
  131. unsigned int count = 0;
  132. int cpu;
  133. for_each_possible_cpu(cpu) {
  134. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  135. }
  136. return count;
  137. #else
  138. return mnt->mnt_count;
  139. #endif
  140. }
  141. static struct mount *alloc_vfsmnt(const char *name)
  142. {
  143. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  144. if (mnt) {
  145. int err;
  146. err = mnt_alloc_id(mnt);
  147. if (err)
  148. goto out_free_cache;
  149. if (name) {
  150. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  151. if (!mnt->mnt_devname)
  152. goto out_free_id;
  153. }
  154. #ifdef CONFIG_SMP
  155. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  156. if (!mnt->mnt_pcp)
  157. goto out_free_devname;
  158. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  159. #else
  160. mnt->mnt_count = 1;
  161. mnt->mnt_writers = 0;
  162. #endif
  163. INIT_LIST_HEAD(&mnt->mnt_hash);
  164. INIT_LIST_HEAD(&mnt->mnt_child);
  165. INIT_LIST_HEAD(&mnt->mnt_mounts);
  166. INIT_LIST_HEAD(&mnt->mnt_list);
  167. INIT_LIST_HEAD(&mnt->mnt_expire);
  168. INIT_LIST_HEAD(&mnt->mnt_share);
  169. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  170. INIT_LIST_HEAD(&mnt->mnt_slave);
  171. #ifdef CONFIG_FSNOTIFY
  172. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  173. #endif
  174. }
  175. return mnt;
  176. #ifdef CONFIG_SMP
  177. out_free_devname:
  178. kfree(mnt->mnt_devname);
  179. #endif
  180. out_free_id:
  181. mnt_free_id(mnt);
  182. out_free_cache:
  183. kmem_cache_free(mnt_cache, mnt);
  184. return NULL;
  185. }
  186. /*
  187. * Most r/o checks on a fs are for operations that take
  188. * discrete amounts of time, like a write() or unlink().
  189. * We must keep track of when those operations start
  190. * (for permission checks) and when they end, so that
  191. * we can determine when writes are able to occur to
  192. * a filesystem.
  193. */
  194. /*
  195. * __mnt_is_readonly: check whether a mount is read-only
  196. * @mnt: the mount to check for its write status
  197. *
  198. * This shouldn't be used directly ouside of the VFS.
  199. * It does not guarantee that the filesystem will stay
  200. * r/w, just that it is right *now*. This can not and
  201. * should not be used in place of IS_RDONLY(inode).
  202. * mnt_want/drop_write() will _keep_ the filesystem
  203. * r/w.
  204. */
  205. int __mnt_is_readonly(struct vfsmount *mnt)
  206. {
  207. if (mnt->mnt_flags & MNT_READONLY)
  208. return 1;
  209. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  210. return 1;
  211. return 0;
  212. }
  213. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  214. static inline void mnt_inc_writers(struct mount *mnt)
  215. {
  216. #ifdef CONFIG_SMP
  217. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  218. #else
  219. mnt->mnt_writers++;
  220. #endif
  221. }
  222. static inline void mnt_dec_writers(struct mount *mnt)
  223. {
  224. #ifdef CONFIG_SMP
  225. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  226. #else
  227. mnt->mnt_writers--;
  228. #endif
  229. }
  230. static unsigned int mnt_get_writers(struct mount *mnt)
  231. {
  232. #ifdef CONFIG_SMP
  233. unsigned int count = 0;
  234. int cpu;
  235. for_each_possible_cpu(cpu) {
  236. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  237. }
  238. return count;
  239. #else
  240. return mnt->mnt_writers;
  241. #endif
  242. }
  243. static int mnt_is_readonly(struct vfsmount *mnt)
  244. {
  245. if (mnt->mnt_sb->s_readonly_remount)
  246. return 1;
  247. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  248. smp_rmb();
  249. return __mnt_is_readonly(mnt);
  250. }
  251. /*
  252. * Most r/o & frozen checks on a fs are for operations that take discrete
  253. * amounts of time, like a write() or unlink(). We must keep track of when
  254. * those operations start (for permission checks) and when they end, so that we
  255. * can determine when writes are able to occur to a filesystem.
  256. */
  257. /**
  258. * __mnt_want_write - get write access to a mount without freeze protection
  259. * @m: the mount on which to take a write
  260. *
  261. * This tells the low-level filesystem that a write is about to be performed to
  262. * it, and makes sure that writes are allowed (mnt it read-write) before
  263. * returning success. This operation does not protect against filesystem being
  264. * frozen. When the write operation is finished, __mnt_drop_write() must be
  265. * called. This is effectively a refcount.
  266. */
  267. int __mnt_want_write(struct vfsmount *m)
  268. {
  269. struct mount *mnt = real_mount(m);
  270. int ret = 0;
  271. preempt_disable();
  272. mnt_inc_writers(mnt);
  273. /*
  274. * The store to mnt_inc_writers must be visible before we pass
  275. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  276. * incremented count after it has set MNT_WRITE_HOLD.
  277. */
  278. smp_mb();
  279. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  280. cpu_relax();
  281. /*
  282. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  283. * be set to match its requirements. So we must not load that until
  284. * MNT_WRITE_HOLD is cleared.
  285. */
  286. smp_rmb();
  287. if (mnt_is_readonly(m)) {
  288. mnt_dec_writers(mnt);
  289. ret = -EROFS;
  290. }
  291. preempt_enable();
  292. return ret;
  293. }
  294. /**
  295. * mnt_want_write - get write access to a mount
  296. * @m: the mount on which to take a write
  297. *
  298. * This tells the low-level filesystem that a write is about to be performed to
  299. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  300. * is not frozen) before returning success. When the write operation is
  301. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  302. */
  303. int mnt_want_write(struct vfsmount *m)
  304. {
  305. int ret;
  306. sb_start_write(m->mnt_sb);
  307. ret = __mnt_want_write(m);
  308. if (ret)
  309. sb_end_write(m->mnt_sb);
  310. return ret;
  311. }
  312. EXPORT_SYMBOL_GPL(mnt_want_write);
  313. /**
  314. * mnt_clone_write - get write access to a mount
  315. * @mnt: the mount on which to take a write
  316. *
  317. * This is effectively like mnt_want_write, except
  318. * it must only be used to take an extra write reference
  319. * on a mountpoint that we already know has a write reference
  320. * on it. This allows some optimisation.
  321. *
  322. * After finished, mnt_drop_write must be called as usual to
  323. * drop the reference.
  324. */
  325. int mnt_clone_write(struct vfsmount *mnt)
  326. {
  327. /* superblock may be r/o */
  328. if (__mnt_is_readonly(mnt))
  329. return -EROFS;
  330. preempt_disable();
  331. mnt_inc_writers(real_mount(mnt));
  332. preempt_enable();
  333. return 0;
  334. }
  335. EXPORT_SYMBOL_GPL(mnt_clone_write);
  336. /**
  337. * __mnt_want_write_file - get write access to a file's mount
  338. * @file: the file who's mount on which to take a write
  339. *
  340. * This is like __mnt_want_write, but it takes a file and can
  341. * do some optimisations if the file is open for write already
  342. */
  343. int __mnt_want_write_file(struct file *file)
  344. {
  345. struct inode *inode = file_inode(file);
  346. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  347. return __mnt_want_write(file->f_path.mnt);
  348. else
  349. return mnt_clone_write(file->f_path.mnt);
  350. }
  351. /**
  352. * mnt_want_write_file - get write access to a file's mount
  353. * @file: the file who's mount on which to take a write
  354. *
  355. * This is like mnt_want_write, but it takes a file and can
  356. * do some optimisations if the file is open for write already
  357. */
  358. int mnt_want_write_file(struct file *file)
  359. {
  360. int ret;
  361. sb_start_write(file->f_path.mnt->mnt_sb);
  362. ret = __mnt_want_write_file(file);
  363. if (ret)
  364. sb_end_write(file->f_path.mnt->mnt_sb);
  365. return ret;
  366. }
  367. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  368. /**
  369. * __mnt_drop_write - give up write access to a mount
  370. * @mnt: the mount on which to give up write access
  371. *
  372. * Tells the low-level filesystem that we are done
  373. * performing writes to it. Must be matched with
  374. * __mnt_want_write() call above.
  375. */
  376. void __mnt_drop_write(struct vfsmount *mnt)
  377. {
  378. preempt_disable();
  379. mnt_dec_writers(real_mount(mnt));
  380. preempt_enable();
  381. }
  382. /**
  383. * mnt_drop_write - give up write access to a mount
  384. * @mnt: the mount on which to give up write access
  385. *
  386. * Tells the low-level filesystem that we are done performing writes to it and
  387. * also allows filesystem to be frozen again. Must be matched with
  388. * mnt_want_write() call above.
  389. */
  390. void mnt_drop_write(struct vfsmount *mnt)
  391. {
  392. __mnt_drop_write(mnt);
  393. sb_end_write(mnt->mnt_sb);
  394. }
  395. EXPORT_SYMBOL_GPL(mnt_drop_write);
  396. void __mnt_drop_write_file(struct file *file)
  397. {
  398. __mnt_drop_write(file->f_path.mnt);
  399. }
  400. void mnt_drop_write_file(struct file *file)
  401. {
  402. mnt_drop_write(file->f_path.mnt);
  403. }
  404. EXPORT_SYMBOL(mnt_drop_write_file);
  405. static int mnt_make_readonly(struct mount *mnt)
  406. {
  407. int ret = 0;
  408. br_write_lock(&vfsmount_lock);
  409. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  410. /*
  411. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  412. * should be visible before we do.
  413. */
  414. smp_mb();
  415. /*
  416. * With writers on hold, if this value is zero, then there are
  417. * definitely no active writers (although held writers may subsequently
  418. * increment the count, they'll have to wait, and decrement it after
  419. * seeing MNT_READONLY).
  420. *
  421. * It is OK to have counter incremented on one CPU and decremented on
  422. * another: the sum will add up correctly. The danger would be when we
  423. * sum up each counter, if we read a counter before it is incremented,
  424. * but then read another CPU's count which it has been subsequently
  425. * decremented from -- we would see more decrements than we should.
  426. * MNT_WRITE_HOLD protects against this scenario, because
  427. * mnt_want_write first increments count, then smp_mb, then spins on
  428. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  429. * we're counting up here.
