xfrm_state.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313
  1. /*
  2. * xfrm_state.c
  3. *
  4. * Changes:
  5. * Mitsuru KANDA @USAGI
  6. * Kazunori MIYAZAWA @USAGI
  7. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  8. * IPv6 support
  9. * YOSHIFUJI Hideaki @USAGI
  10. * Split up af-specific functions
  11. * Derek Atkins <derek@ihtfp.com>
  12. * Add UDP Encapsulation
  13. *
  14. */
  15. #include <linux/workqueue.h>
  16. #include <net/xfrm.h>
  17. #include <linux/pfkeyv2.h>
  18. #include <linux/ipsec.h>
  19. #include <linux/module.h>
  20. #include <linux/cache.h>
  21. #include <linux/audit.h>
  22. #include <asm/uaccess.h>
  23. #include "xfrm_hash.h"
  24. /* Each xfrm_state may be linked to two tables:
  25. 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl)
  26. 2. Hash table by (daddr,family,reqid) to find what SAs exist for given
  27. destination/tunnel endpoint. (output)
  28. */
  29. static DEFINE_SPINLOCK(xfrm_state_lock);
  30. static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024;
  31. static unsigned int xfrm_state_genid;
  32. static struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family);
  33. static void xfrm_state_put_afinfo(struct xfrm_state_afinfo *afinfo);
  34. #ifdef CONFIG_AUDITSYSCALL
  35. static void xfrm_audit_state_replay(struct xfrm_state *x,
  36. struct sk_buff *skb, __be32 net_seq);
  37. #else
  38. #define xfrm_audit_state_replay(x, s, sq) do { ; } while (0)
  39. #endif /* CONFIG_AUDITSYSCALL */
  40. static inline unsigned int xfrm_dst_hash(struct net *net,
  41. xfrm_address_t *daddr,
  42. xfrm_address_t *saddr,
  43. u32 reqid,
  44. unsigned short family)
  45. {
  46. return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask);
  47. }
  48. static inline unsigned int xfrm_src_hash(struct net *net,
  49. xfrm_address_t *daddr,
  50. xfrm_address_t *saddr,
  51. unsigned short family)
  52. {
  53. return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask);
  54. }
  55. static inline unsigned int
  56. xfrm_spi_hash(struct net *net, xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family)
  57. {
  58. return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask);
  59. }
  60. static void xfrm_hash_transfer(struct hlist_head *list,
  61. struct hlist_head *ndsttable,
  62. struct hlist_head *nsrctable,
  63. struct hlist_head *nspitable,
  64. unsigned int nhashmask)
  65. {
  66. struct hlist_node *entry, *tmp;
  67. struct xfrm_state *x;
  68. hlist_for_each_entry_safe(x, entry, tmp, list, bydst) {
  69. unsigned int h;
  70. h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr,
  71. x->props.reqid, x->props.family,
  72. nhashmask);
  73. hlist_add_head(&x->bydst, ndsttable+h);
  74. h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr,
  75. x->props.family,
  76. nhashmask);
  77. hlist_add_head(&x->bysrc, nsrctable+h);
  78. if (x->id.spi) {
  79. h = __xfrm_spi_hash(&x->id.daddr, x->id.spi,
  80. x->id.proto, x->props.family,
  81. nhashmask);
  82. hlist_add_head(&x->byspi, nspitable+h);
  83. }
  84. }
  85. }
  86. static unsigned long xfrm_hash_new_size(unsigned int state_hmask)
  87. {
  88. return ((state_hmask + 1) << 1) * sizeof(struct hlist_head);
  89. }
  90. static DEFINE_MUTEX(hash_resize_mutex);
  91. static void xfrm_hash_resize(struct work_struct *work)
  92. {
  93. struct net *net = container_of(work, struct net, xfrm.state_hash_work);
  94. struct hlist_head *ndst, *nsrc, *nspi, *odst, *osrc, *ospi;
  95. unsigned long nsize, osize;
  96. unsigned int nhashmask, ohashmask;
  97. int i;
  98. mutex_lock(&hash_resize_mutex);
  99. nsize = xfrm_hash_new_size(net->xfrm.state_hmask);
  100. ndst = xfrm_hash_alloc(nsize);
  101. if (!ndst)
  102. goto out_unlock;
  103. nsrc = xfrm_hash_alloc(nsize);
  104. if (!nsrc) {
  105. xfrm_hash_free(ndst, nsize);
  106. goto out_unlock;
  107. }
  108. nspi = xfrm_hash_alloc(nsize);
  109. if (!nspi) {
  110. xfrm_hash_free(ndst, nsize);
  111. xfrm_hash_free(nsrc, nsize);
  112. goto out_unlock;
  113. }
  114. spin_lock_bh(&xfrm_state_lock);
  115. nhashmask = (nsize / sizeof(struct hlist_head)) - 1U;
  116. for (i = net->xfrm.state_hmask; i >= 0; i--)
  117. xfrm_hash_transfer(net->xfrm.state_bydst+i, ndst, nsrc, nspi,
  118. nhashmask);
  119. odst = net->xfrm.state_bydst;
  120. osrc = net->xfrm.state_bysrc;
  121. ospi = net->xfrm.state_byspi;
  122. ohashmask = net->xfrm.state_hmask;
  123. net->xfrm.state_bydst = ndst;
  124. net->xfrm.state_bysrc = nsrc;
  125. net->xfrm.state_byspi = nspi;
  126. net->xfrm.state_hmask = nhashmask;
  127. spin_unlock_bh(&xfrm_state_lock);
  128. osize = (ohashmask + 1) * sizeof(struct hlist_head);
  129. xfrm_hash_free(odst, osize);
  130. xfrm_hash_free(osrc, osize);
  131. xfrm_hash_free(ospi, osize);
  132. out_unlock:
  133. mutex_unlock(&hash_resize_mutex);
  134. }
  135. static DEFINE_RWLOCK(xfrm_state_afinfo_lock);
  136. static struct xfrm_state_afinfo *xfrm_state_afinfo[NPROTO];
  137. static DEFINE_SPINLOCK(xfrm_state_gc_lock);
  138. int __xfrm_state_delete(struct xfrm_state *x);
  139. int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol);
  140. void km_state_expired(struct xfrm_state *x, int hard, u32 pid);
  141. static struct xfrm_state_afinfo *xfrm_state_lock_afinfo(unsigned int family)
  142. {
  143. struct xfrm_state_afinfo *afinfo;
  144. if (unlikely(family >= NPROTO))
  145. return NULL;
  146. write_lock_bh(&xfrm_state_afinfo_lock);
  147. afinfo = xfrm_state_afinfo[family];
  148. if (unlikely(!afinfo))
  149. write_unlock_bh(&xfrm_state_afinfo_lock);
  150. return afinfo;
  151. }
  152. static void xfrm_state_unlock_afinfo(struct xfrm_state_afinfo *afinfo)
  153. __releases(xfrm_state_afinfo_lock)
  154. {
  155. write_unlock_bh(&xfrm_state_afinfo_lock);
  156. }
  157. int xfrm_register_type(const struct xfrm_type *type, unsigned short family)
  158. {
  159. struct xfrm_state_afinfo *afinfo = xfrm_state_lock_afinfo(family);
  160. const struct xfrm_type **typemap;
  161. int err = 0;
  162. if (unlikely(afinfo == NULL))
  163. return -EAFNOSUPPORT;
  164. typemap = afinfo->type_map;
  165. if (likely(typemap[type->proto] == NULL))
  166. typemap[type->proto] = type;
  167. else
  168. err = -EEXIST;
  169. xfrm_state_unlock_afinfo(afinfo);
  170. return err;
  171. }
  172. EXPORT_SYMBOL(xfrm_register_type);
  173. int xfrm_unregister_type(const struct xfrm_type *type, unsigned short family)
  174. {
  175. struct xfrm_state_afinfo *afinfo = xfrm_state_lock_afinfo(family);
  176. const struct xfrm_type **typemap;
  177. int err = 0;
  178. if (unlikely(afinfo == NULL))
  179. return -EAFNOSUPPORT;
  180. typemap = afinfo->type_map;
  181. if (unlikely(typemap[type->proto] != type))
  182. err = -ENOENT;
  183. else
  184. typemap[type->proto] = NULL;
  185. xfrm_state_unlock_afinfo(afinfo);
  186. return err;
  187. }
  188. EXPORT_SYMBOL(xfrm_unregister_type);
  189. static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
  190. {
  191. struct xfrm_state_afinfo *afinfo;
  192. const struct xfrm_type **typemap;
  193. const struct xfrm_type *type;
  194. int modload_attempted = 0;
  195. retry:
  196. afinfo = xfrm_state_get_afinfo(family);
  197. if (unlikely(afinfo == NULL))
  198. return NULL;
  199. typemap = afinfo->type_map;
  200. type = typemap[proto];
  201. if (unlikely(type && !try_module_get(type->owner)))
  202. type = NULL;
  203. if (!type && !modload_attempted) {
  204. xfrm_state_put_afinfo(afinfo);
  205. request_module("xfrm-type-%d-%d", family, proto);
  206. modload_attempted = 1;
  207. goto retry;
  208. }
  209. xfrm_state_put_afinfo(afinfo);
  210. return type;
  211. }
  212. static void xfrm_put_type(const struct xfrm_type *type)
  213. {
  214. module_put(type->owner);
  215. }
