oxygen_mixer.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004
  1. /*
  2. * C-Media CMI8788 driver - mixer code
  3. *
  4. * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
  5. *
  6. *
  7. * This driver is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License, version 2.
  9. *
  10. * This driver is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this driver; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/mutex.h>
  20. #include <sound/ac97_codec.h>
  21. #include <sound/asoundef.h>
  22. #include <sound/control.h>
  23. #include <sound/tlv.h>
  24. #include "oxygen.h"
  25. #include "cm9780.h"
  26. static int dac_volume_info(struct snd_kcontrol *ctl,
  27. struct snd_ctl_elem_info *info)
  28. {
  29. struct oxygen *chip = ctl->private_data;
  30. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  31. info->count = chip->model.dac_channels;
  32. info->value.integer.min = chip->model.dac_volume_min;
  33. info->value.integer.max = chip->model.dac_volume_max;
  34. return 0;
  35. }
  36. static int dac_volume_get(struct snd_kcontrol *ctl,
  37. struct snd_ctl_elem_value *value)
  38. {
  39. struct oxygen *chip = ctl->private_data;
  40. unsigned int i;
  41. mutex_lock(&chip->mutex);
  42. for (i = 0; i < chip->model.dac_channels; ++i)
  43. value->value.integer.value[i] = chip->dac_volume[i];
  44. mutex_unlock(&chip->mutex);
  45. return 0;
  46. }
  47. static int dac_volume_put(struct snd_kcontrol *ctl,
  48. struct snd_ctl_elem_value *value)
  49. {
  50. struct oxygen *chip = ctl->private_data;
  51. unsigned int i;
  52. int changed;
  53. changed = 0;
  54. mutex_lock(&chip->mutex);
  55. for (i = 0; i < chip->model.dac_channels; ++i)
  56. if (value->value.integer.value[i] != chip->dac_volume[i]) {
  57. chip->dac_volume[i] = value->value.integer.value[i];
  58. changed = 1;
  59. }
  60. if (changed)
  61. chip->model.update_dac_volume(chip);
  62. mutex_unlock(&chip->mutex);
  63. return changed;
  64. }
  65. static int dac_mute_get(struct snd_kcontrol *ctl,
  66. struct snd_ctl_elem_value *value)
  67. {
  68. struct oxygen *chip = ctl->private_data;
  69. mutex_lock(&chip->mutex);
  70. value->value.integer.value[0] = !chip->dac_mute;
  71. mutex_unlock(&chip->mutex);
  72. return 0;
  73. }
  74. static int dac_mute_put(struct snd_kcontrol *ctl,
  75. struct snd_ctl_elem_value *value)
  76. {
  77. struct oxygen *chip = ctl->private_data;
  78. int changed;
  79. mutex_lock(&chip->mutex);
  80. changed = !value->value.integer.value[0] != chip->dac_mute;
  81. if (changed) {
  82. chip->dac_mute = !value->value.integer.value[0];
  83. chip->model.update_dac_mute(chip);
  84. }
  85. mutex_unlock(&chip->mutex);
  86. return changed;
  87. }
  88. static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  89. {
  90. static const char *const names[3] = {
  91. "Front", "Front+Surround", "Front+Surround+Back"
  92. };
  93. struct oxygen *chip = ctl->private_data;
  94. unsigned int count = 2 + (chip->model.dac_channels == 8);
  95. info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  96. info->count = 1;
  97. info->value.enumerated.items = count;
  98. if (info->value.enumerated.item >= count)
  99. info->value.enumerated.item = count - 1;
  100. strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
  101. return 0;
  102. }
  103. static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  104. {
  105. struct oxygen *chip = ctl->private_data;
  106. mutex_lock(&chip->mutex);
  107. value->value.enumerated.item[0] = chip->dac_routing;
  108. mutex_unlock(&chip->mutex);
  109. return 0;
  110. }
  111. void oxygen_update_dac_routing(struct oxygen *chip)
  112. {
  113. /* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
  114. static const unsigned int reg_values[3] = {
  115. /* stereo -> front */
  116. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  117. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  118. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  119. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  120. /* stereo -> front+surround */
  121. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  122. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  123. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  124. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  125. /* stereo -> front+surround+back */
  126. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  127. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  128. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  129. (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  130. };
  131. u8 channels;
  132. unsigned int reg_value;
