ymfpci_main.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431
  1. /*
  2. * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  3. * Routines for control of YMF724/740/744/754 chips
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. */
  20. #include <linux/delay.h>
  21. #include <linux/firmware.h>
  22. #include <linux/init.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/pci.h>
  25. #include <linux/sched.h>
  26. #include <linux/slab.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/mutex.h>
  29. #include <sound/core.h>
  30. #include <sound/control.h>
  31. #include <sound/info.h>
  32. #include <sound/tlv.h>
  33. #include <sound/ymfpci.h>
  34. #include <sound/asoundef.h>
  35. #include <sound/mpu401.h>
  36. #include <asm/io.h>
  37. #include <asm/byteorder.h>
  38. /*
  39. * common I/O routines
  40. */
  41. static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
  42. static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
  43. {
  44. return readb(chip->reg_area_virt + offset);
  45. }
  46. static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
  47. {
  48. writeb(val, chip->reg_area_virt + offset);
  49. }
  50. static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
  51. {
  52. return readw(chip->reg_area_virt + offset);
  53. }
  54. static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
  55. {
  56. writew(val, chip->reg_area_virt + offset);
  57. }
  58. static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
  59. {
  60. return readl(chip->reg_area_virt + offset);
  61. }
  62. static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
  63. {
  64. writel(val, chip->reg_area_virt + offset);
  65. }
  66. static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
  67. {
  68. unsigned long end_time;
  69. u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
  70. end_time = jiffies + msecs_to_jiffies(750);
  71. do {
  72. if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
  73. return 0;
  74. schedule_timeout_uninterruptible(1);
  75. } while (time_before(jiffies, end_time));
  76. snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
  77. return -EBUSY;
  78. }
  79. static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
  80. {
  81. struct snd_ymfpci *chip = ac97->private_data;
  82. u32 cmd;
  83. snd_ymfpci_codec_ready(chip, 0);
  84. cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
  85. snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
  86. }
  87. static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
  88. {
  89. struct snd_ymfpci *chip = ac97->private_data;
  90. if (snd_ymfpci_codec_ready(chip, 0))
  91. return ~0;
  92. snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
  93. if (snd_ymfpci_codec_ready(chip, 0))
  94. return ~0;
  95. if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
  96. int i;
  97. for (i = 0; i < 600; i++)
  98. snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
  99. }
  100. return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
  101. }
  102. /*
  103. * Misc routines
  104. */
  105. static u32 snd_ymfpci_calc_delta(u32 rate)
  106. {
  107. switch (rate) {
  108. case 8000: return 0x02aaab00;
  109. case 11025: return 0x03accd00;
  110. case 16000: return 0x05555500;
  111. case 22050: return 0x07599a00;
  112. case 32000: return 0x0aaaab00;
  113. case 44100: return 0x0eb33300;
  114. default: return ((rate << 16) / 375) << 5;
  115. }
  116. }
  117. static u32 def_rate[8] = {
  118. 100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
  119. };
  120. static u32 snd_ymfpci_calc_lpfK(u32 rate)
  121. {
  122. u32 i;
  123. static u32 val[8] = {
  124. 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
  125. 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
  126. };
  127. if (rate == 44100)
  128. return 0x40000000; /* FIXME: What's the right value? */
  129. for (i = 0; i < 8; i++)
  130. if (rate <= def_rate[i])
  131. return val[i];
  132. return val[0];
  133. }
  134. static u32 snd_ymfpci_calc_lpfQ(u32 rate)
  135. {
  136. u32 i;
  137. static u32 val[8] = {
  138. 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
  139. 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
  140. };
  141. if (rate == 44100)
  142. return 0x370A0000;
  143. for (i = 0; i < 8; i++)
  144. if (rate <= def_rate[i])
  145. return val[i];
  146. return val[0];
  147. }
  148. /*
  149. * Hardware start management
  150. */
  151. static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
  152. {
  153. unsigned long flags;
  154. spin_lock_irqsave(&chip->reg_lock, flags);
  155. if (chip->start_count++ > 0)
  156. goto __end;
  157. snd_ymfpci_writel(chip, YDSXGR_MODE,
  158. snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
  159. chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
  160. __end:
  161. spin_unlock_irqrestore(&chip->reg_lock, flags);
  162. }
  163. static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
  164. {
  165. unsigned long flags;
  166. long timeout = 1000;
  167. spin_lock_irqsave(&chip->reg_lock, flags);
  168. if (--chip->start_count > 0)
  169. goto __end;
  170. snd_ymfpci_writel(chip, YDSXGR_MODE,
  171. snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
  172. while (timeout-- > 0) {
  173. if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
  174. break;
  175. }
  176. if (atomic_read(&chip->interrupt_sleep_count)) {
  177. atomic_set(&chip->interrupt_sleep_count, 0);
  178. wake_up(&chip->interrupt_sleep);
  179. }
  180. __end:
  181. spin_unlock_irqrestore(&chip->reg_lock, flags);
  182. }
  183. /*
  184. * Playback voice management
  185. */
  186. static int voice_alloc(struct snd_ymfpci *chip,
  187. enum snd_ymfpci_voice_type type, int pair,
  188. struct snd_ymfpci_voice **rvoice)
  189. {
  190. struct snd_ymfpci_voice *voice, *voice2;
  191. int idx;
  192. *rvoice = NULL;
  193. for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
  194. voice = &chip->voices[idx];
  195. voice2 = pair ? &chip->voices[idx+1] : NULL;
  196. if (voice->use || (voice2 && voice2->use))
  197. continue;
  198. voice->use = 1;
  199. if (voice2)
  200. voice2->use = 1;
  201. switch (type) {
  202. case YMFPCI_PCM:
  203. voice->pcm = 1;
  204. if (voice2)
  205. voice2->pcm = 1;
  206. break;
  207. case YMFPCI_SYNTH:
  208. voice->synth = 1;
  209. break;
  210. case YMFPCI_MIDI:
  211. voice->midi = 1;
  212. break;
  213. }
  214. snd_ymfpci_hw_start(chip);
  215. if (voice2)
  216. snd_ymfpci_hw_start(chip);
  217. *rvoice = voice;
  218. return 0;
  219. }
  220. return -ENOMEM;
  221. }
  222. static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
  223. enum snd_ymfpci_voice_type type, int pair,
  224. struct snd_ymfpci_voice **rvoice)
  225. {
  226. unsigned long flags;
  227. int result;
  228. if (snd_BUG_ON(!rvoice))
  229. return -EINVAL;
  230. if (snd_BUG_ON(pair && type != YMFPCI_PCM))
  231. return -EINVAL;
  232. spin_lock_irqsave(&chip->voice_lock, flags);
  233. for (;;) {
  234. result = voice_alloc(chip, type, pair, rvoice);
  235. if (result == 0 || type != YMFPCI_PCM)
  236. break;
  237. /* TODO: synth/midi voice deallocation */
  238. break;
  239. }
  240. spin_unlock_irqrestore(&chip->voice_lock, flags);
  241. return result;
  242. }
  243. static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
  244. {
  245. unsigned long flags;
  246. if (snd_BUG_ON(!pvoice))
  247. return -EINVAL;
  248. snd_ymfpci_hw_stop(chip);
  249. spin_lock_irqsave(&chip->voice_lock, flags);
  250. if (pvoice->number == chip->src441_used) {
  251. chip->src441_used = -1;
  252. pvoice->ypcm->use_441_slot = 0;
  253. }
  254. pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
  255. pvoice->ypcm = NULL;
  256. pvoice->interrupt = NULL;
  257. spin_unlock_irqrestore(&chip->voice_lock, flags);
  258. return 0;
  259. }
  260. /*
  261. * PCM part
  262. */
  263. static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
  264. {
  265. struct snd_ymfpci_pcm *ypcm;
  266. u32 pos, delta;
  267. if ((ypcm = voice->ypcm) == NULL)
  268. return;
  269. if (ypcm->substream == NULL)
  270. return;
  271. spin_lock(&chip->reg_lock);
  272. if (ypcm->running) {
  273. pos = le32_to_cpu(voice->bank[chip->active_bank].start);
  274. if (pos < ypcm->last_pos)
  275. delta = pos + (ypcm->buffer_size - ypcm->last_pos);
  276. else
  277. delta = pos - ypcm->last_pos;
  278. ypcm->period_pos += delta;
  279. ypcm->last_pos = pos;
  280. if (ypcm->period_pos >= ypcm->period_size) {
  281. /*
  282. printk(KERN_DEBUG
  283. "done - active_bank = 0x%x, start = 0x%x\n",
  284. chip->active_bank,
  285. voice->bank[chip->active_bank].start);
  286. */
  287. ypcm->period_pos %= ypcm->period_size;