  216. int xfrm_register_mode(struct xfrm_mode *mode, int family)
  217. {
  218. struct xfrm_state_afinfo *afinfo;
  219. struct xfrm_mode **modemap;
  220. int err;
  221. if (unlikely(mode->encap >= XFRM_MODE_MAX))
  222. return -EINVAL;
  223. afinfo = xfrm_state_lock_afinfo(family);
  224. if (unlikely(afinfo == NULL))
  225. return -EAFNOSUPPORT;
  226. err = -EEXIST;
  227. modemap = afinfo->mode_map;
  228. if (modemap[mode->encap])
  229. goto out;
  230. err = -ENOENT;
  231. if (!try_module_get(afinfo->owner))
  232. goto out;
  233. mode->afinfo = afinfo;
  234. modemap[mode->encap] = mode;
  235. err = 0;
  236. out:
  237. xfrm_state_unlock_afinfo(afinfo);
  238. return err;
  239. }
  240. EXPORT_SYMBOL(xfrm_register_mode);
  241. int xfrm_unregister_mode(struct xfrm_mode *mode, int family)
  242. {
  243. struct xfrm_state_afinfo *afinfo;
  244. struct xfrm_mode **modemap;
  245. int err;
  246. if (unlikely(mode->encap >= XFRM_MODE_MAX))
  247. return -EINVAL;
  248. afinfo = xfrm_state_lock_afinfo(family);
  249. if (unlikely(afinfo == NULL))
  250. return -EAFNOSUPPORT;
  251. err = -ENOENT;
  252. modemap = afinfo->mode_map;
  253. if (likely(modemap[mode->encap] == mode)) {
  254. modemap[mode->encap] = NULL;
  255. module_put(mode->afinfo->owner);
  256. err = 0;
  257. }
  258. xfrm_state_unlock_afinfo(afinfo);
  259. return err;
  260. }
  261. EXPORT_SYMBOL(xfrm_unregister_mode);
  262. static struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
  263. {
  264. struct xfrm_state_afinfo *afinfo;
  265. struct xfrm_mode *mode;
  266. int modload_attempted = 0;
  267. if (unlikely(encap >= XFRM_MODE_MAX))
  268. return NULL;
  269. retry:
  270. afinfo = xfrm_state_get_afinfo(family);
  271. if (unlikely(afinfo == NULL))
  272. return NULL;
  273. mode = afinfo->mode_map[encap];
  274. if (unlikely(mode && !try_module_get(mode->owner)))
  275. mode = NULL;
  276. if (!mode && !modload_attempted) {
  277. xfrm_state_put_afinfo(afinfo);
  278. request_module("xfrm-mode-%d-%d", family, encap);
  279. modload_attempted = 1;
  280. goto retry;
  281. }
  282. xfrm_state_put_afinfo(afinfo);
  283. return mode;
  284. }
  285. static void xfrm_put_mode(struct xfrm_mode *mode)
  286. {
  287. module_put(mode->owner);
  288. }
  289. static void xfrm_state_gc_destroy(struct xfrm_state *x)
  290. {
  291. del_timer_sync(&x->timer);
  292. del_timer_sync(&x->rtimer);
  293. kfree(x->aalg);
  294. kfree(x->ealg);
  295. kfree(x->calg);
  296. kfree(x->encap);
  297. kfree(x->coaddr);
  298. if (x->inner_mode)
  299. xfrm_put_mode(x->inner_mode);
  300. if (x->inner_mode_iaf)
  301. xfrm_put_mode(x->inner_mode_iaf);
  302. if (x->outer_mode)
  303. xfrm_put_mode(x->outer_mode);
  304. if (x->type) {
  305. x->type->destructor(x);
  306. xfrm_put_type(x->type);
  307. }
  308. security_xfrm_state_free(x);
  309. kfree(x);
  310. }
  311. static void xfrm_state_gc_task(struct work_struct *work)
  312. {
  313. struct net *net = container_of(work, struct net, xfrm.state_gc_work);
  314. struct xfrm_state *x;
  315. struct hlist_node *entry, *tmp;
  316. struct hlist_head gc_list;
  317. spin_lock_bh(&xfrm_state_gc_lock);
  318. hlist_move_list(&net->xfrm.state_gc_list, &gc_list);
  319. spin_unlock_bh(&xfrm_state_gc_lock);
  320. hlist_for_each_entry_safe(x, entry, tmp, &gc_list, gclist)
  321. xfrm_state_gc_destroy(x);
  322. wake_up(&net->xfrm.km_waitq);
  323. }
  324. static inline unsigned long make_jiffies(long secs)
  325. {
  326. if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ)
  327. return MAX_SCHEDULE_TIMEOUT-1;
  328. else
  329. return secs*HZ;
  330. }
  331. static void xfrm_timer_handler(unsigned long data)
  332. {
  333. struct xfrm_state *x = (struct xfrm_state*)data;
  334. struct net *net = xs_net(x);
  335. unsigned long now = get_seconds();
  336. long next = LONG_MAX;
  337. int warn = 0;
  338. int err = 0;
  339. spin_lock(&x->lock);
  340. if (x->km.state == XFRM_STATE_DEAD)
  341. goto out;
  342. if (x->km.state == XFRM_STATE_EXPIRED)
  343. goto expired;
  344. if (x->lft.hard_add_expires_seconds) {
  345. long tmo = x->lft.hard_add_expires_seconds +
  346. x->curlft.add_time - now;
  347. if (tmo <= 0)
  348. goto expired;
  349. if (tmo < next)
  350. next = tmo;
  351. }
  352. if (x->lft.hard_use_expires_seconds) {
  353. long tmo = x->lft.hard_use_expires_seconds +
  354. (x->curlft.use_time ? : now) - now;
  355. if (tmo <= 0)
  356. goto expired;
  357. if (tmo < next)
  358. next = tmo;
  359. }
  360. if (x->km.dying)
  361. goto resched;
  362. if (x->lft.soft_add_expires_seconds) {
  363. long tmo = x->lft.soft_add_expires_seconds +
  364. x->curlft.add_time - now;
  365. if (tmo <= 0)
  366. warn = 1;
  367. else if (tmo < next)
  368. next = tmo;
  369. }
  370. if (x->lft.soft_use_expires_seconds) {
  371. long tmo = x->lft.soft_use_expires_seconds +
  372. (x->curlft.use_time ? : now) - now;
  373. if (tmo <= 0)
  374. warn = 1;
  375. else if (tmo < next)
  376. next = tmo;
  377. }
  378. x->km.dying = warn;
  379. if (warn)
  380. km_state_expired(x, 0, 0);
  381. resched:
  382. if (next != LONG_MAX)
  383. mod_timer(&x->timer, jiffies + make_jiffies(next));
  384. goto out;
  385. expired:
  386. if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) {
  387. x->km.state = XFRM_STATE_EXPIRED;
  388. wake_up(&net->xfrm.km_waitq);
  389. next = 2;
  390. goto resched;
  391. }
  392. err = __xfrm_state_delete(x);
  393. if (!err && x->id.spi)
  394. km_state_expired(x, 1, 0);
  395. xfrm_audit_state_delete(x, err ? 0 : 1,
  396. audit_get_loginuid(current),
  397. audit_get_sessionid(current), 0);
  398. out:
  399. spin_unlock(&x->lock);
  400. }
  401. static void xfrm_replay_timer_handler(unsigned long data);
  402. struct xfrm_state *xfrm_state_alloc(struct net *net)
  403. {
  404. struct xfrm_state *x;
  405. x = kzalloc(sizeof(struct xfrm_state), GFP_ATOMIC);
  406. if (x) {
  407. write_pnet(&x->xs_net, net);
  408. atomic_set(&x->refcnt, 1);
  409. atomic_set(&x->tunnel_users, 0);
  410. INIT_LIST_HEAD(&x->km.all);
  411. INIT_HLIST_NODE(&x->bydst);
  412. INIT_HLIST_NODE(&x->bysrc);
  413. INIT_HLIST_NODE(&x->byspi);
  414. setup_timer(&x->timer, xfrm_timer_handler, (unsigned long)x);
  415. setup_timer(&x->rtimer, xfrm_replay_timer_handler,
  416. (unsigned long)x);
  417. x->curlft.add_time = get_seconds();
  418. x->lft.soft_byte_limit = XFRM_INF;
  419. x->lft.soft_packet_limit = XFRM_INF;
  420. x->lft.hard_byte_limit = XFRM_INF;
  421. x->lft.hard_packet_limit = XFRM_INF;
  422. x->replay_maxage = 0;
  423. x->replay_maxdiff = 0;
  424. x->inner_mode = NULL;
  425. x->inner_mode_iaf = NULL;
  426. spin_lock_init(&x->lock);
  427. }
  428. return x;
  429. }
  430. EXPORT_SYMBOL(xfrm_state_alloc);
  431. void __xfrm_state_destroy(struct xfrm_state *x)
  432. {
  433. struct net *net = xs_net(x);
  434. WARN_ON(x->km.state != XFRM_STATE_DEAD);
  435. spin_lock_bh(&xfrm_state_gc_lock);
  436. hlist_add_head(&x->gclist, &net->xfrm.state_gc_list);
  437. spin_unlock_bh(&xfrm_state_gc_lock);
  438. schedule_work(&net->xfrm.state_gc_work);
  439. }
  440. EXPORT_SYMBOL(__xfrm_state_destroy);
  441. int __xfrm_state_delete(struct xfrm_state *x)
  442. {
  443. struct net *net = xs_net(x);
  444. int err = -ESRCH;
  445. if (x->km.state != XFRM_STATE_DEAD) {
  446. x->km.state = XFRM_STATE_DEAD;
  447. spin_lock(&xfrm_state_lock);
  448. list_del(&x->km.all);
  449. hlist_del(&x->bydst);
  450. hlist_del(&x->bysrc);
  451. if (x->id.spi)
  452. hlist_del(&x->byspi);
  453. net->xfrm.state_num--;
  454. spin_unlock(&xfrm_state_lock);
  455. /* All xfrm_state objects are created by xfrm_state_alloc.
  456. * The xfrm_state_alloc call gives a reference, and that
  457. * is what we are dropping here.
