vmalloc.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/slab.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/debugobjects.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/list.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/rcupdate.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/pfn.h>
  27. #include <asm/atomic.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/tlbflush.h>
  30. /*** Page table manipulation functions ***/
  31. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  32. {
  33. pte_t *pte;
  34. pte = pte_offset_kernel(pmd, addr);
  35. do {
  36. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  37. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  38. } while (pte++, addr += PAGE_SIZE, addr != end);
  39. }
  40. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  41. {
  42. pmd_t *pmd;
  43. unsigned long next;
  44. pmd = pmd_offset(pud, addr);
  45. do {
  46. next = pmd_addr_end(addr, end);
  47. if (pmd_none_or_clear_bad(pmd))
  48. continue;
  49. vunmap_pte_range(pmd, addr, next);
  50. } while (pmd++, addr = next, addr != end);
  51. }
  52. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  53. {
  54. pud_t *pud;
  55. unsigned long next;
  56. pud = pud_offset(pgd, addr);
  57. do {
  58. next = pud_addr_end(addr, end);
  59. if (pud_none_or_clear_bad(pud))
  60. continue;
  61. vunmap_pmd_range(pud, addr, next);
  62. } while (pud++, addr = next, addr != end);
  63. }
  64. static void vunmap_page_range(unsigned long addr, unsigned long end)
  65. {
  66. pgd_t *pgd;
  67. unsigned long next;
  68. BUG_ON(addr >= end);
  69. pgd = pgd_offset_k(addr);
  70. do {
  71. next = pgd_addr_end(addr, end);
  72. if (pgd_none_or_clear_bad(pgd))
  73. continue;
  74. vunmap_pud_range(pgd, addr, next);
  75. } while (pgd++, addr = next, addr != end);
  76. }
  77. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  78. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  79. {
  80. pte_t *pte;
  81. /*
  82. * nr is a running index into the array which helps higher level
  83. * callers keep track of where we're up to.
  84. */
  85. pte = pte_alloc_kernel(pmd, addr);
  86. if (!pte)
  87. return -ENOMEM;
  88. do {
  89. struct page *page = pages[*nr];
  90. if (WARN_ON(!pte_none(*pte)))
  91. return -EBUSY;
  92. if (WARN_ON(!page))
  93. return -ENOMEM;
  94. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  95. (*nr)++;
  96. } while (pte++, addr += PAGE_SIZE, addr != end);
  97. return 0;
  98. }
  99. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  100. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  101. {
  102. pmd_t *pmd;
  103. unsigned long next;
  104. pmd = pmd_alloc(&init_mm, pud, addr);
  105. if (!pmd)
  106. return -ENOMEM;
  107. do {
  108. next = pmd_addr_end(addr, end);
  109. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  110. return -ENOMEM;
  111. } while (pmd++, addr = next, addr != end);
  112. return 0;
  113. }
  114. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  115. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  116. {
  117. pud_t *pud;
  118. unsigned long next;
  119. pud = pud_alloc(&init_mm, pgd, addr);
  120. if (!pud)
  121. return -ENOMEM;
  122. do {
  123. next = pud_addr_end(addr, end);
  124. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  125. return -ENOMEM;
  126. } while (pud++, addr = next, addr != end);
  127. return 0;
  128. }
  129. /*
  130. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  131. * will have pfns corresponding to the "pages" array.
  132. *
  133. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  134. */
  135. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  136. pgprot_t prot, struct page **pages)
  137. {
  138. pgd_t *pgd;
  139. unsigned long next;
  140. unsigned long addr = start;
  141. int err = 0;
  142. int nr = 0;
  143. BUG_ON(addr >= end);
  144. pgd = pgd_offset_k(addr);
  145. do {
  146. next = pgd_addr_end(addr, end);
  147. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  148. if (err)
  149. break;
  150. } while (pgd++, addr = next, addr != end);
  151. if (unlikely(err))
  152. return err;
  153. return nr;
  154. }
  155. static int vmap_page_range(unsigned long start, unsigned long end,
  156. pgprot_t prot, struct page **pages)
  157. {
  158. int ret;
  159. ret = vmap_page_range_noflush(start, end, prot, pages);
  160. flush_cache_vmap(start, end);
  161. return ret;
  162. }
  163. static inline int is_vmalloc_or_module_addr(const void *x)
  164. {
  165. /*
  166. * ARM, x86-64 and sparc64 put modules in a special place,
  167. * and fall back on vmalloc() if that fails. Others
  168. * just put it in the vmalloc space.
  169. */
  170. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  171. unsigned long addr = (unsigned long)x;
  172. if (addr >= MODULES_VADDR && addr < MODULES_END)
  173. return 1;
  174. #endif
  175. return is_vmalloc_addr(x);
  176. }
  177. /*
  178. * Walk a vmap address to the struct page it maps.