  430. */
  431. if (mnt_get_writers(mnt) > 0)
  432. ret = -EBUSY;
  433. else
  434. mnt->mnt.mnt_flags |= MNT_READONLY;
  435. /*
  436. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  437. * that become unheld will see MNT_READONLY.
  438. */
  439. smp_wmb();
  440. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  441. br_write_unlock(&vfsmount_lock);
  442. return ret;
  443. }
  444. static void __mnt_unmake_readonly(struct mount *mnt)
  445. {
  446. br_write_lock(&vfsmount_lock);
  447. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  448. br_write_unlock(&vfsmount_lock);
  449. }
  450. int sb_prepare_remount_readonly(struct super_block *sb)
  451. {
  452. struct mount *mnt;
  453. int err = 0;
  454. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  455. if (atomic_long_read(&sb->s_remove_count))
  456. return -EBUSY;
  457. br_write_lock(&vfsmount_lock);
  458. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  459. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  460. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  461. smp_mb();
  462. if (mnt_get_writers(mnt) > 0) {
  463. err = -EBUSY;
  464. break;
  465. }
  466. }
  467. }
  468. if (!err && atomic_long_read(&sb->s_remove_count))
  469. err = -EBUSY;
  470. if (!err) {
  471. sb->s_readonly_remount = 1;
  472. smp_wmb();
  473. }
  474. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  475. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  476. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  477. }
  478. br_write_unlock(&vfsmount_lock);
  479. return err;
  480. }
  481. static void free_vfsmnt(struct mount *mnt)
  482. {
  483. kfree(mnt->mnt_devname);
  484. mnt_free_id(mnt);
  485. #ifdef CONFIG_SMP
  486. free_percpu(mnt->mnt_pcp);
  487. #endif
  488. kmem_cache_free(mnt_cache, mnt);
  489. }
  490. /*
  491. * find the first or last mount at @dentry on vfsmount @mnt depending on
  492. * @dir. If @dir is set return the first mount else return the last mount.
  493. * vfsmount_lock must be held for read or write.
  494. */
  495. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  496. int dir)
  497. {
  498. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  499. struct list_head *tmp = head;
  500. struct mount *p, *found = NULL;
  501. for (;;) {
  502. tmp = dir ? tmp->next : tmp->prev;
  503. p = NULL;
  504. if (tmp == head)
  505. break;
  506. p = list_entry(tmp, struct mount, mnt_hash);
  507. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  508. found = p;
  509. break;
  510. }
  511. }
  512. return found;
  513. }
  514. /*
  515. * lookup_mnt - Return the first child mount mounted at path
  516. *
  517. * "First" means first mounted chronologically. If you create the
  518. * following mounts:
  519. *
  520. * mount /dev/sda1 /mnt
  521. * mount /dev/sda2 /mnt
  522. * mount /dev/sda3 /mnt
  523. *
  524. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  525. * return successively the root dentry and vfsmount of /dev/sda1, then
  526. * /dev/sda2, then /dev/sda3, then NULL.
  527. *
  528. * lookup_mnt takes a reference to the found vfsmount.
  529. */
  530. struct vfsmount *lookup_mnt(struct path *path)
  531. {
  532. struct mount *child_mnt;
  533. br_read_lock(&vfsmount_lock);
  534. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  535. if (child_mnt) {
  536. mnt_add_count(child_mnt, 1);
  537. br_read_unlock(&vfsmount_lock);
  538. return &child_mnt->mnt;
  539. } else {
  540. br_read_unlock(&vfsmount_lock);
  541. return NULL;
  542. }
  543. }
  544. static inline int check_mnt(struct mount *mnt)
  545. {
  546. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  547. }
  548. /*
  549. * vfsmount lock must be held for write
  550. */
  551. static void touch_mnt_namespace(struct mnt_namespace *ns)
  552. {
  553. if (ns) {
  554. ns->event = ++event;
  555. wake_up_interruptible(&ns->poll);
  556. }
  557. }
  558. /*
  559. * vfsmount lock must be held for write
  560. */
  561. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  562. {
  563. if (ns && ns->event != event) {
  564. ns->event = event;
  565. wake_up_interruptible(&ns->poll);
  566. }
  567. }
  568. /*
  569. * Clear dentry's mounted state if it has no remaining mounts.
  570. * vfsmount_lock must be held for write.
  571. */
  572. static void dentry_reset_mounted(struct dentry *dentry)
  573. {
  574. unsigned u;
  575. for (u = 0; u < HASH_SIZE; u++) {
  576. struct mount *p;
  577. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  578. if (p->mnt_mountpoint == dentry)
  579. return;
  580. }
  581. }
  582. spin_lock(&dentry->d_lock);
  583. dentry->d_flags &= ~DCACHE_MOUNTED;
  584. spin_unlock(&dentry->d_lock);
  585. }
  586. /*
  587. * vfsmount lock must be held for write
  588. */
  589. static void detach_mnt(struct mount *mnt, struct path *old_path)
  590. {
  591. old_path->dentry = mnt->mnt_mountpoint;
  592. old_path->mnt = &mnt->mnt_parent->mnt;
  593. mnt->mnt_parent = mnt;
  594. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  595. list_del_init(&mnt->mnt_child);
  596. list_del_init(&mnt->mnt_hash);
  597. dentry_reset_mounted(old_path->dentry);
  598. }
  599. /*
  600. * vfsmount lock must be held for write
  601. */
  602. void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
  603. struct mount *child_mnt)
  604. {
  605. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  606. child_mnt->mnt_mountpoint = dget(dentry);
  607. child_mnt->mnt_parent = mnt;
  608. spin_lock(&dentry->d_lock);
  609. dentry->d_flags |= DCACHE_MOUNTED;
  610. spin_unlock(&dentry->d_lock);
  611. }
  612. /*
  613. * vfsmount lock must be held for write
  614. */
  615. static void attach_mnt(struct mount *mnt, struct path *path)
  616. {
  617. mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
  618. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  619. hash(path->mnt, path->dentry));
  620. list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
  621. }
  622. /*
  623. * vfsmount lock must be held for write
  624. */
  625. static void commit_tree(struct mount *mnt)
  626. {
  627. struct mount *parent = mnt->mnt_parent;
  628. struct mount *m;
  629. LIST_HEAD(head);
  630. struct mnt_namespace *n = parent->mnt_ns;
  631. BUG_ON(parent == mnt);
  632. list_add_tail(&head, &mnt->mnt_list);
  633. list_for_each_entry(m, &head, mnt_list)
  634. m->mnt_ns = n;
  635. list_splice(&head, n->list.prev);
  636. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  637. hash(&parent->mnt, mnt->mnt_mountpoint));
  638. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  639. touch_mnt_namespace(n);
  640. }
  641. static struct mount *next_mnt(struct mount *p, struct mount *root)
  642. {
  643. struct list_head *next = p->mnt_mounts.next;
  644. if (next == &p->mnt_mounts) {
  645. while (1) {
  646. if (p == root)
  647. return NULL;
  648. next = p->mnt_child.next;
  649. if (next != &p->mnt_parent->mnt_mounts)
  650. break;
  651. p = p->mnt_parent;
  652. }
  653. }
  654. return list_entry(next, struct mount, mnt_child);
  655. }
  656. static struct mount *skip_mnt_tree(struct mount *p)
  657. {
  658. struct list_head *prev = p->mnt_mounts.prev;
  659. while (prev != &p->mnt_mounts) {
  660. p = list_entry(prev, struct mount, mnt_child);
  661. prev = p->mnt_mounts.prev;
  662. }
  663. return p;
  664. }
  665. struct vfsmount *
  666. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  667. {
  668. struct mount *mnt;
  669. struct dentry *root;
  670. if (!type)
  671. return ERR_PTR(-ENODEV);
  672. mnt = alloc_vfsmnt(name);
  673. if (!mnt)
  674. return ERR_PTR(-ENOMEM);
  675. if (flags & MS_KERNMOUNT)
  676. mnt->mnt.mnt_flags = MNT_INTERNAL;
  677. root = mount_fs(type, flags, name, data);
  678. if (IS_ERR(root)) {
  679. free_vfsmnt(mnt);
  680. return ERR_CAST(root);
  681. }
  682. mnt->mnt.mnt_root = root;
  683. mnt->mnt.mnt_sb = root->d_sb;
  684. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  685. mnt->mnt_parent = mnt;
  686. br_write_lock(&vfsmount_lock);
  687. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  688. br_write_unlock(&vfsmount_lock);
  689. return &mnt->mnt;
  690. }
  691. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  692. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  693. int flag)
  694. {
  695. struct super_block *sb = old->mnt.mnt_sb;
  696. struct mount *mnt;
  697. int err;
  698. mnt = alloc_vfsmnt(old->mnt_devname);
  699. if (!mnt)
  700. return ERR_PTR(-ENOMEM);
  701. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  702. mnt->mnt_group_id = 0; /* not a peer of original */
  703. else
  704. mnt->mnt_group_id = old->mnt_group_id;
  705. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  706. err = mnt_alloc_group_id(mnt);
  707. if (err)
  708. goto out_free;
  709. }
  710. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  711. /* Don't allow unprivileged users to change mount flags */
  712. if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
  713. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  714. atomic_inc(&sb->s_active);
  715. mnt->mnt.mnt_sb = sb;
  716. mnt->mnt.mnt_root = dget(root);
  717. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  718. mnt->mnt_parent = mnt;
  719. br_write_lock(&vfsmount_lock);
  720. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  721. br_write_unlock(&vfsmount_lock);
  722. if ((flag & CL_SLAVE) ||
  723. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  724. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  725. mnt->mnt_master = old;
  726. CLEAR_MNT_SHARED(mnt);
  727. } else if (!(flag & CL_PRIVATE)) {
  728. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  729. list_add(&mnt->mnt_share, &old->mnt_share);
  730. if (IS_MNT_SLAVE(old))
  731. list_add(&mnt->mnt_slave, &old->mnt_slave);
  732. mnt->mnt_master = old->mnt_master;
  733. }
  734. if (flag & CL_MAKE_SHARED)
  735. set_mnt_shared(mnt);
  736. /* stick the duplicate mount on the same expiry list
  737. * as the original if that was on one */
  738. if (flag & CL_EXPIRE) {
  739. if (!list_empty(&old->mnt_expire))
  740. list_add(&mnt->mnt_expire, &old->mnt_expire);
  741. }
  742. return mnt;
  743. out_free:
  744. free_vfsmnt(mnt);
  745. return ERR_PTR(err);
  746. }
  747. static inline void mntfree(struct mount *mnt)
  748. {
  749. struct vfsmount *m = &mnt->mnt;
  750. struct super_block *sb = m->mnt_sb;
  751. /*
  752. * This probably indicates that somebody messed
  753. * up a mnt_want/drop_write() pair. If this
  754. * happens, the filesystem was probably unable
  755. * to make r/w->r/o transitions.