  458. */
  459. xfrm_state_put(x);
  460. err = 0;
  461. }
  462. return err;
  463. }
  464. EXPORT_SYMBOL(__xfrm_state_delete);
  465. int xfrm_state_delete(struct xfrm_state *x)
  466. {
  467. int err;
  468. spin_lock_bh(&x->lock);
  469. err = __xfrm_state_delete(x);
  470. spin_unlock_bh(&x->lock);
  471. return err;
  472. }
  473. EXPORT_SYMBOL(xfrm_state_delete);
  474. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  475. static inline int
  476. xfrm_state_flush_secctx_check(struct net *net, u8 proto, struct xfrm_audit *audit_info)
  477. {
  478. int i, err = 0;
  479. for (i = 0; i <= net->xfrm.state_hmask; i++) {
  480. struct hlist_node *entry;
  481. struct xfrm_state *x;
  482. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+i, bydst) {
  483. if (xfrm_id_proto_match(x->id.proto, proto) &&
  484. (err = security_xfrm_state_delete(x)) != 0) {
  485. xfrm_audit_state_delete(x, 0,
  486. audit_info->loginuid,
  487. audit_info->sessionid,
  488. audit_info->secid);
  489. return err;
  490. }
  491. }
  492. }
  493. return err;
  494. }
  495. #else
  496. static inline int
  497. xfrm_state_flush_secctx_check(struct net *net, u8 proto, struct xfrm_audit *audit_info)
  498. {
  499. return 0;
  500. }
  501. #endif
  502. int xfrm_state_flush(struct net *net, u8 proto, struct xfrm_audit *audit_info)
  503. {
  504. int i, err = 0;
  505. spin_lock_bh(&xfrm_state_lock);
  506. err = xfrm_state_flush_secctx_check(net, proto, audit_info);
  507. if (err)
  508. goto out;
  509. for (i = 0; i <= net->xfrm.state_hmask; i++) {
  510. struct hlist_node *entry;
  511. struct xfrm_state *x;
  512. restart:
  513. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+i, bydst) {
  514. if (!xfrm_state_kern(x) &&
  515. xfrm_id_proto_match(x->id.proto, proto)) {
  516. xfrm_state_hold(x);
  517. spin_unlock_bh(&xfrm_state_lock);
  518. err = xfrm_state_delete(x);
  519. xfrm_audit_state_delete(x, err ? 0 : 1,
  520. audit_info->loginuid,
  521. audit_info->sessionid,
  522. audit_info->secid);
  523. xfrm_state_put(x);
  524. spin_lock_bh(&xfrm_state_lock);
  525. goto restart;
  526. }
  527. }
  528. }
  529. err = 0;
  530. out:
  531. spin_unlock_bh(&xfrm_state_lock);
  532. wake_up(&net->xfrm.km_waitq);
  533. return err;
  534. }
  535. EXPORT_SYMBOL(xfrm_state_flush);
  536. void xfrm_sad_getinfo(struct xfrmk_sadinfo *si)
  537. {
  538. spin_lock_bh(&xfrm_state_lock);
  539. si->sadcnt = init_net.xfrm.state_num;
  540. si->sadhcnt = init_net.xfrm.state_hmask;
  541. si->sadhmcnt = xfrm_state_hashmax;
  542. spin_unlock_bh(&xfrm_state_lock);
  543. }
  544. EXPORT_SYMBOL(xfrm_sad_getinfo);
  545. static int
  546. xfrm_init_tempsel(struct xfrm_state *x, struct flowi *fl,
  547. struct xfrm_tmpl *tmpl,
  548. xfrm_address_t *daddr, xfrm_address_t *saddr,
  549. unsigned short family)
  550. {
  551. struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
  552. if (!afinfo)
  553. return -1;
  554. afinfo->init_tempsel(x, fl, tmpl, daddr, saddr);
  555. xfrm_state_put_afinfo(afinfo);
  556. return 0;
  557. }
  558. static struct xfrm_state *__xfrm_state_lookup(struct net *net, xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family)
  559. {
  560. unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family);
  561. struct xfrm_state *x;
  562. struct hlist_node *entry;
  563. hlist_for_each_entry(x, entry, net->xfrm.state_byspi+h, byspi) {
  564. if (x->props.family != family ||
  565. x->id.spi != spi ||
  566. x->id.proto != proto)
  567. continue;
  568. switch (family) {
  569. case AF_INET:
  570. if (x->id.daddr.a4 != daddr->a4)
  571. continue;
  572. break;
  573. case AF_INET6:
  574. if (!ipv6_addr_equal((struct in6_addr *)daddr,
  575. (struct in6_addr *)
  576. x->id.daddr.a6))
  577. continue;
  578. break;
  579. }
  580. xfrm_state_hold(x);
  581. return x;
  582. }
  583. return NULL;
  584. }
  585. static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, xfrm_address_t *daddr, xfrm_address_t *saddr, u8 proto, unsigned short family)
  586. {
  587. unsigned int h = xfrm_src_hash(net, daddr, saddr, family);
  588. struct xfrm_state *x;
  589. struct hlist_node *entry;
  590. hlist_for_each_entry(x, entry, net->xfrm.state_bysrc+h, bysrc) {
  591. if (x->props.family != family ||
  592. x->id.proto != proto)
  593. continue;
  594. switch (family) {
  595. case AF_INET:
  596. if (x->id.daddr.a4 != daddr->a4 ||
  597. x->props.saddr.a4 != saddr->a4)
  598. continue;
  599. break;
  600. case AF_INET6:
  601. if (!ipv6_addr_equal((struct in6_addr *)daddr,
  602. (struct in6_addr *)
  603. x->id.daddr.a6) ||
  604. !ipv6_addr_equal((struct in6_addr *)saddr,
  605. (struct in6_addr *)
  606. x->props.saddr.a6))
  607. continue;
  608. break;
  609. }
  610. xfrm_state_hold(x);
  611. return x;
  612. }
  613. return NULL;
  614. }
  615. static inline struct xfrm_state *
  616. __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family)
  617. {
  618. struct net *net = xs_net(x);
  619. if (use_spi)
  620. return __xfrm_state_lookup(net, &x->id.daddr, x->id.spi,
  621. x->id.proto, family);
  622. else
  623. return __xfrm_state_lookup_byaddr(net, &x->id.daddr,
  624. &x->props.saddr,
  625. x->id.proto, family);
  626. }
  627. static void xfrm_hash_grow_check(struct net *net, int have_hash_collision)
  628. {
  629. if (have_hash_collision &&
  630. (net->xfrm.state_hmask + 1) < xfrm_state_hashmax &&
  631. net->xfrm.state_num > net->xfrm.state_hmask)
  632. schedule_work(&net->xfrm.state_hash_work);
  633. }
  634. static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x,
  635. struct flowi *fl, unsigned short family,
  636. xfrm_address_t *daddr, xfrm_address_t *saddr,
  637. struct xfrm_state **best, int *acq_in_progress,
  638. int *error)
  639. {
  640. /* Resolution logic:
  641. * 1. There is a valid state with matching selector. Done.
  642. * 2. Valid state with inappropriate selector. Skip.
  643. *
  644. * Entering area of "sysdeps".
  645. *
  646. * 3. If state is not valid, selector is temporary, it selects
  647. * only session which triggered previous resolution. Key
  648. * manager will do something to install a state with proper
  649. * selector.
  650. */
  651. if (x->km.state == XFRM_STATE_VALID) {
  652. if ((x->sel.family &&
  653. !xfrm_selector_match(&x->sel, fl, x->sel.family)) ||
  654. !security_xfrm_state_pol_flow_match(x, pol, fl))
  655. return;
  656. if (!*best ||
  657. (*best)->km.dying > x->km.dying ||
  658. ((*best)->km.dying == x->km.dying &&
  659. (*best)->curlft.add_time < x->curlft.add_time))
  660. *best = x;
  661. } else if (x->km.state == XFRM_STATE_ACQ) {
  662. *acq_in_progress = 1;
  663. } else if (x->km.state == XFRM_STATE_ERROR ||
  664. x->km.state == XFRM_STATE_EXPIRED) {
  665. if (xfrm_selector_match(&x->sel, fl, x->sel.family) &&
  666. security_xfrm_state_pol_flow_match(x, pol, fl))
  667. *error = -ESRCH;
  668. }
  669. }
  670. struct xfrm_state *
  671. xfrm_state_find(xfrm_address_t *daddr, xfrm_address_t *saddr,
  672. struct flowi *fl, struct xfrm_tmpl *tmpl,
  673. struct xfrm_policy *pol, int *err,
  674. unsigned short family)
  675. {
  676. static xfrm_address_t saddr_wildcard = { };
  677. struct net *net = xp_net(pol);
  678. unsigned int h;
  679. struct hlist_node *entry;
  680. struct xfrm_state *x, *x0, *to_put;
  681. int acquire_in_progress = 0;
  682. int error = 0;
  683. struct xfrm_state *best = NULL;
  684. to_put = NULL;
  685. spin_lock_bh(&xfrm_state_lock);
  686. h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, family);
  687. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) {
  688. if (x->props.family == family &&
  689. x->props.reqid == tmpl->reqid &&
  690. !(x->props.flags & XFRM_STATE_WILDRECV) &&
  691. xfrm_state_addr_check(x, daddr, saddr, family) &&
  692. tmpl->mode == x->props.mode &&
  693. tmpl->id.proto == x->id.proto &&
  694. (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
  695. xfrm_state_look_at(pol, x, fl, family, daddr, saddr,
  696. &best, &acquire_in_progress, &error);
  697. }
  698. if (best)
  699. goto found;
  700. h = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, family);
  701. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) {
  702. if (x->props.family == family &&
  703. x->props.reqid == tmpl->reqid &&
  704. !(x->props.flags & XFRM_STATE_WILDRECV) &&
  705. xfrm_state_addr_check(x, daddr, saddr, family) &&
