rme32.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008
  1. /*
  2. * ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
  3. *
  4. * Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>,
  5. * Pilo Chambert <pilo.c@wanadoo.fr>
  6. *
  7. * Thanks to : Anders Torger <torger@ludd.luth.se>,
  8. * Henk Hesselink <henk@anda.nl>
  9. * for writing the digi96-driver
  10. * and RME for all informations.
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. *
  26. *
  27. * ****************************************************************************
  28. *
  29. * Note #1 "Sek'd models" ................................... martin 2002-12-07
  30. *
  31. * Identical soundcards by Sek'd were labeled:
  32. * RME Digi 32 = Sek'd Prodif 32
  33. * RME Digi 32 Pro = Sek'd Prodif 96
  34. * RME Digi 32/8 = Sek'd Prodif Gold
  35. *
  36. * ****************************************************************************
  37. *
  38. * Note #2 "full duplex mode" ............................... martin 2002-12-07
  39. *
  40. * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical
  41. * in this mode. Rec data and play data are using the same buffer therefore. At
  42. * first you have got the playing bits in the buffer and then (after playing
  43. * them) they were overwitten by the captured sound of the CS8412/14. Both
  44. * modes (play/record) are running harmonically hand in hand in the same buffer
  45. * and you have only one start bit plus one interrupt bit to control this
  46. * paired action.
  47. * This is opposite to the latter rme96 where playing and capturing is totally
  48. * separated and so their full duplex mode is supported by alsa (using two
  49. * start bits and two interrupts for two different buffers).
  50. * But due to the wrong sequence of playing and capturing ALSA shows no solved
  51. * full duplex support for the rme32 at the moment. That's bad, but I'm not
  52. * able to solve it. Are you motivated enough to solve this problem now? Your
  53. * patch would be welcome!
  54. *
  55. * ****************************************************************************
  56. *
  57. * "The story after the long seeking" -- tiwai
  58. *
  59. * Ok, the situation regarding the full duplex is now improved a bit.
  60. * In the fullduplex mode (given by the module parameter), the hardware buffer
  61. * is split to halves for read and write directions at the DMA pointer.
  62. * That is, the half above the current DMA pointer is used for write, and
  63. * the half below is used for read. To mangle this strange behavior, an
  64. * software intermediate buffer is introduced. This is, of course, not good
  65. * from the viewpoint of the data transfer efficiency. However, this allows
  66. * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size.
  67. *
  68. * ****************************************************************************
  69. */
  70. #include <linux/delay.h>
  71. #include <linux/init.h>
  72. #include <linux/interrupt.h>
  73. #include <linux/pci.h>
  74. #include <linux/slab.h>
  75. #include <linux/moduleparam.h>
  76. #include <sound/core.h>
  77. #include <sound/info.h>
  78. #include <sound/control.h>
  79. #include <sound/pcm.h>
  80. #include <sound/pcm_params.h>
  81. #include <sound/pcm-indirect.h>
  82. #include <sound/asoundef.h>
  83. #include <sound/initval.h>
  84. #include <asm/io.h>
  85. static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
  86. static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
  87. static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
  88. static int fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1};
  89. module_param_array(index, int, NULL, 0444);
  90. MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard.");
  91. module_param_array(id, charp, NULL, 0444);
  92. MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard.");
  93. module_param_array(enable, bool, NULL, 0444);
  94. MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard.");
  95. module_param_array(fullduplex, bool, NULL, 0444);
  96. MODULE_PARM_DESC(fullduplex, "Support full-duplex mode.");
  97. MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>");
  98. MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
  99. MODULE_LICENSE("GPL");
  100. MODULE_SUPPORTED_DEVICE("{{RME,Digi32}," "{RME,Digi32/8}," "{RME,Digi32 PRO}}");
  101. /* Defines for RME Digi32 series */
  102. #define RME32_SPDIF_NCHANNELS 2
  103. /* Playback and capture buffer size */
  104. #define RME32_BUFFER_SIZE 0x20000
  105. /* IO area size */
  106. #define RME32_IO_SIZE 0x30000
  107. /* IO area offsets */
  108. #define RME32_IO_DATA_BUFFER 0x0
  109. #define RME32_IO_CONTROL_REGISTER 0x20000
  110. #define RME32_IO_GET_POS 0x20000
  111. #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
  112. #define RME32_IO_RESET_POS 0x20100
  113. /* Write control register bits */
  114. #define RME32_WCR_START (1 << 0) /* startbit */
  115. #define RME32_WCR_MONO (1 << 1) /* 0=stereo, 1=mono
  116. Setting the whole card to mono
  117. doesn't seem to be very useful.
  118. A software-solution can handle
  119. full-duplex with one direction in
  120. stereo and the other way in mono.
  121. So, the hardware should work all
  122. the time in stereo! */
  123. #define RME32_WCR_MODE24 (1 << 2) /* 0=16bit, 1=32bit */
  124. #define RME32_WCR_SEL (1 << 3) /* 0=input on output, 1=normal playback/capture */
  125. #define RME32_WCR_FREQ_0 (1 << 4) /* frequency (play) */
  126. #define RME32_WCR_FREQ_1 (1 << 5)
  127. #define RME32_WCR_INP_0 (1 << 6) /* input switch */
  128. #define RME32_WCR_INP_1 (1 << 7)
  129. #define RME32_WCR_RESET (1 << 8) /* Reset address */
  130. #define RME32_WCR_MUTE (1 << 9) /* digital mute for output */
  131. #define RME32_WCR_PRO (1 << 10) /* 1=professional, 0=consumer */
  132. #define RME32_WCR_DS_BM (1 << 11) /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */
  133. #define RME32_WCR_ADAT (1 << 12) /* Adat Mode (only Adat-Version) */
  134. #define RME32_WCR_AUTOSYNC (1 << 13) /* AutoSync */
  135. #define RME32_WCR_PD (1 << 14) /* DAC Reset (only PRO-Version) */
  136. #define RME32_WCR_EMP (1 << 15) /* 1=Emphasis on (only PRO-Version) */
  137. #define RME32_WCR_BITPOS_FREQ_0 4
  138. #define RME32_WCR_BITPOS_FREQ_1 5
  139. #define RME32_WCR_BITPOS_INP_0 6
  140. #define RME32_WCR_BITPOS_INP_1 7
  141. /* Read control register bits */
  142. #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff
  143. #define RME32_RCR_LOCK (1 << 23) /* 1=locked, 0=not locked */
  144. #define RME32_RCR_ERF (1 << 26) /* 1=Error, 0=no Error */
  145. #define RME32_RCR_FREQ_0 (1 << 27) /* CS841x frequency (record) */
  146. #define RME32_RCR_FREQ_1 (1 << 28)
  147. #define RME32_RCR_FREQ_2 (1 << 29)
  148. #define RME32_RCR_KMODE (1 << 30) /* card mode: 1=PLL, 0=quartz */
  149. #define RME32_RCR_IRQ (1 << 31) /* interrupt */
  150. #define RME32_RCR_BITPOS_F0 27
  151. #define RME32_RCR_BITPOS_F1 28
  152. #define RME32_RCR_BITPOS_F2 29
  153. /* Input types */
  154. #define RME32_INPUT_OPTICAL 0
  155. #define RME32_INPUT_COAXIAL 1
  156. #define RME32_INPUT_INTERNAL 2
  157. #define RME32_INPUT_XLR 3
  158. /* Clock modes */
  159. #define RME32_CLOCKMODE_SLAVE 0
  160. #define RME32_CLOCKMODE_MASTER_32 1
  161. #define RME32_CLOCKMODE_MASTER_44 2
  162. #define RME32_CLOCKMODE_MASTER_48 3
  163. /* Block sizes in bytes */
  164. #define RME32_BLOCK_SIZE 8192
  165. /* Software intermediate buffer (max) size */
  166. #define RME32_MID_BUFFER_SIZE (1024*1024)
  167. /* Hardware revisions */
  168. #define RME32_32_REVISION 192
  169. #define RME32_328_REVISION_OLD 100
  170. #define RME32_328_REVISION_NEW 101
  171. #define RME32_PRO_REVISION_WITH_8412 192
  172. #define RME32_PRO_REVISION_WITH_8414 150
  173. struct rme32 {
  174. spinlock_t lock;
  175. int irq;
  176. unsigned long port;
  177. void __iomem *iobase;
  178. u32 wcreg; /* cached write control register value */
  179. u32 wcreg_spdif; /* S/PDIF setup */
  180. u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */
  181. u32 rcreg; /* cached read control register value */
  182. u8 rev; /* card revision number */
  183. struct snd_pcm_substream *playback_substream;
  184. struct snd_pcm_substream *capture_substream;
  185. int playback_frlog; /* log2 of framesize */
  186. int capture_frlog;
  187. size_t playback_periodsize; /* in bytes, zero if not used */
  188. size_t capture_periodsize; /* in bytes, zero if not used */
  189. unsigned int fullduplex_mode;
  190. int running;