  133. channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
  134. OXYGEN_PLAY_CHANNELS_MASK;
  135. if (channels == OXYGEN_PLAY_CHANNELS_2)
  136. reg_value = reg_values[chip->dac_routing];
  137. else if (channels == OXYGEN_PLAY_CHANNELS_8)
  138. /* in 7.1 mode, "rear" channels go to the "back" jack */
  139. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  140. (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  141. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  142. (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  143. else
  144. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  145. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  146. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  147. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  148. oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
  149. OXYGEN_PLAY_DAC0_SOURCE_MASK |
  150. OXYGEN_PLAY_DAC1_SOURCE_MASK |
  151. OXYGEN_PLAY_DAC2_SOURCE_MASK |
  152. OXYGEN_PLAY_DAC3_SOURCE_MASK);
  153. }
  154. static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  155. {
  156. struct oxygen *chip = ctl->private_data;
  157. unsigned int count = 2 + (chip->model.dac_channels == 8);
  158. int changed;
  159. mutex_lock(&chip->mutex);
  160. changed = value->value.enumerated.item[0] != chip->dac_routing;
  161. if (changed) {
  162. chip->dac_routing = min(value->value.enumerated.item[0],
  163. count - 1);
  164. spin_lock_irq(&chip->reg_lock);
  165. oxygen_update_dac_routing(chip);
  166. spin_unlock_irq(&chip->reg_lock);
  167. }
  168. mutex_unlock(&chip->mutex);
  169. return changed;
  170. }
  171. static int spdif_switch_get(struct snd_kcontrol *ctl,
  172. struct snd_ctl_elem_value *value)
  173. {
  174. struct oxygen *chip = ctl->private_data;
  175. mutex_lock(&chip->mutex);
  176. value->value.integer.value[0] = chip->spdif_playback_enable;
  177. mutex_unlock(&chip->mutex);
  178. return 0;
  179. }
  180. static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
  181. {
  182. switch (oxygen_rate) {
  183. case OXYGEN_RATE_32000:
  184. return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  185. case OXYGEN_RATE_44100:
  186. return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  187. default: /* OXYGEN_RATE_48000 */
  188. return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  189. case OXYGEN_RATE_64000:
  190. return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
  191. case OXYGEN_RATE_88200:
  192. return IEC958_AES3_CON_FS_88200 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  193. case OXYGEN_RATE_96000:
  194. return IEC958_AES3_CON_FS_96000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  195. case OXYGEN_RATE_176400:
  196. return IEC958_AES3_CON_FS_176400 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  197. case OXYGEN_RATE_192000:
  198. return IEC958_AES3_CON_FS_192000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  199. }
  200. }
  201. void oxygen_update_spdif_source(struct oxygen *chip)
  202. {
  203. u32 old_control, new_control;
  204. u16 old_routing, new_routing;
  205. unsigned int oxygen_rate;
  206. old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  207. old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
  208. if (chip->pcm_active & (1 << PCM_SPDIF)) {
  209. new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
  210. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  211. | OXYGEN_PLAY_SPDIF_SPDIF;
  212. oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
  213. & OXYGEN_I2S_RATE_MASK;
  214. /* S/PDIF rate was already set by the caller */
  215. } else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
  216. chip->spdif_playback_enable) {
  217. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  218. | OXYGEN_PLAY_SPDIF_MULTICH_01;
  219. oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
  220. & OXYGEN_I2S_RATE_MASK;
  221. new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
  222. (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
  223. OXYGEN_SPDIF_OUT_ENABLE;
  224. } else {
  225. new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
  226. new_routing = old_routing;
  227. oxygen_rate = OXYGEN_RATE_44100;
  228. }
  229. if (old_routing != new_routing) {
  230. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
  231. new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
  232. oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
  233. }
  234. if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
  235. oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
  236. oxygen_spdif_rate(oxygen_rate) |
  237. ((chip->pcm_active & (1 << PCM_SPDIF)) ?