  706. tmpl->mode == x->props.mode &&
  707. tmpl->id.proto == x->id.proto &&
  708. (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
  709. xfrm_state_look_at(pol, x, fl, family, daddr, saddr,
  710. &best, &acquire_in_progress, &error);
  711. }
  712. found:
  713. x = best;
  714. if (!x && !error && !acquire_in_progress) {
  715. if (tmpl->id.spi &&
  716. (x0 = __xfrm_state_lookup(net, daddr, tmpl->id.spi,
  717. tmpl->id.proto, family)) != NULL) {
  718. to_put = x0;
  719. error = -EEXIST;
  720. goto out;
  721. }
  722. x = xfrm_state_alloc(net);
  723. if (x == NULL) {
  724. error = -ENOMEM;
  725. goto out;
  726. }
  727. /* Initialize temporary selector matching only
  728. * to current session. */
  729. xfrm_init_tempsel(x, fl, tmpl, daddr, saddr, family);
  730. error = security_xfrm_state_alloc_acquire(x, pol->security, fl->secid);
  731. if (error) {
  732. x->km.state = XFRM_STATE_DEAD;
  733. to_put = x;
  734. x = NULL;
  735. goto out;
  736. }
  737. if (km_query(x, tmpl, pol) == 0) {
  738. x->km.state = XFRM_STATE_ACQ;
  739. list_add(&x->km.all, &net->xfrm.state_all);
  740. hlist_add_head(&x->bydst, net->xfrm.state_bydst+h);
  741. h = xfrm_src_hash(net, daddr, saddr, family);
  742. hlist_add_head(&x->bysrc, net->xfrm.state_bysrc+h);
  743. if (x->id.spi) {
  744. h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, family);
  745. hlist_add_head(&x->byspi, net->xfrm.state_byspi+h);
  746. }
  747. x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
  748. x->timer.expires = jiffies + net->xfrm.sysctl_acq_expires*HZ;
  749. add_timer(&x->timer);
  750. net->xfrm.state_num++;
  751. xfrm_hash_grow_check(net, x->bydst.next != NULL);
  752. } else {
  753. x->km.state = XFRM_STATE_DEAD;
  754. to_put = x;
  755. x = NULL;
  756. error = -ESRCH;
  757. }
  758. }
  759. out:
  760. if (x)
  761. xfrm_state_hold(x);
  762. else
  763. *err = acquire_in_progress ? -EAGAIN : error;
  764. spin_unlock_bh(&xfrm_state_lock);
  765. if (to_put)
  766. xfrm_state_put(to_put);
  767. return x;
  768. }
  769. struct xfrm_state *
  770. xfrm_stateonly_find(struct net *net,
  771. xfrm_address_t *daddr, xfrm_address_t *saddr,
  772. unsigned short family, u8 mode, u8 proto, u32 reqid)
  773. {
  774. unsigned int h;
  775. struct xfrm_state *rx = NULL, *x = NULL;
  776. struct hlist_node *entry;
  777. spin_lock(&xfrm_state_lock);
  778. h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
  779. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) {
  780. if (x->props.family == family &&
  781. x->props.reqid == reqid &&
  782. !(x->props.flags & XFRM_STATE_WILDRECV) &&
  783. xfrm_state_addr_check(x, daddr, saddr, family) &&
  784. mode == x->props.mode &&
  785. proto == x->id.proto &&
  786. x->km.state == XFRM_STATE_VALID) {
  787. rx = x;
  788. break;
  789. }
  790. }
  791. if (rx)
  792. xfrm_state_hold(rx);
  793. spin_unlock(&xfrm_state_lock);
  794. return rx;
  795. }
  796. EXPORT_SYMBOL(xfrm_stateonly_find);
  797. static void __xfrm_state_insert(struct xfrm_state *x)
  798. {
  799. struct net *net = xs_net(x);
  800. unsigned int h;
  801. x->genid = ++xfrm_state_genid;
  802. list_add(&x->km.all, &net->xfrm.state_all);
  803. h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr,
  804. x->props.reqid, x->props.family);
  805. hlist_add_head(&x->bydst, net->xfrm.state_bydst+h);
  806. h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family);
  807. hlist_add_head(&x->bysrc, net->xfrm.state_bysrc+h);
  808. if (x->id.spi) {
  809. h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto,
  810. x->props.family);
  811. hlist_add_head(&x->byspi, net->xfrm.state_byspi+h);
  812. }
  813. mod_timer(&x->timer, jiffies + HZ);
  814. if (x->replay_maxage)
  815. mod_timer(&x->rtimer, jiffies + x->replay_maxage);
  816. wake_up(&net->xfrm.km_waitq);
  817. net->xfrm.state_num++;
  818. xfrm_hash_grow_check(net, x->bydst.next != NULL);
  819. }
  820. /* xfrm_state_lock is held */
  821. static void __xfrm_state_bump_genids(struct xfrm_state *xnew)
  822. {
  823. struct net *net = xs_net(xnew);
  824. unsigned short family = xnew->props.family;
  825. u32 reqid = xnew->props.reqid;
  826. struct xfrm_state *x;
  827. struct hlist_node *entry;
  828. unsigned int h;
  829. h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family);
  830. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) {
  831. if (x->props.family == family &&
  832. x->props.reqid == reqid &&
  833. !xfrm_addr_cmp(&x->id.daddr, &xnew->id.daddr, family) &&
  834. !xfrm_addr_cmp(&x->props.saddr, &xnew->props.saddr, family))
  835. x->genid = xfrm_state_genid;
  836. }
  837. }
  838. void xfrm_state_insert(struct xfrm_state *x)
  839. {
  840. spin_lock_bh(&xfrm_state_lock);
  841. __xfrm_state_bump_genids(x);
  842. __xfrm_state_insert(x);
  843. spin_unlock_bh(&xfrm_state_lock);
  844. }
  845. EXPORT_SYMBOL(xfrm_state_insert);
  846. /* xfrm_state_lock is held */
  847. static struct xfrm_state *__find_acq_core(struct net *net, unsigned short family, u8 mode, u32 reqid, u8 proto, xfrm_address_t *daddr, xfrm_address_t *saddr, int create)
  848. {
  849. unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
  850. struct hlist_node *entry;
  851. struct xfrm_state *x;
  852. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) {
  853. if (x->props.reqid != reqid ||
  854. x->props.mode != mode ||
  855. x->props.family != family ||
  856. x->km.state != XFRM_STATE_ACQ ||
  857. x->id.spi != 0 ||
  858. x->id.proto != proto)
  859. continue;
  860. switch (family) {
  861. case AF_INET:
  862. if (x->id.daddr.a4 != daddr->a4 ||
  863. x->props.saddr.a4 != saddr->a4)
  864. continue;
  865. break;
  866. case AF_INET6:
  867. if (!ipv6_addr_equal((struct in6_addr *)x->id.daddr.a6,
  868. (struct in6_addr *)daddr) ||
  869. !ipv6_addr_equal((struct in6_addr *)
  870. x->props.saddr.a6,
  871. (struct in6_addr *)saddr))
  872. continue;
  873. break;
  874. }
  875. xfrm_state_hold(x);
  876. return x;
  877. }
  878. if (!create)
  879. return NULL;
  880. x = xfrm_state_alloc(net);
  881. if (likely(x)) {
  882. switch (family) {
  883. case AF_INET:
  884. x->sel.daddr.a4 = daddr->a4;
  885. x->sel.saddr.a4 = saddr->a4;
  886. x->sel.prefixlen_d = 32;
  887. x->sel.prefixlen_s = 32;
  888. x->props.saddr.a4 = saddr->a4;
  889. x->id.daddr.a4 = daddr->a4;
  890. break;
  891. case AF_INET6:
  892. ipv6_addr_copy((struct in6_addr *)x->sel.daddr.a6,
  893. (struct in6_addr *)daddr);
  894. ipv6_addr_copy((struct in6_addr *)x->sel.saddr.a6,
  895. (struct in6_addr *)saddr);
  896. x->sel.prefixlen_d = 128;
  897. x->sel.prefixlen_s = 128;
  898. ipv6_addr_copy((struct in6_addr *)x->props.saddr.a6,
  899. (struct in6_addr *)saddr);
  900. ipv6_addr_copy((struct in6_addr *)x->id.daddr.a6,
  901. (struct in6_addr *)daddr);
  902. break;
  903. }
  904. x->km.state = XFRM_STATE_ACQ;
  905. x->id.proto = proto;
  906. x->props.family = family;
  907. x->props.mode = mode;
  908. x->props.reqid = reqid;
  909. x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
  910. xfrm_state_hold(x);
  911. x->timer.expires = jiffies + net->xfrm.sysctl_acq_expires*HZ;
  912. add_timer(&x->timer);
  913. list_add(&x->km.all, &net->xfrm.state_all);
  914. hlist_add_head(&x->bydst, net->xfrm.state_bydst+h);
  915. h = xfrm_src_hash(net, daddr, saddr, family);
  916. hlist_add_head(&x->bysrc, net->xfrm.state_bysrc+h);
  917. net->xfrm.state_num++;
  918. xfrm_hash_grow_check(net, x->bydst.next != NULL);
  919. }
  920. return x;
  921. }
  922. static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 seq);
  923. int xfrm_state_add(struct xfrm_state *x)
  924. {
  925. struct net *net = xs_net(x);
  926. struct xfrm_state *x1, *to_put;
  927. int family;
  928. int err;
  929. int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
  930. family = x->props.family;
  931. to_put = NULL;
  932. spin_lock_bh(&xfrm_state_lock);
  933. x1 = __xfrm_state_locate(x, use_spi, family);
  934. if (x1) {
  935. to_put = x1;
  936. x1 = NULL;
  937. err = -EEXIST;
  938. goto out;
  939. }
  940. if (use_spi && x->km.seq) {
  941. x1 = __xfrm_find_acq_byseq(net, x->km.seq);
  942. if (x1 && ((x1->id.proto != x->id.proto) ||
  943. xfrm_addr_cmp(&x1->id.daddr, &x->id.daddr, family))) {
  944. to_put = x1;
  945. x1 = NULL;
  946. }
  947. }
  948. if (use_spi && !x1)
  949. x1 = __find_acq_core(net, family, x->props.mode, x->props.reqid,