  288. spin_unlock(&chip->reg_lock);
  289. snd_pcm_period_elapsed(ypcm->substream);
  290. spin_lock(&chip->reg_lock);
  291. }
  292. if (unlikely(ypcm->update_pcm_vol)) {
  293. unsigned int subs = ypcm->substream->number;
  294. unsigned int next_bank = 1 - chip->active_bank;
  295. struct snd_ymfpci_playback_bank *bank;
  296. u32 volume;
  297. bank = &voice->bank[next_bank];
  298. volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
  299. bank->left_gain_end = volume;
  300. if (ypcm->output_rear)
  301. bank->eff2_gain_end = volume;
  302. if (ypcm->voices[1])
  303. bank = &ypcm->voices[1]->bank[next_bank];
  304. volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
  305. bank->right_gain_end = volume;
  306. if (ypcm->output_rear)
  307. bank->eff3_gain_end = volume;
  308. ypcm->update_pcm_vol--;
  309. }
  310. }
  311. spin_unlock(&chip->reg_lock);
  312. }
  313. static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
  314. {
  315. struct snd_pcm_runtime *runtime = substream->runtime;
  316. struct snd_ymfpci_pcm *ypcm = runtime->private_data;
  317. struct snd_ymfpci *chip = ypcm->chip;
  318. u32 pos, delta;
  319. spin_lock(&chip->reg_lock);
  320. if (ypcm->running) {
  321. pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
  322. if (pos < ypcm->last_pos)
  323. delta = pos + (ypcm->buffer_size - ypcm->last_pos);
  324. else
  325. delta = pos - ypcm->last_pos;
  326. ypcm->period_pos += delta;
  327. ypcm->last_pos = pos;
  328. if (ypcm->period_pos >= ypcm->period_size) {
  329. ypcm->period_pos %= ypcm->period_size;
  330. /*
  331. printk(KERN_DEBUG
  332. "done - active_bank = 0x%x, start = 0x%x\n",
  333. chip->active_bank,
  334. voice->bank[chip->active_bank].start);
  335. */
  336. spin_unlock(&chip->reg_lock);
  337. snd_pcm_period_elapsed(substream);
  338. spin_lock(&chip->reg_lock);
  339. }
  340. }
  341. spin_unlock(&chip->reg_lock);
  342. }
  343. static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
  344. int cmd)
  345. {
  346. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  347. struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
  348. struct snd_kcontrol *kctl = NULL;
  349. int result = 0;
  350. spin_lock(&chip->reg_lock);
  351. if (ypcm->voices[0] == NULL) {
  352. result = -EINVAL;
  353. goto __unlock;
  354. }
  355. switch (cmd) {
  356. case SNDRV_PCM_TRIGGER_START:
  357. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  358. case SNDRV_PCM_TRIGGER_RESUME:
  359. chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
  360. if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
  361. chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
  362. ypcm->running = 1;
  363. break;
  364. case SNDRV_PCM_TRIGGER_STOP:
  365. if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
  366. kctl = chip->pcm_mixer[substream->number].ctl;
  367. kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
  368. }
  369. /* fall through */
  370. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  371. case SNDRV_PCM_TRIGGER_SUSPEND:
  372. chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
  373. if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
  374. chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
  375. ypcm->running = 0;
  376. break;
  377. default:
  378. result = -EINVAL;
  379. break;
  380. }
  381. __unlock:
  382. spin_unlock(&chip->reg_lock);
  383. if (kctl)
  384. snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
  385. return result;
  386. }
  387. static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
  388. int cmd)
  389. {
  390. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  391. struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
  392. int result = 0;
  393. u32 tmp;
  394. spin_lock(&chip->reg_lock);
  395. switch (cmd) {
  396. case SNDRV_PCM_TRIGGER_START:
  397. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  398. case SNDRV_PCM_TRIGGER_RESUME:
  399. tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
  400. snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
  401. ypcm->running = 1;
  402. break;
  403. case SNDRV_PCM_TRIGGER_STOP:
  404. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  405. case SNDRV_PCM_TRIGGER_SUSPEND:
  406. tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
  407. snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
  408. ypcm->running = 0;
  409. break;
  410. default:
  411. result = -EINVAL;
  412. break;
  413. }
  414. spin_unlock(&chip->reg_lock);
  415. return result;
  416. }
  417. static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
  418. {
  419. int err;
  420. if (ypcm->voices[1] != NULL && voices < 2) {
  421. snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
  422. ypcm->voices[1] = NULL;
  423. }
  424. if (voices == 1 && ypcm->voices[0] != NULL)
  425. return 0; /* already allocated */
  426. if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
  427. return 0; /* already allocated */
  428. if (voices > 1) {
  429. if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
  430. snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
  431. ypcm->voices[0] = NULL;
  432. }
  433. }
  434. err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
  435. if (err < 0)
  436. return err;
  437. ypcm->voices[0]->ypcm = ypcm;
  438. ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
  439. if (voices > 1) {
  440. ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
  441. ypcm->voices[1]->ypcm = ypcm;
  442. }
  443. return 0;
  444. }
  445. static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
  446. struct snd_pcm_runtime *runtime,
  447. int has_pcm_volume)
  448. {
  449. struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
  450. u32 format;
  451. u32 delta = snd_ymfpci_calc_delta(runtime->rate);
  452. u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
  453. u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
  454. struct snd_ymfpci_playback_bank *bank;
  455. unsigned int nbank;
  456. u32 vol_left, vol_right;
  457. u8 use_left, use_right;
  458. unsigned long flags;
  459. if (snd_BUG_ON(!voice))
  460. return;
  461. if (runtime->channels == 1) {
  462. use_left = 1;
  463. use_right = 1;
  464. } else {
  465. use_left = (voiceidx & 1) == 0;
  466. use_right = !use_left;
  467. }
  468. if (has_pcm_volume) {
  469. vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
  470. [ypcm->substream->number].left << 15);
  471. vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
  472. [ypcm->substream->number].right << 15);
  473. } else {
  474. vol_left = cpu_to_le32(0x40000000);
  475. vol_right = cpu_to_le32(0x40000000);
  476. }
  477. spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
  478. format = runtime->channels == 2 ? 0x00010000 : 0;
  479. if (snd_pcm_format_width(runtime->format) == 8)
  480. format |= 0x80000000;
  481. else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
  482. runtime->rate == 44100 && runtime->channels == 2 &&
  483. voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
  484. ypcm->chip->src441_used == voice->number)) {
  485. ypcm->chip->src441_used = voice->number;
  486. ypcm->use_441_slot = 1;
  487. format |= 0x10000000;
  488. }
  489. if (ypcm->chip->src441_used == voice->number &&
  490. (format & 0x10000000) == 0) {
  491. ypcm->chip->src441_used = -1;
  492. ypcm->use_441_slot = 0;
  493. }
  494. if (runtime->channels == 2 && (voiceidx & 1) != 0)
  495. format |= 1;
  496. spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
  497. for (nbank = 0; nbank < 2; nbank++) {
  498. bank = &voice->bank[nbank];
  499. memset(bank, 0, sizeof(*bank));
  500. bank->format = cpu_to_le32(format);
  501. bank->base = cpu_to_le32(runtime->dma_addr);
  502. bank->loop_end = cpu_to_le32(ypcm->buffer_size);
  503. bank->lpfQ = cpu_to_le32(lpfQ);
  504. bank->delta =
  505. bank->delta_end = cpu_to_le32(delta);
  506. bank->lpfK =
  507. bank->lpfK_end = cpu_to_le32(lpfK);
  508. bank->eg_gain =
  509. bank->eg_gain_end = cpu_to_le32(0x40000000);
  510. if (ypcm->output_front) {
  511. if (use_left) {
  512. bank->left_gain =
  513. bank->left_gain_end = vol_left;
  514. }
  515. if (use_right) {
  516. bank->right_gain =
  517. bank->right_gain_end = vol_right;
  518. }
  519. }
  520. if (ypcm->output_rear) {
  521. if (!ypcm->swap_rear) {
  522. if (use_left) {
  523. bank->eff2_gain =
  524. bank->eff2_gain_end = vol_left;
  525. }
  526. if (use_right) {
  527. bank->eff3_gain =
  528. bank->eff3_gain_end = vol_right;
  529. }
  530. } else {
  531. /* The SPDIF out channels seem to be swapped, so we have
  532. * to swap them here, too. The rear analog out channels
  533. * will be wrong, but otherwise AC3 would not work.