  238. chip->spdif_pcm_bits : chip->spdif_bits));
  239. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
  240. }
  241. static int spdif_switch_put(struct snd_kcontrol *ctl,
  242. struct snd_ctl_elem_value *value)
  243. {
  244. struct oxygen *chip = ctl->private_data;
  245. int changed;
  246. mutex_lock(&chip->mutex);
  247. changed = value->value.integer.value[0] != chip->spdif_playback_enable;
  248. if (changed) {
  249. chip->spdif_playback_enable = !!value->value.integer.value[0];
  250. spin_lock_irq(&chip->reg_lock);
  251. oxygen_update_spdif_source(chip);
  252. spin_unlock_irq(&chip->reg_lock);
  253. }
  254. mutex_unlock(&chip->mutex);
  255. return changed;
  256. }
  257. static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  258. {
  259. info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  260. info->count = 1;
  261. return 0;
  262. }
  263. static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
  264. {
  265. value->value.iec958.status[0] =
  266. bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  267. OXYGEN_SPDIF_PREEMPHASIS);
  268. value->value.iec958.status[1] = /* category and original */
  269. bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
  270. }
  271. static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
  272. {
  273. u32 bits;
  274. bits = value->value.iec958.status[0] &
  275. (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  276. OXYGEN_SPDIF_PREEMPHASIS);
  277. bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
  278. if (bits & OXYGEN_SPDIF_NONAUDIO)
  279. bits |= OXYGEN_SPDIF_V;
  280. return bits;
  281. }
  282. static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
  283. {
  284. oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
  285. OXYGEN_SPDIF_NONAUDIO |
  286. OXYGEN_SPDIF_C |
  287. OXYGEN_SPDIF_PREEMPHASIS |
  288. OXYGEN_SPDIF_CATEGORY_MASK |
  289. OXYGEN_SPDIF_ORIGINAL |
  290. OXYGEN_SPDIF_V);
  291. }
  292. static int spdif_default_get(struct snd_kcontrol *ctl,
  293. struct snd_ctl_elem_value *value)
  294. {
  295. struct oxygen *chip = ctl->private_data;
  296. mutex_lock(&chip->mutex);
  297. oxygen_to_iec958(chip->spdif_bits, value);
  298. mutex_unlock(&chip->mutex);
  299. return 0;
  300. }
  301. static int spdif_default_put(struct snd_kcontrol *ctl,
  302. struct snd_ctl_elem_value *value)
  303. {
  304. struct oxygen *chip = ctl->private_data;
  305. u32 new_bits;
  306. int changed;
  307. new_bits = iec958_to_oxygen(value);
  308. mutex_lock(&chip->mutex);
  309. changed = new_bits != chip->spdif_bits;
  310. if (changed) {
  311. chip->spdif_bits = new_bits;
  312. if (!(chip->pcm_active & (1 << PCM_SPDIF)))
  313. write_spdif_bits(chip, new_bits);
  314. }
  315. mutex_unlock(&chip->mutex);
  316. return changed;
  317. }
  318. static int spdif_mask_get(struct snd_kcontrol *ctl,
  319. struct snd_ctl_elem_value *value)
  320. {
  321. value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
  322. IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
  323. value->value.iec958.status[1] =
  324. IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
  325. return 0;
  326. }
  327. static int spdif_pcm_get(struct snd_kcontrol *ctl,
  328. struct snd_ctl_elem_value *value)
  329. {
  330. struct oxygen *chip = ctl->private_data;
  331. mutex_lock(&chip->mutex);
  332. oxygen_to_iec958(chip->spdif_pcm_bits, value);
  333. mutex_unlock(&chip->mutex);
  334. return 0;
  335. }
  336. static int spdif_pcm_put(struct snd_kcontrol *ctl,
  337. struct snd_ctl_elem_value *value)
  338. {
  339. struct oxygen *chip = ctl->private_data;
  340. u32 new_bits;
  341. int changed;
  342. new_bits = iec958_to_oxygen(value);
  343. mutex_lock(&chip->mutex);
  344. changed = new_bits != chip->spdif_pcm_bits;
  345. if (changed) {
  346. chip->spdif_pcm_bits = new_bits;
  347. if (chip->pcm_active & (1 << PCM_SPDIF))
  348. write_spdif_bits(chip, new_bits);
  349. }
  350. mutex_unlock(&chip->mutex);
  351. return changed;
  352. }
  353. static int spdif_input_mask_get(struct snd_kcontrol *ctl,
  354. struct snd_ctl_elem_value *value)