  950. x->id.proto,
  951. &x->id.daddr, &x->props.saddr, 0);
  952. __xfrm_state_bump_genids(x);
  953. __xfrm_state_insert(x);
  954. err = 0;
  955. out:
  956. spin_unlock_bh(&xfrm_state_lock);
  957. if (x1) {
  958. xfrm_state_delete(x1);
  959. xfrm_state_put(x1);
  960. }
  961. if (to_put)
  962. xfrm_state_put(to_put);
  963. return err;
  964. }
  965. EXPORT_SYMBOL(xfrm_state_add);
  966. #ifdef CONFIG_XFRM_MIGRATE
  967. static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig, int *errp)
  968. {
  969. struct net *net = xs_net(orig);
  970. int err = -ENOMEM;
  971. struct xfrm_state *x = xfrm_state_alloc(net);
  972. if (!x)
  973. goto error;
  974. memcpy(&x->id, &orig->id, sizeof(x->id));
  975. memcpy(&x->sel, &orig->sel, sizeof(x->sel));
  976. memcpy(&x->lft, &orig->lft, sizeof(x->lft));
  977. x->props.mode = orig->props.mode;
  978. x->props.replay_window = orig->props.replay_window;
  979. x->props.reqid = orig->props.reqid;
  980. x->props.family = orig->props.family;
  981. x->props.saddr = orig->props.saddr;
  982. if (orig->aalg) {
  983. x->aalg = xfrm_algo_clone(orig->aalg);
  984. if (!x->aalg)
  985. goto error;
  986. }
  987. x->props.aalgo = orig->props.aalgo;
  988. if (orig->ealg) {
  989. x->ealg = xfrm_algo_clone(orig->ealg);
  990. if (!x->ealg)
  991. goto error;
  992. }
  993. x->props.ealgo = orig->props.ealgo;
  994. if (orig->calg) {
  995. x->calg = xfrm_algo_clone(orig->calg);
  996. if (!x->calg)
  997. goto error;
  998. }
  999. x->props.calgo = orig->props.calgo;
  1000. if (orig->encap) {
  1001. x->encap = kmemdup(orig->encap, sizeof(*x->encap), GFP_KERNEL);
  1002. if (!x->encap)
  1003. goto error;
  1004. }
  1005. if (orig->coaddr) {
  1006. x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr),
  1007. GFP_KERNEL);
  1008. if (!x->coaddr)
  1009. goto error;
  1010. }
  1011. err = xfrm_init_state(x);
  1012. if (err)
  1013. goto error;
  1014. x->props.flags = orig->props.flags;
  1015. x->curlft.add_time = orig->curlft.add_time;
  1016. x->km.state = orig->km.state;
  1017. x->km.seq = orig->km.seq;
  1018. return x;
  1019. error:
  1020. if (errp)
  1021. *errp = err;
  1022. if (x) {
  1023. kfree(x->aalg);
  1024. kfree(x->ealg);
  1025. kfree(x->calg);
  1026. kfree(x->encap);
  1027. kfree(x->coaddr);
  1028. }
  1029. kfree(x);
  1030. return NULL;
  1031. }
  1032. /* xfrm_state_lock is held */
  1033. struct xfrm_state * xfrm_migrate_state_find(struct xfrm_migrate *m)
  1034. {
  1035. unsigned int h;
  1036. struct xfrm_state *x;
  1037. struct hlist_node *entry;
  1038. if (m->reqid) {
  1039. h = xfrm_dst_hash(&init_net, &m->old_daddr, &m->old_saddr,
  1040. m->reqid, m->old_family);
  1041. hlist_for_each_entry(x, entry, init_net.xfrm.state_bydst+h, bydst) {
  1042. if (x->props.mode != m->mode ||
  1043. x->id.proto != m->proto)
  1044. continue;
  1045. if (m->reqid && x->props.reqid != m->reqid)
  1046. continue;
  1047. if (xfrm_addr_cmp(&x->id.daddr, &m->old_daddr,
  1048. m->old_family) ||
  1049. xfrm_addr_cmp(&x->props.saddr, &m->old_saddr,
  1050. m->old_family))
  1051. continue;
  1052. xfrm_state_hold(x);
  1053. return x;
  1054. }
  1055. } else {
  1056. h = xfrm_src_hash(&init_net, &m->old_daddr, &m->old_saddr,
  1057. m->old_family);
  1058. hlist_for_each_entry(x, entry, init_net.xfrm.state_bysrc+h, bysrc) {
  1059. if (x->props.mode != m->mode ||
  1060. x->id.proto != m->proto)
  1061. continue;
  1062. if (xfrm_addr_cmp(&x->id.daddr, &m->old_daddr,
  1063. m->old_family) ||
  1064. xfrm_addr_cmp(&x->props.saddr, &m->old_saddr,
  1065. m->old_family))
  1066. continue;
  1067. xfrm_state_hold(x);
  1068. return x;
  1069. }
  1070. }
  1071. return NULL;
  1072. }
  1073. EXPORT_SYMBOL(xfrm_migrate_state_find);
  1074. struct xfrm_state * xfrm_state_migrate(struct xfrm_state *x,
  1075. struct xfrm_migrate *m)
  1076. {
  1077. struct xfrm_state *xc;
  1078. int err;
  1079. xc = xfrm_state_clone(x, &err);
  1080. if (!xc)
  1081. return NULL;
  1082. memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr));
  1083. memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr));
  1084. /* add state */
  1085. if (!xfrm_addr_cmp(&x->id.daddr, &m->new_daddr, m->new_family)) {
  1086. /* a care is needed when the destination address of the
  1087. state is to be updated as it is a part of triplet */
  1088. xfrm_state_insert(xc);
  1089. } else {
  1090. if ((err = xfrm_state_add(xc)) < 0)
  1091. goto error;
  1092. }
  1093. return xc;
  1094. error:
  1095. kfree(xc);
  1096. return NULL;
  1097. }
  1098. EXPORT_SYMBOL(xfrm_state_migrate);
  1099. #endif
  1100. int xfrm_state_update(struct xfrm_state *x)
  1101. {
  1102. struct xfrm_state *x1, *to_put;
  1103. int err;
  1104. int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
  1105. to_put = NULL;
  1106. spin_lock_bh(&xfrm_state_lock);
  1107. x1 = __xfrm_state_locate(x, use_spi, x->props.family);
  1108. err = -ESRCH;
  1109. if (!x1)
  1110. goto out;
  1111. if (xfrm_state_kern(x1)) {
  1112. to_put = x1;
  1113. err = -EEXIST;
  1114. goto out;
  1115. }
  1116. if (x1->km.state == XFRM_STATE_ACQ) {
  1117. __xfrm_state_insert(x);
  1118. x = NULL;
  1119. }
  1120. err = 0;
  1121. out:
  1122. spin_unlock_bh(&xfrm_state_lock);
  1123. if (to_put)
  1124. xfrm_state_put(to_put);
  1125. if (err)
  1126. return err;
  1127. if (!x) {
  1128. xfrm_state_delete(x1);
  1129. xfrm_state_put(x1);
  1130. return 0;
  1131. }
  1132. err = -EINVAL;
  1133. spin_lock_bh(&x1->lock);
  1134. if (likely(x1->km.state == XFRM_STATE_VALID)) {
  1135. if (x->encap && x1->encap)
  1136. memcpy(x1->encap, x->encap, sizeof(*x1->encap));
  1137. if (x->coaddr && x1->coaddr) {
  1138. memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr));
  1139. }
  1140. if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel)))
  1141. memcpy(&x1->sel, &x->sel, sizeof(x1->sel));
  1142. memcpy(&x1->lft, &x->lft, sizeof(x1->lft));
  1143. x1->km.dying = 0;
  1144. mod_timer(&x1->timer, jiffies + HZ);
  1145. if (x1->curlft.use_time)
  1146. xfrm_state_check_expire(x1);
  1147. err = 0;
  1148. }
  1149. spin_unlock_bh(&x1->lock);
  1150. xfrm_state_put(x1);
  1151. return err;
  1152. }
  1153. EXPORT_SYMBOL(xfrm_state_update);
  1154. int xfrm_state_check_expire(struct xfrm_state *x)
  1155. {
  1156. if (!x->curlft.use_time)
  1157. x->curlft.use_time = get_seconds();
  1158. if (x->km.state != XFRM_STATE_VALID)
  1159. return -EINVAL;
  1160. if (x->curlft.bytes >= x->lft.hard_byte_limit ||
  1161. x->curlft.packets >= x->lft.hard_packet_limit) {
  1162. x->km.state = XFRM_STATE_EXPIRED;
  1163. mod_timer(&x->timer, jiffies);
  1164. return -EINVAL;
  1165. }
  1166. if (!x->km.dying &&
  1167. (x->curlft.bytes >= x->lft.soft_byte_limit ||
  1168. x->curlft.packets >= x->lft.soft_packet_limit)) {
  1169. x->km.dying = 1;
  1170. km_state_expired(x, 0, 0);
  1171. }
  1172. return 0;
  1173. }
  1174. EXPORT_SYMBOL(xfrm_state_check_expire);
  1175. struct xfrm_state *
  1176. xfrm_state_lookup(struct net *net, xfrm_address_t *daddr, __be32 spi, u8 proto,
  1177. unsigned short family)
  1178. {
  1179. struct xfrm_state *x;
  1180. spin_lock_bh(&xfrm_state_lock);
  1181. x = __xfrm_state_lookup(net, daddr, spi, proto, family);
  1182. spin_unlock_bh(&xfrm_state_lock);
  1183. return x;
  1184. }
  1185. EXPORT_SYMBOL(xfrm_state_lookup);
  1186. struct xfrm_state *
  1187. xfrm_state_lookup_byaddr(struct net *net,
  1188. xfrm_address_t *daddr, xfrm_address_t *saddr,
  1189. u8 proto, unsigned short family)
  1190. {
  1191. struct xfrm_state *x;
  1192. spin_lock_bh(&xfrm_state_lock);
  1193. x = __xfrm_state_lookup_byaddr(net, daddr, saddr, proto, family);
  1194. spin_unlock_bh(&xfrm_state_lock);
  1195. return x;
  1196. }
  1197. EXPORT_SYMBOL(xfrm_state_lookup_byaddr);
  1198. struct xfrm_state *
  1199. xfrm_find_acq(struct net *net, u8 mode, u32 reqid, u8 proto,
  1200. xfrm_address_t *daddr, xfrm_address_t *saddr,
  1201. int create, unsigned short family)
  1202. {
  1203. struct xfrm_state *x;
  1204. spin_lock_bh(&xfrm_state_lock);
  1205. x = __find_acq_core(net, family, mode, reqid, proto, daddr, saddr, create);
  1206. spin_unlock_bh(&xfrm_state_lock);
  1207. return x;
  1208. }
  1209. EXPORT_SYMBOL(xfrm_find_acq);
  1210. #ifdef CONFIG_XFRM_SUB_POLICY
  1211. int
  1212. xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n,
