123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661 |
- /*
- * linux/mm/vmscan.c
- *
- * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
- *
- * Swap reorganised 29.12.95, Stephen Tweedie.
- * kswapd added: 7.1.96 sct
- * Removed kswapd_ctl limits, and swap out as many pages as needed
- * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
- * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
- * Multiqueue VM started 5.8.00, Rik van Riel.
- */
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/slab.h>
- #include <linux/kernel_stat.h>
- #include <linux/swap.h>
- #include <linux/pagemap.h>
- #include <linux/init.h>
- #include <linux/highmem.h>
- #include <linux/vmstat.h>
- #include <linux/file.h>
- #include <linux/writeback.h>
- #include <linux/blkdev.h>
- #include <linux/buffer_head.h> /* for try_to_release_page(),
- buffer_heads_over_limit */
- #include <linux/mm_inline.h>
- #include <linux/pagevec.h>
- #include <linux/backing-dev.h>
- #include <linux/rmap.h>
- #include <linux/topology.h>
- #include <linux/cpu.h>
- #include <linux/cpuset.h>
- #include <linux/notifier.h>
- #include <linux/rwsem.h>
- #include <linux/delay.h>
- #include <linux/kthread.h>
- #include <linux/freezer.h>
- #include <linux/memcontrol.h>
- #include <linux/delayacct.h>
- #include <linux/sysctl.h>
- #include <asm/tlbflush.h>
- #include <asm/div64.h>
- #include <linux/swapops.h>
- #include "internal.h"
- struct scan_control {
- /* Incremented by the number of inactive pages that were scanned */
- unsigned long nr_scanned;
- /* Number of pages freed so far during a call to shrink_zones() */
- unsigned long nr_reclaimed;
- /* This context's GFP mask */
- gfp_t gfp_mask;
- int may_writepage;
- /* Can mapped pages be reclaimed? */
- int may_unmap;
- /* This context's SWAP_CLUSTER_MAX. If freeing memory for
- * suspend, we effectively ignore SWAP_CLUSTER_MAX.
- * In this context, it doesn't matter that we scan the
- * whole list at once. */
- int swap_cluster_max;
- int swappiness;
- int all_unreclaimable;
- int order;
- /* Which cgroup do we reclaim from */
- struct mem_cgroup *mem_cgroup;
- /*
- * Nodemask of nodes allowed by the caller. If NULL, all nodes
- * are scanned.
- */
- nodemask_t *nodemask;
- /* Pluggable isolate pages callback */
- unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
- unsigned long *scanned, int order, int mode,
- struct zone *z, struct mem_cgroup *mem_cont,
- int active, int file);
- };
- #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
- #ifdef ARCH_HAS_PREFETCH
- #define prefetch_prev_lru_page(_page, _base, _field) \
- do { \
- if ((_page)->lru.prev != _base) { \
- struct page *prev; \
- \
- prev = lru_to_page(&(_page->lru)); \
- prefetch(&prev->_field); \
- } \
- } while (0)
- #else
- #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
- #endif
- #ifdef ARCH_HAS_PREFETCHW
- #define prefetchw_prev_lru_page(_page, _base, _field) \
- do { \
- if ((_page)->lru.prev != _base) { \
- struct page *prev; \
- \
- prev = lru_to_page(&(_page->lru)); \
- prefetchw(&prev->_field); \
- } \
- } while (0)
- #else
- #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
- #endif
- /*
- * From 0 .. 100. Higher means more swappy.
- */
- int vm_swappiness = 60;
- long vm_total_pages; /* The total number of pages which the VM controls */
- static LIST_HEAD(shrinker_list);
- static DECLARE_RWSEM(shrinker_rwsem);
- #ifdef CONFIG_CGROUP_MEM_RES_CTLR
- #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
- #else
- #define scanning_global_lru(sc) (1)
- #endif
- static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
- struct scan_control *sc)
- {
- if (!scanning_global_lru(sc))
- return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
- return &zone->reclaim_stat;
- }
- static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
- enum lru_list lru)
- {
- if (!scanning_global_lru(sc))
- return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
- return zone_page_state(zone, NR_LRU_BASE + lru);
- }
- /*
- * Add a shrinker callback to be called from the vm
- */
- void register_shrinker(struct shrinker *shrinker)
- {
- shrinker->nr = 0;
- down_write(&shrinker_rwsem);
- list_add_tail(&shrinker->list, &shrinker_list);
- up_write(&shrinker_rwsem);
- }
- EXPORT_SYMBOL(register_shrinker);
- /*
- * Remove one
- */
- void unregister_shrinker(struct shrinker *shrinker)
- {
- down_write(&shrinker_rwsem);
- list_del(&shrinker->list);
- up_write(&shrinker_rwsem);
- }
- EXPORT_SYMBOL(unregister_shrinker);
- #define SHRINK_BATCH 128
- /*
- * Call the shrink functions to age shrinkable caches
- *
- * Here we assume it costs one seek to replace a lru page and that it also
- * takes a seek to recreate a cache object. With this in mind we age equal
- * percentages of the lru and ageable caches. This should balance the seeks
- * generated by these structures.
- *
- * If the vm encountered mapped pages on the LRU it increase the pressure on
- * slab to avoid swapping.
- *
- * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
- *
- * `lru_pages' represents the number of on-LRU pages in all the zones which
- * are eligible for the caller's allocation attempt. It is used for balancing
- * slab reclaim versus page reclaim.
- *
- * Returns the number of slab objects which we shrunk.
- */
- unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
- unsigned long lru_pages)
- {
- struct shrinker *shrinker;
- unsigned long ret = 0;
- if (scanned == 0)
- scanned = SWAP_CLUSTER_MAX;
- if (!down_read_trylock(&shrinker_rwsem))
- return 1; /* Assume we'll be able to shrink next time */
- list_for_each_entry(shrinker, &shrinker_list, list) {
- unsigned long long delta;
- unsigned long total_scan;
- unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
- delta = (4 * scanned) / shrinker->seeks;
- delta *= max_pass;
- do_div(delta, lru_pages + 1);
- shrinker->nr += delta;
- if (shrinker->nr < 0) {
- printk(KERN_ERR "shrink_slab: %pF negative objects to "
- "delete nr=%ld\n",
- shrinker->shrink, shrinker->nr);
- shrinker->nr = max_pass;
- }
- /*
- * Avoid risking looping forever due to too large nr value:
- * never try to free more than twice the estimate number of
- * freeable entries.
- */
- if (shrinker->nr > max_pass * 2)
- shrinker->nr = max_pass * 2;
- total_scan = shrinker->nr;
- shrinker->nr = 0;
- while (total_scan >= SHRINK_BATCH) {
- long this_scan = SHRINK_BATCH;
- int shrink_ret;
- int nr_before;
- nr_before = (*shrinker->shrink)(0, gfp_mask);
- shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
- if (shrink_ret == -1)
- break;
- if (shrink_ret < nr_before)
- ret += nr_before - shrink_ret;
- count_vm_events(SLABS_SCANNED, this_scan);
- total_scan -= this_scan;
- cond_resched();
- }
- shrinker->nr += total_scan;
- }
- up_read(&shrinker_rwsem);
- return ret;
- }
- /* Called without lock on whether page is mapped, so answer is unstable */
- static inline int page_mapping_inuse(struct page *page)
- {
- struct address_space *mapping;
- /* Page is in somebody's page tables. */
- if (page_mapped(page))
- return 1;
- /* Be more reluctant to reclaim swapcache than pagecache */
- if (PageSwapCache(page))
- return 1;
- mapping = page_mapping(page);
- if (!mapping)
- return 0;
- /* File is mmap'd by somebody? */
- return mapping_mapped(mapping);
- }
- static inline int is_page_cache_freeable(struct page *page)
- {
- return page_count(page) - !!page_has_private(page) == 2;
- }
- static int may_write_to_queue(struct backing_dev_info *bdi)
- {
- if (current->flags & PF_SWAPWRITE)
- return 1;
- if (!bdi_write_congested(bdi))
- return 1;
- if (bdi == current->backing_dev_info)
- return 1;
- return 0;
- }
- /*
- * We detected a synchronous write error writing a page out. Probably
- * -ENOSPC. We need to propagate that into the address_space for a subsequent
- * fsync(), msync() or close().
- *
- * The tricky part is that after writepage we cannot touch the mapping: nothing
- * prevents it from being freed up. But we have a ref on the page and once
- * that page is locked, the mapping is pinned.
- *
- * We're allowed to run sleeping lock_page() here because we know the caller has
- * __GFP_FS.
- */
- static void handle_write_error(struct address_space *mapping,
- struct page *page, int error)
- {
- lock_page(page);
- if (page_mapping(page) == mapping)
- mapping_set_error(mapping, error);
- unlock_page(page);
- }
- /* Request for sync pageout. */
- enum pageout_io {
- PAGEOUT_IO_ASYNC,
- PAGEOUT_IO_SYNC,
- };
- /* possible outcome of pageout() */
- typedef enum {
- /* failed to write page out, page is locked */
- PAGE_KEEP,
- /* move page to the active list, page is locked */
- PAGE_ACTIVATE,
- /* page has been sent to the disk successfully, page is unlocked */
- PAGE_SUCCESS,
- /* page is clean and locked */
- PAGE_CLEAN,
- } pageout_t;
- /*
- * pageout is called by shrink_page_list() for each dirty page.
- * Calls ->writepage().