  534. */
  535. if (use_left) {
  536. bank->eff3_gain =
  537. bank->eff3_gain_end = vol_left;
  538. }
  539. if (use_right) {
  540. bank->eff2_gain =
  541. bank->eff2_gain_end = vol_right;
  542. }
  543. }
  544. }
  545. }
  546. }
  547. static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
  548. {
  549. if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
  550. 4096, &chip->ac3_tmp_base) < 0)
  551. return -ENOMEM;
  552. chip->bank_effect[3][0]->base =
  553. chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
  554. chip->bank_effect[3][0]->loop_end =
  555. chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
  556. chip->bank_effect[4][0]->base =
  557. chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
  558. chip->bank_effect[4][0]->loop_end =
  559. chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
  560. spin_lock_irq(&chip->reg_lock);
  561. snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
  562. snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
  563. spin_unlock_irq(&chip->reg_lock);
  564. return 0;
  565. }
  566. static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
  567. {
  568. spin_lock_irq(&chip->reg_lock);
  569. snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
  570. snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
  571. spin_unlock_irq(&chip->reg_lock);
  572. // snd_ymfpci_irq_wait(chip);
  573. if (chip->ac3_tmp_base.area) {
  574. snd_dma_free_pages(&chip->ac3_tmp_base);
  575. chip->ac3_tmp_base.area = NULL;
  576. }
  577. return 0;
  578. }
  579. static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
  580. struct snd_pcm_hw_params *hw_params)
  581. {
  582. struct snd_pcm_runtime *runtime = substream->runtime;
  583. struct snd_ymfpci_pcm *ypcm = runtime->private_data;
  584. int err;
  585. if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
  586. return err;
  587. if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
  588. return err;
  589. return 0;
  590. }
  591. static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
  592. {
  593. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  594. struct snd_pcm_runtime *runtime = substream->runtime;
  595. struct snd_ymfpci_pcm *ypcm;
  596. if (runtime->private_data == NULL)
  597. return 0;
  598. ypcm = runtime->private_data;
  599. /* wait, until the PCI operations are not finished */
  600. snd_ymfpci_irq_wait(chip);
  601. snd_pcm_lib_free_pages(substream);
  602. if (ypcm->voices[1]) {
  603. snd_ymfpci_voice_free(chip, ypcm->voices[1]);
  604. ypcm->voices[1] = NULL;
  605. }
  606. if (ypcm->voices[0]) {
  607. snd_ymfpci_voice_free(chip, ypcm->voices[0]);
  608. ypcm->voices[0] = NULL;
  609. }
  610. return 0;
  611. }
  612. static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
  613. {
  614. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  615. struct snd_pcm_runtime *runtime = substream->runtime;
  616. struct snd_ymfpci_pcm *ypcm = runtime->private_data;
  617. struct snd_kcontrol *kctl;
  618. unsigned int nvoice;
  619. ypcm->period_size = runtime->period_size;
  620. ypcm->buffer_size = runtime->buffer_size;
  621. ypcm->period_pos = 0;
  622. ypcm->last_pos = 0;
  623. for (nvoice = 0; nvoice < runtime->channels; nvoice++)
  624. snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
  625. substream->pcm == chip->pcm);
  626. if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
  627. kctl = chip->pcm_mixer[substream->number].ctl;
  628. kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
  629. snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
  630. }
  631. return 0;
  632. }
  633. static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
  634. struct snd_pcm_hw_params *hw_params)
  635. {
  636. return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
  637. }
  638. static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
  639. {
  640. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  641. /* wait, until the PCI operations are not finished */
  642. snd_ymfpci_irq_wait(chip);
  643. return snd_pcm_lib_free_pages(substream);
  644. }
  645. static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
  646. {
  647. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  648. struct snd_pcm_runtime *runtime = substream->runtime;
  649. struct snd_ymfpci_pcm *ypcm = runtime->private_data;
  650. struct snd_ymfpci_capture_bank * bank;
  651. int nbank;
  652. u32 rate, format;
  653. ypcm->period_size = runtime->period_size;
  654. ypcm->buffer_size = runtime->buffer_size;
  655. ypcm->period_pos = 0;
  656. ypcm->last_pos = 0;
  657. ypcm->shift = 0;
  658. rate = ((48000 * 4096) / runtime->rate) - 1;
  659. format = 0;
  660. if (runtime->channels == 2) {
  661. format |= 2;
  662. ypcm->shift++;
  663. }
  664. if (snd_pcm_format_width(runtime->format) == 8)
  665. format |= 1;
  666. else
  667. ypcm->shift++;
  668. switch (ypcm->capture_bank_number) {
  669. case 0:
  670. snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
  671. snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
  672. break;
  673. case 1:
  674. snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
  675. snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
  676. break;
  677. }
  678. for (nbank = 0; nbank < 2; nbank++) {
  679. bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
  680. bank->base = cpu_to_le32(runtime->dma_addr);
  681. bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
  682. bank->start = 0;
  683. bank->num_of_loops = 0;
  684. }
  685. return 0;
  686. }
  687. static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
  688. {
  689. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  690. struct snd_pcm_runtime *runtime = substream->runtime;
  691. struct snd_ymfpci_pcm *ypcm = runtime->private_data;
  692. struct snd_ymfpci_voice *voice = ypcm->voices[0];
  693. if (!(ypcm->running && voice))
  694. return 0;
  695. return le32_to_cpu(voice->bank[chip->active_bank].start);
  696. }
  697. static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
  698. {
  699. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  700. struct snd_pcm_runtime *runtime = substream->runtime;
  701. struct snd_ymfpci_pcm *ypcm = runtime->private_data;
  702. if (!ypcm->running)
  703. return 0;
  704. return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
  705. }
  706. static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
  707. {
  708. wait_queue_t wait;
  709. int loops = 4;
  710. while (loops-- > 0) {
  711. if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
  712. continue;
  713. init_waitqueue_entry(&wait, current);
  714. add_wait_queue(&chip->interrupt_sleep, &wait);
  715. atomic_inc(&chip->interrupt_sleep_count);
  716. schedule_timeout_uninterruptible(msecs_to_jiffies(50));
  717. remove_wait_queue(&chip->interrupt_sleep, &wait);
  718. }
  719. }
  720. static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
  721. {
  722. struct snd_ymfpci *chip = dev_id;
  723. u32 status, nvoice, mode;
  724. struct snd_ymfpci_voice *voice;
  725. status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
  726. if (status & 0x80000000) {
  727. chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
  728. spin_lock(&chip->voice_lock);
  729. for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
  730. voice = &chip->voices[nvoice];
  731. if (voice->interrupt)
  732. voice->interrupt(chip, voice);
  733. }
  734. for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
  735. if (chip->capture_substream[nvoice])
  736. snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
  737. }
  738. #if 0
  739. for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
  740. if (chip->effect_substream[nvoice])
  741. snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
  742. }
  743. #endif
  744. spin_unlock(&chip->voice_lock);
  745. spin_lock(&chip->reg_lock);
  746. snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
  747. mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
  748. snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
  749. spin_unlock(&chip->reg_lock);
  750. if (atomic_read(&chip->interrupt_sleep_count)) {
  751. atomic_set(&chip->interrupt_sleep_count, 0);
  752. wake_up(&chip->interrupt_sleep);
  753. }
  754. }
  755. status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
  756. if (status & 1) {
  757. if (chip->timer)
  758. snd_timer_interrupt(chip->timer, chip->timer->sticks);
  759. }
  760. snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
  761. if (chip->rawmidi)
  762. snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
  763. return IRQ_HANDLED;
  764. }
  765. static struct snd_pcm_hardware snd_ymfpci_playback =
  766. {
  767. .info = (SNDRV_PCM_INFO_MMAP |
  768. SNDRV_PCM_INFO_MMAP_VALID |
  769. SNDRV_PCM_INFO_INTERLEAVED |
  770. SNDRV_PCM_INFO_BLOCK_TRANSFER |
  771. SNDRV_PCM_INFO_PAUSE |
  772. SNDRV_PCM_INFO_RESUME),
  773. .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
  774. .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
  775. .rate_min = 8000,
  776. .rate_max = 48000,
  777. .channels_min = 1,
  778. .channels_max = 2,
  779. .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */
  780. .period_bytes_min = 64,
  781. .period_bytes_max = 256 * 1024, /* FIXME: enough? */
  782. .periods_min = 3,
  783. .periods_max = 1024,
  784. .fifo_size = 0,
  785. };
  786. static struct snd_pcm_hardware snd_ymfpci_capture =
  787. {
  788. .info = (SNDRV_PCM_INFO_MMAP |
  789. SNDRV_PCM_INFO_MMAP_VALID |
  790. SNDRV_PCM_INFO_INTERLEAVED |
  791. SNDRV_PCM_INFO_BLOCK_TRANSFER |
  792. SNDRV_PCM_INFO_PAUSE |
  793. SNDRV_PCM_INFO_RESUME),
  794. .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
  795. .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
  796. .rate_min = 8000,
  797. .rate_max = 48000,
  798. .channels_min = 1,
  799. .channels_max = 2,
  800. .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */
  801. .period_bytes_min = 64,
  802. .period_bytes_max = 256 * 1024, /* FIXME: enough? */
  803. .periods_min = 3,
  804. .periods_max = 1024,
  805. .fifo_size = 0,
  806. };
  807. static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
  808. {
  809. kfree(runtime->private_data);
  810. }
  811. static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
  812. {
  813. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  814. struct snd_pcm_runtime *runtime = substream->runtime;
  815. struct snd_ymfpci_pcm *ypcm;
  816. ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
  817. if (ypcm == NULL)
  818. return -ENOMEM;
  819. ypcm->chip = chip;
  820. ypcm->type = PLAYBACK_VOICE;
  821. ypcm->substream = substream;
  822. runtime->hw = snd_ymfpci_playback;
  823. runtime->private_data = ypcm;
  824. runtime->private_free = snd_ymfpci_pcm_free_substream;
  825. /* FIXME? True value is 256/48 = 5.33333 ms */
  826. snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
  827. return 0;
  828. }
  829. /* call with spinlock held */
  830. static void ymfpci_open_extension(struct snd_ymfpci *chip)
  831. {
  832. if (! chip->rear_opened) {
  833. if (! chip->spdif_opened) /* set AC3 */