  355. {
  356. value->value.iec958.status[0] = 0xff;
  357. value->value.iec958.status[1] = 0xff;
  358. value->value.iec958.status[2] = 0xff;
  359. value->value.iec958.status[3] = 0xff;
  360. return 0;
  361. }
  362. static int spdif_input_default_get(struct snd_kcontrol *ctl,
  363. struct snd_ctl_elem_value *value)
  364. {
  365. struct oxygen *chip = ctl->private_data;
  366. u32 bits;
  367. bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
  368. value->value.iec958.status[0] = bits;
  369. value->value.iec958.status[1] = bits >> 8;
  370. value->value.iec958.status[2] = bits >> 16;
  371. value->value.iec958.status[3] = bits >> 24;
  372. return 0;
  373. }
  374. static int spdif_loopback_get(struct snd_kcontrol *ctl,
  375. struct snd_ctl_elem_value *value)
  376. {
  377. struct oxygen *chip = ctl->private_data;
  378. value->value.integer.value[0] =
  379. !!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL)
  380. & OXYGEN_SPDIF_LOOPBACK);
  381. return 0;
  382. }
  383. static int spdif_loopback_put(struct snd_kcontrol *ctl,
  384. struct snd_ctl_elem_value *value)
  385. {
  386. struct oxygen *chip = ctl->private_data;
  387. u32 oldreg, newreg;
  388. int changed;
  389. spin_lock_irq(&chip->reg_lock);
  390. oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  391. if (value->value.integer.value[0])
  392. newreg = oldreg | OXYGEN_SPDIF_LOOPBACK;
  393. else
  394. newreg = oldreg & ~OXYGEN_SPDIF_LOOPBACK;
  395. changed = newreg != oldreg;
  396. if (changed)
  397. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
  398. spin_unlock_irq(&chip->reg_lock);
  399. return changed;
  400. }
  401. static int monitor_volume_info(struct snd_kcontrol *ctl,
  402. struct snd_ctl_elem_info *info)
  403. {
  404. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  405. info->count = 1;
  406. info->value.integer.min = 0;
  407. info->value.integer.max = 1;
  408. return 0;
  409. }
  410. static int monitor_get(struct snd_kcontrol *ctl,
  411. struct snd_ctl_elem_value *value)
  412. {
  413. struct oxygen *chip = ctl->private_data;
  414. u8 bit = ctl->private_value;
  415. int invert = ctl->private_value & (1 << 8);
  416. value->value.integer.value[0] =
  417. !!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit);
  418. return 0;
  419. }
  420. static int monitor_put(struct snd_kcontrol *ctl,
  421. struct snd_ctl_elem_value *value)
  422. {
  423. struct oxygen *chip = ctl->private_data;
  424. u8 bit = ctl->private_value;
  425. int invert = ctl->private_value & (1 << 8);
  426. u8 oldreg, newreg;
  427. int changed;
  428. spin_lock_irq(&chip->reg_lock);
  429. oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR);
  430. if ((!!value->value.integer.value[0] ^ !!invert) != 0)
  431. newreg = oldreg | bit;
  432. else
  433. newreg = oldreg & ~bit;
  434. changed = newreg != oldreg;
  435. if (changed)
  436. oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg);
  437. spin_unlock_irq(&chip->reg_lock);
  438. return changed;
  439. }
  440. static int ac97_switch_get(struct snd_kcontrol *ctl,
  441. struct snd_ctl_elem_value *value)
  442. {
  443. struct oxygen *chip = ctl->private_data;
  444. unsigned int codec = (ctl->private_value >> 24) & 1;
  445. unsigned int index = ctl->private_value & 0xff;
  446. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  447. int invert = ctl->private_value & (1 << 16);
  448. u16 reg;
  449. mutex_lock(&chip->mutex);
  450. reg = oxygen_read_ac97(chip, codec, index);
  451. mutex_unlock(&chip->mutex);
  452. if (!(reg & (1 << bitnr)) ^ !invert)
  453. value->value.integer.value[0] = 1;
  454. else
  455. value->value.integer.value[0] = 0;
  456. return 0;
  457. }
  458. static void mute_ac97_ctl(struct oxygen *chip, unsigned int control)
  459. {
  460. unsigned int priv_idx;
  461. u16 value;
  462. if (!chip->controls[control])
  463. return;
  464. priv_idx = chip->controls[control]->private_value & 0xff;
  465. value = oxygen_read_ac97(chip, 0, priv_idx);
  466. if (!(value & 0x8000)) {
  467. oxygen_write_ac97(chip, 0, priv_idx, value | 0x8000);
