page.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/highmem.h>
  34. #include "rds.h"
  35. struct rds_page_remainder {
  36. struct page *r_page;
  37. unsigned long r_offset;
  38. };
  39. DEFINE_PER_CPU(struct rds_page_remainder, rds_page_remainders) ____cacheline_aligned;
  40. /*
  41. * returns 0 on success or -errno on failure.
  42. *
  43. * We don't have to worry about flush_dcache_page() as this only works
  44. * with private pages. If, say, we were to do directed receive to pinned
  45. * user pages we'd have to worry more about cache coherence. (Though
  46. * the flush_dcache_page() in get_user_pages() would probably be enough).
  47. */
  48. int rds_page_copy_user(struct page *page, unsigned long offset,
  49. void __user *ptr, unsigned long bytes,
  50. int to_user)
  51. {
  52. unsigned long ret;
  53. void *addr;
  54. if (to_user)
  55. rds_stats_add(s_copy_to_user, bytes);
  56. else
  57. rds_stats_add(s_copy_from_user, bytes);
  58. addr = kmap_atomic(page, KM_USER0);
  59. if (to_user)
  60. ret = __copy_to_user_inatomic(ptr, addr + offset, bytes);
  61. else
  62. ret = __copy_from_user_inatomic(addr + offset, ptr, bytes);
  63. kunmap_atomic(addr, KM_USER0);
  64. if (ret) {
  65. addr = kmap(page);
  66. if (to_user)
  67. ret = copy_to_user(ptr, addr + offset, bytes);
  68. else
  69. ret = copy_from_user(addr + offset, ptr, bytes);
  70. kunmap(page);
  71. if (ret)
  72. return -EFAULT;
  73. }
  74. return 0;
  75. }
  76. /*
  77. * Message allocation uses this to build up regions of a message.
  78. *
  79. * @bytes - the number of bytes needed.
  80. * @gfp - the waiting behaviour of the allocation
  81. *
  82. * @gfp is always ored with __GFP_HIGHMEM. Callers must be prepared to
  83. * kmap the pages, etc.
  84. *
  85. * If @bytes is at least a full page then this just returns a page from
  86. * alloc_page().
  87. *
  88. * If @bytes is a partial page then this stores the unused region of the
  89. * page in a per-cpu structure. Future partial-page allocations may be
  90. * satisfied from that cached region. This lets us waste less memory on
  91. * small allocations with minimal complexity. It works because the transmit
  92. * path passes read-only page regions down to devices. They hold a page
  93. * reference until they are done with the region.
  94. */
  95. int rds_page_remainder_alloc(struct scatterlist *scat, unsigned long bytes,
  96. gfp_t gfp)
  97. {
  98. struct rds_page_remainder *rem;
  99. unsigned long flags;
  100. struct page *page;
  101. int ret;
  102. gfp |= __GFP_HIGHMEM;
  103. /* jump straight to allocation if we're trying for a huge page */
  104. if (bytes >= PAGE_SIZE) {
  105. page = alloc_page(gfp);
  106. if (page == NULL) {
  107. ret = -ENOMEM;
  108. } else {
  109. sg_set_page(scat, page, PAGE_SIZE, 0);
  110. ret = 0;
  111. }
  112. goto out;
  113. }
  114. rem = &per_cpu(rds_page_remainders, get_cpu());
  115. local_irq_save(flags);
  116. while (1) {
  117. /* avoid a tiny region getting stuck by tossing it */
  118. if (rem->r_page && bytes > (PAGE_SIZE - rem->r_offset)) {
  119. rds_stats_inc(s_page_remainder_miss);
  120. __free_page(rem->r_page);
  121. rem->r_page = NULL;
  122. }
  123. /* hand out a fragment from the cached page */
  124. if (rem->r_page && bytes <= (PAGE_SIZE - rem->r_offset)) {
  125. sg_set_page(scat, rem->r_page, bytes, rem->r_offset);
  126. get_page(sg_page(scat));
  127. if (rem->r_offset != 0)
  128. rds_stats_inc(s_page_remainder_hit);
  129. rem->r_offset += bytes;
  130. if (rem->r_offset == PAGE_SIZE) {
  131. __free_page(rem->r_page);
  132. rem->r_page = NULL;
  133. }
  134. ret = 0;
  135. break;
  136. }
  137. /* alloc if there is nothing for us to use */
  138. local_irq_restore(flags);
  139. put_cpu();
  140. page = alloc_page(gfp);
  141. rem = &per_cpu(rds_page_remainders, get_cpu());
  142. local_irq_save(flags);
  143. if (page == NULL) {
  144. ret = -ENOMEM;
  145. break;
  146. }
  147. /* did someone race to fill the remainder before us? */
  148. if (rem->r_page) {
  149. __free_page(page);
  150. continue;
  151. }
  152. /* otherwise install our page and loop around to alloc */
  153. rem->r_page = page;
  154. rem->r_offset = 0;
  155. }
  156. local_irq_restore(flags);
  157. put_cpu();
  158. out:
  159. rdsdebug("bytes %lu ret %d %p %u %u\n", bytes, ret,
  160. ret ? NULL : sg_page(scat), ret ? 0 : scat->offset,
  161. ret ? 0 : scat->length);
  162. return ret;
  163. }
  164. static int rds_page_remainder_cpu_notify(struct notifier_block *self,
  165. unsigned long action, void *hcpu)
  166. {
  167. struct rds_page_remainder *rem;
  168. long cpu = (long)hcpu;
  169. rem = &per_cpu(rds_page_remainders, cpu);
  170. rdsdebug("cpu %ld action 0x%lx\n", cpu, action);
  171. switch (action) {
  172. case CPU_DEAD:
  173. if (rem->r_page)
  174. __free_page(rem->r_page);
  175. rem->r_page = NULL;
  176. break;
  177. }
  178. return 0;
  179. }
  180. static struct notifier_block rds_page_remainder_nb = {
  181. .notifier_call = rds_page_remainder_cpu_notify,
  182. };
  183. void rds_page_exit(void)
  184. {
  185. int i;
  186. for_each_possible_cpu(i)
  187. rds_page_remainder_cpu_notify(&rds_page_remainder_nb,
  188. (unsigned long)CPU_DEAD,
  189. (void *)(long)i);
  190. }