  834. snd_ymfpci_writel(chip, YDSXGR_MODE,
  835. snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
  836. /* enable second codec (4CHEN) */
  837. snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
  838. (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
  839. }
  840. }
  841. /* call with spinlock held */
  842. static void ymfpci_close_extension(struct snd_ymfpci *chip)
  843. {
  844. if (! chip->rear_opened) {
  845. if (! chip->spdif_opened)
  846. snd_ymfpci_writel(chip, YDSXGR_MODE,
  847. snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
  848. snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
  849. (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
  850. }
  851. }
  852. static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
  853. {
  854. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  855. struct snd_pcm_runtime *runtime = substream->runtime;
  856. struct snd_ymfpci_pcm *ypcm;
  857. int err;
  858. if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
  859. return err;
  860. ypcm = runtime->private_data;
  861. ypcm->output_front = 1;
  862. ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
  863. ypcm->swap_rear = 0;
  864. spin_lock_irq(&chip->reg_lock);
  865. if (ypcm->output_rear) {
  866. ymfpci_open_extension(chip);
  867. chip->rear_opened++;
  868. }
  869. spin_unlock_irq(&chip->reg_lock);
  870. return 0;
  871. }
  872. static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
  873. {
  874. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  875. struct snd_pcm_runtime *runtime = substream->runtime;
  876. struct snd_ymfpci_pcm *ypcm;
  877. int err;
  878. if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
  879. return err;
  880. ypcm = runtime->private_data;
  881. ypcm->output_front = 0;
  882. ypcm->output_rear = 1;
  883. ypcm->swap_rear = 1;
  884. spin_lock_irq(&chip->reg_lock);
  885. snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
  886. snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
  887. ymfpci_open_extension(chip);
  888. chip->spdif_pcm_bits = chip->spdif_bits;
  889. snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
  890. chip->spdif_opened++;
  891. spin_unlock_irq(&chip->reg_lock);
  892. chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
  893. snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
  894. SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
  895. return 0;
  896. }
  897. static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
  898. {
  899. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  900. struct snd_pcm_runtime *runtime = substream->runtime;
  901. struct snd_ymfpci_pcm *ypcm;
  902. int err;
  903. if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
  904. return err;
  905. ypcm = runtime->private_data;
  906. ypcm->output_front = 0;
  907. ypcm->output_rear = 1;
  908. ypcm->swap_rear = 0;
  909. spin_lock_irq(&chip->reg_lock);
  910. ymfpci_open_extension(chip);
  911. chip->rear_opened++;
  912. spin_unlock_irq(&chip->reg_lock);
  913. return 0;
  914. }
  915. static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
  916. u32 capture_bank_number)
  917. {
  918. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  919. struct snd_pcm_runtime *runtime = substream->runtime;
  920. struct snd_ymfpci_pcm *ypcm;
  921. ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
  922. if (ypcm == NULL)
  923. return -ENOMEM;
  924. ypcm->chip = chip;
  925. ypcm->type = capture_bank_number + CAPTURE_REC;
  926. ypcm->substream = substream;
  927. ypcm->capture_bank_number = capture_bank_number;
  928. chip->capture_substream[capture_bank_number] = substream;
  929. runtime->hw = snd_ymfpci_capture;
  930. /* FIXME? True value is 256/48 = 5.33333 ms */
  931. snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
  932. runtime->private_data = ypcm;
  933. runtime->private_free = snd_ymfpci_pcm_free_substream;
  934. snd_ymfpci_hw_start(chip);
  935. return 0;
  936. }
  937. static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
  938. {
  939. return snd_ymfpci_capture_open(substream, 0);
  940. }
  941. static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
  942. {
  943. return snd_ymfpci_capture_open(substream, 1);
  944. }
  945. static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
  946. {
  947. return 0;
  948. }
  949. static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
  950. {
  951. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  952. struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
  953. spin_lock_irq(&chip->reg_lock);
  954. if (ypcm->output_rear && chip->rear_opened > 0) {
  955. chip->rear_opened--;
  956. ymfpci_close_extension(chip);
  957. }
  958. spin_unlock_irq(&chip->reg_lock);
  959. return snd_ymfpci_playback_close_1(substream);
  960. }
  961. static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
  962. {
  963. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  964. spin_lock_irq(&chip->reg_lock);
  965. chip->spdif_opened = 0;
  966. ymfpci_close_extension(chip);
  967. snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
  968. snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
  969. snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
  970. spin_unlock_irq(&chip->reg_lock);
  971. chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
  972. snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
  973. SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
  974. return snd_ymfpci_playback_close_1(substream);
  975. }
  976. static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
  977. {
  978. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  979. spin_lock_irq(&chip->reg_lock);
  980. if (chip->rear_opened > 0) {
  981. chip->rear_opened--;
  982. ymfpci_close_extension(chip);
  983. }
  984. spin_unlock_irq(&chip->reg_lock);
  985. return snd_ymfpci_playback_close_1(substream);
  986. }
  987. static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
  988. {
  989. struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
  990. struct snd_pcm_runtime *runtime = substream->runtime;
  991. struct snd_ymfpci_pcm *ypcm = runtime->private_data;
  992. if (ypcm != NULL) {
  993. chip->capture_substream[ypcm->capture_bank_number] = NULL;
  994. snd_ymfpci_hw_stop(chip);
  995. }
  996. return 0;
  997. }
  998. static struct snd_pcm_ops snd_ymfpci_playback_ops = {
  999. .open = snd_ymfpci_playback_open,
  1000. .close = snd_ymfpci_playback_close,
  1001. .ioctl = snd_pcm_lib_ioctl,
  1002. .hw_params = snd_ymfpci_playback_hw_params,
  1003. .hw_free = snd_ymfpci_playback_hw_free,
  1004. .prepare = snd_ymfpci_playback_prepare,
  1005. .trigger = snd_ymfpci_playback_trigger,
  1006. .pointer = snd_ymfpci_playback_pointer,
  1007. };
  1008. static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
  1009. .open = snd_ymfpci_capture_rec_open,
  1010. .close = snd_ymfpci_capture_close,
  1011. .ioctl = snd_pcm_lib_ioctl,
  1012. .hw_params = snd_ymfpci_capture_hw_params,
  1013. .hw_free = snd_ymfpci_capture_hw_free,
  1014. .prepare = snd_ymfpci_capture_prepare,
  1015. .trigger = snd_ymfpci_capture_trigger,
  1016. .pointer = snd_ymfpci_capture_pointer,
  1017. };
  1018. int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
  1019. {
  1020. struct snd_pcm *pcm;
  1021. int err;
  1022. if (rpcm)
  1023. *rpcm = NULL;
  1024. if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
  1025. return err;
  1026. pcm->private_data = chip;
  1027. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
  1028. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
  1029. /* global setup */
  1030. pcm->info_flags = 0;
  1031. strcpy(pcm->name, "YMFPCI");
  1032. chip->pcm = pcm;
  1033. snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
  1034. snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
  1035. if (rpcm)
  1036. *rpcm = pcm;
  1037. return 0;
  1038. }
  1039. static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
  1040. .open = snd_ymfpci_capture_ac97_open,
  1041. .close = snd_ymfpci_capture_close,
  1042. .ioctl = snd_pcm_lib_ioctl,
  1043. .hw_params = snd_ymfpci_capture_hw_params,
  1044. .hw_free = snd_ymfpci_capture_hw_free,
  1045. .prepare = snd_ymfpci_capture_prepare,
  1046. .trigger = snd_ymfpci_capture_trigger,
  1047. .pointer = snd_ymfpci_capture_pointer,
  1048. };
  1049. int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
  1050. {
  1051. struct snd_pcm *pcm;
  1052. int err;
  1053. if (rpcm)
  1054. *rpcm = NULL;
  1055. if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
  1056. return err;
  1057. pcm->private_data = chip;
  1058. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
  1059. /* global setup */
  1060. pcm->info_flags = 0;
  1061. sprintf(pcm->name, "YMFPCI - %s",
  1062. chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
  1063. chip->pcm2 = pcm;
  1064. snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
  1065. snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
  1066. if (rpcm)
  1067. *rpcm = pcm;
  1068. return 0;
  1069. }
  1070. static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
  1071. .open = snd_ymfpci_playback_spdif_open,
  1072. .close = snd_ymfpci_playback_spdif_close,
  1073. .ioctl = snd_pcm_lib_ioctl,
  1074. .hw_params = snd_ymfpci_playback_hw_params,
  1075. .hw_free = snd_ymfpci_playback_hw_free,
  1076. .prepare = snd_ymfpci_playback_prepare,
  1077. .trigger = snd_ymfpci_playback_trigger,
  1078. .pointer = snd_ymfpci_playback_pointer,
  1079. };
  1080. int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
  1081. {
  1082. struct snd_pcm *pcm;
  1083. int err;
  1084. if (rpcm)
  1085. *rpcm = NULL;
  1086. if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
  1087. return err;
  1088. pcm->private_data = chip;
  1089. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
  1090. /* global setup */
  1091. pcm->info_flags = 0;
  1092. strcpy(pcm->name, "YMFPCI - IEC958");
  1093. chip->pcm_spdif = pcm;
  1094. snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
  1095. snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
  1096. if (rpcm)
  1097. *rpcm = pcm;
  1098. return 0;
  1099. }
  1100. static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
  1101. .open = snd_ymfpci_playback_4ch_open,
  1102. .close = snd_ymfpci_playback_4ch_close,
  1103. .ioctl = snd_pcm_lib_ioctl,
  1104. .hw_params = snd_ymfpci_playback_hw_params,
  1105. .hw_free = snd_ymfpci_playback_hw_free,
  1106. .prepare = snd_ymfpci_playback_prepare,
  1107. .trigger = snd_ymfpci_playback_trigger,
  1108. .pointer = snd_ymfpci_playback_pointer,
  1109. };
  1110. int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
  1111. {
  1112. struct snd_pcm *pcm;
  1113. int err;
  1114. if (rpcm)
  1115. *rpcm = NULL;
  1116. if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
  1117. return err;
  1118. pcm->private_data = chip;
  1119. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
  1120. /* global setup */
  1121. pcm->info_flags = 0;
  1122. strcpy(pcm->name, "YMFPCI - Rear PCM");
  1123. chip->pcm_4ch = pcm;
  1124. snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
