tkip.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. /*
  2. * Copyright 2002-2004, Instant802 Networks, Inc.
  3. * Copyright 2005, Devicescape Software, Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/bitops.h>
  11. #include <linux/types.h>
  12. #include <linux/netdevice.h>
  13. #include <asm/unaligned.h>
  14. #include <net/mac80211.h>
  15. #include "key.h"
  16. #include "tkip.h"
  17. #include "wep.h"
  18. #define PHASE1_LOOP_COUNT 8
  19. /*
  20. * 2-byte by 2-byte subset of the full AES S-box table; second part of this
  21. * table is identical to first part but byte-swapped
  22. */
  23. static const u16 tkip_sbox[256] =
  24. {
  25. 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
  26. 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
  27. 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
  28. 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
  29. 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
  30. 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
  31. 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
  32. 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
  33. 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
  34. 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
  35. 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
  36. 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
  37. 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
  38. 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
  39. 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
  40. 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
  41. 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
  42. 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
  43. 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
  44. 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
  45. 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
  46. 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
  47. 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
  48. 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
  49. 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
  50. 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
  51. 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
  52. 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
  53. 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
  54. 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
  55. 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
  56. 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
  57. };
  58. static u16 tkipS(u16 val)
  59. {
  60. return tkip_sbox[val & 0xff] ^ swab16(tkip_sbox[val >> 8]);
  61. }
  62. static u8 *write_tkip_iv(u8 *pos, u16 iv16)
  63. {
  64. *pos++ = iv16 >> 8;
  65. *pos++ = ((iv16 >> 8) | 0x20) & 0x7f;
  66. *pos++ = iv16 & 0xFF;
  67. return pos;
  68. }
  69. /*
  70. * P1K := Phase1(TA, TK, TSC)
  71. * TA = transmitter address (48 bits)
  72. * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
  73. * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
  74. * P1K: 80 bits
  75. */
  76. static void tkip_mixing_phase1(const u8 *tk, struct tkip_ctx *ctx,
  77. const u8 *ta, u32 tsc_IV32)
  78. {
  79. int i, j;
  80. u16 *p1k = ctx->p1k;
  81. p1k[0] = tsc_IV32 & 0xFFFF;
  82. p1k[1] = tsc_IV32 >> 16;
  83. p1k[2] = get_unaligned_le16(ta + 0);
  84. p1k[3] = get_unaligned_le16(ta + 2);
  85. p1k[4] = get_unaligned_le16(ta + 4);
  86. for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
  87. j = 2 * (i & 1);
  88. p1k[0] += tkipS(p1k[4] ^ get_unaligned_le16(tk + 0 + j));
  89. p1k[1] += tkipS(p1k[0] ^ get_unaligned_le16(tk + 4 + j));
  90. p1k[2] += tkipS(p1k[1] ^ get_unaligned_le16(tk + 8 + j));
  91. p1k[3] += tkipS(p1k[2] ^ get_unaligned_le16(tk + 12 + j));
  92. p1k[4] += tkipS(p1k[3] ^ get_unaligned_le16(tk + 0 + j)) + i;
  93. }
  94. ctx->initialized = 1;
  95. }
  96. static void tkip_mixing_phase2(const u8 *tk, struct tkip_ctx *ctx,