- */
- static pageout_t pageout(struct page *page, struct address_space *mapping,
- enum pageout_io sync_writeback)
- {
- /*
- * If the page is dirty, only perform writeback if that write
- * will be non-blocking. To prevent this allocation from being
- * stalled by pagecache activity. But note that there may be
- * stalls if we need to run get_block(). We could test
- * PagePrivate for that.
- *
- * If this process is currently in generic_file_write() against
- * this page's queue, we can perform writeback even if that
- * will block.
- *
- * If the page is swapcache, write it back even if that would
- * block, for some throttling. This happens by accident, because
- * swap_backing_dev_info is bust: it doesn't reflect the
- * congestion state of the swapdevs. Easy to fix, if needed.
- * See swapfile.c:page_queue_congested().
- */
- if (!is_page_cache_freeable(page))
- return PAGE_KEEP;
- if (!mapping) {
- /*
- * Some data journaling orphaned pages can have
- * page->mapping == NULL while being dirty with clean buffers.
- */
- if (page_has_private(page)) {
- if (try_to_free_buffers(page)) {
- ClearPageDirty(page);
- printk("%s: orphaned page\n", __func__);
- return PAGE_CLEAN;
- }
- }
- return PAGE_KEEP;
- }
- if (mapping->a_ops->writepage == NULL)
- return PAGE_ACTIVATE;
- if (!may_write_to_queue(mapping->backing_dev_info))
- return PAGE_KEEP;
- if (clear_page_dirty_for_io(page)) {
- int res;
- struct writeback_control wbc = {
- .sync_mode = WB_SYNC_NONE,
- .nr_to_write = SWAP_CLUSTER_MAX,
- .range_start = 0,
- .range_end = LLONG_MAX,
- .nonblocking = 1,
- .for_reclaim = 1,
- };
- SetPageReclaim(page);
- res = mapping->a_ops->writepage(page, &wbc);
- if (res < 0)
- handle_write_error(mapping, page, res);
- if (res == AOP_WRITEPAGE_ACTIVATE) {
- ClearPageReclaim(page);
- return PAGE_ACTIVATE;
- }
- /*
- * Wait on writeback if requested to. This happens when
- * direct reclaiming a large contiguous area and the
- * first attempt to free a range of pages fails.
- */
- if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
- wait_on_page_writeback(page);
- if (!PageWriteback(page)) {
- /* synchronous write or broken a_ops? */
- ClearPageReclaim(page);
- }
- inc_zone_page_state(page, NR_VMSCAN_WRITE);
- return PAGE_SUCCESS;
- }
- return PAGE_CLEAN;
- }
- /*
- * Same as remove_mapping, but if the page is removed from the mapping, it
- * gets returned with a refcount of 0.
- */
- static int __remove_mapping(struct address_space *mapping, struct page *page)
- {
- BUG_ON(!PageLocked(page));
- BUG_ON(mapping != page_mapping(page));
- spin_lock_irq(&mapping->tree_lock);
- /*
- * The non racy check for a busy page.
- *
- * Must be careful with the order of the tests. When someone has
- * a ref to the page, it may be possible that they dirty it then
- * drop the reference. So if PageDirty is tested before page_count
- * here, then the following race may occur:
- *
- * get_user_pages(&page);
- * [user mapping goes away]
- * write_to(page);
- * !PageDirty(page) [good]
- * SetPageDirty(page);
- * put_page(page);
- * !page_count(page) [good, discard it]
- *
- * [oops, our write_to data is lost]
- *
- * Reversing the order of the tests ensures such a situation cannot
- * escape unnoticed. The smp_rmb is needed to ensure the page->flags
- * load is not satisfied before that of page->_count.
- *
- * Note that if SetPageDirty is always performed via set_page_dirty,
- * and thus under tree_lock, then this ordering is not required.
- */
- if (!page_freeze_refs(page, 2))
- goto cannot_free;
- /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
- if (unlikely(PageDirty(page))) {
- page_unfreeze_refs(page, 2);
- goto cannot_free;
- }
- if (PageSwapCache(page)) {
- swp_entry_t swap = { .val = page_private(page) };
- __delete_from_swap_cache(page);
- spin_unlock_irq(&mapping->tree_lock);
- swap_free(swap);
- } else {
- __remove_from_page_cache(page);
- spin_unlock_irq(&mapping->tree_lock);
- }
- return 1;
- cannot_free:
- spin_unlock_irq(&mapping->tree_lock);
- return 0;
- }
- /*
- * Attempt to detach a locked page from its ->mapping. If it is dirty or if
- * someone else has a ref on the page, abort and return 0. If it was
- * successfully detached, return 1. Assumes the caller has a single ref on
- * this page.
- */
- int remove_mapping(struct address_space *mapping, struct page *page)
- {
- if (__remove_mapping(mapping, page)) {
- /*
- * Unfreezing the refcount with 1 rather than 2 effectively
- * drops the pagecache ref for us without requiring another
- * atomic operation.
- */
- page_unfreeze_refs(page, 1);
- return 1;
- }
- return 0;
- }
- /**
- * putback_lru_page - put previously isolated page onto appropriate LRU list
- * @page: page to be put back to appropriate lru list
- *
- * Add previously isolated @page to appropriate LRU list.
- * Page may still be unevictable for other reasons.
- *
- * lru_lock must not be held, interrupts must be enabled.
- */
- #ifdef CONFIG_UNEVICTABLE_LRU
- void putback_lru_page(struct page *page)
- {
- int lru;
- int active = !!TestClearPageActive(page);
- int was_unevictable = PageUnevictable(page);
- VM_BUG_ON(PageLRU(page));
- redo:
- ClearPageUnevictable(page);
- if (page_evictable(page, NULL)) {
- /*
- * For evictable pages, we can use the cache.
- * In event of a race, worst case is we end up with an
- * unevictable page on [in]active list.
- * We know how to handle that.
- */
- lru = active + page_is_file_cache(page);
- lru_cache_add_lru(page, lru);
- } else {
- /*
- * Put unevictable pages directly on zone's unevictable
- * list.
- */
- lru = LRU_UNEVICTABLE;
- add_page_to_unevictable_list(page);
- }
- /*
- * page's status can change while we move it among lru. If an evictable
- * page is on unevictable list, it never be freed. To avoid that,
- * check after we added it to the list, again.
- */
- if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
- if (!isolate_lru_page(page)) {
- put_page(page);
- goto redo;
- }
- /* This means someone else dropped this page from LRU
- * So, it will be freed or putback to LRU again. There is
- * nothing to do here.
- */
- }
- if (was_unevictable && lru != LRU_UNEVICTABLE)
- count_vm_event(UNEVICTABLE_PGRESCUED);
- else if (!was_unevictable && lru == LRU_UNEVICTABLE)
- count_vm_event(UNEVICTABLE_PGCULLED);
- put_page(page); /* drop ref from isolate */
- }
- #else /* CONFIG_UNEVICTABLE_LRU */
- void putback_lru_page(struct page *page)
- {
- int lru;
- VM_BUG_ON(PageLRU(page));
- lru = !!TestClearPageActive(page) + page_is_file_cache(page);
- lru_cache_add_lru(page, lru);
- put_page(page);
- }
- #endif /* CONFIG_UNEVICTABLE_LRU */
- /*
- * shrink_page_list() returns the number of reclaimed pages
- */
- static unsigned long shrink_page_list(struct list_head *page_list,
- struct scan_control *sc,
- enum pageout_io sync_writeback)
- {
- LIST_HEAD(ret_pages);
- struct pagevec freed_pvec;
- int pgactivate = 0;
- unsigned long nr_reclaimed = 0;
- cond_resched();
- pagevec_init(&freed_pvec, 1);
- while (!list_empty(page_list)) {
- struct address_space *mapping;
- struct page *page;
- int may_enter_fs;
- int referenced;
- cond_resched();
- page = lru_to_page(page_list);
- list_del(&page->lru);
- if (!trylock_page(page))
- goto keep;
- VM_BUG_ON(PageActive(page));
- sc->nr_scanned++;
- if (unlikely(!page_evictable(page, NULL)))
- goto cull_mlocked;
- if (!sc->may_unmap && page_mapped(page))
- goto keep_locked;
- /* Double the slab pressure for mapped and swapcache pages */
- if (page_mapped(page) || PageSwapCache(page))
- sc->nr_scanned++;
- may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
- (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
- if (PageWriteback(page)) {
- /*
- * Synchronous reclaim is performed in two passes,
- * first an asynchronous pass over the list to
- * start parallel writeback, and a second synchronous
- * pass to wait for the IO to complete. Wait here
- * for any page for which writeback has already
- * started.
- */
- if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
- wait_on_page_writeback(page);
- else
- goto keep_locked;
- }
- referenced = page_referenced(page, 1, sc->mem_cgroup);
- /* In active use or really unfreeable? Activate it. */
- if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
- referenced && page_mapping_inuse(page))
- goto activate_locked;
- /*
- * Anonymous process memory has backing store?
- * Try to allocate it some swap space here.
- */
- if (PageAnon(page) && !PageSwapCache(page)) {
- if (!(sc->gfp_mask & __GFP_IO))
- goto keep_locked;
- if (!add_to_swap(page))
- goto activate_locked;
- may_enter_fs = 1;
- }
- mapping = page_mapping(page);
- /*
- * The page is mapped into the page tables of one or more
- * processes. Try to unmap it here.