  756. */
  757. /*
  758. * The locking used to deal with mnt_count decrement provides barriers,
  759. * so mnt_get_writers() below is safe.
  760. */
  761. WARN_ON(mnt_get_writers(mnt));
  762. fsnotify_vfsmount_delete(m);
  763. dput(m->mnt_root);
  764. free_vfsmnt(mnt);
  765. deactivate_super(sb);
  766. }
  767. static void mntput_no_expire(struct mount *mnt)
  768. {
  769. put_again:
  770. #ifdef CONFIG_SMP
  771. br_read_lock(&vfsmount_lock);
  772. if (likely(mnt->mnt_ns)) {
  773. /* shouldn't be the last one */
  774. mnt_add_count(mnt, -1);
  775. br_read_unlock(&vfsmount_lock);
  776. return;
  777. }
  778. br_read_unlock(&vfsmount_lock);
  779. br_write_lock(&vfsmount_lock);
  780. mnt_add_count(mnt, -1);
  781. if (mnt_get_count(mnt)) {
  782. br_write_unlock(&vfsmount_lock);
  783. return;
  784. }
  785. #else
  786. mnt_add_count(mnt, -1);
  787. if (likely(mnt_get_count(mnt)))
  788. return;
  789. br_write_lock(&vfsmount_lock);
  790. #endif
  791. if (unlikely(mnt->mnt_pinned)) {
  792. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  793. mnt->mnt_pinned = 0;
  794. br_write_unlock(&vfsmount_lock);
  795. acct_auto_close_mnt(&mnt->mnt);
  796. goto put_again;
  797. }
  798. list_del(&mnt->mnt_instance);
  799. br_write_unlock(&vfsmount_lock);
  800. mntfree(mnt);
  801. }
  802. void mntput(struct vfsmount *mnt)
  803. {
  804. if (mnt) {
  805. struct mount *m = real_mount(mnt);
  806. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  807. if (unlikely(m->mnt_expiry_mark))
  808. m->mnt_expiry_mark = 0;
  809. mntput_no_expire(m);
  810. }
  811. }
  812. EXPORT_SYMBOL(mntput);
  813. struct vfsmount *mntget(struct vfsmount *mnt)
  814. {
  815. if (mnt)
  816. mnt_add_count(real_mount(mnt), 1);
  817. return mnt;
  818. }
  819. EXPORT_SYMBOL(mntget);
  820. void mnt_pin(struct vfsmount *mnt)
  821. {
  822. br_write_lock(&vfsmount_lock);
  823. real_mount(mnt)->mnt_pinned++;
  824. br_write_unlock(&vfsmount_lock);
  825. }
  826. EXPORT_SYMBOL(mnt_pin);
  827. void mnt_unpin(struct vfsmount *m)
  828. {
  829. struct mount *mnt = real_mount(m);
  830. br_write_lock(&vfsmount_lock);
  831. if (mnt->mnt_pinned) {
  832. mnt_add_count(mnt, 1);
  833. mnt->mnt_pinned--;
  834. }
  835. br_write_unlock(&vfsmount_lock);
  836. }
  837. EXPORT_SYMBOL(mnt_unpin);
  838. static inline void mangle(struct seq_file *m, const char *s)
  839. {
  840. seq_escape(m, s, " \t\n\\");
  841. }
  842. /*
  843. * Simple .show_options callback for filesystems which don't want to
  844. * implement more complex mount option showing.
  845. *
  846. * See also save_mount_options().
  847. */
  848. int generic_show_options(struct seq_file *m, struct dentry *root)
  849. {
  850. const char *options;
  851. rcu_read_lock();
  852. options = rcu_dereference(root->d_sb->s_options);
  853. if (options != NULL && options[0]) {
  854. seq_putc(m, ',');
  855. mangle(m, options);
  856. }
  857. rcu_read_unlock();
  858. return 0;
  859. }
  860. EXPORT_SYMBOL(generic_show_options);
  861. /*
  862. * If filesystem uses generic_show_options(), this function should be
  863. * called from the fill_super() callback.
  864. *
  865. * The .remount_fs callback usually needs to be handled in a special
  866. * way, to make sure, that previous options are not overwritten if the
  867. * remount fails.
  868. *
  869. * Also note, that if the filesystem's .remount_fs function doesn't
  870. * reset all options to their default value, but changes only newly
  871. * given options, then the displayed options will not reflect reality
  872. * any more.
  873. */
  874. void save_mount_options(struct super_block *sb, char *options)
  875. {
  876. BUG_ON(sb->s_options);
  877. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  878. }
  879. EXPORT_SYMBOL(save_mount_options);
  880. void replace_mount_options(struct super_block *sb, char *options)
  881. {
  882. char *old = sb->s_options;
  883. rcu_assign_pointer(sb->s_options, options);
  884. if (old) {
  885. synchronize_rcu();
  886. kfree(old);
  887. }
  888. }
  889. EXPORT_SYMBOL(replace_mount_options);
  890. #ifdef CONFIG_PROC_FS
  891. /* iterator; we want it to have access to namespace_sem, thus here... */
  892. static void *m_start(struct seq_file *m, loff_t *pos)
  893. {
  894. struct proc_mounts *p = proc_mounts(m);
  895. down_read(&namespace_sem);
  896. return seq_list_start(&p->ns->list, *pos);
  897. }
  898. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  899. {
  900. struct proc_mounts *p = proc_mounts(m);
  901. return seq_list_next(v, &p->ns->list, pos);
  902. }
  903. static void m_stop(struct seq_file *m, void *v)
  904. {
  905. up_read(&namespace_sem);
  906. }
  907. static int m_show(struct seq_file *m, void *v)
  908. {
  909. struct proc_mounts *p = proc_mounts(m);
  910. struct mount *r = list_entry(v, struct mount, mnt_list);
  911. return p->show(m, &r->mnt);
  912. }
  913. const struct seq_operations mounts_op = {
  914. .start = m_start,
  915. .next = m_next,
  916. .stop = m_stop,
  917. .show = m_show,
  918. };
  919. #endif /* CONFIG_PROC_FS */
  920. /**
  921. * may_umount_tree - check if a mount tree is busy
  922. * @mnt: root of mount tree
  923. *
  924. * This is called to check if a tree of mounts has any
  925. * open files, pwds, chroots or sub mounts that are
  926. * busy.
  927. */
  928. int may_umount_tree(struct vfsmount *m)
  929. {
  930. struct mount *mnt = real_mount(m);
  931. int actual_refs = 0;
  932. int minimum_refs = 0;
  933. struct mount *p;
  934. BUG_ON(!m);
  935. /* write lock needed for mnt_get_count */
  936. br_write_lock(&vfsmount_lock);
  937. for (p = mnt; p; p = next_mnt(p, mnt)) {
  938. actual_refs += mnt_get_count(p);
  939. minimum_refs += 2;
  940. }
  941. br_write_unlock(&vfsmount_lock);
  942. if (actual_refs > minimum_refs)
  943. return 0;
  944. return 1;
  945. }
  946. EXPORT_SYMBOL(may_umount_tree);
  947. /**
  948. * may_umount - check if a mount point is busy
  949. * @mnt: root of mount
  950. *
  951. * This is called to check if a mount point has any
  952. * open files, pwds, chroots or sub mounts. If the
  953. * mount has sub mounts this will return busy
  954. * regardless of whether the sub mounts are busy.
  955. *
  956. * Doesn't take quota and stuff into account. IOW, in some cases it will
  957. * give false negatives. The main reason why it's here is that we need
  958. * a non-destructive way to look for easily umountable filesystems.
  959. */
  960. int may_umount(struct vfsmount *mnt)
  961. {
  962. int ret = 1;
  963. down_read(&namespace_sem);
  964. br_write_lock(&vfsmount_lock);
  965. if (propagate_mount_busy(real_mount(mnt), 2))
  966. ret = 0;
  967. br_write_unlock(&vfsmount_lock);
  968. up_read(&namespace_sem);
  969. return ret;
  970. }
  971. EXPORT_SYMBOL(may_umount);
  972. void release_mounts(struct list_head *head)
  973. {
  974. struct mount *mnt;
  975. while (!list_empty(head)) {
  976. mnt = list_first_entry(head, struct mount, mnt_hash);
  977. list_del_init(&mnt->mnt_hash);
  978. if (mnt_has_parent(mnt)) {
  979. struct dentry *dentry;
  980. struct mount *m;
  981. br_write_lock(&vfsmount_lock);
  982. dentry = mnt->mnt_mountpoint;
  983. m = mnt->mnt_parent;
  984. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  985. mnt->mnt_parent = mnt;
  986. m->mnt_ghosts--;
  987. br_write_unlock(&vfsmount_lock);
  988. dput(dentry);
  989. mntput(&m->mnt);
  990. }
  991. mntput(&mnt->mnt);
  992. }
  993. }
  994. /*
  995. * vfsmount lock must be held for write
  996. * namespace_sem must be held for write
  997. */
  998. void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
  999. {
  1000. LIST_HEAD(tmp_list);
  1001. struct mount *p;
  1002. for (p = mnt; p; p = next_mnt(p, mnt))
  1003. list_move(&p->mnt_hash, &tmp_list);
  1004. if (propagate)
  1005. propagate_umount(&tmp_list);
  1006. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1007. list_del_init(&p->mnt_expire);
  1008. list_del_init(&p->mnt_list);
  1009. __touch_mnt_namespace(p->mnt_ns);
  1010. p->mnt_ns = NULL;
  1011. list_del_init(&p->mnt_child);
  1012. if (mnt_has_parent(p)) {
  1013. p->mnt_parent->mnt_ghosts++;
  1014. dentry_reset_mounted(p->mnt_mountpoint);
  1015. }
  1016. change_mnt_propagation(p, MS_PRIVATE);
  1017. }
  1018. list_splice(&tmp_list, kill);
  1019. }
  1020. static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
  1021. static int do_umount(struct mount *mnt, int flags)
  1022. {
  1023. struct super_block *sb = mnt->mnt.mnt_sb;
  1024. int retval;
  1025. LIST_HEAD(umount_list);
  1026. retval = security_sb_umount(&mnt->mnt, flags);
  1027. if (retval)
  1028. return retval;
  1029. /*
  1030. * Allow userspace to request a mountpoint be expired rather than
  1031. * unmounting unconditionally. Unmount only happens if:
  1032. * (1) the mark is already set (the mark is cleared by mntput())
  1033. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1034. */
  1035. if (flags & MNT_EXPIRE) {
  1036. if (&mnt->mnt == current->fs->root.mnt ||
  1037. flags & (MNT_FORCE | MNT_DETACH))
  1038. return -EINVAL;
  1039. /*
  1040. * probably don't strictly need the lock here if we examined
  1041. * all race cases, but it's a slowpath.