  1213. unsigned short family)
  1214. {
  1215. int err = 0;
  1216. struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
  1217. if (!afinfo)
  1218. return -EAFNOSUPPORT;
  1219. spin_lock_bh(&xfrm_state_lock);
  1220. if (afinfo->tmpl_sort)
  1221. err = afinfo->tmpl_sort(dst, src, n);
  1222. spin_unlock_bh(&xfrm_state_lock);
  1223. xfrm_state_put_afinfo(afinfo);
  1224. return err;
  1225. }
  1226. EXPORT_SYMBOL(xfrm_tmpl_sort);
  1227. int
  1228. xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n,
  1229. unsigned short family)
  1230. {
  1231. int err = 0;
  1232. struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
  1233. if (!afinfo)
  1234. return -EAFNOSUPPORT;
  1235. spin_lock_bh(&xfrm_state_lock);
  1236. if (afinfo->state_sort)
  1237. err = afinfo->state_sort(dst, src, n);
  1238. spin_unlock_bh(&xfrm_state_lock);
  1239. xfrm_state_put_afinfo(afinfo);
  1240. return err;
  1241. }
  1242. EXPORT_SYMBOL(xfrm_state_sort);
  1243. #endif
  1244. /* Silly enough, but I'm lazy to build resolution list */
  1245. static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 seq)
  1246. {
  1247. int i;
  1248. for (i = 0; i <= net->xfrm.state_hmask; i++) {
  1249. struct hlist_node *entry;
  1250. struct xfrm_state *x;
  1251. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+i, bydst) {
  1252. if (x->km.seq == seq &&
  1253. x->km.state == XFRM_STATE_ACQ) {
  1254. xfrm_state_hold(x);
  1255. return x;
  1256. }
  1257. }
  1258. }
  1259. return NULL;
  1260. }
  1261. struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 seq)
  1262. {
  1263. struct xfrm_state *x;
  1264. spin_lock_bh(&xfrm_state_lock);
  1265. x = __xfrm_find_acq_byseq(net, seq);
  1266. spin_unlock_bh(&xfrm_state_lock);
  1267. return x;
  1268. }
  1269. EXPORT_SYMBOL(xfrm_find_acq_byseq);
  1270. u32 xfrm_get_acqseq(void)
  1271. {
  1272. u32 res;
  1273. static u32 acqseq;
  1274. static DEFINE_SPINLOCK(acqseq_lock);
  1275. spin_lock_bh(&acqseq_lock);
  1276. res = (++acqseq ? : ++acqseq);
  1277. spin_unlock_bh(&acqseq_lock);
  1278. return res;
  1279. }
  1280. EXPORT_SYMBOL(xfrm_get_acqseq);
  1281. int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high)
  1282. {
  1283. struct net *net = xs_net(x);
  1284. unsigned int h;
  1285. struct xfrm_state *x0;
  1286. int err = -ENOENT;
  1287. __be32 minspi = htonl(low);
  1288. __be32 maxspi = htonl(high);
  1289. spin_lock_bh(&x->lock);
  1290. if (x->km.state == XFRM_STATE_DEAD)
  1291. goto unlock;
  1292. err = 0;
  1293. if (x->id.spi)
  1294. goto unlock;
  1295. err = -ENOENT;
  1296. if (minspi == maxspi) {
  1297. x0 = xfrm_state_lookup(net, &x->id.daddr, minspi, x->id.proto, x->props.family);
  1298. if (x0) {
  1299. xfrm_state_put(x0);
  1300. goto unlock;
  1301. }
  1302. x->id.spi = minspi;
  1303. } else {
  1304. u32 spi = 0;
  1305. for (h=0; h<high-low+1; h++) {
  1306. spi = low + net_random()%(high-low+1);
  1307. x0 = xfrm_state_lookup(net, &x->id.daddr, htonl(spi), x->id.proto, x->props.family);
  1308. if (x0 == NULL) {
  1309. x->id.spi = htonl(spi);
  1310. break;
  1311. }
  1312. xfrm_state_put(x0);
  1313. }
  1314. }
  1315. if (x->id.spi) {
  1316. spin_lock_bh(&xfrm_state_lock);
  1317. h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family);
  1318. hlist_add_head(&x->byspi, net->xfrm.state_byspi+h);
  1319. spin_unlock_bh(&xfrm_state_lock);
  1320. err = 0;
  1321. }
  1322. unlock:
  1323. spin_unlock_bh(&x->lock);
  1324. return err;
  1325. }
  1326. EXPORT_SYMBOL(xfrm_alloc_spi);
  1327. int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk,
  1328. int (*func)(struct xfrm_state *, int, void*),
  1329. void *data)
  1330. {
  1331. struct xfrm_state *state;
  1332. struct xfrm_state_walk *x;
  1333. int err = 0;
  1334. if (walk->seq != 0 && list_empty(&walk->all))
  1335. return 0;
  1336. spin_lock_bh(&xfrm_state_lock);
  1337. if (list_empty(&walk->all))
  1338. x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all);
  1339. else
  1340. x = list_entry(&walk->all, struct xfrm_state_walk, all);
  1341. list_for_each_entry_from(x, &net->xfrm.state_all, all) {
  1342. if (x->state == XFRM_STATE_DEAD)
  1343. continue;
  1344. state = container_of(x, struct xfrm_state, km);
  1345. if (!xfrm_id_proto_match(state->id.proto, walk->proto))
  1346. continue;
  1347. err = func(state, walk->seq, data);
  1348. if (err) {
  1349. list_move_tail(&walk->all, &x->all);
  1350. goto out;
  1351. }
  1352. walk->seq++;
  1353. }
  1354. if (walk->seq == 0) {
  1355. err = -ENOENT;
  1356. goto out;
  1357. }
  1358. list_del_init(&walk->all);
  1359. out:
  1360. spin_unlock_bh(&xfrm_state_lock);
  1361. return err;
  1362. }
  1363. EXPORT_SYMBOL(xfrm_state_walk);
  1364. void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto)
  1365. {
  1366. INIT_LIST_HEAD(&walk->all);
  1367. walk->proto = proto;
  1368. walk->state = XFRM_STATE_DEAD;
  1369. walk->seq = 0;
  1370. }
  1371. EXPORT_SYMBOL(xfrm_state_walk_init);
  1372. void xfrm_state_walk_done(struct xfrm_state_walk *walk)
  1373. {
  1374. if (list_empty(&walk->all))
  1375. return;
  1376. spin_lock_bh(&xfrm_state_lock);
  1377. list_del(&walk->all);
  1378. spin_unlock_bh(&xfrm_state_lock);
  1379. }
  1380. EXPORT_SYMBOL(xfrm_state_walk_done);
  1381. void xfrm_replay_notify(struct xfrm_state *x, int event)
  1382. {
  1383. struct km_event c;
  1384. /* we send notify messages in case
  1385. * 1. we updated on of the sequence numbers, and the seqno difference
  1386. * is at least x->replay_maxdiff, in this case we also update the
  1387. * timeout of our timer function
  1388. * 2. if x->replay_maxage has elapsed since last update,
  1389. * and there were changes
  1390. *
  1391. * The state structure must be locked!
  1392. */
  1393. switch (event) {
  1394. case XFRM_REPLAY_UPDATE:
  1395. if (x->replay_maxdiff &&
  1396. (x->replay.seq - x->preplay.seq < x->replay_maxdiff) &&
  1397. (x->replay.oseq - x->preplay.oseq < x->replay_maxdiff)) {
  1398. if (x->xflags & XFRM_TIME_DEFER)
  1399. event = XFRM_REPLAY_TIMEOUT;
  1400. else
  1401. return;
  1402. }
  1403. break;
  1404. case XFRM_REPLAY_TIMEOUT:
  1405. if ((x->replay.seq == x->preplay.seq) &&
  1406. (x->replay.bitmap == x->preplay.bitmap) &&
  1407. (x->replay.oseq == x->preplay.oseq)) {
  1408. x->xflags |= XFRM_TIME_DEFER;
  1409. return;
  1410. }
  1411. break;
  1412. }
  1413. memcpy(&x->preplay, &x->replay, sizeof(struct xfrm_replay_state));
  1414. c.event = XFRM_MSG_NEWAE;
  1415. c.data.aevent = event;
  1416. km_state_notify(x, &c);
  1417. if (x->replay_maxage &&
  1418. !mod_timer(&x->rtimer, jiffies + x->replay_maxage))
  1419. x->xflags &= ~XFRM_TIME_DEFER;
  1420. }
  1421. static void xfrm_replay_timer_handler(unsigned long data)
  1422. {
  1423. struct xfrm_state *x = (struct xfrm_state*)data;
  1424. spin_lock(&x->lock);
  1425. if (x->km.state == XFRM_STATE_VALID) {
  1426. if (xfrm_aevent_is_on(xs_net(x)))
  1427. xfrm_replay_notify(x, XFRM_REPLAY_TIMEOUT);
  1428. else
  1429. x->xflags |= XFRM_TIME_DEFER;
  1430. }
  1431. spin_unlock(&x->lock);
  1432. }
  1433. int xfrm_replay_check(struct xfrm_state *x,
  1434. struct sk_buff *skb, __be32 net_seq)
  1435. {
  1436. u32 diff;
  1437. u32 seq = ntohl(net_seq);
  1438. if (unlikely(seq == 0))
  1439. goto err;
  1440. if (likely(seq > x->replay.seq))
  1441. return 0;
  1442. diff = x->replay.seq - seq;
  1443. if (diff >= min_t(unsigned int, x->props.replay_window,
  1444. sizeof(x->replay.bitmap) * 8)) {
  1445. x->stats.replay_window++;
  1446. goto err;
  1447. }
  1448. if (x->replay.bitmap & (1U << diff)) {
  1449. x->stats.replay++;
  1450. goto err;
  1451. }
  1452. return 0;
  1453. err:
  1454. xfrm_audit_state_replay(x, skb, net_seq);
  1455. return -EINVAL;
  1456. }
  1457. void xfrm_replay_advance(struct xfrm_state *x, __be32 net_seq)
  1458. {
  1459. u32 diff;
  1460. u32 seq = ntohl(net_seq);
  1461. if (seq > x->replay.seq) {
  1462. diff = seq - x->replay.seq;
  1463. if (diff < x->props.replay_window)
  1464. x->replay.bitmap = ((x->replay.bitmap) << diff) | 1;
  1465. else
  1466. x->replay.bitmap = 1;
  1467. x->replay.seq = seq;
  1468. } else {
  1469. diff = x->replay.seq - seq;
  1470. x->replay.bitmap |= (1U << diff);
  1471. }
  1472. if (xfrm_aevent_is_on(xs_net(x)))
  1473. xfrm_replay_notify(x, XFRM_REPLAY_UPDATE);
  1474. }
  1475. static LIST_HEAD(xfrm_km_list);