  468. if (chip->model.ac97_switch)
  469. chip->model.ac97_switch(chip, priv_idx, 0x8000);
  470. snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  471. &chip->controls[control]->id);
  472. }
  473. }
  474. static int ac97_switch_put(struct snd_kcontrol *ctl,
  475. struct snd_ctl_elem_value *value)
  476. {
  477. struct oxygen *chip = ctl->private_data;
  478. unsigned int codec = (ctl->private_value >> 24) & 1;
  479. unsigned int index = ctl->private_value & 0xff;
  480. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  481. int invert = ctl->private_value & (1 << 16);
  482. u16 oldreg, newreg;
  483. int change;
  484. mutex_lock(&chip->mutex);
  485. oldreg = oxygen_read_ac97(chip, codec, index);
  486. newreg = oldreg;
  487. if (!value->value.integer.value[0] ^ !invert)
  488. newreg |= 1 << bitnr;
  489. else
  490. newreg &= ~(1 << bitnr);
  491. change = newreg != oldreg;
  492. if (change) {
  493. oxygen_write_ac97(chip, codec, index, newreg);
  494. if (codec == 0 && chip->model.ac97_switch)
  495. chip->model.ac97_switch(chip, index, newreg & 0x8000);
  496. if (index == AC97_LINE) {
  497. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  498. newreg & 0x8000 ?
  499. CM9780_GPO0 : 0, CM9780_GPO0);
  500. if (!(newreg & 0x8000)) {
  501. mute_ac97_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH);
  502. mute_ac97_ctl(chip, CONTROL_CD_CAPTURE_SWITCH);
  503. mute_ac97_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH);
  504. }
  505. } else if ((index == AC97_MIC || index == AC97_CD ||
  506. index == AC97_VIDEO || index == AC97_AUX) &&
  507. bitnr == 15 && !(newreg & 0x8000)) {
  508. mute_ac97_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH);
  509. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  510. CM9780_GPO0, CM9780_GPO0);
  511. }
  512. }
  513. mutex_unlock(&chip->mutex);
  514. return change;
  515. }
  516. static int ac97_volume_info(struct snd_kcontrol *ctl,
  517. struct snd_ctl_elem_info *info)
  518. {
  519. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  520. info->count = 2;
  521. info->value.integer.min = 0;
  522. info->value.integer.max = 0x1f;
  523. return 0;
  524. }
  525. static int ac97_volume_get(struct snd_kcontrol *ctl,
  526. struct snd_ctl_elem_value *value)
  527. {
  528. struct oxygen *chip = ctl->private_data;
  529. unsigned int codec = (ctl->private_value >> 24) & 1;
  530. unsigned int index = ctl->private_value & 0xff;
  531. u16 reg;
  532. mutex_lock(&chip->mutex);
  533. reg = oxygen_read_ac97(chip, codec, index);
  534. mutex_unlock(&chip->mutex);
  535. value->value.integer.value[0] = 31 - (reg & 0x1f);
  536. value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f);
  537. return 0;
  538. }
  539. static int ac97_volume_put(struct snd_kcontrol *ctl,
  540. struct snd_ctl_elem_value *value)
  541. {
  542. struct oxygen *chip = ctl->private_data;
  543. unsigned int codec = (ctl->private_value >> 24) & 1;
  544. unsigned int index = ctl->private_value & 0xff;
  545. u16 oldreg, newreg;
  546. int change;
  547. mutex_lock(&chip->mutex);
  548. oldreg = oxygen_read_ac97(chip, codec, index);
  549. newreg = oldreg;
  550. newreg = (newreg & ~0x1f) |
  551. (31 - (value->value.integer.value[0] & 0x1f));
  552. newreg = (newreg & ~0x1f00) |
  553. ((31 - (value->value.integer.value[0] & 0x1f)) << 8);
  554. change = newreg != oldreg;
  555. if (change)
  556. oxygen_write_ac97(chip, codec, index, newreg);
  557. mutex_unlock(&chip->mutex);
  558. return change;
  559. }
  560. static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl,
  561. struct snd_ctl_elem_info *info)
  562. {
  563. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  564. info->count = 2;
  565. info->value.integer.min = 0;
  566. info->value.integer.max = 7;
  567. return 0;
  568. }
  569. static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl,
  570. struct snd_ctl_elem_value *value)
  571. {
  572. struct oxygen *chip = ctl->private_data;
  573. u16 reg;
  574. mutex_lock(&chip->mutex);
  575. reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  576. mutex_unlock(&chip->mutex);