- */
- if (page_mapped(page) && mapping) {
- switch (try_to_unmap(page, 0)) {
- case SWAP_FAIL:
- goto activate_locked;
- case SWAP_AGAIN:
- goto keep_locked;
- case SWAP_MLOCK:
- goto cull_mlocked;
- case SWAP_SUCCESS:
- ; /* try to free the page below */
- }
- }
- if (PageDirty(page)) {
- if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
- goto keep_locked;
- if (!may_enter_fs)
- goto keep_locked;
- if (!sc->may_writepage)
- goto keep_locked;
- /* Page is dirty, try to write it out here */
- switch (pageout(page, mapping, sync_writeback)) {
- case PAGE_KEEP:
- goto keep_locked;
- case PAGE_ACTIVATE:
- goto activate_locked;
- case PAGE_SUCCESS:
- if (PageWriteback(page) || PageDirty(page))
- goto keep;
- /*
- * A synchronous write - probably a ramdisk. Go
- * ahead and try to reclaim the page.
- */
- if (!trylock_page(page))
- goto keep;
- if (PageDirty(page) || PageWriteback(page))
- goto keep_locked;
- mapping = page_mapping(page);
- case PAGE_CLEAN:
- ; /* try to free the page below */
- }
- }
- /*
- * If the page has buffers, try to free the buffer mappings
- * associated with this page. If we succeed we try to free
- * the page as well.
- *
- * We do this even if the page is PageDirty().
- * try_to_release_page() does not perform I/O, but it is
- * possible for a page to have PageDirty set, but it is actually
- * clean (all its buffers are clean). This happens if the
- * buffers were written out directly, with submit_bh(). ext3
- * will do this, as well as the blockdev mapping.
- * try_to_release_page() will discover that cleanness and will
- * drop the buffers and mark the page clean - it can be freed.
- *
- * Rarely, pages can have buffers and no ->mapping. These are
- * the pages which were not successfully invalidated in
- * truncate_complete_page(). We try to drop those buffers here
- * and if that worked, and the page is no longer mapped into
- * process address space (page_count == 1) it can be freed.
- * Otherwise, leave the page on the LRU so it is swappable.
- */
- if (page_has_private(page)) {
- if (!try_to_release_page(page, sc->gfp_mask))
- goto activate_locked;
- if (!mapping && page_count(page) == 1) {
- unlock_page(page);
- if (put_page_testzero(page))
- goto free_it;
- else {
- /*
- * rare race with speculative reference.
- * the speculative reference will free
- * this page shortly, so we may
- * increment nr_reclaimed here (and
- * leave it off the LRU).
- */
- nr_reclaimed++;
- continue;
- }
- }
- }
- if (!mapping || !__remove_mapping(mapping, page))
- goto keep_locked;
- /*
- * At this point, we have no other references and there is
- * no way to pick any more up (removed from LRU, removed
- * from pagecache). Can use non-atomic bitops now (and
- * we obviously don't have to worry about waking up a process
- * waiting on the page lock, because there are no references.
- */
- __clear_page_locked(page);
- free_it:
- nr_reclaimed++;
- if (!pagevec_add(&freed_pvec, page)) {
- __pagevec_free(&freed_pvec);
- pagevec_reinit(&freed_pvec);
- }
- continue;
- cull_mlocked:
- if (PageSwapCache(page))
- try_to_free_swap(page);
- unlock_page(page);
- putback_lru_page(page);
- continue;
- activate_locked:
- /* Not a candidate for swapping, so reclaim swap space. */
- if (PageSwapCache(page) && vm_swap_full())
- try_to_free_swap(page);
- VM_BUG_ON(PageActive(page));
- SetPageActive(page);
- pgactivate++;
- keep_locked:
- unlock_page(page);
- keep:
- list_add(&page->lru, &ret_pages);
- VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
- }
- list_splice(&ret_pages, page_list);
- if (pagevec_count(&freed_pvec))
- __pagevec_free(&freed_pvec);
- count_vm_events(PGACTIVATE, pgactivate);
- return nr_reclaimed;
- }
- /* LRU Isolation modes. */
- #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
- #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
- #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
- /*
- * Attempt to remove the specified page from its LRU. Only take this page
- * if it is of the appropriate PageActive status. Pages which are being
- * freed elsewhere are also ignored.
- *
- * page: page to consider
- * mode: one of the LRU isolation modes defined above
- *
- * returns 0 on success, -ve errno on failure.
- */
- int __isolate_lru_page(struct page *page, int mode, int file)
- {
- int ret = -EINVAL;
- /* Only take pages on the LRU. */
- if (!PageLRU(page))
- return ret;
- /*
- * When checking the active state, we need to be sure we are
- * dealing with comparible boolean values. Take the logical not
- * of each.
- */
- if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
- return ret;
- if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
- return ret;
- /*
- * When this function is being called for lumpy reclaim, we
- * initially look into all LRU pages, active, inactive and
- * unevictable; only give shrink_page_list evictable pages.
- */
- if (PageUnevictable(page))
- return ret;
- ret = -EBUSY;
- if (likely(get_page_unless_zero(page))) {
- /*
- * Be careful not to clear PageLRU until after we're
- * sure the page is not being freed elsewhere -- the
- * page release code relies on it.
- */
- ClearPageLRU(page);
- ret = 0;
- mem_cgroup_del_lru(page);
- }
- return ret;
- }
- /*
- * zone->lru_lock is heavily contended. Some of the functions that
- * shrink the lists perform better by taking out a batch of pages
- * and working on them outside the LRU lock.
- *
- * For pagecache intensive workloads, this function is the hottest
- * spot in the kernel (apart from copy_*_user functions).
- *
- * Appropriate locks must be held before calling this function.
- *
- * @nr_to_scan: The number of pages to look through on the list.
- * @src: The LRU list to pull pages off.
- * @dst: The temp list to put pages on to.
- * @scanned: The number of pages that were scanned.
- * @order: The caller's attempted allocation order
- * @mode: One of the LRU isolation modes
- * @file: True [1] if isolating file [!anon] pages
- *
- * returns how many pages were moved onto *@dst.
- */
- static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
- struct list_head *src, struct list_head *dst,
- unsigned long *scanned, int order, int mode, int file)
- {
- unsigned long nr_taken = 0;
- unsigned long scan;
- for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
- struct page *page;
- unsigned long pfn;
- unsigned long end_pfn;
- unsigned long page_pfn;
- int zone_id;
- page = lru_to_page(src);
- prefetchw_prev_lru_page(page, src, flags);
- VM_BUG_ON(!PageLRU(page));
- switch (__isolate_lru_page(page, mode, file)) {
- case 0:
- list_move(&page->lru, dst);
- nr_taken++;
- break;
- case -EBUSY:
- /* else it is being freed elsewhere */
- list_move(&page->lru, src);
- continue;
- default:
- BUG();
- }
- if (!order)
- continue;
- /*
- * Attempt to take all pages in the order aligned region
- * surrounding the tag page. Only take those pages of
- * the same active state as that tag page. We may safely
- * round the target page pfn down to the requested order
- * as the mem_map is guarenteed valid out to MAX_ORDER,
- * where that page is in a different zone we will detect
- * it from its zone id and abort this block scan.
- */
- zone_id = page_zone_id(page);
- page_pfn = page_to_pfn(page);
- pfn = page_pfn & ~((1 << order) - 1);
- end_pfn = pfn + (1 << order);
- for (; pfn < end_pfn; pfn++) {
- struct page *cursor_page;
- /* The target page is in the block, ignore it. */
- if (unlikely(pfn == page_pfn))
- continue;
- /* Avoid holes within the zone. */
- if (unlikely(!pfn_valid_within(pfn)))
- break;
- cursor_page = pfn_to_page(pfn);
- /* Check that we have not crossed a zone boundary. */
- if (unlikely(page_zone_id(cursor_page) != zone_id))
- continue;
- switch (__isolate_lru_page(cursor_page, mode, file)) {
- case 0:
- list_move(&cursor_page->lru, dst);
- nr_taken++;
- scan++;
- break;
- case -EBUSY:
- /* else it is being freed elsewhere */
- list_move(&cursor_page->lru, src);
- default:
- break; /* ! on LRU or wrong list */
- }
- }
- }
- *scanned = scan;
- return nr_taken;
- }
- static unsigned long isolate_pages_global(unsigned long nr,
- struct list_head *dst,
- unsigned long *scanned, int order,
- int mode, struct zone *z,
- struct mem_cgroup *mem_cont,
- int active, int file)
- {
- int lru = LRU_BASE;
- if (active)
- lru += LRU_ACTIVE;
- if (file)
- lru += LRU_FILE;
- return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
- mode, !!file);
- }
- /*
- * clear_active_flags() is a helper for shrink_active_list(), clearing
- * any active bits from the pages in the list.
- */
- static unsigned long clear_active_flags(struct list_head *page_list,
- unsigned int *count)
- {
- int nr_active = 0;
- int lru;
- struct page *page;
- list_for_each_entry(page, page_list, lru) {
- lru = page_is_file_cache(page);
- if (PageActive(page)) {
- lru += LRU_ACTIVE;
- ClearPageActive(page);
- nr_active++;
- }
- count[lru]++;
- }
- return nr_active;
- }
- /**
- * isolate_lru_page - tries to isolate a page from its LRU list
- * @page: page to isolate from its LRU list
- *
- * Isolates a @page from an LRU list, clears PageLRU and adjusts the
- * vmstat statistic corresponding to whatever LRU list the page was on.
- *
- * Returns 0 if the page was removed from an LRU list.
- * Returns -EBUSY if the page was not on an LRU list.