  191. struct snd_pcm_indirect playback_pcm;
  192. struct snd_pcm_indirect capture_pcm;
  193. struct snd_card *card;
  194. struct snd_pcm *spdif_pcm;
  195. struct snd_pcm *adat_pcm;
  196. struct pci_dev *pci;
  197. struct snd_kcontrol *spdif_ctl;
  198. };
  199. static struct pci_device_id snd_rme32_ids[] = {
  200. {PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_RME_DIGI32,
  201. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,},
  202. {PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8,
  203. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,},
  204. {PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO,
  205. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,},
  206. {0,}
  207. };
  208. MODULE_DEVICE_TABLE(pci, snd_rme32_ids);
  209. #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
  210. #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)
  211. static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream);
  212. static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream);
  213. static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd);
  214. static void snd_rme32_proc_init(struct rme32 * rme32);
  215. static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32);
  216. static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32)
  217. {
  218. return (readl(rme32->iobase + RME32_IO_GET_POS)
  219. & RME32_RCR_AUDIO_ADDR_MASK);
  220. }
  221. /* silence callback for halfduplex mode */
  222. static int snd_rme32_playback_silence(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */
  223. snd_pcm_uframes_t pos,
  224. snd_pcm_uframes_t count)
  225. {
  226. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  227. count <<= rme32->playback_frlog;
  228. pos <<= rme32->playback_frlog;
  229. memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
  230. return 0;
  231. }
  232. /* copy callback for halfduplex mode */
  233. static int snd_rme32_playback_copy(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */
  234. snd_pcm_uframes_t pos,
  235. void __user *src, snd_pcm_uframes_t count)
  236. {
  237. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  238. count <<= rme32->playback_frlog;
  239. pos <<= rme32->playback_frlog;
  240. if (copy_from_user_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
  241. src, count))
  242. return -EFAULT;
  243. return 0;
  244. }
  245. /* copy callback for halfduplex mode */
  246. static int snd_rme32_capture_copy(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */
  247. snd_pcm_uframes_t pos,
  248. void __user *dst, snd_pcm_uframes_t count)
  249. {
  250. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  251. count <<= rme32->capture_frlog;
  252. pos <<= rme32->capture_frlog;
  253. if (copy_to_user_fromio(dst,
  254. rme32->iobase + RME32_IO_DATA_BUFFER + pos,
  255. count))
  256. return -EFAULT;
  257. return 0;
  258. }
  259. /*
  260. * SPDIF I/O capabilities (half-duplex mode)
  261. */
  262. static struct snd_pcm_hardware snd_rme32_spdif_info = {
  263. .info = (SNDRV_PCM_INFO_MMAP_IOMEM |
  264. SNDRV_PCM_INFO_MMAP_VALID |
  265. SNDRV_PCM_INFO_INTERLEAVED |
  266. SNDRV_PCM_INFO_PAUSE |
  267. SNDRV_PCM_INFO_SYNC_START),
  268. .formats = (SNDRV_PCM_FMTBIT_S16_LE |
  269. SNDRV_PCM_FMTBIT_S32_LE),
  270. .rates = (SNDRV_PCM_RATE_32000 |
  271. SNDRV_PCM_RATE_44100 |
  272. SNDRV_PCM_RATE_48000),
  273. .rate_min = 32000,
  274. .rate_max = 48000,
  275. .channels_min = 2,
  276. .channels_max = 2,
  277. .buffer_bytes_max = RME32_BUFFER_SIZE,
  278. .period_bytes_min = RME32_BLOCK_SIZE,
  279. .period_bytes_max = RME32_BLOCK_SIZE,
  280. .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  281. .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  282. .fifo_size = 0,
  283. };
  284. /*
  285. * ADAT I/O capabilities (half-duplex mode)
  286. */
  287. static struct snd_pcm_hardware snd_rme32_adat_info =
  288. {
  289. .info = (SNDRV_PCM_INFO_MMAP_IOMEM |
  290. SNDRV_PCM_INFO_MMAP_VALID |
  291. SNDRV_PCM_INFO_INTERLEAVED |
  292. SNDRV_PCM_INFO_PAUSE |
  293. SNDRV_PCM_INFO_SYNC_START),
  294. .formats= SNDRV_PCM_FMTBIT_S16_LE,
  295. .rates = (SNDRV_PCM_RATE_44100 |
  296. SNDRV_PCM_RATE_48000),
  297. .rate_min = 44100,
  298. .rate_max = 48000,
  299. .channels_min = 8,
  300. .channels_max = 8,
  301. .buffer_bytes_max = RME32_BUFFER_SIZE,
  302. .period_bytes_min = RME32_BLOCK_SIZE,
  303. .period_bytes_max = RME32_BLOCK_SIZE,
  304. .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  305. .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  306. .fifo_size = 0,
  307. };
  308. /*
  309. * SPDIF I/O capabilities (full-duplex mode)
  310. */
  311. static struct snd_pcm_hardware snd_rme32_spdif_fd_info = {
  312. .info = (SNDRV_PCM_INFO_MMAP |
  313. SNDRV_PCM_INFO_MMAP_VALID |
  314. SNDRV_PCM_INFO_INTERLEAVED |
  315. SNDRV_PCM_INFO_PAUSE |
  316. SNDRV_PCM_INFO_SYNC_START),
  317. .formats = (SNDRV_PCM_FMTBIT_S16_LE |
  318. SNDRV_PCM_FMTBIT_S32_LE),
  319. .rates = (SNDRV_PCM_RATE_32000 |
  320. SNDRV_PCM_RATE_44100 |
  321. SNDRV_PCM_RATE_48000),
  322. .rate_min = 32000,
  323. .rate_max = 48000,
  324. .channels_min = 2,
  325. .channels_max = 2,
  326. .buffer_bytes_max = RME32_MID_BUFFER_SIZE,
  327. .period_bytes_min = RME32_BLOCK_SIZE,
  328. .period_bytes_max = RME32_BLOCK_SIZE,
  329. .periods_min = 2,
  330. .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
  331. .fifo_size = 0,
  332. };
  333. /*
  334. * ADAT I/O capabilities (full-duplex mode)
  335. */
  336. static struct snd_pcm_hardware snd_rme32_adat_fd_info =
  337. {
  338. .info = (SNDRV_PCM_INFO_MMAP |
  339. SNDRV_PCM_INFO_MMAP_VALID |
  340. SNDRV_PCM_INFO_INTERLEAVED |
  341. SNDRV_PCM_INFO_PAUSE |
  342. SNDRV_PCM_INFO_SYNC_START),
  343. .formats= SNDRV_PCM_FMTBIT_S16_LE,
  344. .rates = (SNDRV_PCM_RATE_44100 |
  345. SNDRV_PCM_RATE_48000),
  346. .rate_min = 44100,
  347. .rate_max = 48000,
  348. .channels_min = 8,
  349. .channels_max = 8,
  350. .buffer_bytes_max = RME32_MID_BUFFER_SIZE,
  351. .period_bytes_min = RME32_BLOCK_SIZE,
  352. .period_bytes_max = RME32_BLOCK_SIZE,
  353. .periods_min = 2,
  354. .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
  355. .fifo_size = 0,
  356. };
  357. static void snd_rme32_reset_dac(struct rme32 *rme32)
  358. {
  359. writel(rme32->wcreg | RME32_WCR_PD,
  360. rme32->iobase + RME32_IO_CONTROL_REGISTER);
  361. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  362. }
  363. static int snd_rme32_playback_getrate(struct rme32 * rme32)
  364. {
  365. int rate;
  366. rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
  367. (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
  368. switch (rate) {
  369. case 1:
  370. rate = 32000;
  371. break;
  372. case 2:
  373. rate = 44100;
  374. break;
  375. case 3:
  376. rate = 48000;
  377. break;
  378. default:
  379. return -1;
  380. }
  381. return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
  382. }
  383. static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat)
  384. {
  385. int n;
  386. *is_adat = 0;
  387. if (rme32->rcreg & RME32_RCR_LOCK) {
  388. /* ADAT rate */
  389. *is_adat = 1;
  390. }
  391. if (rme32->rcreg & RME32_RCR_ERF) {
  392. return -1;
  393. }
  394. /* S/PDIF rate */
  395. n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
  396. (((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
  397. (((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);
  398. if (RME32_PRO_WITH_8414(rme32))
  399. switch (n) { /* supporting the CS8414 */
  400. case 0:
  401. case 1:
  402. case 2:
  403. return -1;
  404. case 3:
  405. return 96000;
  406. case 4:
  407. return 88200;
  408. case 5:
  409. return 48000;
  410. case 6:
  411. return 44100;
  412. case 7:
  413. return 32000;
  414. default:
  415. return -1;
  416. break;
  417. }
  418. else
  419. switch (n) { /* supporting the CS8412 */
  420. case 0:
  421. return -1;
  422. case 1:
  423. return 48000;
  424. case 2:
  425. return 44100;
  426. case 3:
  427. return 32000;
  428. case 4:
  429. return 48000;
  430. case 5:
  431. return 44100;
  432. case 6:
  433. return 44056;
  434. case 7:
  435. return 32000;
  436. default:
  437. break;
  438. }
  439. return -1;
  440. }
  441. static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate)
  442. {
  443. int ds;
  444. ds = rme32->wcreg & RME32_WCR_DS_BM;
  445. switch (rate) {
  446. case 32000:
  447. rme32->wcreg &= ~RME32_WCR_DS_BM;
  448. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