  97. u16 tsc_IV16, u8 *rc4key)
  98. {
  99. u16 ppk[6];
  100. const u16 *p1k = ctx->p1k;
  101. int i;
  102. ppk[0] = p1k[0];
  103. ppk[1] = p1k[1];
  104. ppk[2] = p1k[2];
  105. ppk[3] = p1k[3];
  106. ppk[4] = p1k[4];
  107. ppk[5] = p1k[4] + tsc_IV16;
  108. ppk[0] += tkipS(ppk[5] ^ get_unaligned_le16(tk + 0));
  109. ppk[1] += tkipS(ppk[0] ^ get_unaligned_le16(tk + 2));
  110. ppk[2] += tkipS(ppk[1] ^ get_unaligned_le16(tk + 4));
  111. ppk[3] += tkipS(ppk[2] ^ get_unaligned_le16(tk + 6));
  112. ppk[4] += tkipS(ppk[3] ^ get_unaligned_le16(tk + 8));
  113. ppk[5] += tkipS(ppk[4] ^ get_unaligned_le16(tk + 10));
  114. ppk[0] += ror16(ppk[5] ^ get_unaligned_le16(tk + 12), 1);
  115. ppk[1] += ror16(ppk[0] ^ get_unaligned_le16(tk + 14), 1);
  116. ppk[2] += ror16(ppk[1], 1);
  117. ppk[3] += ror16(ppk[2], 1);
  118. ppk[4] += ror16(ppk[3], 1);
  119. ppk[5] += ror16(ppk[4], 1);
  120. rc4key = write_tkip_iv(rc4key, tsc_IV16);
  121. *rc4key++ = ((ppk[5] ^ get_unaligned_le16(tk)) >> 1) & 0xFF;
  122. for (i = 0; i < 6; i++)
  123. put_unaligned_le16(ppk[i], rc4key + 2 * i);
  124. }
  125. /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
  126. * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
  127. * the packet payload). */
  128. u8 *ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key *key, u16 iv16)
  129. {
  130. pos = write_tkip_iv(pos, iv16);
  131. *pos++ = (key->conf.keyidx << 6) | (1 << 5) /* Ext IV */;
  132. put_unaligned_le32(key->u.tkip.tx.iv32, pos);
  133. return pos + 4;
  134. }
  135. void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
  136. struct sk_buff *skb, enum ieee80211_tkip_key_type type,
  137. u8 *outkey)
  138. {
  139. struct ieee80211_key *key = (struct ieee80211_key *)
  140. container_of(keyconf, struct ieee80211_key, conf);
  141. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  142. u8 *data;
  143. const u8 *tk;
  144. struct tkip_ctx *ctx;
  145. u16 iv16;
  146. u32 iv32;
  147. data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
  148. iv16 = data[2] | (data[0] << 8);
  149. iv32 = get_unaligned_le32(&data[4]);
  150. tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
  151. ctx = &key->u.tkip.tx;
  152. #ifdef CONFIG_MAC80211_TKIP_DEBUG
  153. printk(KERN_DEBUG "TKIP encrypt: iv16 = 0x%04x, iv32 = 0x%08x\n",
  154. iv16, iv32);
  155. if (iv32 != ctx->iv32) {
  156. printk(KERN_DEBUG "skb: iv32 = 0x%08x key: iv32 = 0x%08x\n",
  157. iv32, ctx->iv32);
  158. printk(KERN_DEBUG "Wrap around of iv16 in the middle of a "
  159. "fragmented packet\n");
  160. }
  161. #endif
  162. /* Update the p1k only when the iv16 in the packet wraps around, this
  163. * might occur after the wrap around of iv16 in the key in case of
  164. * fragmented packets. */
  165. if (iv16 == 0 || !ctx->initialized)
  166. tkip_mixing_phase1(tk, ctx, hdr->addr2, iv32);
  167. if (type == IEEE80211_TKIP_P1_KEY) {
  168. memcpy(outkey, ctx->p1k, sizeof(u16) * 5);
  169. return;
  170. }
  171. tkip_mixing_phase2(tk, ctx, iv16, outkey);
  172. }
  173. EXPORT_SYMBOL(ieee80211_get_tkip_key);
  174. /* Encrypt packet payload with TKIP using @key. @pos is a pointer to the
  175. * beginning of the buffer containing payload. This payload must include
  176. * headroom of eight octets for IV and Ext. IV and taildroom of four octets
  177. * for ICV. @payload_len is the length of payload (_not_ including extra
  178. * headroom and tailroom). @ta is the transmitter addresses. */
  179. void ieee80211_tkip_encrypt_data(struct crypto_blkcipher *tfm,
  180. struct ieee80211_key *key,
  181. u8 *pos, size_t payload_len, u8 *ta)
  182. {
  183. u8 rc4key[16];
  184. struct tkip_ctx *ctx = &key->u.tkip.tx;
  185. const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
  186. /* Calculate per-packet key */
  187. if (ctx->iv16 == 0 || !ctx->initialized)
  188. tkip_mixing_phase1(tk, ctx, ta, ctx->iv32);
  189. tkip_mixing_phase2(tk, ctx, ctx->iv16, rc4key);
  190. pos = ieee80211_tkip_add_iv(pos, key, key->u.tkip.tx.iv16);