- *
- * The returned page will have PageLRU() cleared. If it was found on
- * the active list, it will have PageActive set. If it was found on
- * the unevictable list, it will have the PageUnevictable bit set. That flag
- * may need to be cleared by the caller before letting the page go.
- *
- * The vmstat statistic corresponding to the list on which the page was
- * found will be decremented.
- *
- * Restrictions:
- * (1) Must be called with an elevated refcount on the page. This is a
- * fundamentnal difference from isolate_lru_pages (which is called
- * without a stable reference).
- * (2) the lru_lock must not be held.
- * (3) interrupts must be enabled.
- */
- int isolate_lru_page(struct page *page)
- {
- int ret = -EBUSY;
- if (PageLRU(page)) {
- struct zone *zone = page_zone(page);
- spin_lock_irq(&zone->lru_lock);
- if (PageLRU(page) && get_page_unless_zero(page)) {
- int lru = page_lru(page);
- ret = 0;
- ClearPageLRU(page);
- del_page_from_lru_list(zone, page, lru);
- }
- spin_unlock_irq(&zone->lru_lock);
- }
- return ret;
- }
- /*
- * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
- * of reclaimed pages
- */
- static unsigned long shrink_inactive_list(unsigned long max_scan,
- struct zone *zone, struct scan_control *sc,
- int priority, int file)
- {
- LIST_HEAD(page_list);
- struct pagevec pvec;
- unsigned long nr_scanned = 0;
- unsigned long nr_reclaimed = 0;
- struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
- pagevec_init(&pvec, 1);
- lru_add_drain();
- spin_lock_irq(&zone->lru_lock);
- do {
- struct page *page;
- unsigned long nr_taken;
- unsigned long nr_scan;
- unsigned long nr_freed;
- unsigned long nr_active;
- unsigned int count[NR_LRU_LISTS] = { 0, };
- int mode = ISOLATE_INACTIVE;
- /*
- * If we need a large contiguous chunk of memory, or have
- * trouble getting a small set of contiguous pages, we
- * will reclaim both active and inactive pages.
- *
- * We use the same threshold as pageout congestion_wait below.
- */
- if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
- mode = ISOLATE_BOTH;
- else if (sc->order && priority < DEF_PRIORITY - 2)
- mode = ISOLATE_BOTH;
- nr_taken = sc->isolate_pages(sc->swap_cluster_max,
- &page_list, &nr_scan, sc->order, mode,
- zone, sc->mem_cgroup, 0, file);
- nr_active = clear_active_flags(&page_list, count);
- __count_vm_events(PGDEACTIVATE, nr_active);
- __mod_zone_page_state(zone, NR_ACTIVE_FILE,
- -count[LRU_ACTIVE_FILE]);
- __mod_zone_page_state(zone, NR_INACTIVE_FILE,
- -count[LRU_INACTIVE_FILE]);
- __mod_zone_page_state(zone, NR_ACTIVE_ANON,
- -count[LRU_ACTIVE_ANON]);
- __mod_zone_page_state(zone, NR_INACTIVE_ANON,
- -count[LRU_INACTIVE_ANON]);
- if (scanning_global_lru(sc))
- zone->pages_scanned += nr_scan;
- reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
- reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
- reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
- reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
- spin_unlock_irq(&zone->lru_lock);
- nr_scanned += nr_scan;
- nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
- /*
- * If we are direct reclaiming for contiguous pages and we do
- * not reclaim everything in the list, try again and wait
- * for IO to complete. This will stall high-order allocations
- * but that should be acceptable to the caller
- */
- if (nr_freed < nr_taken && !current_is_kswapd() &&
- sc->order > PAGE_ALLOC_COSTLY_ORDER) {
- congestion_wait(WRITE, HZ/10);
- /*
- * The attempt at page out may have made some
- * of the pages active, mark them inactive again.
- */
- nr_active = clear_active_flags(&page_list, count);
- count_vm_events(PGDEACTIVATE, nr_active);
- nr_freed += shrink_page_list(&page_list, sc,
- PAGEOUT_IO_SYNC);
- }
- nr_reclaimed += nr_freed;
- local_irq_disable();
- if (current_is_kswapd()) {
- __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
- __count_vm_events(KSWAPD_STEAL, nr_freed);
- } else if (scanning_global_lru(sc))
- __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
- __count_zone_vm_events(PGSTEAL, zone, nr_freed);
- if (nr_taken == 0)
- goto done;
- spin_lock(&zone->lru_lock);
- /*
- * Put back any unfreeable pages.
- */
- while (!list_empty(&page_list)) {
- int lru;
- page = lru_to_page(&page_list);
- VM_BUG_ON(PageLRU(page));
- list_del(&page->lru);
- if (unlikely(!page_evictable(page, NULL))) {
- spin_unlock_irq(&zone->lru_lock);
- putback_lru_page(page);
- spin_lock_irq(&zone->lru_lock);
- continue;
- }
- SetPageLRU(page);
- lru = page_lru(page);
- add_page_to_lru_list(zone, page, lru);
- if (PageActive(page)) {
- int file = !!page_is_file_cache(page);
- reclaim_stat->recent_rotated[file]++;
- }
- if (!pagevec_add(&pvec, page)) {
- spin_unlock_irq(&zone->lru_lock);
- __pagevec_release(&pvec);
- spin_lock_irq(&zone->lru_lock);
- }
- }
- } while (nr_scanned < max_scan);
- spin_unlock(&zone->lru_lock);
- done:
- local_irq_enable();
- pagevec_release(&pvec);
- return nr_reclaimed;
- }
- /*
- * We are about to scan this zone at a certain priority level. If that priority
- * level is smaller (ie: more urgent) than the previous priority, then note
- * that priority level within the zone. This is done so that when the next
- * process comes in to scan this zone, it will immediately start out at this
- * priority level rather than having to build up its own scanning priority.
- * Here, this priority affects only the reclaim-mapped threshold.
- */
- static inline void note_zone_scanning_priority(struct zone *zone, int priority)
- {
- if (priority < zone->prev_priority)
- zone->prev_priority = priority;
- }
- /*
- * This moves pages from the active list to the inactive list.
- *
- * We move them the other way if the page is referenced by one or more
- * processes, from rmap.
- *
- * If the pages are mostly unmapped, the processing is fast and it is
- * appropriate to hold zone->lru_lock across the whole operation. But if
- * the pages are mapped, the processing is slow (page_referenced()) so we
- * should drop zone->lru_lock around each page. It's impossible to balance
- * this, so instead we remove the pages from the LRU while processing them.
- * It is safe to rely on PG_active against the non-LRU pages in here because
- * nobody will play with that bit on a non-LRU page.
- *
- * The downside is that we have to touch page->_count against each page.
- * But we had to alter page->flags anyway.
- */
- static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
- struct scan_control *sc, int priority, int file)
- {
- unsigned long pgmoved;
- int pgdeactivate = 0;
- unsigned long pgscanned;
- LIST_HEAD(l_hold); /* The pages which were snipped off */
- LIST_HEAD(l_inactive);
- struct page *page;
- struct pagevec pvec;
- enum lru_list lru;
- struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
- lru_add_drain();
- spin_lock_irq(&zone->lru_lock);
- pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
- ISOLATE_ACTIVE, zone,
- sc->mem_cgroup, 1, file);
- /*
- * zone->pages_scanned is used for detect zone's oom
- * mem_cgroup remembers nr_scan by itself.
- */
- if (scanning_global_lru(sc)) {
- zone->pages_scanned += pgscanned;
- }
- reclaim_stat->recent_scanned[!!file] += pgmoved;
- if (file)
- __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
- else
- __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
- spin_unlock_irq(&zone->lru_lock);
- pgmoved = 0;
- while (!list_empty(&l_hold)) {
- cond_resched();
- page = lru_to_page(&l_hold);
- list_del(&page->lru);
- if (unlikely(!page_evictable(page, NULL))) {
- putback_lru_page(page);
- continue;
- }
- /* page_referenced clears PageReferenced */
- if (page_mapping_inuse(page) &&
- page_referenced(page, 0, sc->mem_cgroup))
- pgmoved++;
- list_add(&page->lru, &l_inactive);
- }
- /*
- * Move the pages to the [file or anon] inactive list.
- */
- pagevec_init(&pvec, 1);
- lru = LRU_BASE + file * LRU_FILE;
- spin_lock_irq(&zone->lru_lock);
- /*
- * Count referenced pages from currently used mappings as
- * rotated, even though they are moved to the inactive list.
- * This helps balance scan pressure between file and anonymous
- * pages in get_scan_ratio.
- */
- reclaim_stat->recent_rotated[!!file] += pgmoved;
- pgmoved = 0;
- while (!list_empty(&l_inactive)) {
- page = lru_to_page(&l_inactive);
- prefetchw_prev_lru_page(page, &l_inactive, flags);
- VM_BUG_ON(PageLRU(page));
- SetPageLRU(page);
- VM_BUG_ON(!PageActive(page));
- ClearPageActive(page);
- list_move(&page->lru, &zone->lru[lru].list);
- mem_cgroup_add_lru_list(page, lru);
- pgmoved++;
- if (!pagevec_add(&pvec, page)) {
- __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
- spin_unlock_irq(&zone->lru_lock);
- pgdeactivate += pgmoved;
- pgmoved = 0;
- if (buffer_heads_over_limit)
- pagevec_strip(&pvec);
- __pagevec_release(&pvec);
- spin_lock_irq(&zone->lru_lock);
- }
- }
- __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
- pgdeactivate += pgmoved;
- __count_zone_vm_events(PGREFILL, zone, pgscanned);
- __count_vm_events(PGDEACTIVATE, pgdeactivate);
- spin_unlock_irq(&zone->lru_lock);
- if (buffer_heads_over_limit)
- pagevec_strip(&pvec);
- pagevec_release(&pvec);
- }
- static int inactive_anon_is_low_global(struct zone *zone)
- {
- unsigned long active, inactive;
- active = zone_page_state(zone, NR_ACTIVE_ANON);
- inactive = zone_page_state(zone, NR_INACTIVE_ANON);
- if (inactive * zone->inactive_ratio < active)
- return 1;
- return 0;
- }
- /**
- * inactive_anon_is_low - check if anonymous pages need to be deactivated
- * @zone: zone to check
- * @sc: scan control of this context
- *
- * Returns true if the zone does not have enough inactive anon pages,
- * meaning some active anon pages need to be deactivated.