  577. value->value.integer.value[0] = reg & 7;
  578. value->value.integer.value[1] = (reg >> 8) & 7;
  579. return 0;
  580. }
  581. static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl,
  582. struct snd_ctl_elem_value *value)
  583. {
  584. struct oxygen *chip = ctl->private_data;
  585. u16 oldreg, newreg;
  586. int change;
  587. mutex_lock(&chip->mutex);
  588. oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  589. newreg = oldreg & ~0x0707;
  590. newreg = newreg | (value->value.integer.value[0] & 7);
  591. newreg = newreg | ((value->value.integer.value[0] & 7) << 8);
  592. change = newreg != oldreg;
  593. if (change)
  594. oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg);
  595. mutex_unlock(&chip->mutex);
  596. return change;
  597. }
  598. #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \
  599. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  600. .name = xname, \
  601. .info = snd_ctl_boolean_mono_info, \
  602. .get = ac97_switch_get, \
  603. .put = ac97_switch_put, \
  604. .private_value = ((codec) << 24) | ((invert) << 16) | \
  605. ((bitnr) << 8) | (index), \
  606. }
  607. #define AC97_VOLUME(xname, codec, index) { \
  608. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  609. .name = xname, \
  610. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
  611. SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  612. .info = ac97_volume_info, \
  613. .get = ac97_volume_get, \
  614. .put = ac97_volume_put, \
  615. .tlv = { .p = ac97_db_scale, }, \
  616. .private_value = ((codec) << 24) | (index), \
  617. }
  618. static DECLARE_TLV_DB_SCALE(monitor_db_scale, -1000, 1000, 0);
  619. static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
  620. static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0);
  621. static const struct snd_kcontrol_new controls[] = {
  622. {
  623. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  624. .name = "Master Playback Volume",
  625. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  626. .info = dac_volume_info,
  627. .get = dac_volume_get,
  628. .put = dac_volume_put,
  629. },
  630. {
  631. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  632. .name = "Master Playback Switch",
  633. .info = snd_ctl_boolean_mono_info,
  634. .get = dac_mute_get,
  635. .put = dac_mute_put,
  636. },
  637. {
  638. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  639. .name = "Stereo Upmixing",
  640. .info = upmix_info,
  641. .get = upmix_get,
  642. .put = upmix_put,
  643. },
  644. {
  645. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  646. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
  647. .info = snd_ctl_boolean_mono_info,
  648. .get = spdif_switch_get,
  649. .put = spdif_switch_put,
  650. },
  651. {
  652. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  653. .device = 1,
  654. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  655. .info = spdif_info,
  656. .get = spdif_default_get,
  657. .put = spdif_default_put,
  658. },
  659. {
  660. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  661. .device = 1,
  662. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
  663. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  664. .info = spdif_info,
  665. .get = spdif_mask_get,
  666. },
  667. {
  668. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  669. .device = 1,
  670. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  671. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  672. SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  673. .info = spdif_info,
  674. .get = spdif_pcm_get,
  675. .put = spdif_pcm_put,
  676. },
  677. };
  678. static const struct snd_kcontrol_new spdif_input_controls[] = {
  679. {
  680. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  681. .device = 1,
  682. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
  683. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  684. .info = spdif_info,
  685. .get = spdif_input_mask_get,
  686. },
  687. {
  688. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  689. .device = 1,