  191. ieee80211_wep_encrypt_data(tfm, rc4key, 16, pos, payload_len);
  192. }
  193. /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
  194. * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
  195. * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
  196. * length of payload, including IV, Ext. IV, MIC, ICV. */
  197. int ieee80211_tkip_decrypt_data(struct crypto_blkcipher *tfm,
  198. struct ieee80211_key *key,
  199. u8 *payload, size_t payload_len, u8 *ta,
  200. u8 *ra, int only_iv, int queue,
  201. u32 *out_iv32, u16 *out_iv16)
  202. {
  203. u32 iv32;
  204. u32 iv16;
  205. u8 rc4key[16], keyid, *pos = payload;
  206. int res;
  207. const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
  208. if (payload_len < 12)
  209. return -1;
  210. iv16 = (pos[0] << 8) | pos[2];
  211. keyid = pos[3];
  212. iv32 = get_unaligned_le32(pos + 4);
  213. pos += 8;
  214. #ifdef CONFIG_MAC80211_TKIP_DEBUG
  215. {
  216. int i;
  217. printk(KERN_DEBUG "TKIP decrypt: data(len=%zd)", payload_len);
  218. for (i = 0; i < payload_len; i++)
  219. printk(" %02x", payload[i]);
  220. printk("\n");
  221. printk(KERN_DEBUG "TKIP decrypt: iv16=%04x iv32=%08x\n",
  222. iv16, iv32);
  223. }
  224. #endif
  225. if (!(keyid & (1 << 5)))
  226. return TKIP_DECRYPT_NO_EXT_IV;
  227. if ((keyid >> 6) != key->conf.keyidx)
  228. return TKIP_DECRYPT_INVALID_KEYIDX;
  229. if (key->u.tkip.rx[queue].initialized &&
  230. (iv32 < key->u.tkip.rx[queue].iv32 ||
  231. (iv32 == key->u.tkip.rx[queue].iv32 &&
  232. iv16 <= key->u.tkip.rx[queue].iv16))) {
  233. #ifdef CONFIG_MAC80211_TKIP_DEBUG
  234. printk(KERN_DEBUG "TKIP replay detected for RX frame from "
  235. "%pM (RX IV (%04x,%02x) <= prev. IV (%04x,%02x)\n",
  236. ta,
  237. iv32, iv16, key->u.tkip.rx[queue].iv32,
  238. key->u.tkip.rx[queue].iv16);
  239. #endif
  240. return TKIP_DECRYPT_REPLAY;
  241. }
  242. if (only_iv) {
  243. res = TKIP_DECRYPT_OK;
  244. key->u.tkip.rx[queue].initialized = 1;
  245. goto done;
  246. }
  247. if (!key->u.tkip.rx[queue].initialized ||
  248. key->u.tkip.rx[queue].iv32 != iv32) {
  249. /* IV16 wrapped around - perform TKIP phase 1 */
  250. tkip_mixing_phase1(tk, &key->u.tkip.rx[queue], ta, iv32);
  251. #ifdef CONFIG_MAC80211_TKIP_DEBUG
  252. {
  253. int i;
  254. u8 key_offset = NL80211_TKIP_DATA_OFFSET_ENCR_KEY;
  255. printk(KERN_DEBUG "TKIP decrypt: Phase1 TA=%pM"
  256. " TK=", ta);
  257. for (i = 0; i < 16; i++)
  258. printk("%02x ",
  259. key->conf.key[key_offset + i]);
  260. printk("\n");
  261. printk(KERN_DEBUG "TKIP decrypt: P1K=");
  262. for (i = 0; i < 5; i++)
  263. printk("%04x ", key->u.tkip.rx[queue].p1k[i]);
  264. printk("\n");
  265. }
  266. #endif
  267. if (key->local->ops->update_tkip_key &&
  268. key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
  269. u8 bcast[ETH_ALEN] =
  270. {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
  271. u8 *sta_addr = key->sta->sta.addr;
  272. if (is_multicast_ether_addr(ra))
  273. sta_addr = bcast;
  274. key->local->ops->update_tkip_key(
  275. local_to_hw(key->local), &key->conf,
  276. sta_addr, iv32, key->u.tkip.rx[queue].p1k);
  277. }
  278. }
  279. tkip_mixing_phase2(tk, &key->u.tkip.rx[queue], iv16, rc4key);
  280. #ifdef CONFIG_MAC80211_TKIP_DEBUG
  281. {
  282. int i;
  283. printk(KERN_DEBUG "TKIP decrypt: Phase2 rc4key=");
  284. for (i = 0; i < 16; i++)
  285. printk("%02x ", rc4key[i]);
  286. printk("\n");
  287. }
  288. #endif
  289. res = ieee80211_wep_decrypt_data(tfm, rc4key, 16, pos, payload_len - 12);
  290. done:
  291. if (res == TKIP_DECRYPT_OK) {
  292. /*
  293. * Record previously received IV, will be copied into the
  294. * key information after MIC verification. It is possible
  295. * that we don't catch replays of fragments but that's ok
  296. * because the Michael MIC verication will then fail.
  297. */
  298. *out_iv32 = iv32;
  299. *out_iv16 = iv16;
  300. }
  301. return res;
  302. }