  1125. snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
  1126. if (rpcm)
  1127. *rpcm = pcm;
  1128. return 0;
  1129. }
  1130. static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  1131. {
  1132. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1133. uinfo->count = 1;
  1134. return 0;
  1135. }
  1136. static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
  1137. struct snd_ctl_elem_value *ucontrol)
  1138. {
  1139. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1140. spin_lock_irq(&chip->reg_lock);
  1141. ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
  1142. ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
  1143. ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
  1144. spin_unlock_irq(&chip->reg_lock);
  1145. return 0;
  1146. }
  1147. static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
  1148. struct snd_ctl_elem_value *ucontrol)
  1149. {
  1150. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1151. unsigned int val;
  1152. int change;
  1153. val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
  1154. (ucontrol->value.iec958.status[1] << 8);
  1155. spin_lock_irq(&chip->reg_lock);
  1156. change = chip->spdif_bits != val;
  1157. chip->spdif_bits = val;
  1158. if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
  1159. snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
  1160. spin_unlock_irq(&chip->reg_lock);
  1161. return change;
  1162. }
  1163. static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
  1164. {
  1165. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1166. .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
  1167. .info = snd_ymfpci_spdif_default_info,
  1168. .get = snd_ymfpci_spdif_default_get,
  1169. .put = snd_ymfpci_spdif_default_put
  1170. };
  1171. static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  1172. {
  1173. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1174. uinfo->count = 1;
  1175. return 0;
  1176. }
  1177. static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
  1178. struct snd_ctl_elem_value *ucontrol)
  1179. {
  1180. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1181. spin_lock_irq(&chip->reg_lock);
  1182. ucontrol->value.iec958.status[0] = 0x3e;
  1183. ucontrol->value.iec958.status[1] = 0xff;
  1184. spin_unlock_irq(&chip->reg_lock);
  1185. return 0;
  1186. }
  1187. static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
  1188. {
  1189. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  1190. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1191. .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
  1192. .info = snd_ymfpci_spdif_mask_info,
  1193. .get = snd_ymfpci_spdif_mask_get,
  1194. };
  1195. static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  1196. {
  1197. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1198. uinfo->count = 1;
  1199. return 0;
  1200. }
  1201. static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
  1202. struct snd_ctl_elem_value *ucontrol)
  1203. {
  1204. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1205. spin_lock_irq(&chip->reg_lock);
  1206. ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
  1207. ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
  1208. ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
  1209. spin_unlock_irq(&chip->reg_lock);
  1210. return 0;
  1211. }
  1212. static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
  1213. struct snd_ctl_elem_value *ucontrol)
  1214. {
  1215. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1216. unsigned int val;
  1217. int change;
  1218. val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
  1219. (ucontrol->value.iec958.status[1] << 8);
  1220. spin_lock_irq(&chip->reg_lock);
  1221. change = chip->spdif_pcm_bits != val;
  1222. chip->spdif_pcm_bits = val;
  1223. if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
  1224. snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
  1225. spin_unlock_irq(&chip->reg_lock);
  1226. return change;
  1227. }
  1228. static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
  1229. {
  1230. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  1231. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1232. .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
  1233. .info = snd_ymfpci_spdif_stream_info,
  1234. .get = snd_ymfpci_spdif_stream_get,
  1235. .put = snd_ymfpci_spdif_stream_put
  1236. };
  1237. static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
  1238. {
  1239. static char *texts[3] = {"AC'97", "IEC958", "ZV Port"};
  1240. info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  1241. info->count = 1;
  1242. info->value.enumerated.items = 3;
  1243. if (info->value.enumerated.item > 2)
  1244. info->value.enumerated.item = 2;
  1245. strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
  1246. return 0;
  1247. }
  1248. static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
  1249. {
  1250. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1251. u16 reg;
  1252. spin_lock_irq(&chip->reg_lock);
  1253. reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
  1254. spin_unlock_irq(&chip->reg_lock);
  1255. if (!(reg & 0x100))
  1256. value->value.enumerated.item[0] = 0;
  1257. else
  1258. value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
  1259. return 0;
  1260. }
  1261. static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
  1262. {
  1263. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1264. u16 reg, old_reg;
  1265. spin_lock_irq(&chip->reg_lock);
  1266. old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
  1267. if (value->value.enumerated.item[0] == 0)
  1268. reg = old_reg & ~0x100;
  1269. else
  1270. reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
  1271. snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
  1272. spin_unlock_irq(&chip->reg_lock);
  1273. return reg != old_reg;
  1274. }
  1275. static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
  1276. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  1277. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1278. .name = "Direct Recording Source",
  1279. .info = snd_ymfpci_drec_source_info,
  1280. .get = snd_ymfpci_drec_source_get,
  1281. .put = snd_ymfpci_drec_source_put
  1282. };
  1283. /*
  1284. * Mixer controls
  1285. */
  1286. #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
  1287. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  1288. .info = snd_ymfpci_info_single, \
  1289. .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
  1290. .private_value = ((reg) | ((shift) << 16)) }
  1291. #define snd_ymfpci_info_single snd_ctl_boolean_mono_info
  1292. static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
  1293. struct snd_ctl_elem_value *ucontrol)
  1294. {
  1295. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1296. int reg = kcontrol->private_value & 0xffff;
  1297. unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
  1298. unsigned int mask = 1;
  1299. switch (reg) {
  1300. case YDSXGR_SPDIFOUTCTRL: break;
  1301. case YDSXGR_SPDIFINCTRL: break;
  1302. default: return -EINVAL;
  1303. }
  1304. ucontrol->value.integer.value[0] =
  1305. (snd_ymfpci_readl(chip, reg) >> shift) & mask;
  1306. return 0;
  1307. }
  1308. static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
  1309. struct snd_ctl_elem_value *ucontrol)
  1310. {
  1311. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1312. int reg = kcontrol->private_value & 0xffff;
  1313. unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
  1314. unsigned int mask = 1;
  1315. int change;
  1316. unsigned int val, oval;
  1317. switch (reg) {
  1318. case YDSXGR_SPDIFOUTCTRL: break;
  1319. case YDSXGR_SPDIFINCTRL: break;
  1320. default: return -EINVAL;
  1321. }
  1322. val = (ucontrol->value.integer.value[0] & mask);
  1323. val <<= shift;
  1324. spin_lock_irq(&chip->reg_lock);
  1325. oval = snd_ymfpci_readl(chip, reg);
  1326. val = (oval & ~(mask << shift)) | val;
  1327. change = val != oval;
  1328. snd_ymfpci_writel(chip, reg, val);
  1329. spin_unlock_irq(&chip->reg_lock);
  1330. return change;
  1331. }
  1332. static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
  1333. #define YMFPCI_DOUBLE(xname, xindex, reg) \
  1334. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  1335. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  1336. .info = snd_ymfpci_info_double, \
  1337. .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
  1338. .private_value = reg, \
  1339. .tlv = { .p = db_scale_native } }
  1340. static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  1341. {
  1342. unsigned int reg = kcontrol->private_value;
  1343. if (reg < 0x80 || reg >= 0xc0)
  1344. return -EINVAL;
  1345. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  1346. uinfo->count = 2;
  1347. uinfo->value.integer.min = 0;
  1348. uinfo->value.integer.max = 16383;
  1349. return 0;
  1350. }
  1351. static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1352. {
  1353. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1354. unsigned int reg = kcontrol->private_value;
  1355. unsigned int shift_left = 0, shift_right = 16, mask = 16383;
  1356. unsigned int val;
  1357. if (reg < 0x80 || reg >= 0xc0)
  1358. return -EINVAL;
  1359. spin_lock_irq(&chip->reg_lock);
  1360. val = snd_ymfpci_readl(chip, reg);
  1361. spin_unlock_irq(&chip->reg_lock);
  1362. ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
  1363. ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
  1364. return 0;
  1365. }
  1366. static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1367. {
  1368. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1369. unsigned int reg = kcontrol->private_value;
  1370. unsigned int shift_left = 0, shift_right = 16, mask = 16383;
  1371. int change;
  1372. unsigned int val1, val2, oval;
  1373. if (reg < 0x80 || reg >= 0xc0)
  1374. return -EINVAL;
  1375. val1 = ucontrol->value.integer.value[0] & mask;
  1376. val2 = ucontrol->value.integer.value[1] & mask;
  1377. val1 <<= shift_left;
  1378. val2 <<= shift_right;
  1379. spin_lock_irq(&chip->reg_lock);
  1380. oval = snd_ymfpci_readl(chip, reg);
  1381. val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
  1382. change = val1 != oval;
  1383. snd_ymfpci_writel(chip, reg, val1);
  1384. spin_unlock_irq(&chip->reg_lock);
  1385. return change;
  1386. }
  1387. static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
  1388. struct snd_ctl_elem_value *ucontrol)
  1389. {
  1390. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1391. unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
  1392. unsigned int reg2 = YDSXGR_BUF441OUTVOL;
  1393. int change;
  1394. unsigned int value, oval;
  1395. value = ucontrol->value.integer.value[0] & 0x3fff;
  1396. value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
  1397. spin_lock_irq(&chip->reg_lock);
  1398. oval = snd_ymfpci_readl(chip, reg);
  1399. change = value != oval;
  1400. snd_ymfpci_writel(chip, reg, value);
  1401. snd_ymfpci_writel(chip, reg2, value);
  1402. spin_unlock_irq(&chip->reg_lock);
  1403. return change;
  1404. }
  1405. /*
  1406. * 4ch duplication