  1476. static DEFINE_RWLOCK(xfrm_km_lock);
  1477. void km_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  1478. {
  1479. struct xfrm_mgr *km;
  1480. read_lock(&xfrm_km_lock);
  1481. list_for_each_entry(km, &xfrm_km_list, list)
  1482. if (km->notify_policy)
  1483. km->notify_policy(xp, dir, c);
  1484. read_unlock(&xfrm_km_lock);
  1485. }
  1486. void km_state_notify(struct xfrm_state *x, struct km_event *c)
  1487. {
  1488. struct xfrm_mgr *km;
  1489. read_lock(&xfrm_km_lock);
  1490. list_for_each_entry(km, &xfrm_km_list, list)
  1491. if (km->notify)
  1492. km->notify(x, c);
  1493. read_unlock(&xfrm_km_lock);
  1494. }
  1495. EXPORT_SYMBOL(km_policy_notify);
  1496. EXPORT_SYMBOL(km_state_notify);
  1497. void km_state_expired(struct xfrm_state *x, int hard, u32 pid)
  1498. {
  1499. struct net *net = xs_net(x);
  1500. struct km_event c;
  1501. c.data.hard = hard;
  1502. c.pid = pid;
  1503. c.event = XFRM_MSG_EXPIRE;
  1504. km_state_notify(x, &c);
  1505. if (hard)
  1506. wake_up(&net->xfrm.km_waitq);
  1507. }
  1508. EXPORT_SYMBOL(km_state_expired);
  1509. /*
  1510. * We send to all registered managers regardless of failure
  1511. * We are happy with one success
  1512. */
  1513. int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol)
  1514. {
  1515. int err = -EINVAL, acqret;
  1516. struct xfrm_mgr *km;
  1517. read_lock(&xfrm_km_lock);
  1518. list_for_each_entry(km, &xfrm_km_list, list) {
  1519. acqret = km->acquire(x, t, pol, XFRM_POLICY_OUT);
  1520. if (!acqret)
  1521. err = acqret;
  1522. }
  1523. read_unlock(&xfrm_km_lock);
  1524. return err;
  1525. }
  1526. EXPORT_SYMBOL(km_query);
  1527. int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  1528. {
  1529. int err = -EINVAL;
  1530. struct xfrm_mgr *km;
  1531. read_lock(&xfrm_km_lock);
  1532. list_for_each_entry(km, &xfrm_km_list, list) {
  1533. if (km->new_mapping)
  1534. err = km->new_mapping(x, ipaddr, sport);
  1535. if (!err)
  1536. break;
  1537. }
  1538. read_unlock(&xfrm_km_lock);
  1539. return err;
  1540. }
  1541. EXPORT_SYMBOL(km_new_mapping);
  1542. void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 pid)
  1543. {
  1544. struct net *net = xp_net(pol);
  1545. struct km_event c;
  1546. c.data.hard = hard;
  1547. c.pid = pid;
  1548. c.event = XFRM_MSG_POLEXPIRE;
  1549. km_policy_notify(pol, dir, &c);
  1550. if (hard)
  1551. wake_up(&net->xfrm.km_waitq);
  1552. }
  1553. EXPORT_SYMBOL(km_policy_expired);
  1554. #ifdef CONFIG_XFRM_MIGRATE
  1555. int km_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  1556. struct xfrm_migrate *m, int num_migrate,
  1557. struct xfrm_kmaddress *k)
  1558. {
  1559. int err = -EINVAL;
  1560. int ret;
  1561. struct xfrm_mgr *km;
  1562. read_lock(&xfrm_km_lock);
  1563. list_for_each_entry(km, &xfrm_km_list, list) {
  1564. if (km->migrate) {
  1565. ret = km->migrate(sel, dir, type, m, num_migrate, k);
  1566. if (!ret)
  1567. err = ret;
  1568. }
  1569. }
  1570. read_unlock(&xfrm_km_lock);
  1571. return err;
  1572. }
  1573. EXPORT_SYMBOL(km_migrate);
  1574. #endif
  1575. int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr)
  1576. {
  1577. int err = -EINVAL;
  1578. int ret;
  1579. struct xfrm_mgr *km;
  1580. read_lock(&xfrm_km_lock);
  1581. list_for_each_entry(km, &xfrm_km_list, list) {
  1582. if (km->report) {
  1583. ret = km->report(net, proto, sel, addr);
  1584. if (!ret)
  1585. err = ret;
  1586. }
  1587. }
  1588. read_unlock(&xfrm_km_lock);
  1589. return err;
  1590. }
  1591. EXPORT_SYMBOL(km_report);
  1592. int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen)
  1593. {
  1594. int err;
  1595. u8 *data;
  1596. struct xfrm_mgr *km;
  1597. struct xfrm_policy *pol = NULL;
  1598. if (optlen <= 0 || optlen > PAGE_SIZE)
  1599. return -EMSGSIZE;
  1600. data = kmalloc(optlen, GFP_KERNEL);
  1601. if (!data)
  1602. return -ENOMEM;
  1603. err = -EFAULT;
  1604. if (copy_from_user(data, optval, optlen))
  1605. goto out;
  1606. err = -EINVAL;
  1607. read_lock(&xfrm_km_lock);
  1608. list_for_each_entry(km, &xfrm_km_list, list) {
  1609. pol = km->compile_policy(sk, optname, data,
  1610. optlen, &err);
  1611. if (err >= 0)
  1612. break;
  1613. }
  1614. read_unlock(&xfrm_km_lock);
  1615. if (err >= 0) {
  1616. xfrm_sk_policy_insert(sk, err, pol);
  1617. xfrm_pol_put(pol);
  1618. err = 0;
  1619. }
  1620. out:
  1621. kfree(data);
  1622. return err;
  1623. }
  1624. EXPORT_SYMBOL(xfrm_user_policy);
  1625. int xfrm_register_km(struct xfrm_mgr *km)
  1626. {
  1627. write_lock_bh(&xfrm_km_lock);
  1628. list_add_tail(&km->list, &xfrm_km_list);
  1629. write_unlock_bh(&xfrm_km_lock);
  1630. return 0;
  1631. }
  1632. EXPORT_SYMBOL(xfrm_register_km);
  1633. int xfrm_unregister_km(struct xfrm_mgr *km)
  1634. {
  1635. write_lock_bh(&xfrm_km_lock);
  1636. list_del(&km->list);
  1637. write_unlock_bh(&xfrm_km_lock);
  1638. return 0;
  1639. }
  1640. EXPORT_SYMBOL(xfrm_unregister_km);
  1641. int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo)
  1642. {
  1643. int err = 0;
  1644. if (unlikely(afinfo == NULL))
  1645. return -EINVAL;
  1646. if (unlikely(afinfo->family >= NPROTO))
  1647. return -EAFNOSUPPORT;
  1648. write_lock_bh(&xfrm_state_afinfo_lock);
  1649. if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL))
  1650. err = -ENOBUFS;
  1651. else
  1652. xfrm_state_afinfo[afinfo->family] = afinfo;
  1653. write_unlock_bh(&xfrm_state_afinfo_lock);
  1654. return err;
  1655. }
  1656. EXPORT_SYMBOL(xfrm_state_register_afinfo);
  1657. int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo)
  1658. {
  1659. int err = 0;
  1660. if (unlikely(afinfo == NULL))
  1661. return -EINVAL;
  1662. if (unlikely(afinfo->family >= NPROTO))
  1663. return -EAFNOSUPPORT;
  1664. write_lock_bh(&xfrm_state_afinfo_lock);
  1665. if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) {
  1666. if (unlikely(xfrm_state_afinfo[afinfo->family] != afinfo))
  1667. err = -EINVAL;
  1668. else
  1669. xfrm_state_afinfo[afinfo->family] = NULL;
  1670. }
  1671. write_unlock_bh(&xfrm_state_afinfo_lock);
  1672. return err;
  1673. }
  1674. EXPORT_SYMBOL(xfrm_state_unregister_afinfo);
  1675. static struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family)
  1676. {
  1677. struct xfrm_state_afinfo *afinfo;
  1678. if (unlikely(family >= NPROTO))
  1679. return NULL;
  1680. read_lock(&xfrm_state_afinfo_lock);
  1681. afinfo = xfrm_state_afinfo[family];
  1682. if (unlikely(!afinfo))
  1683. read_unlock(&xfrm_state_afinfo_lock);
  1684. return afinfo;
  1685. }
  1686. static void xfrm_state_put_afinfo(struct xfrm_state_afinfo *afinfo)
  1687. __releases(xfrm_state_afinfo_lock)
  1688. {
  1689. read_unlock(&xfrm_state_afinfo_lock);
  1690. }
  1691. /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */
  1692. void xfrm_state_delete_tunnel(struct xfrm_state *x)
  1693. {
  1694. if (x->tunnel) {
  1695. struct xfrm_state *t = x->tunnel;
  1696. if (atomic_read(&t->tunnel_users) == 2)
  1697. xfrm_state_delete(t);
  1698. atomic_dec(&t->tunnel_users);
  1699. xfrm_state_put(t);
  1700. x->tunnel = NULL;
  1701. }
  1702. }
  1703. EXPORT_SYMBOL(xfrm_state_delete_tunnel);
  1704. int xfrm_state_mtu(struct xfrm_state *x, int mtu)
  1705. {
  1706. int res;
  1707. spin_lock_bh(&x->lock);
  1708. if (x->km.state == XFRM_STATE_VALID &&
  1709. x->type && x->type->get_mtu)
  1710. res = x->type->get_mtu(x, mtu);
  1711. else
  1712. res = mtu - x->props.header_len;
  1713. spin_unlock_bh(&x->lock);
  1714. return res;
  1715. }
  1716. int xfrm_init_state(struct xfrm_state *x)
  1717. {
  1718. struct xfrm_state_afinfo *afinfo;
  1719. struct xfrm_mode *inner_mode;
  1720. int family = x->props.family;
  1721. int err;
  1722. err = -EAFNOSUPPORT;
  1723. afinfo = xfrm_state_get_afinfo(family);
  1724. if (!afinfo)
  1725. goto error;
  1726. err = 0;
  1727. if (afinfo->init_flags)
  1728. err = afinfo->init_flags(x);
  1729. xfrm_state_put_afinfo(afinfo);
  1730. if (err)
  1731. goto error;
  1732. err = -EPROTONOSUPPORT;
  1733. if (x->sel.family != AF_UNSPEC) {
  1734. inner_mode = xfrm_get_mode(x->props.mode, x->sel.family);
  1735. if (inner_mode == NULL)
  1736. goto error;
  1737. if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) &&
  1738. family != x->sel.family) {
  1739. xfrm_put_mode(inner_mode);
  1740. goto error;
  1741. }
  1742. x->inner_mode = inner_mode;