- */
- static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
- {
- int low;
- if (scanning_global_lru(sc))
- low = inactive_anon_is_low_global(zone);
- else
- low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
- return low;
- }
- static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
- struct zone *zone, struct scan_control *sc, int priority)
- {
- int file = is_file_lru(lru);
- if (lru == LRU_ACTIVE_FILE) {
- shrink_active_list(nr_to_scan, zone, sc, priority, file);
- return 0;
- }
- if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
- shrink_active_list(nr_to_scan, zone, sc, priority, file);
- return 0;
- }
- return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
- }
- /*
- * Determine how aggressively the anon and file LRU lists should be
- * scanned. The relative value of each set of LRU lists is determined
- * by looking at the fraction of the pages scanned we did rotate back
- * onto the active list instead of evict.
- *
- * percent[0] specifies how much pressure to put on ram/swap backed
- * memory, while percent[1] determines pressure on the file LRUs.
- */
- static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
- unsigned long *percent)
- {
- unsigned long anon, file, free;
- unsigned long anon_prio, file_prio;
- unsigned long ap, fp;
- struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
- /* If we have no swap space, do not bother scanning anon pages. */
- if (nr_swap_pages <= 0) {
- percent[0] = 0;
- percent[1] = 100;
- return;
- }
- anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
- zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
- file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
- zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
- if (scanning_global_lru(sc)) {
- free = zone_page_state(zone, NR_FREE_PAGES);
- /* If we have very few page cache pages,
- force-scan anon pages. */
- if (unlikely(file + free <= zone->pages_high)) {
- percent[0] = 100;
- percent[1] = 0;
- return;
- }
- }
- /*
- * OK, so we have swap space and a fair amount of page cache
- * pages. We use the recently rotated / recently scanned
- * ratios to determine how valuable each cache is.
- *
- * Because workloads change over time (and to avoid overflow)
- * we keep these statistics as a floating average, which ends
- * up weighing recent references more than old ones.
- *
- * anon in [0], file in [1]
- */
- if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
- spin_lock_irq(&zone->lru_lock);
- reclaim_stat->recent_scanned[0] /= 2;
- reclaim_stat->recent_rotated[0] /= 2;
- spin_unlock_irq(&zone->lru_lock);
- }
- if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
- spin_lock_irq(&zone->lru_lock);
- reclaim_stat->recent_scanned[1] /= 2;
- reclaim_stat->recent_rotated[1] /= 2;
- spin_unlock_irq(&zone->lru_lock);
- }
- /*
- * With swappiness at 100, anonymous and file have the same priority.
- * This scanning priority is essentially the inverse of IO cost.
- */
- anon_prio = sc->swappiness;
- file_prio = 200 - sc->swappiness;
- /*
- * The amount of pressure on anon vs file pages is inversely
- * proportional to the fraction of recently scanned pages on
- * each list that were recently referenced and in active use.
- */
- ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
- ap /= reclaim_stat->recent_rotated[0] + 1;
- fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
- fp /= reclaim_stat->recent_rotated[1] + 1;
- /* Normalize to percentages */
- percent[0] = 100 * ap / (ap + fp + 1);
- percent[1] = 100 - percent[0];
- }
- /*
- * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
- */
- static void shrink_zone(int priority, struct zone *zone,
- struct scan_control *sc)
- {
- unsigned long nr[NR_LRU_LISTS];
- unsigned long nr_to_scan;
- unsigned long percent[2]; /* anon @ 0; file @ 1 */
- enum lru_list l;
- unsigned long nr_reclaimed = sc->nr_reclaimed;
- unsigned long swap_cluster_max = sc->swap_cluster_max;
- get_scan_ratio(zone, sc, percent);
- for_each_evictable_lru(l) {
- int file = is_file_lru(l);
- int scan;
- scan = zone_nr_pages(zone, sc, l);
- if (priority) {
- scan >>= priority;
- scan = (scan * percent[file]) / 100;
- }
- if (scanning_global_lru(sc)) {
- zone->lru[l].nr_scan += scan;
- nr[l] = zone->lru[l].nr_scan;
- if (nr[l] >= swap_cluster_max)
- zone->lru[l].nr_scan = 0;
- else
- nr[l] = 0;
- } else
- nr[l] = scan;
- }
- while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
- nr[LRU_INACTIVE_FILE]) {
- for_each_evictable_lru(l) {
- if (nr[l]) {
- nr_to_scan = min(nr[l], swap_cluster_max);
- nr[l] -= nr_to_scan;
- nr_reclaimed += shrink_list(l, nr_to_scan,
- zone, sc, priority);
- }
- }
- /*
- * On large memory systems, scan >> priority can become
- * really large. This is fine for the starting priority;
- * we want to put equal scanning pressure on each zone.
- * However, if the VM has a harder time of freeing pages,
- * with multiple processes reclaiming pages, the total
- * freeing target can get unreasonably large.
- */
- if (nr_reclaimed > swap_cluster_max &&
- priority < DEF_PRIORITY && !current_is_kswapd())
- break;
- }
- sc->nr_reclaimed = nr_reclaimed;
- /*
- * Even if we did not try to evict anon pages at all, we want to
- * rebalance the anon lru active/inactive ratio.
- */
- if (inactive_anon_is_low(zone, sc))
- shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
- throttle_vm_writeout(sc->gfp_mask);
- }
- /*
- * This is the direct reclaim path, for page-allocating processes. We only
- * try to reclaim pages from zones which will satisfy the caller's allocation
- * request.
- *
- * We reclaim from a zone even if that zone is over pages_high. Because:
- * a) The caller may be trying to free *extra* pages to satisfy a higher-order
- * allocation or
- * b) The zones may be over pages_high but they must go *over* pages_high to
- * satisfy the `incremental min' zone defense algorithm.
- *
- * If a zone is deemed to be full of pinned pages then just give it a light
- * scan then give up on it.
- */
- static void shrink_zones(int priority, struct zonelist *zonelist,
- struct scan_control *sc)
- {
- enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
- struct zoneref *z;
- struct zone *zone;
- sc->all_unreclaimable = 1;
- for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
- sc->nodemask) {
- if (!populated_zone(zone))
- continue;
- /*
- * Take care memory controller reclaiming has small influence
- * to global LRU.
- */
- if (scanning_global_lru(sc)) {
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
- continue;
- note_zone_scanning_priority(zone, priority);
- if (zone_is_all_unreclaimable(zone) &&
- priority != DEF_PRIORITY)
- continue; /* Let kswapd poll it */
- sc->all_unreclaimable = 0;
- } else {
- /*
- * Ignore cpuset limitation here. We just want to reduce
- * # of used pages by us regardless of memory shortage.
- */
- sc->all_unreclaimable = 0;
- mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
- priority);
- }
- shrink_zone(priority, zone, sc);
- }
- }
- /*
- * This is the main entry point to direct page reclaim.
- *
- * If a full scan of the inactive list fails to free enough memory then we
- * are "out of memory" and something needs to be killed.
- *
- * If the caller is !__GFP_FS then the probability of a failure is reasonably
- * high - the zone may be full of dirty or under-writeback pages, which this
- * caller can't do much about. We kick pdflush and take explicit naps in the
- * hope that some of these pages can be written. But if the allocating task
- * holds filesystem locks which prevent writeout this might not work, and the
- * allocation attempt will fail.
- *
- * returns: 0, if no pages reclaimed
- * else, the number of pages reclaimed
- */
- static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
- struct scan_control *sc)
- {
- int priority;
- unsigned long ret = 0;
- unsigned long total_scanned = 0;
- struct reclaim_state *reclaim_state = current->reclaim_state;
- unsigned long lru_pages = 0;
- struct zoneref *z;
- struct zone *zone;
- enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
- delayacct_freepages_start();
- if (scanning_global_lru(sc))
- count_vm_event(ALLOCSTALL);
- /*
- * mem_cgroup will not do shrink_slab.
- */
- if (scanning_global_lru(sc)) {
- for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
- continue;
- lru_pages += zone_lru_pages(zone);
- }
- }
- for (priority = DEF_PRIORITY; priority >= 0; priority--) {
- sc->nr_scanned = 0;
- if (!priority)
- disable_swap_token();
- shrink_zones(priority, zonelist, sc);
- /*
- * Don't shrink slabs when reclaiming memory from
- * over limit cgroups
- */
- if (scanning_global_lru(sc)) {
- shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
- if (reclaim_state) {
- sc->nr_reclaimed += reclaim_state->reclaimed_slab;
- reclaim_state->reclaimed_slab = 0;
- }
- }
- total_scanned += sc->nr_scanned;
- if (sc->nr_reclaimed >= sc->swap_cluster_max) {
- ret = sc->nr_reclaimed;
- goto out;
- }
- /*
- * Try to write back as many pages as we just scanned. This
- * tends to cause slow streaming writers to write data to the
- * disk smoothly, at the dirtying rate, which is nice. But
- * that's undesirable in laptop mode, where we *want* lumpy
- * writeout. So in laptop mode, write out the whole world.