  690. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  691. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  692. .info = spdif_info,
  693. .get = spdif_input_default_get,
  694. },
  695. {
  696. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  697. .name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
  698. .info = snd_ctl_boolean_mono_info,
  699. .get = spdif_loopback_get,
  700. .put = spdif_loopback_put,
  701. },
  702. };
  703. static const struct {
  704. unsigned int pcm_dev;
  705. struct snd_kcontrol_new controls[2];
  706. } monitor_controls[] = {
  707. {
  708. .pcm_dev = CAPTURE_0_FROM_I2S_1,
  709. .controls = {
  710. {
  711. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  712. .name = "Analog Input Monitor Switch",
  713. .info = snd_ctl_boolean_mono_info,
  714. .get = monitor_get,
  715. .put = monitor_put,
  716. .private_value = OXYGEN_ADC_MONITOR_A,
  717. },
  718. {
  719. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  720. .name = "Analog Input Monitor Volume",
  721. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  722. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  723. .info = monitor_volume_info,
  724. .get = monitor_get,
  725. .put = monitor_put,
  726. .private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL
  727. | (1 << 8),
  728. .tlv = { .p = monitor_db_scale, },
  729. },
  730. },
  731. },
  732. {
  733. .pcm_dev = CAPTURE_0_FROM_I2S_2,
  734. .controls = {
  735. {
  736. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  737. .name = "Analog Input Monitor Switch",
  738. .info = snd_ctl_boolean_mono_info,
  739. .get = monitor_get,
  740. .put = monitor_put,
  741. .private_value = OXYGEN_ADC_MONITOR_B,
  742. },
  743. {
  744. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  745. .name = "Analog Input Monitor Volume",
  746. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  747. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  748. .info = monitor_volume_info,
  749. .get = monitor_get,
  750. .put = monitor_put,
  751. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  752. | (1 << 8),
  753. .tlv = { .p = monitor_db_scale, },
  754. },
  755. },
  756. },
  757. {
  758. .pcm_dev = CAPTURE_2_FROM_I2S_2,
  759. .controls = {
  760. {
  761. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  762. .name = "Analog Input Monitor Switch",
  763. .index = 1,
  764. .info = snd_ctl_boolean_mono_info,
  765. .get = monitor_get,
  766. .put = monitor_put,
  767. .private_value = OXYGEN_ADC_MONITOR_B,
  768. },
  769. {
  770. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  771. .name = "Analog Input Monitor Volume",
  772. .index = 1,
  773. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  774. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  775. .info = monitor_volume_info,
  776. .get = monitor_get,
  777. .put = monitor_put,
  778. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  779. | (1 << 8),
  780. .tlv = { .p = monitor_db_scale, },
  781. },
  782. },
  783. },
  784. {
  785. .pcm_dev = CAPTURE_1_FROM_SPDIF,
  786. .controls = {
  787. {
  788. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  789. .name = "Digital Input Monitor Switch",
  790. .info = snd_ctl_boolean_mono_info,
  791. .get = monitor_get,
  792. .put = monitor_put,
  793. .private_value = OXYGEN_ADC_MONITOR_C,
  794. },
  795. {
  796. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  797. .name = "Digital Input Monitor Volume",
  798. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  799. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  800. .info = monitor_volume_info,
  801. .get = monitor_get,
  802. .put = monitor_put,
  803. .private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL
  804. | (1 << 8),
  805. .tlv = { .p = monitor_db_scale, },
  806. },
  807. },
  808. },
  809. };
  810. static const struct snd_kcontrol_new ac97_controls[] = {
  811. AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC),
  812. AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1),