  1743. } else {
  1744. struct xfrm_mode *inner_mode_iaf;
  1745. int iafamily = AF_INET;
  1746. inner_mode = xfrm_get_mode(x->props.mode, x->props.family);
  1747. if (inner_mode == NULL)
  1748. goto error;
  1749. if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL)) {
  1750. xfrm_put_mode(inner_mode);
  1751. goto error;
  1752. }
  1753. x->inner_mode = inner_mode;
  1754. if (x->props.family == AF_INET)
  1755. iafamily = AF_INET6;
  1756. inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily);
  1757. if (inner_mode_iaf) {
  1758. if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL)
  1759. x->inner_mode_iaf = inner_mode_iaf;
  1760. else
  1761. xfrm_put_mode(inner_mode_iaf);
  1762. }
  1763. }
  1764. x->type = xfrm_get_type(x->id.proto, family);
  1765. if (x->type == NULL)
  1766. goto error;
  1767. err = x->type->init_state(x);
  1768. if (err)
  1769. goto error;
  1770. x->outer_mode = xfrm_get_mode(x->props.mode, family);
  1771. if (x->outer_mode == NULL)
  1772. goto error;
  1773. x->km.state = XFRM_STATE_VALID;
  1774. error:
  1775. return err;
  1776. }
  1777. EXPORT_SYMBOL(xfrm_init_state);
  1778. int __net_init xfrm_state_init(struct net *net)
  1779. {
  1780. unsigned int sz;
  1781. INIT_LIST_HEAD(&net->xfrm.state_all);
  1782. sz = sizeof(struct hlist_head) * 8;
  1783. net->xfrm.state_bydst = xfrm_hash_alloc(sz);
  1784. if (!net->xfrm.state_bydst)
  1785. goto out_bydst;
  1786. net->xfrm.state_bysrc = xfrm_hash_alloc(sz);
  1787. if (!net->xfrm.state_bysrc)
  1788. goto out_bysrc;
  1789. net->xfrm.state_byspi = xfrm_hash_alloc(sz);
  1790. if (!net->xfrm.state_byspi)
  1791. goto out_byspi;
  1792. net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1);
  1793. net->xfrm.state_num = 0;
  1794. INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize);
  1795. INIT_HLIST_HEAD(&net->xfrm.state_gc_list);
  1796. INIT_WORK(&net->xfrm.state_gc_work, xfrm_state_gc_task);
  1797. init_waitqueue_head(&net->xfrm.km_waitq);
  1798. return 0;
  1799. out_byspi:
  1800. xfrm_hash_free(net->xfrm.state_bysrc, sz);
  1801. out_bysrc:
  1802. xfrm_hash_free(net->xfrm.state_bydst, sz);
  1803. out_bydst:
  1804. return -ENOMEM;
  1805. }
  1806. void xfrm_state_fini(struct net *net)
  1807. {
  1808. struct xfrm_audit audit_info;
  1809. unsigned int sz;
  1810. flush_work(&net->xfrm.state_hash_work);
  1811. audit_info.loginuid = -1;
  1812. audit_info.sessionid = -1;
  1813. audit_info.secid = 0;
  1814. xfrm_state_flush(net, IPSEC_PROTO_ANY, &audit_info);
  1815. flush_work(&net->xfrm.state_gc_work);
  1816. WARN_ON(!list_empty(&net->xfrm.state_all));
  1817. sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head);
  1818. WARN_ON(!hlist_empty(net->xfrm.state_byspi));
  1819. xfrm_hash_free(net->xfrm.state_byspi, sz);
  1820. WARN_ON(!hlist_empty(net->xfrm.state_bysrc));
  1821. xfrm_hash_free(net->xfrm.state_bysrc, sz);
  1822. WARN_ON(!hlist_empty(net->xfrm.state_bydst));
  1823. xfrm_hash_free(net->xfrm.state_bydst, sz);
  1824. }
  1825. #ifdef CONFIG_AUDITSYSCALL
  1826. static void xfrm_audit_helper_sainfo(struct xfrm_state *x,
  1827. struct audit_buffer *audit_buf)
  1828. {
  1829. struct xfrm_sec_ctx *ctx = x->security;
  1830. u32 spi = ntohl(x->id.spi);
  1831. if (ctx)
  1832. audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s",
  1833. ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str);
  1834. switch(x->props.family) {
  1835. case AF_INET:
  1836. audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
  1837. &x->props.saddr.a4, &x->id.daddr.a4);
  1838. break;
  1839. case AF_INET6:
  1840. audit_log_format(audit_buf, " src=%pI6 dst=%pI6",
  1841. x->props.saddr.a6, x->id.daddr.a6);
  1842. break;
  1843. }
  1844. audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
  1845. }
  1846. static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family,
  1847. struct audit_buffer *audit_buf)
  1848. {
  1849. struct iphdr *iph4;
  1850. struct ipv6hdr *iph6;
  1851. switch (family) {
  1852. case AF_INET:
  1853. iph4 = ip_hdr(skb);
  1854. audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
  1855. &iph4->saddr, &iph4->daddr);
  1856. break;
  1857. case AF_INET6:
  1858. iph6 = ipv6_hdr(skb);
  1859. audit_log_format(audit_buf,
  1860. " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x",
  1861. &iph6->saddr,&iph6->daddr,
  1862. iph6->flow_lbl[0] & 0x0f,
  1863. iph6->flow_lbl[1],
  1864. iph6->flow_lbl[2]);
  1865. break;
  1866. }
  1867. }
  1868. void xfrm_audit_state_add(struct xfrm_state *x, int result,
  1869. uid_t auid, u32 sessionid, u32 secid)
  1870. {
  1871. struct audit_buffer *audit_buf;
  1872. audit_buf = xfrm_audit_start("SAD-add");
  1873. if (audit_buf == NULL)
  1874. return;
  1875. xfrm_audit_helper_usrinfo(auid, sessionid, secid, audit_buf);
  1876. xfrm_audit_helper_sainfo(x, audit_buf);
  1877. audit_log_format(audit_buf, " res=%u", result);
  1878. audit_log_end(audit_buf);
  1879. }
  1880. EXPORT_SYMBOL_GPL(xfrm_audit_state_add);
  1881. void xfrm_audit_state_delete(struct xfrm_state *x, int result,
  1882. uid_t auid, u32 sessionid, u32 secid)
  1883. {
  1884. struct audit_buffer *audit_buf;
  1885. audit_buf = xfrm_audit_start("SAD-delete");
  1886. if (audit_buf == NULL)
  1887. return;
  1888. xfrm_audit_helper_usrinfo(auid, sessionid, secid, audit_buf);
  1889. xfrm_audit_helper_sainfo(x, audit_buf);
  1890. audit_log_format(audit_buf, " res=%u", result);
  1891. audit_log_end(audit_buf);
  1892. }
  1893. EXPORT_SYMBOL_GPL(xfrm_audit_state_delete);
  1894. void xfrm_audit_state_replay_overflow(struct xfrm_state *x,
  1895. struct sk_buff *skb)
  1896. {
  1897. struct audit_buffer *audit_buf;
  1898. u32 spi;
  1899. audit_buf = xfrm_audit_start("SA-replay-overflow");
  1900. if (audit_buf == NULL)
  1901. return;
  1902. xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
  1903. /* don't record the sequence number because it's inherent in this kind
  1904. * of audit message */
  1905. spi = ntohl(x->id.spi);
  1906. audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
  1907. audit_log_end(audit_buf);
  1908. }
  1909. EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow);
  1910. static void xfrm_audit_state_replay(struct xfrm_state *x,
  1911. struct sk_buff *skb, __be32 net_seq)
  1912. {
  1913. struct audit_buffer *audit_buf;
  1914. u32 spi;
  1915. audit_buf = xfrm_audit_start("SA-replayed-pkt");
  1916. if (audit_buf == NULL)
  1917. return;
  1918. xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
  1919. spi = ntohl(x->id.spi);
  1920. audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
  1921. spi, spi, ntohl(net_seq));
  1922. audit_log_end(audit_buf);
  1923. }
  1924. void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family)
  1925. {
  1926. struct audit_buffer *audit_buf;
  1927. audit_buf = xfrm_audit_start("SA-notfound");
  1928. if (audit_buf == NULL)
  1929. return;
  1930. xfrm_audit_helper_pktinfo(skb, family, audit_buf);
  1931. audit_log_end(audit_buf);
  1932. }
  1933. EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple);
  1934. void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family,
  1935. __be32 net_spi, __be32 net_seq)
  1936. {
  1937. struct audit_buffer *audit_buf;
  1938. u32 spi;
  1939. audit_buf = xfrm_audit_start("SA-notfound");
  1940. if (audit_buf == NULL)
  1941. return;
  1942. xfrm_audit_helper_pktinfo(skb, family, audit_buf);
  1943. spi = ntohl(net_spi);
  1944. audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
  1945. spi, spi, ntohl(net_seq));
  1946. audit_log_end(audit_buf);
  1947. }
  1948. EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound);
  1949. void xfrm_audit_state_icvfail(struct xfrm_state *x,
  1950. struct sk_buff *skb, u8 proto)
  1951. {
  1952. struct audit_buffer *audit_buf;
  1953. __be32 net_spi;
  1954. __be32 net_seq;
  1955. audit_buf = xfrm_audit_start("SA-icv-failure");
  1956. if (audit_buf == NULL)
  1957. return;
  1958. xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
  1959. if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) {
  1960. u32 spi = ntohl(net_spi);
  1961. audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
  1962. spi, spi, ntohl(net_seq));
  1963. }
  1964. audit_log_end(audit_buf);
  1965. }
  1966. EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail);
  1967. #endif /* CONFIG_AUDITSYSCALL */