- */
- if (total_scanned > sc->swap_cluster_max +
- sc->swap_cluster_max / 2) {
- wakeup_pdflush(laptop_mode ? 0 : total_scanned);
- sc->may_writepage = 1;
- }
- /* Take a nap, wait for some writeback to complete */
- if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
- congestion_wait(WRITE, HZ/10);
- }
- /* top priority shrink_zones still had more to do? don't OOM, then */
- if (!sc->all_unreclaimable && scanning_global_lru(sc))
- ret = sc->nr_reclaimed;
- out:
- /*
- * Now that we've scanned all the zones at this priority level, note
- * that level within the zone so that the next thread which performs
- * scanning of this zone will immediately start out at this priority
- * level. This affects only the decision whether or not to bring
- * mapped pages onto the inactive list.
- */
- if (priority < 0)
- priority = 0;
- if (scanning_global_lru(sc)) {
- for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
- continue;
- zone->prev_priority = priority;
- }
- } else
- mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
- delayacct_freepages_end();
- return ret;
- }
- unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
- gfp_t gfp_mask, nodemask_t *nodemask)
- {
- struct scan_control sc = {
- .gfp_mask = gfp_mask,
- .may_writepage = !laptop_mode,
- .swap_cluster_max = SWAP_CLUSTER_MAX,
- .may_unmap = 1,
- .swappiness = vm_swappiness,
- .order = order,
- .mem_cgroup = NULL,
- .isolate_pages = isolate_pages_global,
- .nodemask = nodemask,
- };
- return do_try_to_free_pages(zonelist, &sc);
- }
- #ifdef CONFIG_CGROUP_MEM_RES_CTLR
- unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
- gfp_t gfp_mask,
- bool noswap,
- unsigned int swappiness)
- {
- struct scan_control sc = {
- .may_writepage = !laptop_mode,
- .may_unmap = 1,
- .swap_cluster_max = SWAP_CLUSTER_MAX,
- .swappiness = swappiness,
- .order = 0,
- .mem_cgroup = mem_cont,
- .isolate_pages = mem_cgroup_isolate_pages,
- .nodemask = NULL, /* we don't care the placement */
- };
- struct zonelist *zonelist;
- if (noswap)
- sc.may_unmap = 0;
- sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
- (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
- zonelist = NODE_DATA(numa_node_id())->node_zonelists;
- return do_try_to_free_pages(zonelist, &sc);
- }
- #endif
- /*
- * For kswapd, balance_pgdat() will work across all this node's zones until
- * they are all at pages_high.
- *
- * Returns the number of pages which were actually freed.
- *
- * There is special handling here for zones which are full of pinned pages.
- * This can happen if the pages are all mlocked, or if they are all used by
- * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
- * What we do is to detect the case where all pages in the zone have been
- * scanned twice and there has been zero successful reclaim. Mark the zone as
- * dead and from now on, only perform a short scan. Basically we're polling
- * the zone for when the problem goes away.
- *
- * kswapd scans the zones in the highmem->normal->dma direction. It skips
- * zones which have free_pages > pages_high, but once a zone is found to have
- * free_pages <= pages_high, we scan that zone and the lower zones regardless
- * of the number of free pages in the lower zones. This interoperates with
- * the page allocator fallback scheme to ensure that aging of pages is balanced
- * across the zones.
- */
- static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
- {
- int all_zones_ok;
- int priority;
- int i;
- unsigned long total_scanned;
- struct reclaim_state *reclaim_state = current->reclaim_state;
- struct scan_control sc = {
- .gfp_mask = GFP_KERNEL,
- .may_unmap = 1,
- .swap_cluster_max = SWAP_CLUSTER_MAX,
- .swappiness = vm_swappiness,
- .order = order,
- .mem_cgroup = NULL,
- .isolate_pages = isolate_pages_global,
- };
- /*
- * temp_priority is used to remember the scanning priority at which
- * this zone was successfully refilled to free_pages == pages_high.
- */
- int temp_priority[MAX_NR_ZONES];
- loop_again:
- total_scanned = 0;
- sc.nr_reclaimed = 0;
- sc.may_writepage = !laptop_mode;
- count_vm_event(PAGEOUTRUN);
- for (i = 0; i < pgdat->nr_zones; i++)
- temp_priority[i] = DEF_PRIORITY;
- for (priority = DEF_PRIORITY; priority >= 0; priority--) {
- int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
- unsigned long lru_pages = 0;
- /* The swap token gets in the way of swapout... */
- if (!priority)
- disable_swap_token();
- all_zones_ok = 1;
- /*
- * Scan in the highmem->dma direction for the highest
- * zone which needs scanning
- */
- for (i = pgdat->nr_zones - 1; i >= 0; i--) {
- struct zone *zone = pgdat->node_zones + i;
- if (!populated_zone(zone))
- continue;
- if (zone_is_all_unreclaimable(zone) &&
- priority != DEF_PRIORITY)
- continue;
- /*
- * Do some background aging of the anon list, to give
- * pages a chance to be referenced before reclaiming.
- */
- if (inactive_anon_is_low(zone, &sc))
- shrink_active_list(SWAP_CLUSTER_MAX, zone,
- &sc, priority, 0);
- if (!zone_watermark_ok(zone, order, zone->pages_high,
- 0, 0)) {
- end_zone = i;
- break;
- }
- }
- if (i < 0)
- goto out;
- for (i = 0; i <= end_zone; i++) {
- struct zone *zone = pgdat->node_zones + i;
- lru_pages += zone_lru_pages(zone);
- }
- /*
- * Now scan the zone in the dma->highmem direction, stopping
- * at the last zone which needs scanning.
- *
- * We do this because the page allocator works in the opposite
- * direction. This prevents the page allocator from allocating
- * pages behind kswapd's direction of progress, which would
- * cause too much scanning of the lower zones.
- */
- for (i = 0; i <= end_zone; i++) {
- struct zone *zone = pgdat->node_zones + i;
- int nr_slab;
- if (!populated_zone(zone))
- continue;
- if (zone_is_all_unreclaimable(zone) &&
- priority != DEF_PRIORITY)
- continue;
- if (!zone_watermark_ok(zone, order, zone->pages_high,
- end_zone, 0))
- all_zones_ok = 0;
- temp_priority[i] = priority;
- sc.nr_scanned = 0;
- note_zone_scanning_priority(zone, priority);
- /*
- * We put equal pressure on every zone, unless one
- * zone has way too many pages free already.
- */
- if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
- end_zone, 0))
- shrink_zone(priority, zone, &sc);
- reclaim_state->reclaimed_slab = 0;
- nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
- lru_pages);
- sc.nr_reclaimed += reclaim_state->reclaimed_slab;
- total_scanned += sc.nr_scanned;
- if (zone_is_all_unreclaimable(zone))
- continue;
- if (nr_slab == 0 && zone->pages_scanned >=
- (zone_lru_pages(zone) * 6))
- zone_set_flag(zone,
- ZONE_ALL_UNRECLAIMABLE);
- /*
- * If we've done a decent amount of scanning and
- * the reclaim ratio is low, start doing writepage
- * even in laptop mode
- */
- if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
- total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
- sc.may_writepage = 1;
- }
- if (all_zones_ok)
- break; /* kswapd: all done */
- /*
- * OK, kswapd is getting into trouble. Take a nap, then take
- * another pass across the zones.
- */
- if (total_scanned && priority < DEF_PRIORITY - 2)
- congestion_wait(WRITE, HZ/10);
- /*
- * We do this so kswapd doesn't build up large priorities for
- * example when it is freeing in parallel with allocators. It
- * matches the direct reclaim path behaviour in terms of impact
- * on zone->*_priority.
- */
- if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
- break;
- }
- out:
- /*
- * Note within each zone the priority level at which this zone was
- * brought into a happy state. So that the next thread which scans this
- * zone will start out at that priority level.
- */
- for (i = 0; i < pgdat->nr_zones; i++) {
- struct zone *zone = pgdat->node_zones + i;
- zone->prev_priority = temp_priority[i];
- }
- if (!all_zones_ok) {
- cond_resched();
- try_to_freeze();
- /*
- * Fragmentation may mean that the system cannot be
- * rebalanced for high-order allocations in all zones.
- * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
- * it means the zones have been fully scanned and are still
- * not balanced. For high-order allocations, there is
- * little point trying all over again as kswapd may
- * infinite loop.
- *
- * Instead, recheck all watermarks at order-0 as they
- * are the most important. If watermarks are ok, kswapd will go
- * back to sleep. High-order users can still perform direct
- * reclaim if they wish.
- */
- if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
- order = sc.order = 0;
- goto loop_again;
- }
- return sc.nr_reclaimed;
- }
- /*
- * The background pageout daemon, started as a kernel thread
- * from the init process.
- *
- * This basically trickles out pages so that we have _some_
- * free memory available even if there is no other activity
- * that frees anything up. This is needed for things like routing
- * etc, where we otherwise might have all activity going on in
- * asynchronous contexts that cannot page things out.
- *
- * If there are applications that are active memory-allocators
- * (most normal use), this basically shouldn't matter.