  1042. */
  1043. br_write_lock(&vfsmount_lock);
  1044. if (mnt_get_count(mnt) != 2) {
  1045. br_write_unlock(&vfsmount_lock);
  1046. return -EBUSY;
  1047. }
  1048. br_write_unlock(&vfsmount_lock);
  1049. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1050. return -EAGAIN;
  1051. }
  1052. /*
  1053. * If we may have to abort operations to get out of this
  1054. * mount, and they will themselves hold resources we must
  1055. * allow the fs to do things. In the Unix tradition of
  1056. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1057. * might fail to complete on the first run through as other tasks
  1058. * must return, and the like. Thats for the mount program to worry
  1059. * about for the moment.
  1060. */
  1061. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1062. sb->s_op->umount_begin(sb);
  1063. }
  1064. /*
  1065. * No sense to grab the lock for this test, but test itself looks
  1066. * somewhat bogus. Suggestions for better replacement?
  1067. * Ho-hum... In principle, we might treat that as umount + switch
  1068. * to rootfs. GC would eventually take care of the old vfsmount.
  1069. * Actually it makes sense, especially if rootfs would contain a
  1070. * /reboot - static binary that would close all descriptors and
  1071. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1072. */
  1073. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1074. /*
  1075. * Special case for "unmounting" root ...
  1076. * we just try to remount it readonly.
  1077. */
  1078. down_write(&sb->s_umount);
  1079. if (!(sb->s_flags & MS_RDONLY))
  1080. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1081. up_write(&sb->s_umount);
  1082. return retval;
  1083. }
  1084. down_write(&namespace_sem);
  1085. br_write_lock(&vfsmount_lock);
  1086. event++;
  1087. if (!(flags & MNT_DETACH))
  1088. shrink_submounts(mnt, &umount_list);
  1089. retval = -EBUSY;
  1090. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1091. if (!list_empty(&mnt->mnt_list))
  1092. umount_tree(mnt, 1, &umount_list);
  1093. retval = 0;
  1094. }
  1095. br_write_unlock(&vfsmount_lock);
  1096. up_write(&namespace_sem);
  1097. release_mounts(&umount_list);
  1098. return retval;
  1099. }
  1100. /*
  1101. * Is the caller allowed to modify his namespace?
  1102. */
  1103. static inline bool may_mount(void)
  1104. {
  1105. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1106. }
  1107. /*
  1108. * Now umount can handle mount points as well as block devices.
  1109. * This is important for filesystems which use unnamed block devices.
  1110. *
  1111. * We now support a flag for forced unmount like the other 'big iron'
  1112. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1113. */
  1114. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1115. {
  1116. struct path path;
  1117. struct mount *mnt;
  1118. int retval;
  1119. int lookup_flags = 0;
  1120. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1121. return -EINVAL;
  1122. if (!may_mount())
  1123. return -EPERM;
  1124. if (!(flags & UMOUNT_NOFOLLOW))
  1125. lookup_flags |= LOOKUP_FOLLOW;
  1126. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1127. if (retval)
  1128. goto out;
  1129. mnt = real_mount(path.mnt);
  1130. retval = -EINVAL;
  1131. if (path.dentry != path.mnt->mnt_root)
  1132. goto dput_and_out;
  1133. if (!check_mnt(mnt))
  1134. goto dput_and_out;
  1135. retval = do_umount(mnt, flags);
  1136. dput_and_out:
  1137. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1138. dput(path.dentry);
  1139. mntput_no_expire(mnt);
  1140. out:
  1141. return retval;
  1142. }
  1143. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1144. /*
  1145. * The 2.0 compatible umount. No flags.
  1146. */
  1147. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1148. {
  1149. return sys_umount(name, 0);
  1150. }
  1151. #endif
  1152. static bool mnt_ns_loop(struct path *path)
  1153. {
  1154. /* Could bind mounting the mount namespace inode cause a
  1155. * mount namespace loop?
  1156. */
  1157. struct inode *inode = path->dentry->d_inode;
  1158. struct proc_inode *ei;
  1159. struct mnt_namespace *mnt_ns;
  1160. if (!proc_ns_inode(inode))
  1161. return false;
  1162. ei = PROC_I(inode);
  1163. if (ei->ns_ops != &mntns_operations)
  1164. return false;
  1165. mnt_ns = ei->ns;
  1166. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1167. }
  1168. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1169. int flag)
  1170. {
  1171. struct mount *res, *p, *q, *r;
  1172. struct path path;
  1173. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1174. return ERR_PTR(-EINVAL);
  1175. res = q = clone_mnt(mnt, dentry, flag);
  1176. if (IS_ERR(q))
  1177. return q;
  1178. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1179. p = mnt;
  1180. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1181. struct mount *s;
  1182. if (!is_subdir(r->mnt_mountpoint, dentry))
  1183. continue;
  1184. for (s = r; s; s = next_mnt(s, r)) {
  1185. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1186. s = skip_mnt_tree(s);
  1187. continue;
  1188. }
  1189. while (p != s->mnt_parent) {
  1190. p = p->mnt_parent;
  1191. q = q->mnt_parent;
  1192. }
  1193. p = s;
  1194. path.mnt = &q->mnt;
  1195. path.dentry = p->mnt_mountpoint;
  1196. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1197. if (IS_ERR(q))
  1198. goto out;
  1199. br_write_lock(&vfsmount_lock);
  1200. list_add_tail(&q->mnt_list, &res->mnt_list);
  1201. attach_mnt(q, &path);
  1202. br_write_unlock(&vfsmount_lock);
  1203. }
  1204. }
  1205. return res;
  1206. out:
  1207. if (res) {
  1208. LIST_HEAD(umount_list);
  1209. br_write_lock(&vfsmount_lock);
  1210. umount_tree(res, 0, &umount_list);
  1211. br_write_unlock(&vfsmount_lock);
  1212. release_mounts(&umount_list);
  1213. }
  1214. return q;
  1215. }
  1216. /* Caller should check returned pointer for errors */
  1217. struct vfsmount *collect_mounts(struct path *path)
  1218. {
  1219. struct mount *tree;
  1220. down_write(&namespace_sem);
  1221. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1222. CL_COPY_ALL | CL_PRIVATE);
  1223. up_write(&namespace_sem);
  1224. if (IS_ERR(tree))
  1225. return NULL;
  1226. return &tree->mnt;
  1227. }
  1228. void drop_collected_mounts(struct vfsmount *mnt)
  1229. {
  1230. LIST_HEAD(umount_list);
  1231. down_write(&namespace_sem);
  1232. br_write_lock(&vfsmount_lock);
  1233. umount_tree(real_mount(mnt), 0, &umount_list);
  1234. br_write_unlock(&vfsmount_lock);
  1235. up_write(&namespace_sem);
  1236. release_mounts(&umount_list);
  1237. }
  1238. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1239. struct vfsmount *root)
  1240. {
  1241. struct mount *mnt;
  1242. int res = f(root, arg);
  1243. if (res)
  1244. return res;
  1245. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1246. res = f(&mnt->mnt, arg);
  1247. if (res)
  1248. return res;
  1249. }
  1250. return 0;
  1251. }
  1252. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1253. {
  1254. struct mount *p;
  1255. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1256. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1257. mnt_release_group_id(p);
  1258. }
  1259. }
  1260. static int invent_group_ids(struct mount *mnt, bool recurse)
  1261. {
  1262. struct mount *p;
  1263. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1264. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1265. int err = mnt_alloc_group_id(p);
  1266. if (err) {
  1267. cleanup_group_ids(mnt, p);
  1268. return err;
  1269. }
  1270. }
  1271. }
  1272. return 0;
  1273. }
  1274. /*
  1275. * @source_mnt : mount tree to be attached
  1276. * @nd : place the mount tree @source_mnt is attached
  1277. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1278. * store the parent mount and mountpoint dentry.
  1279. * (done when source_mnt is moved)
  1280. *
  1281. * NOTE: in the table below explains the semantics when a source mount
  1282. * of a given type is attached to a destination mount of a given type.
  1283. * ---------------------------------------------------------------------------
  1284. * | BIND MOUNT OPERATION |
  1285. * |**************************************************************************
  1286. * | source-->| shared | private | slave | unbindable |
  1287. * | dest | | | | |
  1288. * | | | | | | |
  1289. * | v | | | | |
  1290. * |**************************************************************************
  1291. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1292. * | | | | | |
  1293. * |non-shared| shared (+) | private | slave (*) | invalid |
  1294. * ***************************************************************************
  1295. * A bind operation clones the source mount and mounts the clone on the
  1296. * destination mount.
  1297. *
  1298. * (++) the cloned mount is propagated to all the mounts in the propagation
  1299. * tree of the destination mount and the cloned mount is added to
  1300. * the peer group of the source mount.
  1301. * (+) the cloned mount is created under the destination mount and is marked
  1302. * as shared. The cloned mount is added to the peer group of the source
  1303. * mount.
  1304. * (+++) the mount is propagated to all the mounts in the propagation tree
  1305. * of the destination mount and the cloned mount is made slave
  1306. * of the same master as that of the source mount. The cloned mount
  1307. * is marked as 'shared and slave'.
  1308. * (*) the cloned mount is made a slave of the same master as that of the
  1309. * source mount.