  1407. */
  1408. #define snd_ymfpci_info_dup4ch snd_ctl_boolean_mono_info
  1409. static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1410. {
  1411. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1412. ucontrol->value.integer.value[0] = chip->mode_dup4ch;
  1413. return 0;
  1414. }
  1415. static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1416. {
  1417. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1418. int change;
  1419. change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
  1420. if (change)
  1421. chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
  1422. return change;
  1423. }
  1424. static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
  1425. {
  1426. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1427. .name = "Wave Playback Volume",
  1428. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  1429. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  1430. .info = snd_ymfpci_info_double,
  1431. .get = snd_ymfpci_get_double,
  1432. .put = snd_ymfpci_put_nativedacvol,
  1433. .private_value = YDSXGR_NATIVEDACOUTVOL,
  1434. .tlv = { .p = db_scale_native },
  1435. },
  1436. YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
  1437. YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
  1438. YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
  1439. YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
  1440. YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
  1441. YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
  1442. YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
  1443. YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL),
  1444. YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
  1445. YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
  1446. YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
  1447. YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
  1448. YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
  1449. YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
  1450. YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
  1451. {
  1452. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1453. .name = "4ch Duplication",
  1454. .info = snd_ymfpci_info_dup4ch,
  1455. .get = snd_ymfpci_get_dup4ch,
  1456. .put = snd_ymfpci_put_dup4ch,
  1457. },
  1458. };
  1459. /*
  1460. * GPIO
  1461. */
  1462. static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
  1463. {
  1464. u16 reg, mode;
  1465. unsigned long flags;
  1466. spin_lock_irqsave(&chip->reg_lock, flags);
  1467. reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
  1468. reg &= ~(1 << (pin + 8));
  1469. reg |= (1 << pin);
  1470. snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
  1471. /* set the level mode for input line */
  1472. mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
  1473. mode &= ~(3 << (pin * 2));
  1474. snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
  1475. snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
  1476. mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
  1477. spin_unlock_irqrestore(&chip->reg_lock, flags);
  1478. return (mode >> pin) & 1;
  1479. }
  1480. static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
  1481. {
  1482. u16 reg;
  1483. unsigned long flags;
  1484. spin_lock_irqsave(&chip->reg_lock, flags);
  1485. reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
  1486. reg &= ~(1 << pin);
  1487. reg &= ~(1 << (pin + 8));
  1488. snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
  1489. snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
  1490. snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
  1491. spin_unlock_irqrestore(&chip->reg_lock, flags);
  1492. return 0;
  1493. }
  1494. #define snd_ymfpci_gpio_sw_info snd_ctl_boolean_mono_info
  1495. static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1496. {
  1497. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1498. int pin = (int)kcontrol->private_value;
  1499. ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
  1500. return 0;
  1501. }
  1502. static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1503. {
  1504. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1505. int pin = (int)kcontrol->private_value;
  1506. if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
  1507. snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
  1508. ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
  1509. return 1;
  1510. }
  1511. return 0;
  1512. }
  1513. static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
  1514. .name = "Shared Rear/Line-In Switch",
  1515. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1516. .info = snd_ymfpci_gpio_sw_info,
  1517. .get = snd_ymfpci_gpio_sw_get,
  1518. .put = snd_ymfpci_gpio_sw_put,
  1519. .private_value = 2,
  1520. };
  1521. /*
  1522. * PCM voice volume
  1523. */
  1524. static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
  1525. struct snd_ctl_elem_info *uinfo)
  1526. {
  1527. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  1528. uinfo->count = 2;
  1529. uinfo->value.integer.min = 0;
  1530. uinfo->value.integer.max = 0x8000;
  1531. return 0;
  1532. }
  1533. static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
  1534. struct snd_ctl_elem_value *ucontrol)
  1535. {
  1536. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1537. unsigned int subs = kcontrol->id.subdevice;
  1538. ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
  1539. ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
  1540. return 0;
  1541. }
  1542. static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
  1543. struct snd_ctl_elem_value *ucontrol)
  1544. {
  1545. struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
  1546. unsigned int subs = kcontrol->id.subdevice;
  1547. struct snd_pcm_substream *substream;
  1548. unsigned long flags;
  1549. if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
  1550. ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
  1551. chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
  1552. chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
  1553. if (chip->pcm_mixer[subs].left > 0x8000)
  1554. chip->pcm_mixer[subs].left = 0x8000;
  1555. if (chip->pcm_mixer[subs].right > 0x8000)
  1556. chip->pcm_mixer[subs].right = 0x8000;
  1557. substream = (struct snd_pcm_substream *)kcontrol->private_value;
  1558. spin_lock_irqsave(&chip->voice_lock, flags);
  1559. if (substream->runtime && substream->runtime->private_data) {
  1560. struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
  1561. if (!ypcm->use_441_slot)
  1562. ypcm->update_pcm_vol = 2;
  1563. }
  1564. spin_unlock_irqrestore(&chip->voice_lock, flags);
  1565. return 1;
  1566. }
  1567. return 0;
  1568. }
  1569. static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
  1570. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1571. .name = "PCM Playback Volume",
  1572. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  1573. SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  1574. .info = snd_ymfpci_pcm_vol_info,
  1575. .get = snd_ymfpci_pcm_vol_get,
  1576. .put = snd_ymfpci_pcm_vol_put,
  1577. };
  1578. /*
  1579. * Mixer routines
  1580. */
  1581. static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
  1582. {
  1583. struct snd_ymfpci *chip = bus->private_data;
  1584. chip->ac97_bus = NULL;
  1585. }
  1586. static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
  1587. {
  1588. struct snd_ymfpci *chip = ac97->private_data;
  1589. chip->ac97 = NULL;
  1590. }
  1591. int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
  1592. {
  1593. struct snd_ac97_template ac97;
  1594. struct snd_kcontrol *kctl;
  1595. struct snd_pcm_substream *substream;
  1596. unsigned int idx;
  1597. int err;
  1598. static struct snd_ac97_bus_ops ops = {
  1599. .write = snd_ymfpci_codec_write,
  1600. .read = snd_ymfpci_codec_read,
  1601. };
  1602. if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
  1603. return err;
  1604. chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
  1605. chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
  1606. memset(&ac97, 0, sizeof(ac97));
  1607. ac97.private_data = chip;
  1608. ac97.private_free = snd_ymfpci_mixer_free_ac97;
  1609. if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
  1610. return err;
  1611. /* to be sure */
  1612. snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
  1613. AC97_EA_VRA|AC97_EA_VRM, 0);
  1614. for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
  1615. if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
  1616. return err;
  1617. }
  1618. /* add S/PDIF control */
  1619. if (snd_BUG_ON(!chip->pcm_spdif))
  1620. return -ENXIO;
  1621. if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
  1622. return err;
  1623. kctl->id.device = chip->pcm_spdif->device;
  1624. if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
  1625. return err;
  1626. kctl->id.device = chip->pcm_spdif->device;
  1627. if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
  1628. return err;
  1629. kctl->id.device = chip->pcm_spdif->device;
  1630. chip->spdif_pcm_ctl = kctl;
  1631. /* direct recording source */
  1632. if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
  1633. (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
  1634. return err;
  1635. /*
  1636. * shared rear/line-in
  1637. */
  1638. if (rear_switch) {
  1639. if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
  1640. return err;
  1641. }
  1642. /* per-voice volume */
  1643. substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
  1644. for (idx = 0; idx < 32; ++idx) {
  1645. kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
  1646. if (!kctl)
  1647. return -ENOMEM;
  1648. kctl->id.device = chip->pcm->device;
  1649. kctl->id.subdevice = idx;
  1650. kctl->private_value = (unsigned long)substream;
  1651. if ((err = snd_ctl_add(chip->card, kctl)) < 0)
  1652. return err;
  1653. chip->pcm_mixer[idx].left = 0x8000;
  1654. chip->pcm_mixer[idx].right = 0x8000;
  1655. chip->pcm_mixer[idx].ctl = kctl;
  1656. substream = substream->next;
  1657. }
  1658. return 0;
  1659. }
  1660. /*
  1661. * timer
  1662. */
  1663. static int snd_ymfpci_timer_start(struct snd_timer *timer)
  1664. {
  1665. struct snd_ymfpci *chip;
  1666. unsigned long flags;
  1667. unsigned int count;
  1668. chip = snd_timer_chip(timer);
  1669. count = (timer->sticks << 1) - 1;
  1670. spin_lock_irqsave(&chip->reg_lock, flags);
  1671. snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
  1672. snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
  1673. spin_unlock_irqrestore(&chip->reg_lock, flags);
  1674. return 0;
  1675. }
  1676. static int snd_ymfpci_timer_stop(struct snd_timer *timer)
  1677. {
  1678. struct snd_ymfpci *chip;
  1679. unsigned long flags;
  1680. chip = snd_timer_chip(timer);
  1681. spin_lock_irqsave(&chip->reg_lock, flags);
  1682. snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
  1683. spin_unlock_irqrestore(&chip->reg_lock, flags);
  1684. return 0;
  1685. }
  1686. static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
  1687. unsigned long *num, unsigned long *den)