  449. ~RME32_WCR_FREQ_1;
  450. break;
  451. case 44100:
  452. rme32->wcreg &= ~RME32_WCR_DS_BM;
  453. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
  454. ~RME32_WCR_FREQ_0;
  455. break;
  456. case 48000:
  457. rme32->wcreg &= ~RME32_WCR_DS_BM;
  458. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
  459. RME32_WCR_FREQ_1;
  460. break;
  461. case 64000:
  462. if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
  463. return -EINVAL;
  464. rme32->wcreg |= RME32_WCR_DS_BM;
  465. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
  466. ~RME32_WCR_FREQ_1;
  467. break;
  468. case 88200:
  469. if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
  470. return -EINVAL;
  471. rme32->wcreg |= RME32_WCR_DS_BM;
  472. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
  473. ~RME32_WCR_FREQ_0;
  474. break;
  475. case 96000:
  476. if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
  477. return -EINVAL;
  478. rme32->wcreg |= RME32_WCR_DS_BM;
  479. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
  480. RME32_WCR_FREQ_1;
  481. break;
  482. default:
  483. return -EINVAL;
  484. }
  485. if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
  486. (ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
  487. {
  488. /* change to/from double-speed: reset the DAC (if available) */
  489. snd_rme32_reset_dac(rme32);
  490. } else {
  491. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  492. }
  493. return 0;
  494. }
  495. static int snd_rme32_setclockmode(struct rme32 * rme32, int mode)
  496. {
  497. switch (mode) {
  498. case RME32_CLOCKMODE_SLAVE:
  499. /* AutoSync */
  500. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) &
  501. ~RME32_WCR_FREQ_1;
  502. break;
  503. case RME32_CLOCKMODE_MASTER_32:
  504. /* Internal 32.0kHz */
  505. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
  506. ~RME32_WCR_FREQ_1;
  507. break;
  508. case RME32_CLOCKMODE_MASTER_44:
  509. /* Internal 44.1kHz */
  510. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) |
  511. RME32_WCR_FREQ_1;
  512. break;
  513. case RME32_CLOCKMODE_MASTER_48:
  514. /* Internal 48.0kHz */
  515. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
  516. RME32_WCR_FREQ_1;
  517. break;
  518. default:
  519. return -EINVAL;
  520. }
  521. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  522. return 0;
  523. }
  524. static int snd_rme32_getclockmode(struct rme32 * rme32)
  525. {
  526. return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
  527. (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
  528. }
  529. static int snd_rme32_setinputtype(struct rme32 * rme32, int type)
  530. {
  531. switch (type) {
  532. case RME32_INPUT_OPTICAL:
  533. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) &
  534. ~RME32_WCR_INP_1;
  535. break;
  536. case RME32_INPUT_COAXIAL:
  537. rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) &
  538. ~RME32_WCR_INP_1;
  539. break;
  540. case RME32_INPUT_INTERNAL:
  541. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) |
  542. RME32_WCR_INP_1;
  543. break;
  544. case RME32_INPUT_XLR:
  545. rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) |
  546. RME32_WCR_INP_1;
  547. break;
  548. default:
  549. return -EINVAL;
  550. }
  551. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  552. return 0;
  553. }
  554. static int snd_rme32_getinputtype(struct rme32 * rme32)
  555. {
  556. return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
  557. (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
  558. }
  559. static void
  560. snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback)
  561. {
  562. int frlog;
  563. if (n_channels == 2) {
  564. frlog = 1;
  565. } else {
  566. /* assume 8 channels */
  567. frlog = 3;
  568. }
  569. if (is_playback) {
  570. frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
  571. rme32->playback_frlog = frlog;
  572. } else {
  573. frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
  574. rme32->capture_frlog = frlog;
  575. }
  576. }
  577. static int snd_rme32_setformat(struct rme32 * rme32, int format)
  578. {
  579. switch (format) {
  580. case SNDRV_PCM_FORMAT_S16_LE:
  581. rme32->wcreg &= ~RME32_WCR_MODE24;
  582. break;
  583. case SNDRV_PCM_FORMAT_S32_LE:
  584. rme32->wcreg |= RME32_WCR_MODE24;
  585. break;
  586. default:
  587. return -EINVAL;
  588. }
  589. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  590. return 0;
  591. }
  592. static int
  593. snd_rme32_playback_hw_params(struct snd_pcm_substream *substream,
  594. struct snd_pcm_hw_params *params)
  595. {
  596. int err, rate, dummy;
  597. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  598. struct snd_pcm_runtime *runtime = substream->runtime;
  599. if (rme32->fullduplex_mode) {
  600. err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
  601. if (err < 0)
  602. return err;
  603. } else {
  604. runtime->dma_area = (void __force *)(rme32->iobase +
  605. RME32_IO_DATA_BUFFER);
  606. runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
  607. runtime->dma_bytes = RME32_BUFFER_SIZE;
  608. }
  609. spin_lock_irq(&rme32->lock);
  610. if ((rme32->rcreg & RME32_RCR_KMODE) &&
  611. (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
  612. /* AutoSync */
  613. if ((int)params_rate(params) != rate) {
  614. spin_unlock_irq(&rme32->lock);
  615. return -EIO;
  616. }
  617. } else if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) {
  618. spin_unlock_irq(&rme32->lock);
  619. return err;
  620. }
  621. if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) {
  622. spin_unlock_irq(&rme32->lock);
  623. return err;
  624. }
  625. snd_rme32_setframelog(rme32, params_channels(params), 1);
  626. if (rme32->capture_periodsize != 0) {
  627. if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) {
  628. spin_unlock_irq(&rme32->lock);
  629. return -EBUSY;
  630. }
  631. }
  632. rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
  633. /* S/PDIF setup */
  634. if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
  635. rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
  636. rme32->wcreg |= rme32->wcreg_spdif_stream;
  637. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  638. }
  639. spin_unlock_irq(&rme32->lock);
  640. return 0;
  641. }
  642. static int
  643. snd_rme32_capture_hw_params(struct snd_pcm_substream *substream,
  644. struct snd_pcm_hw_params *params)
  645. {
  646. int err, isadat, rate;
  647. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  648. struct snd_pcm_runtime *runtime = substream->runtime;
  649. if (rme32->fullduplex_mode) {
  650. err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
  651. if (err < 0)
  652. return err;
  653. } else {
  654. runtime->dma_area = (void __force *)rme32->iobase +
  655. RME32_IO_DATA_BUFFER;
  656. runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
  657. runtime->dma_bytes = RME32_BUFFER_SIZE;
  658. }
  659. spin_lock_irq(&rme32->lock);
  660. /* enable AutoSync for record-preparing */
  661. rme32->wcreg |= RME32_WCR_AUTOSYNC;
  662. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  663. if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) {
  664. spin_unlock_irq(&rme32->lock);
  665. return err;
  666. }
  667. if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) {
  668. spin_unlock_irq(&rme32->lock);
  669. return err;
  670. }
  671. if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
  672. if ((int)params_rate(params) != rate) {
  673. spin_unlock_irq(&rme32->lock);
  674. return -EIO;
  675. }
  676. if ((isadat && runtime->hw.channels_min == 2) ||
  677. (!isadat && runtime->hw.channels_min == 8)) {
  678. spin_unlock_irq(&rme32->lock);
  679. return -EIO;
  680. }
  681. }
  682. /* AutoSync off for recording */
  683. rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
  684. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  685. snd_rme32_setframelog(rme32, params_channels(params), 0);
  686. if (rme32->playback_periodsize != 0) {
  687. if (params_period_size(params) << rme32->capture_frlog !=
  688. rme32->playback_periodsize) {
  689. spin_unlock_irq(&rme32->lock);
  690. return -EBUSY;
  691. }
  692. }
  693. rme32->capture_periodsize =
  694. params_period_size(params) << rme32->capture_frlog;
  695. spin_unlock_irq(&rme32->lock);
  696. return 0;
  697. }
  698. static int snd_rme32_pcm_hw_free(struct snd_pcm_substream *substream)
  699. {
  700. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  701. if (! rme32->fullduplex_mode)