  1310. *
  1311. * ---------------------------------------------------------------------------
  1312. * | MOVE MOUNT OPERATION |
  1313. * |**************************************************************************
  1314. * | source-->| shared | private | slave | unbindable |
  1315. * | dest | | | | |
  1316. * | | | | | | |
  1317. * | v | | | | |
  1318. * |**************************************************************************
  1319. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1320. * | | | | | |
  1321. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1322. * ***************************************************************************
  1323. *
  1324. * (+) the mount is moved to the destination. And is then propagated to
  1325. * all the mounts in the propagation tree of the destination mount.
  1326. * (+*) the mount is moved to the destination.
  1327. * (+++) the mount is moved to the destination and is then propagated to
  1328. * all the mounts belonging to the destination mount's propagation tree.
  1329. * the mount is marked as 'shared and slave'.
  1330. * (*) the mount continues to be a slave at the new location.
  1331. *
  1332. * if the source mount is a tree, the operations explained above is
  1333. * applied to each mount in the tree.
  1334. * Must be called without spinlocks held, since this function can sleep
  1335. * in allocations.
  1336. */
  1337. static int attach_recursive_mnt(struct mount *source_mnt,
  1338. struct path *path, struct path *parent_path)
  1339. {
  1340. LIST_HEAD(tree_list);
  1341. struct mount *dest_mnt = real_mount(path->mnt);
  1342. struct dentry *dest_dentry = path->dentry;
  1343. struct mount *child, *p;
  1344. int err;
  1345. if (IS_MNT_SHARED(dest_mnt)) {
  1346. err = invent_group_ids(source_mnt, true);
  1347. if (err)
  1348. goto out;
  1349. }
  1350. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1351. if (err)
  1352. goto out_cleanup_ids;
  1353. br_write_lock(&vfsmount_lock);
  1354. if (IS_MNT_SHARED(dest_mnt)) {
  1355. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1356. set_mnt_shared(p);
  1357. }
  1358. if (parent_path) {
  1359. detach_mnt(source_mnt, parent_path);
  1360. attach_mnt(source_mnt, path);
  1361. touch_mnt_namespace(source_mnt->mnt_ns);
  1362. } else {
  1363. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1364. commit_tree(source_mnt);
  1365. }
  1366. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1367. list_del_init(&child->mnt_hash);
  1368. commit_tree(child);
  1369. }
  1370. br_write_unlock(&vfsmount_lock);
  1371. return 0;
  1372. out_cleanup_ids:
  1373. if (IS_MNT_SHARED(dest_mnt))
  1374. cleanup_group_ids(source_mnt, NULL);
  1375. out:
  1376. return err;
  1377. }
  1378. static int lock_mount(struct path *path)
  1379. {
  1380. struct vfsmount *mnt;
  1381. retry:
  1382. mutex_lock(&path->dentry->d_inode->i_mutex);
  1383. if (unlikely(cant_mount(path->dentry))) {
  1384. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1385. return -ENOENT;
  1386. }
  1387. down_write(&namespace_sem);
  1388. mnt = lookup_mnt(path);
  1389. if (likely(!mnt))
  1390. return 0;
  1391. up_write(&namespace_sem);
  1392. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1393. path_put(path);
  1394. path->mnt = mnt;
  1395. path->dentry = dget(mnt->mnt_root);
  1396. goto retry;
  1397. }
  1398. static void unlock_mount(struct path *path)
  1399. {
  1400. up_write(&namespace_sem);
  1401. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1402. }
  1403. static int graft_tree(struct mount *mnt, struct path *path)
  1404. {
  1405. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1406. return -EINVAL;
  1407. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1408. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1409. return -ENOTDIR;
  1410. if (d_unlinked(path->dentry))
  1411. return -ENOENT;
  1412. return attach_recursive_mnt(mnt, path, NULL);
  1413. }
  1414. /*
  1415. * Sanity check the flags to change_mnt_propagation.
  1416. */
  1417. static int flags_to_propagation_type(int flags)
  1418. {
  1419. int type = flags & ~(MS_REC | MS_SILENT);
  1420. /* Fail if any non-propagation flags are set */
  1421. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1422. return 0;
  1423. /* Only one propagation flag should be set */
  1424. if (!is_power_of_2(type))
  1425. return 0;
  1426. return type;
  1427. }
  1428. /*
  1429. * recursively change the type of the mountpoint.
  1430. */
  1431. static int do_change_type(struct path *path, int flag)
  1432. {
  1433. struct mount *m;
  1434. struct mount *mnt = real_mount(path->mnt);
  1435. int recurse = flag & MS_REC;
  1436. int type;
  1437. int err = 0;
  1438. if (path->dentry != path->mnt->mnt_root)
  1439. return -EINVAL;
  1440. type = flags_to_propagation_type(flag);
  1441. if (!type)
  1442. return -EINVAL;
  1443. down_write(&namespace_sem);
  1444. if (type == MS_SHARED) {
  1445. err = invent_group_ids(mnt, recurse);
  1446. if (err)
  1447. goto out_unlock;
  1448. }
  1449. br_write_lock(&vfsmount_lock);
  1450. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1451. change_mnt_propagation(m, type);
  1452. br_write_unlock(&vfsmount_lock);
  1453. out_unlock:
  1454. up_write(&namespace_sem);
  1455. return err;
  1456. }
  1457. /*
  1458. * do loopback mount.
  1459. */
  1460. static int do_loopback(struct path *path, const char *old_name,
  1461. int recurse)
  1462. {
  1463. LIST_HEAD(umount_list);
  1464. struct path old_path;
  1465. struct mount *mnt = NULL, *old;
  1466. int err;
  1467. if (!old_name || !*old_name)
  1468. return -EINVAL;
  1469. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1470. if (err)
  1471. return err;
  1472. err = -EINVAL;
  1473. if (mnt_ns_loop(&old_path))
  1474. goto out;
  1475. err = lock_mount(path);
  1476. if (err)
  1477. goto out;
  1478. old = real_mount(old_path.mnt);
  1479. err = -EINVAL;
  1480. if (IS_MNT_UNBINDABLE(old))
  1481. goto out2;
  1482. if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
  1483. goto out2;
  1484. if (recurse)
  1485. mnt = copy_tree(old, old_path.dentry, 0);
  1486. else
  1487. mnt = clone_mnt(old, old_path.dentry, 0);
  1488. if (IS_ERR(mnt)) {
  1489. err = PTR_ERR(mnt);
  1490. goto out;
  1491. }
  1492. err = graft_tree(mnt, path);
  1493. if (err) {
  1494. br_write_lock(&vfsmount_lock);
  1495. umount_tree(mnt, 0, &umount_list);
  1496. br_write_unlock(&vfsmount_lock);
  1497. }
  1498. out2:
  1499. unlock_mount(path);
  1500. release_mounts(&umount_list);
  1501. out:
  1502. path_put(&old_path);
  1503. return err;
  1504. }
  1505. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1506. {
  1507. int error = 0;
  1508. int readonly_request = 0;
  1509. if (ms_flags & MS_RDONLY)
  1510. readonly_request = 1;
  1511. if (readonly_request == __mnt_is_readonly(mnt))
  1512. return 0;
  1513. if (mnt->mnt_flags & MNT_LOCK_READONLY)
  1514. return -EPERM;
  1515. if (readonly_request)
  1516. error = mnt_make_readonly(real_mount(mnt));
  1517. else
  1518. __mnt_unmake_readonly(real_mount(mnt));
  1519. return error;
  1520. }
  1521. /*
  1522. * change filesystem flags. dir should be a physical root of filesystem.
  1523. * If you've mounted a non-root directory somewhere and want to do remount
  1524. * on it - tough luck.
  1525. */
  1526. static int do_remount(struct path *path, int flags, int mnt_flags,
  1527. void *data)
  1528. {
  1529. int err;
  1530. struct super_block *sb = path->mnt->mnt_sb;
  1531. struct mount *mnt = real_mount(path->mnt);
  1532. if (!check_mnt(mnt))
  1533. return -EINVAL;
  1534. if (path->dentry != path->mnt->mnt_root)
  1535. return -EINVAL;
  1536. err = security_sb_remount(sb, data);
  1537. if (err)
  1538. return err;
  1539. down_write(&sb->s_umount);
  1540. if (flags & MS_BIND)
  1541. err = change_mount_flags(path->mnt, flags);
  1542. else if (!capable(CAP_SYS_ADMIN))
  1543. err = -EPERM;
  1544. else
  1545. err = do_remount_sb(sb, flags, data, 0);
  1546. if (!err) {
  1547. br_write_lock(&vfsmount_lock);
  1548. mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
  1549. mnt->mnt.mnt_flags = mnt_flags;
  1550. br_write_unlock(&vfsmount_lock);
  1551. }
  1552. up_write(&sb->s_umount);
  1553. if (!err) {
  1554. br_write_lock(&vfsmount_lock);
  1555. touch_mnt_namespace(mnt->mnt_ns);
  1556. br_write_unlock(&vfsmount_lock);
  1557. }
  1558. return err;
  1559. }
  1560. static inline int tree_contains_unbindable(struct mount *mnt)
  1561. {
  1562. struct mount *p;
  1563. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1564. if (IS_MNT_UNBINDABLE(p))
  1565. return 1;
  1566. }
  1567. return 0;
  1568. }
  1569. static int do_move_mount(struct path *path, const char *old_name)
  1570. {
  1571. struct path old_path, parent_path;
  1572. struct mount *p;
  1573. struct mount *old;
  1574. int err;
  1575. if (!old_name || !*old_name)
  1576. return -EINVAL;
  1577. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1578. if (err)
  1579. return err;
  1580. err = lock_mount(path);
  1581. if (err < 0)
  1582. goto out;
  1583. old = real_mount(old_path.mnt);
  1584. p = real_mount(path->mnt);
  1585. err = -EINVAL;
  1586. if (!check_mnt(p) || !check_mnt(old))
  1587. goto out1;
  1588. if (d_unlinked(path->dentry))
  1589. goto out1;
  1590. err = -EINVAL;
  1591. if (old_path.dentry != old_path.mnt->mnt_root)
  1592. goto out1;
  1593. if (!mnt_has_parent(old))
  1594. goto out1;
  1595. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1596. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1597. goto out1;
  1598. /*
  1599. * Don't move a mount residing in a shared parent.
  1600. */
  1601. if (IS_MNT_SHARED(old->mnt_parent))
  1602. goto out1;
  1603. /*
  1604. * Don't move a mount tree containing unbindable mounts to a destination
  1605. * mount which is shared.