  1688. {
  1689. *num = 1;
  1690. *den = 48000;
  1691. return 0;
  1692. }
  1693. static struct snd_timer_hardware snd_ymfpci_timer_hw = {
  1694. .flags = SNDRV_TIMER_HW_AUTO,
  1695. .resolution = 20833, /* 1/fs = 20.8333...us */
  1696. .ticks = 0x8000,
  1697. .start = snd_ymfpci_timer_start,
  1698. .stop = snd_ymfpci_timer_stop,
  1699. .precise_resolution = snd_ymfpci_timer_precise_resolution,
  1700. };
  1701. int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
  1702. {
  1703. struct snd_timer *timer = NULL;
  1704. struct snd_timer_id tid;
  1705. int err;
  1706. tid.dev_class = SNDRV_TIMER_CLASS_CARD;
  1707. tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
  1708. tid.card = chip->card->number;
  1709. tid.device = device;
  1710. tid.subdevice = 0;
  1711. if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
  1712. strcpy(timer->name, "YMFPCI timer");
  1713. timer->private_data = chip;
  1714. timer->hw = snd_ymfpci_timer_hw;
  1715. }
  1716. chip->timer = timer;
  1717. return err;
  1718. }
  1719. /*
  1720. * proc interface
  1721. */
  1722. static void snd_ymfpci_proc_read(struct snd_info_entry *entry,
  1723. struct snd_info_buffer *buffer)
  1724. {
  1725. struct snd_ymfpci *chip = entry->private_data;
  1726. int i;
  1727. snd_iprintf(buffer, "YMFPCI\n\n");
  1728. for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
  1729. snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
  1730. }
  1731. static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
  1732. {
  1733. struct snd_info_entry *entry;
  1734. if (! snd_card_proc_new(card, "ymfpci", &entry))
  1735. snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
  1736. return 0;
  1737. }
  1738. /*
  1739. * initialization routines
  1740. */
  1741. static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
  1742. {
  1743. u8 cmd;
  1744. pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
  1745. #if 0 // force to reset
  1746. if (cmd & 0x03) {
  1747. #endif
  1748. pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
  1749. pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
  1750. pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
  1751. pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
  1752. pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
  1753. #if 0
  1754. }
  1755. #endif
  1756. }
  1757. static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
  1758. {
  1759. snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
  1760. }
  1761. static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
  1762. {
  1763. u32 val;
  1764. int timeout = 1000;
  1765. val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
  1766. if (val)
  1767. snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
  1768. while (timeout-- > 0) {
  1769. val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
  1770. if ((val & 0x00000002) == 0)
  1771. break;
  1772. }
  1773. }
  1774. static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
  1775. {
  1776. int err, is_1e;
  1777. const char *name;
  1778. err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
  1779. &chip->pci->dev);
  1780. if (err >= 0) {
  1781. if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
  1782. snd_printk(KERN_ERR "DSP microcode has wrong size\n");
  1783. err = -EINVAL;
  1784. }
  1785. }
  1786. if (err < 0)
  1787. return err;
  1788. is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
  1789. chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
  1790. chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
  1791. chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
  1792. name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
  1793. err = request_firmware(&chip->controller_microcode, name,
  1794. &chip->pci->dev);
  1795. if (err >= 0) {
  1796. if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
  1797. snd_printk(KERN_ERR "controller microcode"
  1798. " has wrong size\n");
  1799. err = -EINVAL;
  1800. }
  1801. }
  1802. if (err < 0)
  1803. return err;
  1804. return 0;
  1805. }
  1806. MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
  1807. MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
  1808. MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
  1809. static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
  1810. {
  1811. int i;
  1812. u16 ctrl;
  1813. const __le32 *inst;
  1814. snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
  1815. snd_ymfpci_disable_dsp(chip);
  1816. snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
  1817. snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
  1818. snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
  1819. snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
  1820. snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
  1821. snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
  1822. snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
  1823. ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
  1824. snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
  1825. /* setup DSP instruction code */
  1826. inst = (const __le32 *)chip->dsp_microcode->data;
  1827. for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
  1828. snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
  1829. le32_to_cpu(inst[i]));
  1830. /* setup control instruction code */
  1831. inst = (const __le32 *)chip->controller_microcode->data;
  1832. for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
  1833. snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
  1834. le32_to_cpu(inst[i]));
  1835. snd_ymfpci_enable_dsp(chip);
  1836. }
  1837. static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
  1838. {
  1839. long size, playback_ctrl_size;
  1840. int voice, bank, reg;
  1841. u8 *ptr;
  1842. dma_addr_t ptr_addr;
  1843. playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
  1844. chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
  1845. chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
  1846. chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
  1847. chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
  1848. size = ALIGN(playback_ctrl_size, 0x100) +
  1849. ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
  1850. ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
  1851. ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
  1852. chip->work_size;
  1853. /* work_ptr must be aligned to 256 bytes, but it's already
  1854. covered with the kernel page allocation mechanism */
  1855. if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
  1856. size, &chip->work_ptr) < 0)
  1857. return -ENOMEM;
  1858. ptr = chip->work_ptr.area;
  1859. ptr_addr = chip->work_ptr.addr;
  1860. memset(ptr, 0, size); /* for sure */
  1861. chip->bank_base_playback = ptr;
  1862. chip->bank_base_playback_addr = ptr_addr;
  1863. chip->ctrl_playback = (u32 *)ptr;
  1864. chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
  1865. ptr += ALIGN(playback_ctrl_size, 0x100);
  1866. ptr_addr += ALIGN(playback_ctrl_size, 0x100);
  1867. for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
  1868. chip->voices[voice].number = voice;
  1869. chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
  1870. chip->voices[voice].bank_addr = ptr_addr;
  1871. for (bank = 0; bank < 2; bank++) {
  1872. chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
  1873. ptr += chip->bank_size_playback;
  1874. ptr_addr += chip->bank_size_playback;
  1875. }
  1876. }
  1877. ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
  1878. ptr_addr = ALIGN(ptr_addr, 0x100);
  1879. chip->bank_base_capture = ptr;
  1880. chip->bank_base_capture_addr = ptr_addr;
  1881. for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
  1882. for (bank = 0; bank < 2; bank++) {
  1883. chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
  1884. ptr += chip->bank_size_capture;
  1885. ptr_addr += chip->bank_size_capture;
  1886. }
  1887. ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
  1888. ptr_addr = ALIGN(ptr_addr, 0x100);
  1889. chip->bank_base_effect = ptr;
  1890. chip->bank_base_effect_addr = ptr_addr;
  1891. for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
  1892. for (bank = 0; bank < 2; bank++) {
  1893. chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
  1894. ptr += chip->bank_size_effect;
  1895. ptr_addr += chip->bank_size_effect;
  1896. }
  1897. ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
  1898. ptr_addr = ALIGN(ptr_addr, 0x100);
  1899. chip->work_base = ptr;
  1900. chip->work_base_addr = ptr_addr;
  1901. snd_BUG_ON(ptr + chip->work_size !=
  1902. chip->work_ptr.area + chip->work_ptr.bytes);
  1903. snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
  1904. snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
  1905. snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
  1906. snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
  1907. snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
  1908. /* S/PDIF output initialization */
  1909. chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
  1910. snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
  1911. snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
  1912. /* S/PDIF input initialization */
  1913. snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
  1914. /* digital mixer setup */
  1915. for (reg = 0x80; reg < 0xc0; reg += 4)
  1916. snd_ymfpci_writel(chip, reg, 0);
  1917. snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
  1918. snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
  1919. snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
  1920. snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
  1921. snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
  1922. snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
  1923. snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
  1924. snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
  1925. return 0;
  1926. }
  1927. static int snd_ymfpci_free(struct snd_ymfpci *chip)
  1928. {
  1929. u16 ctrl;
  1930. if (snd_BUG_ON(!chip))
  1931. return -EINVAL;
  1932. if (chip->res_reg_area) { /* don't touch busy hardware */
  1933. snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
  1934. snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
  1935. snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
  1936. snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
  1937. snd_ymfpci_disable_dsp(chip);
  1938. snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
  1939. snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
  1940. snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
  1941. snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
  1942. snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
  1943. ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
  1944. snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
  1945. }
  1946. snd_ymfpci_ac3_done(chip);
  1947. /* Set PCI device to D3 state */
  1948. #if 0
  1949. /* FIXME: temporarily disabled, otherwise we cannot fire up
  1950. * the chip again unless reboot. ACPI bug?