  702. return 0;
  703. return snd_pcm_lib_free_pages(substream);
  704. }
  705. static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause)
  706. {
  707. if (!from_pause) {
  708. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  709. }
  710. rme32->wcreg |= RME32_WCR_START;
  711. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  712. }
  713. static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause)
  714. {
  715. /*
  716. * Check if there is an unconfirmed IRQ, if so confirm it, or else
  717. * the hardware will not stop generating interrupts
  718. */
  719. rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
  720. if (rme32->rcreg & RME32_RCR_IRQ) {
  721. writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
  722. }
  723. rme32->wcreg &= ~RME32_WCR_START;
  724. if (rme32->wcreg & RME32_WCR_SEL)
  725. rme32->wcreg |= RME32_WCR_MUTE;
  726. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  727. if (! to_pause)
  728. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  729. }
  730. static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id)
  731. {
  732. struct rme32 *rme32 = (struct rme32 *) dev_id;
  733. rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
  734. if (!(rme32->rcreg & RME32_RCR_IRQ)) {
  735. return IRQ_NONE;
  736. } else {
  737. if (rme32->capture_substream) {
  738. snd_pcm_period_elapsed(rme32->capture_substream);
  739. }
  740. if (rme32->playback_substream) {
  741. snd_pcm_period_elapsed(rme32->playback_substream);
  742. }
  743. writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
  744. }
  745. return IRQ_HANDLED;
  746. }
  747. static unsigned int period_bytes[] = { RME32_BLOCK_SIZE };
  748. static struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
  749. .count = ARRAY_SIZE(period_bytes),
  750. .list = period_bytes,
  751. .mask = 0
  752. };
  753. static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime)
  754. {
  755. if (! rme32->fullduplex_mode) {
  756. snd_pcm_hw_constraint_minmax(runtime,
  757. SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
  758. RME32_BUFFER_SIZE, RME32_BUFFER_SIZE);
  759. snd_pcm_hw_constraint_list(runtime, 0,
  760. SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
  761. &hw_constraints_period_bytes);
  762. }
  763. }
  764. static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream)
  765. {
  766. int rate, dummy;
  767. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  768. struct snd_pcm_runtime *runtime = substream->runtime;
  769. snd_pcm_set_sync(substream);
  770. spin_lock_irq(&rme32->lock);
  771. if (rme32->playback_substream != NULL) {
  772. spin_unlock_irq(&rme32->lock);
  773. return -EBUSY;
  774. }
  775. rme32->wcreg &= ~RME32_WCR_ADAT;
  776. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  777. rme32->playback_substream = substream;
  778. spin_unlock_irq(&rme32->lock);
  779. if (rme32->fullduplex_mode)
  780. runtime->hw = snd_rme32_spdif_fd_info;
  781. else
  782. runtime->hw = snd_rme32_spdif_info;
  783. if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) {
  784. runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
  785. runtime->hw.rate_max = 96000;
  786. }
  787. if ((rme32->rcreg & RME32_RCR_KMODE) &&
  788. (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
  789. /* AutoSync */
  790. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  791. runtime->hw.rate_min = rate;
  792. runtime->hw.rate_max = rate;
  793. }
  794. snd_rme32_set_buffer_constraint(rme32, runtime);
  795. rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
  796. rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
  797. snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
  798. SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
  799. return 0;
  800. }
  801. static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream)
  802. {
  803. int isadat, rate;
  804. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  805. struct snd_pcm_runtime *runtime = substream->runtime;
  806. snd_pcm_set_sync(substream);
  807. spin_lock_irq(&rme32->lock);
  808. if (rme32->capture_substream != NULL) {
  809. spin_unlock_irq(&rme32->lock);
  810. return -EBUSY;
  811. }
  812. rme32->capture_substream = substream;
  813. spin_unlock_irq(&rme32->lock);
  814. if (rme32->fullduplex_mode)
  815. runtime->hw = snd_rme32_spdif_fd_info;
  816. else
  817. runtime->hw = snd_rme32_spdif_info;
  818. if (RME32_PRO_WITH_8414(rme32)) {
  819. runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
  820. runtime->hw.rate_max = 96000;
  821. }
  822. if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
  823. if (isadat) {
  824. return -EIO;
  825. }
  826. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  827. runtime->hw.rate_min = rate;
  828. runtime->hw.rate_max = rate;
  829. }
  830. snd_rme32_set_buffer_constraint(rme32, runtime);
  831. return 0;
  832. }
  833. static int
  834. snd_rme32_playback_adat_open(struct snd_pcm_substream *substream)
  835. {
  836. int rate, dummy;
  837. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  838. struct snd_pcm_runtime *runtime = substream->runtime;
  839. snd_pcm_set_sync(substream);
  840. spin_lock_irq(&rme32->lock);
  841. if (rme32->playback_substream != NULL) {
  842. spin_unlock_irq(&rme32->lock);
  843. return -EBUSY;
  844. }
  845. rme32->wcreg |= RME32_WCR_ADAT;
  846. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  847. rme32->playback_substream = substream;
  848. spin_unlock_irq(&rme32->lock);
  849. if (rme32->fullduplex_mode)
  850. runtime->hw = snd_rme32_adat_fd_info;
  851. else
  852. runtime->hw = snd_rme32_adat_info;
  853. if ((rme32->rcreg & RME32_RCR_KMODE) &&
  854. (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
  855. /* AutoSync */
  856. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  857. runtime->hw.rate_min = rate;
  858. runtime->hw.rate_max = rate;
  859. }
  860. snd_rme32_set_buffer_constraint(rme32, runtime);
  861. return 0;
  862. }
  863. static int
  864. snd_rme32_capture_adat_open(struct snd_pcm_substream *substream)
  865. {
  866. int isadat, rate;
  867. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  868. struct snd_pcm_runtime *runtime = substream->runtime;
  869. if (rme32->fullduplex_mode)
  870. runtime->hw = snd_rme32_adat_fd_info;
  871. else
  872. runtime->hw = snd_rme32_adat_info;
  873. if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
  874. if (!isadat) {
  875. return -EIO;
  876. }
  877. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  878. runtime->hw.rate_min = rate;
  879. runtime->hw.rate_max = rate;
  880. }
  881. snd_pcm_set_sync(substream);
  882. spin_lock_irq(&rme32->lock);
  883. if (rme32->capture_substream != NULL) {
  884. spin_unlock_irq(&rme32->lock);
  885. return -EBUSY;
  886. }
  887. rme32->capture_substream = substream;
  888. spin_unlock_irq(&rme32->lock);
  889. snd_rme32_set_buffer_constraint(rme32, runtime);
  890. return 0;
  891. }
  892. static int snd_rme32_playback_close(struct snd_pcm_substream *substream)
  893. {
  894. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  895. int spdif = 0;
  896. spin_lock_irq(&rme32->lock);
  897. rme32->playback_substream = NULL;
  898. rme32->playback_periodsize = 0;
  899. spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
  900. spin_unlock_irq(&rme32->lock);
  901. if (spdif) {
  902. rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
  903. snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
  904. SNDRV_CTL_EVENT_MASK_INFO,
  905. &rme32->spdif_ctl->id);
  906. }
  907. return 0;
  908. }
  909. static int snd_rme32_capture_close(struct snd_pcm_substream *substream)
  910. {
  911. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  912. spin_lock_irq(&rme32->lock);
  913. rme32->capture_substream = NULL;
  914. rme32->capture_periodsize = 0;
  915. spin_unlock(&rme32->lock);
  916. return 0;
  917. }
  918. static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream)
  919. {
  920. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  921. spin_lock_irq(&rme32->lock);
  922. if (rme32->fullduplex_mode) {
  923. memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm));
  924. rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
  925. rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  926. } else {
  927. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  928. }
  929. if (rme32->wcreg & RME32_WCR_SEL)
  930. rme32->wcreg &= ~RME32_WCR_MUTE;