  1606. */
  1607. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1608. goto out1;
  1609. err = -ELOOP;
  1610. for (; mnt_has_parent(p); p = p->mnt_parent)
  1611. if (p == old)
  1612. goto out1;
  1613. err = attach_recursive_mnt(old, path, &parent_path);
  1614. if (err)
  1615. goto out1;
  1616. /* if the mount is moved, it should no longer be expire
  1617. * automatically */
  1618. list_del_init(&old->mnt_expire);
  1619. out1:
  1620. unlock_mount(path);
  1621. out:
  1622. if (!err)
  1623. path_put(&parent_path);
  1624. path_put(&old_path);
  1625. return err;
  1626. }
  1627. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1628. {
  1629. int err;
  1630. const char *subtype = strchr(fstype, '.');
  1631. if (subtype) {
  1632. subtype++;
  1633. err = -EINVAL;
  1634. if (!subtype[0])
  1635. goto err;
  1636. } else
  1637. subtype = "";
  1638. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1639. err = -ENOMEM;
  1640. if (!mnt->mnt_sb->s_subtype)
  1641. goto err;
  1642. return mnt;
  1643. err:
  1644. mntput(mnt);
  1645. return ERR_PTR(err);
  1646. }
  1647. /*
  1648. * add a mount into a namespace's mount tree
  1649. */
  1650. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1651. {
  1652. int err;
  1653. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1654. err = lock_mount(path);
  1655. if (err)
  1656. return err;
  1657. err = -EINVAL;
  1658. if (unlikely(!check_mnt(real_mount(path->mnt)))) {
  1659. /* that's acceptable only for automounts done in private ns */
  1660. if (!(mnt_flags & MNT_SHRINKABLE))
  1661. goto unlock;
  1662. /* ... and for those we'd better have mountpoint still alive */
  1663. if (!real_mount(path->mnt)->mnt_ns)
  1664. goto unlock;
  1665. }
  1666. /* Refuse the same filesystem on the same mount point */
  1667. err = -EBUSY;
  1668. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1669. path->mnt->mnt_root == path->dentry)
  1670. goto unlock;
  1671. err = -EINVAL;
  1672. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1673. goto unlock;
  1674. newmnt->mnt.mnt_flags = mnt_flags;
  1675. err = graft_tree(newmnt, path);
  1676. unlock:
  1677. unlock_mount(path);
  1678. return err;
  1679. }
  1680. /*
  1681. * create a new mount for userspace and request it to be added into the
  1682. * namespace's tree
  1683. */
  1684. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1685. int mnt_flags, const char *name, void *data)
  1686. {
  1687. struct file_system_type *type;
  1688. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  1689. struct vfsmount *mnt;
  1690. int err;
  1691. if (!fstype)
  1692. return -EINVAL;
  1693. type = get_fs_type(fstype);
  1694. if (!type)
  1695. return -ENODEV;
  1696. if (user_ns != &init_user_ns) {
  1697. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  1698. put_filesystem(type);
  1699. return -EPERM;
  1700. }
  1701. /* Only in special cases allow devices from mounts
  1702. * created outside the initial user namespace.
  1703. */
  1704. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1705. flags |= MS_NODEV;
  1706. mnt_flags |= MNT_NODEV;
  1707. }
  1708. }
  1709. mnt = vfs_kern_mount(type, flags, name, data);
  1710. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1711. !mnt->mnt_sb->s_subtype)
  1712. mnt = fs_set_subtype(mnt, fstype);
  1713. put_filesystem(type);
  1714. if (IS_ERR(mnt))
  1715. return PTR_ERR(mnt);
  1716. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1717. if (err)
  1718. mntput(mnt);
  1719. return err;
  1720. }
  1721. int finish_automount(struct vfsmount *m, struct path *path)
  1722. {
  1723. struct mount *mnt = real_mount(m);
  1724. int err;
  1725. /* The new mount record should have at least 2 refs to prevent it being
  1726. * expired before we get a chance to add it
  1727. */
  1728. BUG_ON(mnt_get_count(mnt) < 2);
  1729. if (m->mnt_sb == path->mnt->mnt_sb &&
  1730. m->mnt_root == path->dentry) {
  1731. err = -ELOOP;
  1732. goto fail;
  1733. }
  1734. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1735. if (!err)
  1736. return 0;
  1737. fail:
  1738. /* remove m from any expiration list it may be on */
  1739. if (!list_empty(&mnt->mnt_expire)) {
  1740. down_write(&namespace_sem);
  1741. br_write_lock(&vfsmount_lock);
  1742. list_del_init(&mnt->mnt_expire);
  1743. br_write_unlock(&vfsmount_lock);
  1744. up_write(&namespace_sem);
  1745. }
  1746. mntput(m);
  1747. mntput(m);
  1748. return err;
  1749. }
  1750. /**
  1751. * mnt_set_expiry - Put a mount on an expiration list
  1752. * @mnt: The mount to list.
  1753. * @expiry_list: The list to add the mount to.
  1754. */
  1755. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1756. {
  1757. down_write(&namespace_sem);
  1758. br_write_lock(&vfsmount_lock);
  1759. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1760. br_write_unlock(&vfsmount_lock);
  1761. up_write(&namespace_sem);
  1762. }
  1763. EXPORT_SYMBOL(mnt_set_expiry);
  1764. /*
  1765. * process a list of expirable mountpoints with the intent of discarding any
  1766. * mountpoints that aren't in use and haven't been touched since last we came
  1767. * here
  1768. */
  1769. void mark_mounts_for_expiry(struct list_head *mounts)
  1770. {
  1771. struct mount *mnt, *next;
  1772. LIST_HEAD(graveyard);
  1773. LIST_HEAD(umounts);
  1774. if (list_empty(mounts))
  1775. return;
  1776. down_write(&namespace_sem);
  1777. br_write_lock(&vfsmount_lock);
  1778. /* extract from the expiration list every vfsmount that matches the
  1779. * following criteria:
  1780. * - only referenced by its parent vfsmount
  1781. * - still marked for expiry (marked on the last call here; marks are
  1782. * cleared by mntput())
  1783. */
  1784. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1785. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1786. propagate_mount_busy(mnt, 1))
  1787. continue;
  1788. list_move(&mnt->mnt_expire, &graveyard);
  1789. }
  1790. while (!list_empty(&graveyard)) {
  1791. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1792. touch_mnt_namespace(mnt->mnt_ns);
  1793. umount_tree(mnt, 1, &umounts);
  1794. }
  1795. br_write_unlock(&vfsmount_lock);
  1796. up_write(&namespace_sem);
  1797. release_mounts(&umounts);
  1798. }
  1799. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1800. /*
  1801. * Ripoff of 'select_parent()'
  1802. *
  1803. * search the list of submounts for a given mountpoint, and move any
  1804. * shrinkable submounts to the 'graveyard' list.
  1805. */
  1806. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1807. {
  1808. struct mount *this_parent = parent;
  1809. struct list_head *next;
  1810. int found = 0;
  1811. repeat:
  1812. next = this_parent->mnt_mounts.next;
  1813. resume:
  1814. while (next != &this_parent->mnt_mounts) {
  1815. struct list_head *tmp = next;
  1816. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1817. next = tmp->next;
  1818. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1819. continue;
  1820. /*
  1821. * Descend a level if the d_mounts list is non-empty.
  1822. */
  1823. if (!list_empty(&mnt->mnt_mounts)) {
  1824. this_parent = mnt;
  1825. goto repeat;
  1826. }
  1827. if (!propagate_mount_busy(mnt, 1)) {
  1828. list_move_tail(&mnt->mnt_expire, graveyard);
  1829. found++;
  1830. }
  1831. }
  1832. /*
  1833. * All done at this level ... ascend and resume the search
  1834. */
  1835. if (this_parent != parent) {
  1836. next = this_parent->mnt_child.next;
  1837. this_parent = this_parent->mnt_parent;
  1838. goto resume;
  1839. }
  1840. return found;
  1841. }
  1842. /*
  1843. * process a list of expirable mountpoints with the intent of discarding any
  1844. * submounts of a specific parent mountpoint
  1845. *
  1846. * vfsmount_lock must be held for write
  1847. */
  1848. static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
  1849. {
  1850. LIST_HEAD(graveyard);
  1851. struct mount *m;
  1852. /* extract submounts of 'mountpoint' from the expiration list */
  1853. while (select_submounts(mnt, &graveyard)) {
  1854. while (!list_empty(&graveyard)) {
  1855. m = list_first_entry(&graveyard, struct mount,
  1856. mnt_expire);
  1857. touch_mnt_namespace(m->mnt_ns);
  1858. umount_tree(m, 1, umounts);
  1859. }
  1860. }
  1861. }
  1862. /*
  1863. * Some copy_from_user() implementations do not return the exact number of
  1864. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1865. * Note that this function differs from copy_from_user() in that it will oops
  1866. * on bad values of `to', rather than returning a short copy.
  1867. */
  1868. static long exact_copy_from_user(void *to, const void __user * from,
  1869. unsigned long n)
  1870. {
  1871. char *t = to;
  1872. const char __user *f = from;
  1873. char c;
  1874. if (!access_ok(VERIFY_READ, from, n))
  1875. return n;
  1876. while (n) {
  1877. if (__get_user(c, f)) {
  1878. memset(t, 0, n);
  1879. break;
  1880. }
  1881. *t++ = c;
  1882. f++;
  1883. n--;
  1884. }
  1885. return n;
  1886. }
  1887. int copy_mount_options(const void __user * data, unsigned long *where)
  1888. {
  1889. int i;
  1890. unsigned long page;
  1891. unsigned long size;
  1892. *where = 0;
  1893. if (!data)
  1894. return 0;
  1895. if (!(page = __get_free_page(GFP_KERNEL)))
  1896. return -ENOMEM;
  1897. /* We only care that *some* data at the address the user
  1898. * gave us is valid. Just in case, we'll zero
  1899. * the remainder of the page.