- */
- static int kswapd(void *p)
- {
- unsigned long order;
- pg_data_t *pgdat = (pg_data_t*)p;
- struct task_struct *tsk = current;
- DEFINE_WAIT(wait);
- struct reclaim_state reclaim_state = {
- .reclaimed_slab = 0,
- };
- const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
- lockdep_set_current_reclaim_state(GFP_KERNEL);
- if (!cpumask_empty(cpumask))
- set_cpus_allowed_ptr(tsk, cpumask);
- current->reclaim_state = &reclaim_state;
- /*
- * Tell the memory management that we're a "memory allocator",
- * and that if we need more memory we should get access to it
- * regardless (see "__alloc_pages()"). "kswapd" should
- * never get caught in the normal page freeing logic.
- *
- * (Kswapd normally doesn't need memory anyway, but sometimes
- * you need a small amount of memory in order to be able to
- * page out something else, and this flag essentially protects
- * us from recursively trying to free more memory as we're
- * trying to free the first piece of memory in the first place).
- */
- tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
- set_freezable();
- order = 0;
- for ( ; ; ) {
- unsigned long new_order;
- prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
- new_order = pgdat->kswapd_max_order;
- pgdat->kswapd_max_order = 0;
- if (order < new_order) {
- /*
- * Don't sleep if someone wants a larger 'order'
- * allocation
- */
- order = new_order;
- } else {
- if (!freezing(current))
- schedule();
- order = pgdat->kswapd_max_order;
- }
- finish_wait(&pgdat->kswapd_wait, &wait);
- if (!try_to_freeze()) {
- /* We can speed up thawing tasks if we don't call
- * balance_pgdat after returning from the refrigerator
- */
- balance_pgdat(pgdat, order);
- }
- }
- return 0;
- }
- /*
- * A zone is low on free memory, so wake its kswapd task to service it.
- */
- void wakeup_kswapd(struct zone *zone, int order)
- {
- pg_data_t *pgdat;
- if (!populated_zone(zone))
- return;
- pgdat = zone->zone_pgdat;
- if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
- return;
- if (pgdat->kswapd_max_order < order)
- pgdat->kswapd_max_order = order;
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
- return;
- if (!waitqueue_active(&pgdat->kswapd_wait))
- return;
- wake_up_interruptible(&pgdat->kswapd_wait);
- }
- unsigned long global_lru_pages(void)
- {
- return global_page_state(NR_ACTIVE_ANON)
- + global_page_state(NR_ACTIVE_FILE)
- + global_page_state(NR_INACTIVE_ANON)
- + global_page_state(NR_INACTIVE_FILE);
- }
- #ifdef CONFIG_PM
- /*
- * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
- * from LRU lists system-wide, for given pass and priority.
- *
- * For pass > 3 we also try to shrink the LRU lists that contain a few pages
- */
- static void shrink_all_zones(unsigned long nr_pages, int prio,
- int pass, struct scan_control *sc)
- {
- struct zone *zone;
- unsigned long nr_reclaimed = 0;
- for_each_populated_zone(zone) {
- enum lru_list l;
- if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
- continue;
- for_each_evictable_lru(l) {
- enum zone_stat_item ls = NR_LRU_BASE + l;
- unsigned long lru_pages = zone_page_state(zone, ls);
- /* For pass = 0, we don't shrink the active list */
- if (pass == 0 && (l == LRU_ACTIVE_ANON ||
- l == LRU_ACTIVE_FILE))
- continue;
- zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
- if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
- unsigned long nr_to_scan;
- zone->lru[l].nr_scan = 0;
- nr_to_scan = min(nr_pages, lru_pages);
- nr_reclaimed += shrink_list(l, nr_to_scan, zone,
- sc, prio);
- if (nr_reclaimed >= nr_pages) {
- sc->nr_reclaimed = nr_reclaimed;
- return;
- }
- }
- }
- }
- sc->nr_reclaimed = nr_reclaimed;
- }
- /*
- * Try to free `nr_pages' of memory, system-wide, and return the number of
- * freed pages.
- *
- * Rather than trying to age LRUs the aim is to preserve the overall
- * LRU order by reclaiming preferentially
- * inactive > active > active referenced > active mapped
- */
- unsigned long shrink_all_memory(unsigned long nr_pages)
- {
- unsigned long lru_pages, nr_slab;
- int pass;
- struct reclaim_state reclaim_state;
- struct scan_control sc = {
- .gfp_mask = GFP_KERNEL,
- .may_unmap = 0,
- .may_writepage = 1,
- .isolate_pages = isolate_pages_global,
- };
- current->reclaim_state = &reclaim_state;
- lru_pages = global_lru_pages();
- nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
- /* If slab caches are huge, it's better to hit them first */
- while (nr_slab >= lru_pages) {
- reclaim_state.reclaimed_slab = 0;
- shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
- if (!reclaim_state.reclaimed_slab)
- break;
- sc.nr_reclaimed += reclaim_state.reclaimed_slab;
- if (sc.nr_reclaimed >= nr_pages)
- goto out;
- nr_slab -= reclaim_state.reclaimed_slab;
- }
- /*
- * We try to shrink LRUs in 5 passes:
- * 0 = Reclaim from inactive_list only
- * 1 = Reclaim from active list but don't reclaim mapped
- * 2 = 2nd pass of type 1
- * 3 = Reclaim mapped (normal reclaim)
- * 4 = 2nd pass of type 3
- */
- for (pass = 0; pass < 5; pass++) {
- int prio;
- /* Force reclaiming mapped pages in the passes #3 and #4 */
- if (pass > 2)
- sc.may_unmap = 1;
- for (prio = DEF_PRIORITY; prio >= 0; prio--) {
- unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
- sc.nr_scanned = 0;
- sc.swap_cluster_max = nr_to_scan;
- shrink_all_zones(nr_to_scan, prio, pass, &sc);
- if (sc.nr_reclaimed >= nr_pages)
- goto out;
- reclaim_state.reclaimed_slab = 0;
- shrink_slab(sc.nr_scanned, sc.gfp_mask,
- global_lru_pages());
- sc.nr_reclaimed += reclaim_state.reclaimed_slab;
- if (sc.nr_reclaimed >= nr_pages)
- goto out;
- if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
- congestion_wait(WRITE, HZ / 10);
- }
- }
- /*
- * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
- * something in slab caches
- */
- if (!sc.nr_reclaimed) {
- do {
- reclaim_state.reclaimed_slab = 0;
- shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
- sc.nr_reclaimed += reclaim_state.reclaimed_slab;
- } while (sc.nr_reclaimed < nr_pages &&
- reclaim_state.reclaimed_slab > 0);
- }
- out:
- current->reclaim_state = NULL;
- return sc.nr_reclaimed;
- }
- #endif
- /* It's optimal to keep kswapds on the same CPUs as their memory, but
- not required for correctness. So if the last cpu in a node goes
- away, we get changed to run anywhere: as the first one comes back,
- restore their cpu bindings. */
- static int __devinit cpu_callback(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
- {
- int nid;
- if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
- for_each_node_state(nid, N_HIGH_MEMORY) {
- pg_data_t *pgdat = NODE_DATA(nid);
- const struct cpumask *mask;
- mask = cpumask_of_node(pgdat->node_id);
- if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
- /* One of our CPUs online: restore mask */
- set_cpus_allowed_ptr(pgdat->kswapd, mask);
- }
- }
- return NOTIFY_OK;
- }
- /*
- * This kswapd start function will be called by init and node-hot-add.
- * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
- */
- int kswapd_run(int nid)
- {
- pg_data_t *pgdat = NODE_DATA(nid);
- int ret = 0;
- if (pgdat->kswapd)
- return 0;
- pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
- if (IS_ERR(pgdat->kswapd)) {
- /* failure at boot is fatal */
- BUG_ON(system_state == SYSTEM_BOOTING);
- printk("Failed to start kswapd on node %d\n",nid);
- ret = -1;
- }
- return ret;
- }
- static int __init kswapd_init(void)
- {
- int nid;
- swap_setup();
- for_each_node_state(nid, N_HIGH_MEMORY)
- kswapd_run(nid);
- hotcpu_notifier(cpu_callback, 0);
- return 0;
- }
- module_init(kswapd_init)
- #ifdef CONFIG_NUMA
- /*
- * Zone reclaim mode
- *
- * If non-zero call zone_reclaim when the number of free pages falls below
- * the watermarks.
- */
- int zone_reclaim_mode __read_mostly;
- #define RECLAIM_OFF 0
- #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
- #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
- #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
- /*
- * Priority for ZONE_RECLAIM. This determines the fraction of pages
- * of a node considered for each zone_reclaim. 4 scans 1/16th of
- * a zone.
- */
- #define ZONE_RECLAIM_PRIORITY 4
- /*
- * Percentage of pages in a zone that must be unmapped for zone_reclaim to
- * occur.
- */
- int sysctl_min_unmapped_ratio = 1;
- /*
- * If the number of slab pages in a zone grows beyond this percentage then
- * slab reclaim needs to occur.
- */
- int sysctl_min_slab_ratio = 5;
- /*
- * Try to free up some pages from this zone through reclaim.