  931. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  932. spin_unlock_irq(&rme32->lock);
  933. return 0;
  934. }
  935. static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream)
  936. {
  937. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  938. spin_lock_irq(&rme32->lock);
  939. if (rme32->fullduplex_mode) {
  940. memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm));
  941. rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
  942. rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2;
  943. rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  944. } else {
  945. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  946. }
  947. spin_unlock_irq(&rme32->lock);
  948. return 0;
  949. }
  950. static int
  951. snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
  952. {
  953. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  954. struct snd_pcm_substream *s;
  955. spin_lock(&rme32->lock);
  956. snd_pcm_group_for_each_entry(s, substream) {
  957. if (s != rme32->playback_substream &&
  958. s != rme32->capture_substream)
  959. continue;
  960. switch (cmd) {
  961. case SNDRV_PCM_TRIGGER_START:
  962. rme32->running |= (1 << s->stream);
  963. if (rme32->fullduplex_mode) {
  964. /* remember the current DMA position */
  965. if (s == rme32->playback_substream) {
  966. rme32->playback_pcm.hw_io =
  967. rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
  968. } else {
  969. rme32->capture_pcm.hw_io =
  970. rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
  971. }
  972. }
  973. break;
  974. case SNDRV_PCM_TRIGGER_STOP:
  975. rme32->running &= ~(1 << s->stream);
  976. break;
  977. }
  978. snd_pcm_trigger_done(s, substream);
  979. }
  980. /* prefill playback buffer */
  981. if (cmd == SNDRV_PCM_TRIGGER_START && rme32->fullduplex_mode) {
  982. snd_pcm_group_for_each_entry(s, substream) {
  983. if (s == rme32->playback_substream) {
  984. s->ops->ack(s);
  985. break;
  986. }
  987. }
  988. }
  989. switch (cmd) {
  990. case SNDRV_PCM_TRIGGER_START:
  991. if (rme32->running && ! RME32_ISWORKING(rme32))
  992. snd_rme32_pcm_start(rme32, 0);
  993. break;
  994. case SNDRV_PCM_TRIGGER_STOP:
  995. if (! rme32->running && RME32_ISWORKING(rme32))
  996. snd_rme32_pcm_stop(rme32, 0);
  997. break;
  998. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  999. if (rme32->running && RME32_ISWORKING(rme32))
  1000. snd_rme32_pcm_stop(rme32, 1);
  1001. break;
  1002. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  1003. if (rme32->running && ! RME32_ISWORKING(rme32))
  1004. snd_rme32_pcm_start(rme32, 1);
  1005. break;
  1006. }
  1007. spin_unlock(&rme32->lock);
  1008. return 0;
  1009. }
  1010. /* pointer callback for halfduplex mode */
  1011. static snd_pcm_uframes_t
  1012. snd_rme32_playback_pointer(struct snd_pcm_substream *substream)
  1013. {
  1014. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1015. return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog;
  1016. }
  1017. static snd_pcm_uframes_t
  1018. snd_rme32_capture_pointer(struct snd_pcm_substream *substream)
  1019. {
  1020. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1021. return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog;
  1022. }
  1023. /* ack and pointer callbacks for fullduplex mode */
  1024. static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream,
  1025. struct snd_pcm_indirect *rec, size_t bytes)
  1026. {
  1027. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1028. memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
  1029. substream->runtime->dma_area + rec->sw_data, bytes);
  1030. }
  1031. static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream)
  1032. {
  1033. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1034. struct snd_pcm_indirect *rec, *cprec;
  1035. rec = &rme32->playback_pcm;
  1036. cprec = &rme32->capture_pcm;
  1037. spin_lock(&rme32->lock);
  1038. rec->hw_queue_size = RME32_BUFFER_SIZE;
  1039. if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE))
  1040. rec->hw_queue_size -= cprec->hw_ready;
  1041. spin_unlock(&rme32->lock);
  1042. snd_pcm_indirect_playback_transfer(substream, rec,
  1043. snd_rme32_pb_trans_copy);
  1044. return 0;
  1045. }
  1046. static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream,
  1047. struct snd_pcm_indirect *rec, size_t bytes)
  1048. {
  1049. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1050. memcpy_fromio(substream->runtime->dma_area + rec->sw_data,
  1051. rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
  1052. bytes);
  1053. }
  1054. static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream)
  1055. {
  1056. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1057. snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm,
  1058. snd_rme32_cp_trans_copy);
  1059. return 0;
  1060. }
  1061. static snd_pcm_uframes_t
  1062. snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream)
  1063. {
  1064. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1065. return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm,
  1066. snd_rme32_pcm_byteptr(rme32));
  1067. }
  1068. static snd_pcm_uframes_t
  1069. snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream)
  1070. {
  1071. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1072. return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm,
  1073. snd_rme32_pcm_byteptr(rme32));
  1074. }
  1075. /* for halfduplex mode */
  1076. static struct snd_pcm_ops snd_rme32_playback_spdif_ops = {
  1077. .open = snd_rme32_playback_spdif_open,
  1078. .close = snd_rme32_playback_close,
  1079. .ioctl = snd_pcm_lib_ioctl,
  1080. .hw_params = snd_rme32_playback_hw_params,
  1081. .hw_free = snd_rme32_pcm_hw_free,
  1082. .prepare = snd_rme32_playback_prepare,
  1083. .trigger = snd_rme32_pcm_trigger,
  1084. .pointer = snd_rme32_playback_pointer,
  1085. .copy = snd_rme32_playback_copy,
  1086. .silence = snd_rme32_playback_silence,
  1087. .mmap = snd_pcm_lib_mmap_iomem,
  1088. };
  1089. static struct snd_pcm_ops snd_rme32_capture_spdif_ops = {
  1090. .open = snd_rme32_capture_spdif_open,
  1091. .close = snd_rme32_capture_close,
  1092. .ioctl = snd_pcm_lib_ioctl,
  1093. .hw_params = snd_rme32_capture_hw_params,
  1094. .hw_free = snd_rme32_pcm_hw_free,
  1095. .prepare = snd_rme32_capture_prepare,
  1096. .trigger = snd_rme32_pcm_trigger,
  1097. .pointer = snd_rme32_capture_pointer,
  1098. .copy = snd_rme32_capture_copy,
  1099. .mmap = snd_pcm_lib_mmap_iomem,
  1100. };
  1101. static struct snd_pcm_ops snd_rme32_playback_adat_ops = {
  1102. .open = snd_rme32_playback_adat_open,
  1103. .close = snd_rme32_playback_close,
  1104. .ioctl = snd_pcm_lib_ioctl,
  1105. .hw_params = snd_rme32_playback_hw_params,
  1106. .prepare = snd_rme32_playback_prepare,
  1107. .trigger = snd_rme32_pcm_trigger,
  1108. .pointer = snd_rme32_playback_pointer,
  1109. .copy = snd_rme32_playback_copy,
  1110. .silence = snd_rme32_playback_silence,
  1111. .mmap = snd_pcm_lib_mmap_iomem,
  1112. };
  1113. static struct snd_pcm_ops snd_rme32_capture_adat_ops = {
  1114. .open = snd_rme32_capture_adat_open,
  1115. .close = snd_rme32_capture_close,
  1116. .ioctl = snd_pcm_lib_ioctl,
  1117. .hw_params = snd_rme32_capture_hw_params,
  1118. .prepare = snd_rme32_capture_prepare,
  1119. .trigger = snd_rme32_pcm_trigger,
  1120. .pointer = snd_rme32_capture_pointer,
  1121. .copy = snd_rme32_capture_copy,
  1122. .mmap = snd_pcm_lib_mmap_iomem,
  1123. };
  1124. /* for fullduplex mode */
  1125. static struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = {
  1126. .open = snd_rme32_playback_spdif_open,
  1127. .close = snd_rme32_playback_close,
  1128. .ioctl = snd_pcm_lib_ioctl,
  1129. .hw_params = snd_rme32_playback_hw_params,
  1130. .hw_free = snd_rme32_pcm_hw_free,
  1131. .prepare = snd_rme32_playback_prepare,
  1132. .trigger = snd_rme32_pcm_trigger,
  1133. .pointer = snd_rme32_playback_fd_pointer,
  1134. .ack = snd_rme32_playback_fd_ack,
  1135. };
  1136. static struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = {
  1137. .open = snd_rme32_capture_spdif_open,
  1138. .close = snd_rme32_capture_close,
  1139. .ioctl = snd_pcm_lib_ioctl,
  1140. .hw_params = snd_rme32_capture_hw_params,
  1141. .hw_free = snd_rme32_pcm_hw_free,
  1142. .prepare = snd_rme32_capture_prepare,
  1143. .trigger = snd_rme32_pcm_trigger,
  1144. .pointer = snd_rme32_capture_fd_pointer,
  1145. .ack = snd_rme32_capture_fd_ack,
  1146. };
  1147. static struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = {
  1148. .open = snd_rme32_playback_adat_open,
  1149. .close = snd_rme32_playback_close,
  1150. .ioctl = snd_pcm_lib_ioctl,
  1151. .hw_params = snd_rme32_playback_hw_params,
  1152. .prepare = snd_rme32_playback_prepare,
  1153. .trigger = snd_rme32_pcm_trigger,
  1154. .pointer = snd_rme32_playback_fd_pointer,
  1155. .ack = snd_rme32_playback_fd_ack,
  1156. };
  1157. static struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = {
  1158. .open = snd_rme32_capture_adat_open,
  1159. .close = snd_rme32_capture_close,
  1160. .ioctl = snd_pcm_lib_ioctl,
  1161. .hw_params = snd_rme32_capture_hw_params,
  1162. .prepare = snd_rme32_capture_prepare,
  1163. .trigger = snd_rme32_pcm_trigger,
  1164. .pointer = snd_rme32_capture_fd_pointer,
  1165. .ack = snd_rme32_capture_fd_ack,
  1166. };
  1167. static void snd_rme32_free(void *private_data)
  1168. {
  1169. struct rme32 *rme32 = (struct rme32 *) private_data;
  1170. if (rme32 == NULL) {
  1171. return;
  1172. }
  1173. if (rme32->irq >= 0) {
  1174. snd_rme32_pcm_stop(rme32, 0);
  1175. free_irq(rme32->irq, (void *) rme32);
  1176. rme32->irq = -1;
  1177. }
  1178. if (rme32->iobase) {
  1179. iounmap(rme32->iobase);
  1180. rme32->iobase = NULL;
  1181. }
  1182. if (rme32->port) {
  1183. pci_release_regions(rme32->pci);
  1184. rme32->port = 0;
  1185. }
  1186. pci_disable_device(rme32->pci);
  1187. }
  1188. static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm)
  1189. {
  1190. struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
  1191. rme32->spdif_pcm = NULL;
  1192. }
  1193. static void
  1194. snd_rme32_free_adat_pcm(struct snd_pcm *pcm)
  1195. {
  1196. struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
  1197. rme32->adat_pcm = NULL;
  1198. }
  1199. static int __devinit snd_rme32_create(struct rme32 * rme32)
  1200. {
  1201. struct pci_dev *pci = rme32->pci;
  1202. int err;
  1203. rme32->irq = -1;
  1204. spin_lock_init(&rme32->lock);
  1205. if ((err = pci_enable_device(pci)) < 0)
  1206. return err;
  1207. if ((err = pci_request_regions(pci, "RME32")) < 0)
  1208. return err;
  1209. rme32->port = pci_resource_start(rme32->pci, 0);
  1210. rme32->iobase = ioremap_nocache(rme32->port, RME32_IO_SIZE);
  1211. if (!rme32->iobase) {
  1212. snd_printk(KERN_ERR "unable to remap memory region 0x%lx-0x%lx\n",
  1213. rme32->port, rme32->port + RME32_IO_SIZE - 1);
  1214. return -ENOMEM;
  1215. }
  1216. if (request_irq(pci->irq, snd_rme32_interrupt, IRQF_SHARED,
  1217. "RME32", rme32)) {
  1218. snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
  1219. return -EBUSY;
  1220. }
  1221. rme32->irq = pci->irq;
  1222. /* read the card's revision number */
  1223. pci_read_config_byte(pci, 8, &rme32->rev);
  1224. /* set up ALSA pcm device for S/PDIF */
  1225. if ((err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm)) < 0) {
  1226. return err;
  1227. }
  1228. rme32->spdif_pcm->private_data = rme32;
  1229. rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
  1230. strcpy(rme32->spdif_pcm->name, "Digi32 IEC958");
  1231. if (rme32->fullduplex_mode) {
  1232. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1233. &snd_rme32_playback_spdif_fd_ops);
  1234. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1235. &snd_rme32_capture_spdif_fd_ops);
  1236. snd_pcm_lib_preallocate_pages_for_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
  1237. snd_dma_continuous_data(GFP_KERNEL),
  1238. 0, RME32_MID_BUFFER_SIZE);
  1239. rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
  1240. } else {
  1241. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1242. &snd_rme32_playback_spdif_ops);
  1243. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1244. &snd_rme32_capture_spdif_ops);
  1245. rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
  1246. }
  1247. /* set up ALSA pcm device for ADAT */
  1248. if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) ||
  1249. (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) {
  1250. /* ADAT is not available on DIGI32 and DIGI32 Pro */
  1251. rme32->adat_pcm = NULL;
  1252. }
  1253. else {
  1254. if ((err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
  1255. 1, 1, &rme32->adat_pcm)) < 0)
  1256. {
  1257. return err;
  1258. }
  1259. rme32->adat_pcm->private_data = rme32;
  1260. rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
  1261. strcpy(rme32->adat_pcm->name, "Digi32 ADAT");
  1262. if (rme32->fullduplex_mode) {
  1263. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1264. &snd_rme32_playback_adat_fd_ops);
  1265. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1266. &snd_rme32_capture_adat_fd_ops);
  1267. snd_pcm_lib_preallocate_pages_for_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
  1268. snd_dma_continuous_data(GFP_KERNEL),
  1269. 0, RME32_MID_BUFFER_SIZE);
  1270. rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
  1271. } else {
  1272. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1273. &snd_rme32_playback_adat_ops);
  1274. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1275. &snd_rme32_capture_adat_ops);
  1276. rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
  1277. }
  1278. }
  1279. rme32->playback_periodsize = 0;
  1280. rme32->capture_periodsize = 0;
  1281. /* make sure playback/capture is stopped, if by some reason active */
  1282. snd_rme32_pcm_stop(rme32, 0);
  1283. /* reset DAC */
  1284. snd_rme32_reset_dac(rme32);
  1285. /* reset buffer pointer */
  1286. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  1287. /* set default values in registers */
  1288. rme32->wcreg = RME32_WCR_SEL | /* normal playback */
  1289. RME32_WCR_INP_0 | /* input select */
  1290. RME32_WCR_MUTE; /* muting on */
  1291. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1292. /* init switch interface */
  1293. if ((err = snd_rme32_create_switches(rme32->card, rme32)) < 0) {
  1294. return err;
  1295. }
  1296. /* init proc interface */
  1297. snd_rme32_proc_init(rme32);
  1298. rme32->capture_substream = NULL;
  1299. rme32->playback_substream = NULL;
  1300. return 0;
  1301. }
  1302. /*
  1303. * proc interface
  1304. */
  1305. static void
  1306. snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
  1307. {
  1308. int n;
  1309. struct rme32 *rme32 = (struct rme32 *) entry->private_data;
  1310. rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1311. snd_iprintf(buffer, rme32->card->longname);
  1312. snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);
  1313. snd_iprintf(buffer, "\nGeneral settings\n");
  1314. if (rme32->fullduplex_mode)
  1315. snd_iprintf(buffer, " Full-duplex mode\n");
  1316. else
  1317. snd_iprintf(buffer, " Half-duplex mode\n");
  1318. if (RME32_PRO_WITH_8414(rme32)) {
  1319. snd_iprintf(buffer, " receiver: CS8414\n");
  1320. } else {
  1321. snd_iprintf(buffer, " receiver: CS8412\n");
  1322. }
  1323. if (rme32->wcreg & RME32_WCR_MODE24) {
  1324. snd_iprintf(buffer, " format: 24 bit");
  1325. } else {
  1326. snd_iprintf(buffer, " format: 16 bit");
  1327. }
  1328. if (rme32->wcreg & RME32_WCR_MONO) {
  1329. snd_iprintf(buffer, ", Mono\n");
  1330. } else {
  1331. snd_iprintf(buffer, ", Stereo\n");
  1332. }
  1333. snd_iprintf(buffer, "\nInput settings\n");
  1334. switch (snd_rme32_getinputtype(rme32)) {
  1335. case RME32_INPUT_OPTICAL:
  1336. snd_iprintf(buffer, " input: optical");
  1337. break;
  1338. case RME32_INPUT_COAXIAL:
  1339. snd_iprintf(buffer, " input: coaxial");
  1340. break;
  1341. case RME32_INPUT_INTERNAL:
  1342. snd_iprintf(buffer, " input: internal");
  1343. break;
  1344. case RME32_INPUT_XLR:
  1345. snd_iprintf(buffer, " input: XLR");
  1346. break;
  1347. }
  1348. if (snd_rme32_capture_getrate(rme32, &n) < 0) {
  1349. snd_iprintf(buffer, "\n sample rate: no valid signal\n");
  1350. } else {
  1351. if (n) {
  1352. snd_iprintf(buffer, " (8 channels)\n");
  1353. } else {
  1354. snd_iprintf(buffer, " (2 channels)\n");
  1355. }
  1356. snd_iprintf(buffer, " sample rate: %d Hz\n",
  1357. snd_rme32_capture_getrate(rme32, &n));
  1358. }
  1359. snd_iprintf(buffer, "\nOutput settings\n");
  1360. if (rme32->wcreg & RME32_WCR_SEL) {
  1361. snd_iprintf(buffer, " output signal: normal playback");
  1362. } else {
  1363. snd_iprintf(buffer, " output signal: same as input");
  1364. }
  1365. if (rme32->wcreg & RME32_WCR_MUTE) {
  1366. snd_iprintf(buffer, " (muted)\n");
  1367. } else {
  1368. snd_iprintf(buffer, "\n");
  1369. }
  1370. /* master output frequency */
  1371. if (!