  1951. */
  1952. pci_set_power_state(chip->pci, 3);
  1953. #endif
  1954. #ifdef CONFIG_PM
  1955. vfree(chip->saved_regs);
  1956. #endif
  1957. if (chip->irq >= 0)
  1958. free_irq(chip->irq, chip);
  1959. release_and_free_resource(chip->mpu_res);
  1960. release_and_free_resource(chip->fm_res);
  1961. snd_ymfpci_free_gameport(chip);
  1962. if (chip->reg_area_virt)
  1963. iounmap(chip->reg_area_virt);
  1964. if (chip->work_ptr.area)
  1965. snd_dma_free_pages(&chip->work_ptr);
  1966. release_and_free_resource(chip->res_reg_area);
  1967. pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
  1968. pci_disable_device(chip->pci);
  1969. release_firmware(chip->dsp_microcode);
  1970. release_firmware(chip->controller_microcode);
  1971. kfree(chip);
  1972. return 0;
  1973. }
  1974. static int snd_ymfpci_dev_free(struct snd_device *device)
  1975. {
  1976. struct snd_ymfpci *chip = device->device_data;
  1977. return snd_ymfpci_free(chip);
  1978. }
  1979. #ifdef CONFIG_PM
  1980. static int saved_regs_index[] = {
  1981. /* spdif */
  1982. YDSXGR_SPDIFOUTCTRL,
  1983. YDSXGR_SPDIFOUTSTATUS,
  1984. YDSXGR_SPDIFINCTRL,
  1985. /* volumes */
  1986. YDSXGR_PRIADCLOOPVOL,
  1987. YDSXGR_NATIVEDACINVOL,
  1988. YDSXGR_NATIVEDACOUTVOL,
  1989. YDSXGR_BUF441OUTVOL,
  1990. YDSXGR_NATIVEADCINVOL,
  1991. YDSXGR_SPDIFLOOPVOL,
  1992. YDSXGR_SPDIFOUTVOL,
  1993. YDSXGR_ZVOUTVOL,
  1994. YDSXGR_LEGACYOUTVOL,
  1995. /* address bases */
  1996. YDSXGR_PLAYCTRLBASE,
  1997. YDSXGR_RECCTRLBASE,
  1998. YDSXGR_EFFCTRLBASE,
  1999. YDSXGR_WORKBASE,
  2000. /* capture set up */
  2001. YDSXGR_MAPOFREC,
  2002. YDSXGR_RECFORMAT,
  2003. YDSXGR_RECSLOTSR,
  2004. YDSXGR_ADCFORMAT,
  2005. YDSXGR_ADCSLOTSR,
  2006. };
  2007. #define YDSXGR_NUM_SAVED_REGS ARRAY_SIZE(saved_regs_index)
  2008. int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state)
  2009. {
  2010. struct snd_card *card = pci_get_drvdata(pci);
  2011. struct snd_ymfpci *chip = card->private_data;
  2012. unsigned int i;
  2013. snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
  2014. snd_pcm_suspend_all(chip->pcm);
  2015. snd_pcm_suspend_all(chip->pcm2);
  2016. snd_pcm_suspend_all(chip->pcm_spdif);
  2017. snd_pcm_suspend_all(chip->pcm_4ch);
  2018. snd_ac97_suspend(chip->ac97);
  2019. for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
  2020. chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
  2021. chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
  2022. snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
  2023. snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
  2024. snd_ymfpci_disable_dsp(chip);
  2025. pci_disable_device(pci);
  2026. pci_save_state(pci);
  2027. pci_set_power_state(pci, pci_choose_state(pci, state));
  2028. return 0;
  2029. }
  2030. int snd_ymfpci_resume(struct pci_dev *pci)
  2031. {
  2032. struct snd_card *card = pci_get_drvdata(pci);
  2033. struct snd_ymfpci *chip = card->private_data;
  2034. unsigned int i;
  2035. pci_set_power_state(pci, PCI_D0);
  2036. pci_restore_state(pci);
  2037. if (pci_enable_device(pci) < 0) {
  2038. printk(KERN_ERR "ymfpci: pci_enable_device failed, "
  2039. "disabling device\n");
  2040. snd_card_disconnect(card);
  2041. return -EIO;
  2042. }
  2043. pci_set_master(pci);
  2044. snd_ymfpci_aclink_reset(pci);
  2045. snd_ymfpci_codec_ready(chip, 0);
  2046. snd_ymfpci_download_image(chip);
  2047. udelay(100);
  2048. for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
  2049. snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
  2050. snd_ac97_resume(chip->ac97);
  2051. /* start hw again */
  2052. if (chip->start_count > 0) {
  2053. spin_lock_irq(&chip->reg_lock);
  2054. snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
  2055. chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
  2056. spin_unlock_irq(&chip->reg_lock);
  2057. }
  2058. snd_power_change_state(card, SNDRV_CTL_POWER_D0);
  2059. return 0;
  2060. }
  2061. #endif /* CONFIG_PM */
  2062. int __devinit snd_ymfpci_create(struct snd_card *card,
  2063. struct pci_dev * pci,
  2064. unsigned short old_legacy_ctrl,
  2065. struct snd_ymfpci ** rchip)
  2066. {
  2067. struct snd_ymfpci *chip;
  2068. int err;
  2069. static struct snd_device_ops ops = {
  2070. .dev_free = snd_ymfpci_dev_free,
  2071. };
  2072. *rchip = NULL;
  2073. /* enable PCI device */
  2074. if ((err = pci_enable_device(pci)) < 0)
  2075. return err;
  2076. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  2077. if (chip == NULL) {
  2078. pci_disable_device(pci);
  2079. return -ENOMEM;
  2080. }
  2081. chip->old_legacy_ctrl = old_legacy_ctrl;
  2082. spin_lock_init(&chip->reg_lock);
  2083. spin_lock_init(&chip->voice_lock);
  2084. init_waitqueue_head(&chip->interrupt_sleep);
  2085. atomic_set(&chip->interrupt_sleep_count, 0);
  2086. chip->card = card;
  2087. chip->pci = pci;
  2088. chip->irq = -1;
  2089. chip->device_id = pci->device;
  2090. chip->rev = pci->revision;
  2091. chip->reg_area_phys = pci_resource_start(pci, 0);
  2092. chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
  2093. pci_set_master(pci);
  2094. chip->src441_used = -1;
  2095. if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
  2096. snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
  2097. snd_ymfpci_free(chip);
  2098. return -EBUSY;
  2099. }
  2100. if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
  2101. "YMFPCI", chip)) {
  2102. snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
  2103. snd_ymfpci_free(chip);
  2104. return -EBUSY;
  2105. }
  2106. chip->irq = pci->irq;
  2107. snd_ymfpci_aclink_reset(pci);
  2108. if (snd_ymfpci_codec_ready(chip, 0) < 0) {
  2109. snd_ymfpci_free(chip);
  2110. return -EIO;
  2111. }
  2112. err = snd_ymfpci_request_firmware(chip);
  2113. if (err < 0) {
  2114. snd_printk(KERN_ERR "firmware request failed: %d\n", err);
  2115. snd_ymfpci_free(chip);
  2116. return err;
  2117. }
  2118. snd_ymfpci_download_image(chip);
  2119. udelay(100); /* seems we need a delay after downloading image.. */
  2120. if (snd_ymfpci_memalloc(chip) < 0) {
  2121. snd_ymfpci_free(chip);
  2122. return -EIO;
  2123. }
  2124. if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
  2125. snd_ymfpci_free(chip);
  2126. return err;
  2127. }
  2128. #ifdef CONFIG_PM
  2129. chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
  2130. if (chip->saved_regs == NULL) {
  2131. snd_ymfpci_free(chip);
  2132. return -ENOMEM;
  2133. }
  2134. #endif
  2135. if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
  2136. snd_ymfpci_free(chip);
  2137. return err;
  2138. }
  2139. snd_ymfpci_proc_init(card, chip);
  2140. snd_card_set_dev(card, &pci->dev);
  2141. *rchip = chip;
  2142. return 0;
  2143. }