  1900. */
  1901. /* copy_from_user cannot cross TASK_SIZE ! */
  1902. size = TASK_SIZE - (unsigned long)data;
  1903. if (size > PAGE_SIZE)
  1904. size = PAGE_SIZE;
  1905. i = size - exact_copy_from_user((void *)page, data, size);
  1906. if (!i) {
  1907. free_page(page);
  1908. return -EFAULT;
  1909. }
  1910. if (i != PAGE_SIZE)
  1911. memset((char *)page + i, 0, PAGE_SIZE - i);
  1912. *where = page;
  1913. return 0;
  1914. }
  1915. int copy_mount_string(const void __user *data, char **where)
  1916. {
  1917. char *tmp;
  1918. if (!data) {
  1919. *where = NULL;
  1920. return 0;
  1921. }
  1922. tmp = strndup_user(data, PAGE_SIZE);
  1923. if (IS_ERR(tmp))
  1924. return PTR_ERR(tmp);
  1925. *where = tmp;
  1926. return 0;
  1927. }
  1928. /*
  1929. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1930. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1931. *
  1932. * data is a (void *) that can point to any structure up to
  1933. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1934. * information (or be NULL).
  1935. *
  1936. * Pre-0.97 versions of mount() didn't have a flags word.
  1937. * When the flags word was introduced its top half was required
  1938. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1939. * Therefore, if this magic number is present, it carries no information
  1940. * and must be discarded.
  1941. */
  1942. long do_mount(const char *dev_name, const char *dir_name,
  1943. const char *type_page, unsigned long flags, void *data_page)
  1944. {
  1945. struct path path;
  1946. int retval = 0;
  1947. int mnt_flags = 0;
  1948. /* Discard magic */
  1949. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1950. flags &= ~MS_MGC_MSK;
  1951. /* Basic sanity checks */
  1952. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1953. return -EINVAL;
  1954. if (data_page)
  1955. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1956. /* ... and get the mountpoint */
  1957. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1958. if (retval)
  1959. return retval;
  1960. retval = security_sb_mount(dev_name, &path,
  1961. type_page, flags, data_page);
  1962. if (retval)
  1963. goto dput_out;
  1964. if (!may_mount())
  1965. return -EPERM;
  1966. /* Default to relatime unless overriden */
  1967. if (!(flags & MS_NOATIME))
  1968. mnt_flags |= MNT_RELATIME;
  1969. /* Separate the per-mountpoint flags */
  1970. if (flags & MS_NOSUID)
  1971. mnt_flags |= MNT_NOSUID;
  1972. if (flags & MS_NODEV)
  1973. mnt_flags |= MNT_NODEV;
  1974. if (flags & MS_NOEXEC)
  1975. mnt_flags |= MNT_NOEXEC;
  1976. if (flags & MS_NOATIME)
  1977. mnt_flags |= MNT_NOATIME;
  1978. if (flags & MS_NODIRATIME)
  1979. mnt_flags |= MNT_NODIRATIME;
  1980. if (flags & MS_STRICTATIME)
  1981. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  1982. if (flags & MS_RDONLY)
  1983. mnt_flags |= MNT_READONLY;
  1984. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  1985. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  1986. MS_STRICTATIME);
  1987. if (flags & MS_REMOUNT)
  1988. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  1989. data_page);
  1990. else if (flags & MS_BIND)
  1991. retval = do_loopback(&path, dev_name, flags & MS_REC);
  1992. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1993. retval = do_change_type(&path, flags);
  1994. else if (flags & MS_MOVE)
  1995. retval = do_move_mount(&path, dev_name);
  1996. else
  1997. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  1998. dev_name, data_page);
  1999. dput_out:
  2000. path_put(&path);
  2001. return retval;
  2002. }
  2003. static void free_mnt_ns(struct mnt_namespace *ns)
  2004. {
  2005. proc_free_inum(ns->proc_inum);
  2006. put_user_ns(ns->user_ns);
  2007. kfree(ns);
  2008. }
  2009. /*
  2010. * Assign a sequence number so we can detect when we attempt to bind
  2011. * mount a reference to an older mount namespace into the current
  2012. * mount namespace, preventing reference counting loops. A 64bit
  2013. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2014. * is effectively never, so we can ignore the possibility.
  2015. */
  2016. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2017. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2018. {
  2019. struct mnt_namespace *new_ns;
  2020. int ret;
  2021. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2022. if (!new_ns)
  2023. return ERR_PTR(-ENOMEM);
  2024. ret = proc_alloc_inum(&new_ns->proc_inum);
  2025. if (ret) {
  2026. kfree(new_ns);
  2027. return ERR_PTR(ret);
  2028. }
  2029. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2030. atomic_set(&new_ns->count, 1);
  2031. new_ns->root = NULL;
  2032. INIT_LIST_HEAD(&new_ns->list);
  2033. init_waitqueue_head(&new_ns->poll);
  2034. new_ns->event = 0;
  2035. new_ns->user_ns = get_user_ns(user_ns);
  2036. return new_ns;
  2037. }
  2038. /*
  2039. * Allocate a new namespace structure and populate it with contents
  2040. * copied from the namespace of the passed in task structure.
  2041. */
  2042. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2043. struct user_namespace *user_ns, struct fs_struct *fs)
  2044. {
  2045. struct mnt_namespace *new_ns;
  2046. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2047. struct mount *p, *q;
  2048. struct mount *old = mnt_ns->root;
  2049. struct mount *new;
  2050. int copy_flags;
  2051. new_ns = alloc_mnt_ns(user_ns);
  2052. if (IS_ERR(new_ns))
  2053. return new_ns;
  2054. down_write(&namespace_sem);
  2055. /* First pass: copy the tree topology */
  2056. copy_flags = CL_COPY_ALL | CL_EXPIRE;
  2057. if (user_ns != mnt_ns->user_ns)
  2058. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2059. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2060. if (IS_ERR(new)) {
  2061. up_write(&namespace_sem);
  2062. free_mnt_ns(new_ns);
  2063. return ERR_CAST(new);
  2064. }
  2065. new_ns->root = new;
  2066. br_write_lock(&vfsmount_lock);
  2067. list_add_tail(&new_ns->list, &new->mnt_list);
  2068. br_write_unlock(&vfsmount_lock);
  2069. /*
  2070. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2071. * as belonging to new namespace. We have already acquired a private
  2072. * fs_struct, so tsk->fs->lock is not needed.
  2073. */
  2074. p = old;
  2075. q = new;
  2076. while (p) {
  2077. q->mnt_ns = new_ns;
  2078. if (fs) {
  2079. if (&p->mnt == fs->root.mnt) {
  2080. fs->root.mnt = mntget(&q->mnt);
  2081. rootmnt = &p->mnt;
  2082. }
  2083. if (&p->mnt == fs->pwd.mnt) {
  2084. fs->pwd.mnt = mntget(&q->mnt);
  2085. pwdmnt = &p->mnt;
  2086. }
  2087. }
  2088. p = next_mnt(p, old);
  2089. q = next_mnt(q, new);
  2090. }
  2091. up_write(&namespace_sem);
  2092. if (rootmnt)
  2093. mntput(rootmnt);
  2094. if (pwdmnt)
  2095. mntput(pwdmnt);
  2096. return new_ns;
  2097. }
  2098. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2099. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2100. {
  2101. struct mnt_namespace *new_ns;
  2102. BUG_ON(!ns);
  2103. get_mnt_ns(ns);
  2104. if (!(flags & CLONE_NEWNS))
  2105. return ns;
  2106. new_ns = dup_mnt_ns(ns, user_ns, new_fs);
  2107. put_mnt_ns(ns);
  2108. return new_ns;
  2109. }
  2110. /**
  2111. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2112. * @mnt: pointer to the new root filesystem mountpoint
  2113. */
  2114. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2115. {
  2116. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2117. if (!IS_ERR(new_ns)) {
  2118. struct mount *mnt = real_mount(m);
  2119. mnt->mnt_ns = new_ns;
  2120. new_ns->root = mnt;
  2121. list_add(&new_ns->list, &mnt->mnt_list);
  2122. } else {
  2123. mntput(m);
  2124. }
  2125. return new_ns;
  2126. }
  2127. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2128. {
  2129. struct mnt_namespace *ns;
  2130. struct super_block *s;
  2131. struct path path;
  2132. int err;
  2133. ns = create_mnt_ns(mnt);
  2134. if (IS_ERR(ns))
  2135. return ERR_CAST(ns);
  2136. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2137. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2138. put_mnt_ns(ns);
  2139. if (err)
  2140. return ERR_PTR(err);
  2141. /* trade a vfsmount reference for active sb one */
  2142. s = path.mnt->mnt_sb;
  2143. atomic_inc(&s->s_active);
  2144. mntput(path.mnt);
  2145. /* lock the sucker */
  2146. down_write(&s->s_umount);
  2147. /* ... and return the root of (sub)tree on it */
  2148. return path.dentry;
  2149. }
  2150. EXPORT_SYMBOL(mount_subtree);
  2151. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2152. char __user *, type, unsigned long, flags, void __user *, data)
  2153. {
  2154. int ret;
  2155. char *kernel_type;
  2156. struct filename *kernel_dir;
  2157. char *kernel_dev;
  2158. unsigned long data_page;
  2159. ret = copy_mount_string(type, &kernel_type);
  2160. if (ret < 0)
  2161. goto out_type;
  2162. kernel_dir = getname(dir_name);
  2163. if (IS_ERR(kernel_dir)) {
  2164. ret = PTR_ERR(kernel_dir);
  2165. goto out_dir;
  2166. }
  2167. ret = copy_mount_string(dev_name, &kernel_dev);
  2168. if (ret < 0)
  2169. goto out_dev;
  2170. ret = copy_mount_options(data, &data_page);
  2171. if (ret < 0)
  2172. goto out_data;
  2173. ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
  2174. (void *) data_page);
  2175. free_page(data_page);
  2176. out_data:
  2177. kfree(kernel_dev);
  2178. out_dev:
  2179. putname(kernel_dir);
  2180. out_dir:
  2181. kfree(kernel_type);
  2182. out_type:
  2183. return ret;
  2184. }
  2185. /*
  2186. * Return true if path is reachable from root
  2187. *
  2188. * namespace_sem or vfsmount_lock is held
  2189. */
  2190. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2191. const struct path *root)
  2192. {
  2193. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2194. dentry = mnt->mnt_mountpoint;
  2195. mnt = mnt->mnt_parent;
  2196. }
  2197. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2198. }
  2199. int path_is_under(struct path *path1, struct path *path2)
  2200. {
  2201. int res;
  2202. br_read_lock(&vfsmount_lock);
  2203. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2204. br_read_unlock(&vfsmount_lock);
  2205. return res;
  2206. }
  2207. EXPORT_SYMBOL(path_is_under);
  2208. /*
  2209. * pivot_root Semantics:
  2210. * Moves the root file system of the current process to the directory put_old,
  2211. * makes new_root as the new root file system of the current process, and sets
  2212. * root/cwd of all processes which had them on the current root to new_root.