  1372. ((!(rme32->wcreg & RME32_WCR_FREQ_0))
  1373. && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
  1374. snd_iprintf(buffer, " sample rate: %d Hz\n",
  1375. snd_rme32_playback_getrate(rme32));
  1376. }
  1377. if (rme32->rcreg & RME32_RCR_KMODE) {
  1378. snd_iprintf(buffer, " sample clock source: AutoSync\n");
  1379. } else {
  1380. snd_iprintf(buffer, " sample clock source: Internal\n");
  1381. }
  1382. if (rme32->wcreg & RME32_WCR_PRO) {
  1383. snd_iprintf(buffer, " format: AES/EBU (professional)\n");
  1384. } else {
  1385. snd_iprintf(buffer, " format: IEC958 (consumer)\n");
  1386. }
  1387. if (rme32->wcreg & RME32_WCR_EMP) {
  1388. snd_iprintf(buffer, " emphasis: on\n");
  1389. } else {
  1390. snd_iprintf(buffer, " emphasis: off\n");
  1391. }
  1392. }
  1393. static void __devinit snd_rme32_proc_init(struct rme32 * rme32)
  1394. {
  1395. struct snd_info_entry *entry;
  1396. if (! snd_card_proc_new(rme32->card, "rme32", &entry))
  1397. snd_info_set_text_ops(entry, rme32, snd_rme32_proc_read);
  1398. }
  1399. /*
  1400. * control interface
  1401. */
  1402. #define snd_rme32_info_loopback_control snd_ctl_boolean_mono_info
  1403. static int
  1404. snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol,
  1405. struct snd_ctl_elem_value *ucontrol)
  1406. {
  1407. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1408. spin_lock_irq(&rme32->lock);
  1409. ucontrol->value.integer.value[0] =
  1410. rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
  1411. spin_unlock_irq(&rme32->lock);
  1412. return 0;
  1413. }
  1414. static int
  1415. snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol,
  1416. struct snd_ctl_elem_value *ucontrol)
  1417. {
  1418. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1419. unsigned int val;
  1420. int change;
  1421. val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
  1422. spin_lock_irq(&rme32->lock);
  1423. val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
  1424. change = val != rme32->wcreg;
  1425. if (ucontrol->value.integer.value[0])
  1426. val &= ~RME32_WCR_MUTE;
  1427. else
  1428. val |= RME32_WCR_MUTE;
  1429. rme32->wcreg = val;
  1430. writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1431. spin_unlock_irq(&rme32->lock);
  1432. return change;
  1433. }
  1434. static int
  1435. snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol,
  1436. struct snd_ctl_elem_info *uinfo)
  1437. {
  1438. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1439. static char *texts[4] = { "Optical", "Coaxial", "Internal", "XLR" };
  1440. uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  1441. uinfo->count = 1;
  1442. switch (rme32->pci->device) {
  1443. case PCI_DEVICE_ID_RME_DIGI32:
  1444. case PCI_DEVICE_ID_RME_DIGI32_8:
  1445. uinfo->value.enumerated.items = 3;
  1446. break;
  1447. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1448. uinfo->value.enumerated.items = 4;
  1449. break;
  1450. default:
  1451. snd_BUG();
  1452. break;
  1453. }
  1454. if (uinfo->value.enumerated.item >
  1455. uinfo->value.enumerated.items - 1) {
  1456. uinfo->value.enumerated.item =
  1457. uinfo->value.enumerated.items - 1;
  1458. }
  1459. strcpy(uinfo->value.enumerated.name,
  1460. texts[uinfo->value.enumerated.item]);
  1461. return 0;
  1462. }
  1463. static int
  1464. snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol,
  1465. struct snd_ctl_elem_value *ucontrol)
  1466. {
  1467. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1468. unsigned int items = 3;
  1469. spin_lock_irq(&rme32->lock);
  1470. ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);
  1471. switch (rme32->pci->device) {
  1472. case PCI_DEVICE_ID_RME_DIGI32:
  1473. case PCI_DEVICE_ID_RME_DIGI32_8:
  1474. items = 3;
  1475. break;
  1476. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1477. items = 4;
  1478. break;
  1479. default:
  1480. snd_BUG();
  1481. break;
  1482. }
  1483. if (ucontrol->value.enumerated.item[0] >= items) {
  1484. ucontrol->value.enumerated.item[0] = items - 1;
  1485. }
  1486. spin_unlock_irq(&rme32->lock);
  1487. return 0;
  1488. }
  1489. static int
  1490. snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol,
  1491. struct snd_ctl_elem_value *ucontrol)
  1492. {
  1493. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1494. unsigned int val;
  1495. int change, items = 3;
  1496. switch (rme32->pci->device) {
  1497. case PCI_DEVICE_ID_RME_DIGI32:
  1498. case PCI_DEVICE_ID_RME_DIGI32_8:
  1499. items = 3;
  1500. break;
  1501. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1502. items = 4;
  1503. break;
  1504. default:
  1505. snd_BUG();
  1506. break;
  1507. }
  1508. val = ucontrol->value.enumerated.item[0] % items;
  1509. spin_lock_irq(&rme32->lock);
  1510. change = val != (unsigned int)snd_rme32_getinputtype(rme32);
  1511. snd_rme32_setinputtype(rme32, val);
  1512. spin_unlock_irq(&rme32->lock);
  1513. return change;
  1514. }
  1515. static int
  1516. snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol,
  1517. struct snd_ctl_elem_info *uinfo)
  1518. {
  1519. static char *texts[4] = { "AutoSync",
  1520. "Internal 32.0kHz",
  1521. "Internal 44.1kHz",
  1522. "Internal 48.0kHz" };
  1523. uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  1524. uinfo->count = 1;
  1525. uinfo->value.enumerated.items = 4;
  1526. if (uinfo->value.enumerated.item > 3) {
  1527. uinfo->value.enumerated.item = 3;
  1528. }
  1529. strcpy(uinfo->value.enumerated.name,
  1530. texts[uinfo->value.enumerated.item]);
  1531. return 0;
  1532. }
  1533. static int
  1534. snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol,
  1535. struct snd_ctl_elem_value *ucontrol)
  1536. {
  1537. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1538. spin_lock_irq(&rme32->lock);
  1539. ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
  1540. spin_unlock_irq(&rme32->lock);
  1541. return 0;
  1542. }
  1543. static int
  1544. snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol,
  1545. struct snd_ctl_elem_value *ucontrol)
  1546. {
  1547. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1548. unsigned int val;
  1549. int change;
  1550. val = ucontrol->value.enumerated.item[0] % 3;
  1551. spin_lock_irq(&rme32->lock);
  1552. change = val != (unsigned int)snd_rme32_getclockmode(rme32);
  1553. snd_rme32_setclockmode(rme32, val);
  1554. spin_unlock_irq(&rme32->lock);
  1555. return change;
  1556. }
  1557. static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes)
  1558. {
  1559. u32 val = 0;
  1560. val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
  1561. if (val & RME32_WCR_PRO)
  1562. val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
  1563. else
  1564. val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
  1565. return val;
  1566. }
  1567. static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val)
  1568. {
  1569. aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
  1570. if (val & RME32_WCR_PRO)
  1571. aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
  1572. else
  1573. aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
  1574. }
  1575. static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol,
  1576. struct snd_ctl_elem_info *uinfo)
  1577. {
  1578. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1579. uinfo->count = 1;
  1580. return 0;
  1581. }
  1582. static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol,