- */
- static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
- {
- /* Minimum pages needed in order to stay on node */
- const unsigned long nr_pages = 1 << order;
- struct task_struct *p = current;
- struct reclaim_state reclaim_state;
- int priority;
- struct scan_control sc = {
- .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
- .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
- .swap_cluster_max = max_t(unsigned long, nr_pages,
- SWAP_CLUSTER_MAX),
- .gfp_mask = gfp_mask,
- .swappiness = vm_swappiness,
- .order = order,
- .isolate_pages = isolate_pages_global,
- };
- unsigned long slab_reclaimable;
- disable_swap_token();
- cond_resched();
- /*
- * We need to be able to allocate from the reserves for RECLAIM_SWAP
- * and we also need to be able to write out pages for RECLAIM_WRITE
- * and RECLAIM_SWAP.
- */
- p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
- reclaim_state.reclaimed_slab = 0;
- p->reclaim_state = &reclaim_state;
- if (zone_page_state(zone, NR_FILE_PAGES) -
- zone_page_state(zone, NR_FILE_MAPPED) >
- zone->min_unmapped_pages) {
- /*
- * Free memory by calling shrink zone with increasing
- * priorities until we have enough memory freed.
- */
- priority = ZONE_RECLAIM_PRIORITY;
- do {
- note_zone_scanning_priority(zone, priority);
- shrink_zone(priority, zone, &sc);
- priority--;
- } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
- }
- slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
- if (slab_reclaimable > zone->min_slab_pages) {
- /*
- * shrink_slab() does not currently allow us to determine how
- * many pages were freed in this zone. So we take the current
- * number of slab pages and shake the slab until it is reduced
- * by the same nr_pages that we used for reclaiming unmapped
- * pages.
- *
- * Note that shrink_slab will free memory on all zones and may
- * take a long time.
- */
- while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
- zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
- slab_reclaimable - nr_pages)
- ;
- /*
- * Update nr_reclaimed by the number of slab pages we
- * reclaimed from this zone.
- */
- sc.nr_reclaimed += slab_reclaimable -
- zone_page_state(zone, NR_SLAB_RECLAIMABLE);
- }
- p->reclaim_state = NULL;
- current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
- return sc.nr_reclaimed >= nr_pages;
- }
- int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
- {
- int node_id;
- int ret;
- /*
- * Zone reclaim reclaims unmapped file backed pages and
- * slab pages if we are over the defined limits.
- *
- * A small portion of unmapped file backed pages is needed for
- * file I/O otherwise pages read by file I/O will be immediately
- * thrown out if the zone is overallocated. So we do not reclaim
- * if less than a specified percentage of the zone is used by
- * unmapped file backed pages.
- */
- if (zone_page_state(zone, NR_FILE_PAGES) -
- zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
- && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
- <= zone->min_slab_pages)
- return 0;
- if (zone_is_all_unreclaimable(zone))
- return 0;
- /*
- * Do not scan if the allocation should not be delayed.
- */
- if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
- return 0;
- /*
- * Only run zone reclaim on the local zone or on zones that do not
- * have associated processors. This will favor the local processor
- * over remote processors and spread off node memory allocations
- * as wide as possible.
- */
- node_id = zone_to_nid(zone);
- if (node_state(node_id, N_CPU) && node_id != numa_node_id())
- return 0;
- if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
- return 0;
- ret = __zone_reclaim(zone, gfp_mask, order);
- zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
- return ret;
- }
- #endif
- #ifdef CONFIG_UNEVICTABLE_LRU
- /*
- * page_evictable - test whether a page is evictable
- * @page: the page to test
- * @vma: the VMA in which the page is or will be mapped, may be NULL
- *
- * Test whether page is evictable--i.e., should be placed on active/inactive
- * lists vs unevictable list. The vma argument is !NULL when called from the
- * fault path to determine how to instantate a new page.
- *
- * Reasons page might not be evictable:
- * (1) page's mapping marked unevictable
- * (2) page is part of an mlocked VMA
- *
- */
- int page_evictable(struct page *page, struct vm_area_struct *vma)
- {
- if (mapping_unevictable(page_mapping(page)))
- return 0;
- if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
- return 0;
- return 1;
- }
- /**
- * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
- * @page: page to check evictability and move to appropriate lru list
- * @zone: zone page is in
- *
- * Checks a page for evictability and moves the page to the appropriate
- * zone lru list.
- *
- * Restrictions: zone->lru_lock must be held, page must be on LRU and must
- * have PageUnevictable set.
- */
- static void check_move_unevictable_page(struct page *page, struct zone *zone)
- {
- VM_BUG_ON(PageActive(page));
- retry:
- ClearPageUnevictable(page);
- if (page_evictable(page, NULL)) {
- enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
- __dec_zone_state(zone, NR_UNEVICTABLE);
- list_move(&page->lru, &zone->lru[l].list);
- mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
- __inc_zone_state(zone, NR_INACTIVE_ANON + l);
- __count_vm_event(UNEVICTABLE_PGRESCUED);
- } else {
- /*
- * rotate unevictable list
- */
- SetPageUnevictable(page);
- list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
- mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
- if (page_evictable(page, NULL))
- goto retry;
- }
- }
- /**
- * scan_mapping_unevictable_pages - scan an address space for evictable pages
- * @mapping: struct address_space to scan for evictable pages
- *
- * Scan all pages in mapping. Check unevictable pages for
- * evictability and move them to the appropriate zone lru list.
- */
- void scan_mapping_unevictable_pages(struct address_space *mapping)
- {
- pgoff_t next = 0;
- pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
- PAGE_CACHE_SHIFT;
- struct zone *zone;
- struct pagevec pvec;
- if (mapping->nrpages == 0)
- return;
- pagevec_init(&pvec, 0);
- while (next < end &&
- pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
- int i;
- int pg_scanned = 0;
- zone = NULL;
- for (i = 0; i < pagevec_count(&pvec); i++) {
- struct page *page = pvec.pages[i];
- pgoff_t page_index = page->index;
- struct zone *pagezone = page_zone(page);
- pg_scanned++;
- if (page_index > next)
- next = page_index;
- next++;
- if (pagezone != zone) {
- if (zone)
- spin_unlock_irq(&zone->lru_lock);
- zone = pagezone;
- spin_lock_irq(&zone->lru_lock);
- }
- if (PageLRU(page) && PageUnevictable(page))
- check_move_unevictable_page(page, zone);
- }
- if (zone)
- spin_unlock_irq(&zone->lru_lock);
- pagevec_release(&pvec);
- count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
- }
- }
- /**
- * scan_zone_unevictable_pages - check unevictable list for evictable pages
- * @zone - zone of which to scan the unevictable list
- *
- * Scan @zone's unevictable LRU lists to check for pages that have become
- * evictable. Move those that have to @zone's inactive list where they
- * become candidates for reclaim, unless shrink_inactive_zone() decides
- * to reactivate them. Pages that are still unevictable are rotated
- * back onto @zone's unevictable list.
- */
- #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
- static void scan_zone_unevictable_pages(struct zone *zone)
- {
- struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
- unsigned long scan;
- unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
- while (nr_to_scan > 0) {
- unsigned long batch_size = min(nr_to_scan,
- SCAN_UNEVICTABLE_BATCH_SIZE);
- spin_lock_irq(&zone->lru_lock);
- for (scan = 0; scan < batch_size; scan++) {
- struct page *page = lru_to_page(l_unevictable);
- if (!trylock_page(page))
- continue;
- prefetchw_prev_lru_page(page, l_unevictable, flags);
- if (likely(PageLRU(page) && PageUnevictable(page)))
- check_move_unevictable_page(page, zone);
- unlock_page(page);
- }
- spin_unlock_irq(&zone->lru_lock);
- nr_to_scan -= batch_size;
- }
- }
- /**
- * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
- *
- * A really big hammer: scan all zones' unevictable LRU lists to check for
- * pages that have become evictable. Move those back to the zones'
- * inactive list where they become candidates for reclaim.
- * This occurs when, e.g., we have unswappable pages on the unevictable lists,
- * and we add swap to the system. As such, it runs in the context of a task
- * that has possibly/probably made some previously unevictable pages
- * evictable.
- */
- static void scan_all_zones_unevictable_pages(void)
- {
- struct zone *zone;
- for_each_zone(zone) {
- scan_zone_unevictable_pages(zone);
- }
- }
- /*
- * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
- * all nodes' unevictable lists for evictable pages
- */
- unsigned long scan_unevictable_pages;
- int scan_unevictable_handler(struct ctl_table *table, int write,
- struct file *file, void __user *buffer,
- size_t *length, loff_t *ppos)
- {
- proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
- if (write && *(unsigned long *)table->data)
- scan_all_zones_unevictable_pages();
- scan_unevictable_pages = 0;
- return 0;
- }
- /*
- * per node 'scan_unevictable_pages' attribute. On demand re-scan of
- * a specified node's per zone unevictable lists for evictable pages.
- */
- static ssize_t read_scan_unevictable_node(struct sys_device *dev,
- struct sysdev_attribute *attr,
- char *buf)
- {
- return sprintf(buf, "0\n"); /* always zero; should fit... */
- }
- static ssize_t write_scan_unevictable_node(struct sys_device *dev,
- struct sysdev_attribute *attr,
- const char *buf, size_t count)
- {
- struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
- struct zone *zone;
- unsigned long res;
- unsigned long req = strict_strtoul(buf, 10, &res);
- if (!req)
- return 1; /* zero is no-op */
- for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
- if (!populated_zone(zone))
- continue;
- scan_zone_unevictable_pages(zone);
- }
- return 1;
- }
- static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
- read_scan_unevictable_node,
- write_scan_unevictable_node);
- int scan_unevictable_register_node(struct node *node)
- {
- return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
- }
- void scan_unevictable_unregister_node(struct node *node)
- {
- sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
- }
- #endif
|