  813. AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0),
  814. AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1),
  815. AC97_VOLUME("CD Capture Volume", 0, AC97_CD),
  816. AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1),
  817. AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX),
  818. AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1),
  819. };
  820. static const struct snd_kcontrol_new ac97_fp_controls[] = {
  821. AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE),
  822. AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1),
  823. {
  824. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  825. .name = "Front Panel Capture Volume",
  826. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  827. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  828. .info = ac97_fp_rec_volume_info,
  829. .get = ac97_fp_rec_volume_get,
  830. .put = ac97_fp_rec_volume_put,
  831. .tlv = { .p = ac97_rec_db_scale, },
  832. },
  833. AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1),
  834. };
  835. static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
  836. {
  837. struct oxygen *chip = ctl->private_data;
  838. unsigned int i;
  839. /* I'm too lazy to write a function for each control :-) */
  840. for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
  841. chip->controls[i] = NULL;
  842. }
  843. static int add_controls(struct oxygen *chip,
  844. const struct snd_kcontrol_new controls[],
  845. unsigned int count)
  846. {
  847. static const char *const known_ctl_names[CONTROL_COUNT] = {
  848. [CONTROL_SPDIF_PCM] =
  849. SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  850. [CONTROL_SPDIF_INPUT_BITS] =
  851. SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  852. [CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
  853. [CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
  854. [CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
  855. [CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
  856. };
  857. unsigned int i, j;
  858. struct snd_kcontrol_new template;
  859. struct snd_kcontrol *ctl;
  860. int err;
  861. for (i = 0; i < count; ++i) {
  862. template = controls[i];
  863. if (chip->model.control_filter) {
  864. err = chip->model.control_filter(&template);
  865. if (err < 0)
  866. return err;
  867. if (err == 1)
  868. continue;
  869. }
  870. if (!strcmp(template.name, "Master Playback Volume") &&
  871. chip->model.dac_tlv) {
  872. template.tlv.p = chip->model.dac_tlv;
  873. template.access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
  874. }
  875. ctl = snd_ctl_new1(&template, chip);
  876. if (!ctl)
  877. return -ENOMEM;
  878. err = snd_ctl_add(chip->card, ctl);
  879. if (err < 0)
  880. return err;
  881. for (j = 0; j < CONTROL_COUNT; ++j)
  882. if (!strcmp(ctl->id.name, known_ctl_names[j])) {
  883. chip->controls[j] = ctl;
  884. ctl->private_free = oxygen_any_ctl_free;
  885. }
  886. }
  887. return 0;
  888. }
  889. int oxygen_mixer_init(struct oxygen *chip)
  890. {
  891. unsigned int i;
  892. int err;
  893. err = add_controls(chip, controls, ARRAY_SIZE(controls));
  894. if (err < 0)
  895. return err;
  896. if (chip->model.device_config & CAPTURE_1_FROM_SPDIF) {
  897. err = add_controls(chip, spdif_input_controls,
  898. ARRAY_SIZE(spdif_input_controls));
  899. if (err < 0)
  900. return err;
  901. }
  902. for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) {
  903. if (!(chip->model.device_config & monitor_controls[i].pcm_dev))
  904. continue;
  905. err = add_controls(chip, monitor_controls[i].controls,
  906. ARRAY_SIZE(monitor_controls[i].controls));
  907. if (err < 0)
  908. return err;
  909. }
  910. if (chip->has_ac97_0) {
  911. err = add_controls(chip, ac97_controls,
  912. ARRAY_SIZE(ac97_controls));
  913. if (err < 0)
  914. return err;
  915. }
  916. if (chip->has_ac97_1) {
  917. err = add_controls(chip, ac97_fp_controls,
  918. ARRAY_SIZE(ac97_fp_controls));
  919. if (err < 0)
  920. return err;
  921. }
  922. return chip->model.mixer_init ? chip->model.mixer_init(chip) : 0;
  923. }