  1583. struct snd_ctl_elem_value *ucontrol)
  1584. {
  1585. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1586. snd_rme32_convert_to_aes(&ucontrol->value.iec958,
  1587. rme32->wcreg_spdif);
  1588. return 0;
  1589. }
  1590. static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol,
  1591. struct snd_ctl_elem_value *ucontrol)
  1592. {
  1593. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1594. int change;
  1595. u32 val;
  1596. val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
  1597. spin_lock_irq(&rme32->lock);
  1598. change = val != rme32->wcreg_spdif;
  1599. rme32->wcreg_spdif = val;
  1600. spin_unlock_irq(&rme32->lock);
  1601. return change;
  1602. }
  1603. static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol,
  1604. struct snd_ctl_elem_info *uinfo)
  1605. {
  1606. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1607. uinfo->count = 1;
  1608. return 0;
  1609. }
  1610. static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol,
  1611. struct snd_ctl_elem_value *
  1612. ucontrol)
  1613. {
  1614. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1615. snd_rme32_convert_to_aes(&ucontrol->value.iec958,
  1616. rme32->wcreg_spdif_stream);
  1617. return 0;
  1618. }
  1619. static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol,
  1620. struct snd_ctl_elem_value *
  1621. ucontrol)
  1622. {
  1623. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1624. int change;
  1625. u32 val;
  1626. val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
  1627. spin_lock_irq(&rme32->lock);
  1628. change = val != rme32->wcreg_spdif_stream;
  1629. rme32->wcreg_spdif_stream = val;
  1630. rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
  1631. rme32->wcreg |= val;
  1632. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1633. spin_unlock_irq(&rme32->lock);
  1634. return change;
  1635. }
  1636. static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol,
  1637. struct snd_ctl_elem_info *uinfo)
  1638. {
  1639. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1640. uinfo->count = 1;
  1641. return 0;
  1642. }
  1643. static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol,
  1644. struct snd_ctl_elem_value *
  1645. ucontrol)
  1646. {
  1647. ucontrol->value.iec958.status[0] = kcontrol->private_value;
  1648. return 0;
  1649. }
  1650. static struct snd_kcontrol_new snd_rme32_controls[] = {
  1651. {
  1652. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1653. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  1654. .info = snd_rme32_control_spdif_info,
  1655. .get = snd_rme32_control_spdif_get,
  1656. .put = snd_rme32_control_spdif_put
  1657. },
  1658. {
  1659. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  1660. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1661. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  1662. .info = snd_rme32_control_spdif_stream_info,
  1663. .get = snd_rme32_control_spdif_stream_get,
  1664. .put = snd_rme32_control_spdif_stream_put
  1665. },
  1666. {
  1667. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  1668. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1669. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
  1670. .info = snd_rme32_control_spdif_mask_info,
  1671. .get = snd_rme32_control_spdif_mask_get,
  1672. .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
  1673. },
  1674. {
  1675. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  1676. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1677. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
  1678. .info = snd_rme32_control_spdif_mask_info,
  1679. .get = snd_rme32_control_spdif_mask_get,
  1680. .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
  1681. },
  1682. {
  1683. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1684. .name = "Input Connector",
  1685. .info = snd_rme32_info_inputtype_control,
  1686. .get = snd_rme32_get_inputtype_control,
  1687. .put = snd_rme32_put_inputtype_control
  1688. },
  1689. {
  1690. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1691. .name = "Loopback Input",
  1692. .info = snd_rme32_info_loopback_control,
  1693. .get = snd_rme32_get_loopback_control,
  1694. .put = snd_rme32_put_loopback_control
  1695. },
  1696. {
  1697. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1698. .name = "Sample Clock Source",
  1699. .info = snd_rme32_info_clockmode_control,
  1700. .get = snd_rme32_get_clockmode_control,
  1701. .put = snd_rme32_put_clockmode_control
  1702. }
  1703. };
  1704. static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32)
  1705. {
  1706. int idx, err;
  1707. struct snd_kcontrol *kctl;
  1708. for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) {
  1709. if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32))) < 0)
  1710. return err;
  1711. if (idx == 1) /* IEC958 (S/PDIF) Stream */
  1712. rme32->spdif_ctl = kctl;
  1713. }
  1714. return 0;
  1715. }
  1716. /*
  1717. * Card initialisation
  1718. */
  1719. static void snd_rme32_card_free(struct snd_card *card)
  1720. {
  1721. snd_rme32_free(card->private_data);
  1722. }
  1723. static int __devinit
  1724. snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
  1725. {
  1726. static int dev;
  1727. struct rme32 *rme32;
  1728. struct snd_card *card;
  1729. int err;
  1730. if (dev >= SNDRV_CARDS) {
  1731. return -ENODEV;
  1732. }
  1733. if (!enable[dev]) {
  1734. dev++;
  1735. return -ENOENT;
  1736. }
  1737. err = snd_card_create(index[dev], id[dev], THIS_MODULE,
  1738. sizeof(struct rme32), &card);
  1739. if (err < 0)
  1740. return err;
  1741. card->private_free = snd_rme32_card_free;
  1742. rme32 = (struct rme32 *) card->private_data;
  1743. rme32->card = card;
  1744. rme32->pci = pci;
  1745. snd_card_set_dev(card, &pci->dev);
  1746. if (fullduplex[dev])
  1747. rme32->fullduplex_mode = 1;
  1748. if ((err = snd_rme32_create(rme32)) < 0) {
  1749. snd_card_free(card);
  1750. return err;
  1751. }
  1752. strcpy(card->driver, "Digi32");
  1753. switch (rme32->pci->device) {
  1754. case PCI_DEVICE_ID_RME_DIGI32:
  1755. strcpy(card->shortname, "RME Digi32");
  1756. break;
  1757. case PCI_DEVICE_ID_RME_DIGI32_8:
  1758. strcpy(card->shortname, "RME Digi32/8");
  1759. break;
  1760. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1761. strcpy(card->shortname, "RME Digi32 PRO");
  1762. break;
  1763. }
  1764. sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
  1765. card->shortname, rme32->rev, rme32->port, rme32->irq);
  1766. if ((err = snd_card_register(card)) < 0) {
  1767. snd_card_free(card);
  1768. return err;
  1769. }
  1770. pci_set_drvdata(pci, card);
  1771. dev++;
  1772. return 0;
  1773. }
  1774. static void __devexit snd_rme32_remove(struct pci_dev *pci)
  1775. {
  1776. snd_card_free(pci_get_drvdata(pci));
  1777. pci_set_drvdata(pci, NULL);
  1778. }
  1779. static struct pci_driver driver = {
  1780. .name = "RME Digi32",
  1781. .id_table = snd_rme32_ids,
  1782. .probe = snd_rme32_probe,
  1783. .remove = __devexit_p(snd_rme32_remove),
  1784. };
  1785. static int __init alsa_card_rme32_init(void)
  1786. {
  1787. return pci_register_driver(&driver);
  1788. }
  1789. static void __exit alsa_card_rme32_exit(void)
  1790. {
  1791. pci_unregister_driver(&driver);
  1792. }
  1793. module_init(alsa_card_rme32_init)
  1794. module_exit(alsa_card_rme32_exit)