  2213. *
  2214. * Restrictions:
  2215. * The new_root and put_old must be directories, and must not be on the
  2216. * same file system as the current process root. The put_old must be
  2217. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2218. * pointed to by put_old must yield the same directory as new_root. No other
  2219. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2220. *
  2221. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2222. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2223. * in this situation.
  2224. *
  2225. * Notes:
  2226. * - we don't move root/cwd if they are not at the root (reason: if something
  2227. * cared enough to change them, it's probably wrong to force them elsewhere)
  2228. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2229. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2230. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2231. * first.
  2232. */
  2233. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2234. const char __user *, put_old)
  2235. {
  2236. struct path new, old, parent_path, root_parent, root;
  2237. struct mount *new_mnt, *root_mnt;
  2238. int error;
  2239. if (!may_mount())
  2240. return -EPERM;
  2241. error = user_path_dir(new_root, &new);
  2242. if (error)
  2243. goto out0;
  2244. error = user_path_dir(put_old, &old);
  2245. if (error)
  2246. goto out1;
  2247. error = security_sb_pivotroot(&old, &new);
  2248. if (error)
  2249. goto out2;
  2250. get_fs_root(current->fs, &root);
  2251. error = lock_mount(&old);
  2252. if (error)
  2253. goto out3;
  2254. error = -EINVAL;
  2255. new_mnt = real_mount(new.mnt);
  2256. root_mnt = real_mount(root.mnt);
  2257. if (IS_MNT_SHARED(real_mount(old.mnt)) ||
  2258. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2259. IS_MNT_SHARED(root_mnt->mnt_parent))
  2260. goto out4;
  2261. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2262. goto out4;
  2263. error = -ENOENT;
  2264. if (d_unlinked(new.dentry))
  2265. goto out4;
  2266. if (d_unlinked(old.dentry))
  2267. goto out4;
  2268. error = -EBUSY;
  2269. if (new.mnt == root.mnt ||
  2270. old.mnt == root.mnt)
  2271. goto out4; /* loop, on the same file system */
  2272. error = -EINVAL;
  2273. if (root.mnt->mnt_root != root.dentry)
  2274. goto out4; /* not a mountpoint */
  2275. if (!mnt_has_parent(root_mnt))
  2276. goto out4; /* not attached */
  2277. if (new.mnt->mnt_root != new.dentry)
  2278. goto out4; /* not a mountpoint */
  2279. if (!mnt_has_parent(new_mnt))
  2280. goto out4; /* not attached */
  2281. /* make sure we can reach put_old from new_root */
  2282. if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
  2283. goto out4;
  2284. br_write_lock(&vfsmount_lock);
  2285. detach_mnt(new_mnt, &parent_path);
  2286. detach_mnt(root_mnt, &root_parent);
  2287. /* mount old root on put_old */
  2288. attach_mnt(root_mnt, &old);
  2289. /* mount new_root on / */
  2290. attach_mnt(new_mnt, &root_parent);
  2291. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2292. br_write_unlock(&vfsmount_lock);
  2293. chroot_fs_refs(&root, &new);
  2294. error = 0;
  2295. out4:
  2296. unlock_mount(&old);
  2297. if (!error) {
  2298. path_put(&root_parent);
  2299. path_put(&parent_path);
  2300. }
  2301. out3:
  2302. path_put(&root);
  2303. out2:
  2304. path_put(&old);
  2305. out1:
  2306. path_put(&new);
  2307. out0:
  2308. return error;
  2309. }
  2310. static void __init init_mount_tree(void)
  2311. {
  2312. struct vfsmount *mnt;
  2313. struct mnt_namespace *ns;
  2314. struct path root;
  2315. struct file_system_type *type;
  2316. type = get_fs_type("rootfs");
  2317. if (!type)
  2318. panic("Can't find rootfs type");
  2319. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2320. put_filesystem(type);
  2321. if (IS_ERR(mnt))
  2322. panic("Can't create rootfs");
  2323. ns = create_mnt_ns(mnt);
  2324. if (IS_ERR(ns))
  2325. panic("Can't allocate initial namespace");
  2326. init_task.nsproxy->mnt_ns = ns;
  2327. get_mnt_ns(ns);
  2328. root.mnt = mnt;
  2329. root.dentry = mnt->mnt_root;
  2330. set_fs_pwd(current->fs, &root);
  2331. set_fs_root(current->fs, &root);
  2332. }
  2333. void __init mnt_init(void)
  2334. {
  2335. unsigned u;
  2336. int err;
  2337. init_rwsem(&namespace_sem);
  2338. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2339. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2340. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2341. if (!mount_hashtable)
  2342. panic("Failed to allocate mount hash table\n");
  2343. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2344. for (u = 0; u < HASH_SIZE; u++)
  2345. INIT_LIST_HEAD(&mount_hashtable[u]);
  2346. br_lock_init(&vfsmount_lock);
  2347. err = sysfs_init();
  2348. if (err)
  2349. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2350. __func__, err);
  2351. fs_kobj = kobject_create_and_add("fs", NULL);
  2352. if (!fs_kobj)
  2353. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2354. init_rootfs();
  2355. init_mount_tree();
  2356. }
  2357. void put_mnt_ns(struct mnt_namespace *ns)
  2358. {
  2359. LIST_HEAD(umount_list);
  2360. if (!atomic_dec_and_test(&ns->count))
  2361. return;
  2362. down_write(&namespace_sem);
  2363. br_write_lock(&vfsmount_lock);
  2364. umount_tree(ns->root, 0, &umount_list);
  2365. br_write_unlock(&vfsmount_lock);
  2366. up_write(&namespace_sem);
  2367. release_mounts(&umount_list);
  2368. free_mnt_ns(ns);
  2369. }
  2370. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2371. {
  2372. struct vfsmount *mnt;
  2373. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2374. if (!IS_ERR(mnt)) {
  2375. /*
  2376. * it is a longterm mount, don't release mnt until
  2377. * we unmount before file sys is unregistered
  2378. */
  2379. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2380. }
  2381. return mnt;
  2382. }
  2383. EXPORT_SYMBOL_GPL(kern_mount_data);
  2384. void kern_unmount(struct vfsmount *mnt)
  2385. {
  2386. /* release long term mount so mount point can be released */
  2387. if (!IS_ERR_OR_NULL(mnt)) {
  2388. br_write_lock(&vfsmount_lock);
  2389. real_mount(mnt)->mnt_ns = NULL;
  2390. br_write_unlock(&vfsmount_lock);
  2391. mntput(mnt);
  2392. }
  2393. }
  2394. EXPORT_SYMBOL(kern_unmount);
  2395. bool our_mnt(struct vfsmount *mnt)
  2396. {
  2397. return check_mnt(real_mount(mnt));
  2398. }
  2399. bool current_chrooted(void)
  2400. {
  2401. /* Does the current process have a non-standard root */
  2402. struct path ns_root;
  2403. struct path fs_root;
  2404. bool chrooted;
  2405. /* Find the namespace root */
  2406. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2407. ns_root.dentry = ns_root.mnt->mnt_root;
  2408. path_get(&ns_root);
  2409. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2410. ;
  2411. get_fs_root(current->fs, &fs_root);
  2412. chrooted = !path_equal(&fs_root, &ns_root);
  2413. path_put(&fs_root);
  2414. path_put(&ns_root);
  2415. return chrooted;
  2416. }
  2417. void update_mnt_policy(struct user_namespace *userns)
  2418. {
  2419. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2420. struct mount *mnt;
  2421. down_read(&namespace_sem);
  2422. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2423. switch (mnt->mnt.mnt_sb->s_magic) {
  2424. case SYSFS_MAGIC:
  2425. userns->may_mount_sysfs = true;
  2426. break;
  2427. case PROC_SUPER_MAGIC:
  2428. userns->may_mount_proc = true;
  2429. break;
  2430. }
  2431. if (userns->may_mount_sysfs && userns->may_mount_proc)
  2432. break;
  2433. }
  2434. up_read(&namespace_sem);
  2435. }
  2436. static void *mntns_get(struct task_struct *task)
  2437. {
  2438. struct mnt_namespace *ns = NULL;
  2439. struct nsproxy *nsproxy;
  2440. rcu_read_lock();
  2441. nsproxy = task_nsproxy(task);
  2442. if (nsproxy) {
  2443. ns = nsproxy->mnt_ns;
  2444. get_mnt_ns(ns);
  2445. }
  2446. rcu_read_unlock();
  2447. return ns;
  2448. }
  2449. static void mntns_put(void *ns)
  2450. {
  2451. put_mnt_ns(ns);
  2452. }
  2453. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2454. {
  2455. struct fs_struct *fs = current->fs;
  2456. struct mnt_namespace *mnt_ns = ns;
  2457. struct path root;
  2458. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2459. !nsown_capable(CAP_SYS_CHROOT) ||
  2460. !nsown_capable(CAP_SYS_ADMIN))
  2461. return -EPERM;
  2462. if (fs->users != 1)
  2463. return -EINVAL;
  2464. get_mnt_ns(mnt_ns);
  2465. put_mnt_ns(nsproxy->mnt_ns);
  2466. nsproxy->mnt_ns = mnt_ns;
  2467. /* Find the root */
  2468. root.mnt = &mnt_ns->root->mnt;
  2469. root.dentry = mnt_ns->root->mnt.mnt_root;
  2470. path_get(&root);
  2471. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2472. ;
  2473. /* Update the pwd and root */
  2474. set_fs_pwd(fs, &root);
  2475. set_fs_root(fs, &root);
  2476. path_put(&root);
  2477. return 0;
  2478. }
  2479. static unsigned int mntns_inum(void *ns)
  2480. {
  2481. struct mnt_namespace *mnt_ns = ns;
  2482. return mnt_ns->proc_inum;
  2483. }
  2484. const struct proc_ns_operations mntns_operations = {
  2485. .name = "mnt",
  2486. .type = CLONE_NEWNS,
  2487. .get = mntns_get,
  2488. .put = mntns_put,
  2489. .install = mntns_install,
  2490. .inum = mntns_inum,
  2491. };