  179. */
  180. struct page *vmalloc_to_page(const void *vmalloc_addr)
  181. {
  182. unsigned long addr = (unsigned long) vmalloc_addr;
  183. struct page *page = NULL;
  184. pgd_t *pgd = pgd_offset_k(addr);
  185. /*
  186. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  187. * architectures that do not vmalloc module space
  188. */
  189. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  190. if (!pgd_none(*pgd)) {
  191. pud_t *pud = pud_offset(pgd, addr);
  192. if (!pud_none(*pud)) {
  193. pmd_t *pmd = pmd_offset(pud, addr);
  194. if (!pmd_none(*pmd)) {
  195. pte_t *ptep, pte;
  196. ptep = pte_offset_map(pmd, addr);
  197. pte = *ptep;
  198. if (pte_present(pte))
  199. page = pte_page(pte);
  200. pte_unmap(ptep);
  201. }
  202. }
  203. }
  204. return page;
  205. }
  206. EXPORT_SYMBOL(vmalloc_to_page);
  207. /*
  208. * Map a vmalloc()-space virtual address to the physical page frame number.
  209. */
  210. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  211. {
  212. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  213. }
  214. EXPORT_SYMBOL(vmalloc_to_pfn);
  215. /*** Global kva allocator ***/
  216. #define VM_LAZY_FREE 0x01
  217. #define VM_LAZY_FREEING 0x02
  218. #define VM_VM_AREA 0x04
  219. struct vmap_area {
  220. unsigned long va_start;
  221. unsigned long va_end;
  222. unsigned long flags;
  223. struct rb_node rb_node; /* address sorted rbtree */
  224. struct list_head list; /* address sorted list */
  225. struct list_head purge_list; /* "lazy purge" list */
  226. void *private;
  227. struct rcu_head rcu_head;
  228. };
  229. static DEFINE_SPINLOCK(vmap_area_lock);
  230. static struct rb_root vmap_area_root = RB_ROOT;
  231. static LIST_HEAD(vmap_area_list);
  232. static struct vmap_area *__find_vmap_area(unsigned long addr)
  233. {
  234. struct rb_node *n = vmap_area_root.rb_node;
  235. while (n) {
  236. struct vmap_area *va;
  237. va = rb_entry(n, struct vmap_area, rb_node);
  238. if (addr < va->va_start)
  239. n = n->rb_left;
  240. else if (addr > va->va_start)
  241. n = n->rb_right;
  242. else
  243. return va;
  244. }
  245. return NULL;
  246. }
  247. static void __insert_vmap_area(struct vmap_area *va)
  248. {
  249. struct rb_node **p = &vmap_area_root.rb_node;
  250. struct rb_node *parent = NULL;
  251. struct rb_node *tmp;
  252. while (*p) {
  253. struct vmap_area *tmp;
  254. parent = *p;
  255. tmp = rb_entry(parent, struct vmap_area, rb_node);
  256. if (va->va_start < tmp->va_end)
  257. p = &(*p)->rb_left;
  258. else if (va->va_end > tmp->va_start)
  259. p = &(*p)->rb_right;
  260. else
  261. BUG();
  262. }
  263. rb_link_node(&va->rb_node, parent, p);
  264. rb_insert_color(&va->rb_node, &vmap_area_root);
  265. /* address-sort this list so it is usable like the vmlist */
  266. tmp = rb_prev(&va->rb_node);
  267. if (tmp) {
  268. struct vmap_area *prev;
  269. prev = rb_entry(tmp, struct vmap_area, rb_node);
  270. list_add_rcu(&va->list, &prev->list);
  271. } else
  272. list_add_rcu(&va->list, &vmap_area_list);
  273. }
  274. static void purge_vmap_area_lazy(void);
  275. /*
  276. * Allocate a region of KVA of the specified size and alignment, within the
  277. * vstart and vend.
  278. */
  279. static struct vmap_area *alloc_vmap_area(unsigned long size,
  280. unsigned long align,
  281. unsigned long vstart, unsigned long vend,
  282. int node, gfp_t gfp_mask)
  283. {
  284. struct vmap_area *va;
  285. struct rb_node *n;
  286. unsigned long addr;
  287. int purged = 0;
  288. BUG_ON(!size);
  289. BUG_ON(size & ~PAGE_MASK);
  290. va = kmalloc_node(sizeof(struct vmap_area),
  291. gfp_mask & GFP_RECLAIM_MASK, node);
  292. if (unlikely(!va))
  293. return ERR_PTR(-ENOMEM);
  294. retry:
  295. addr = ALIGN(vstart, align);
  296. spin_lock(&vmap_area_lock);
  297. if (addr + size - 1 < addr)
  298. goto overflow;
  299. /* XXX: could have a last_hole cache */
  300. n = vmap_area_root.rb_node;
  301. if (n) {
  302. struct vmap_area *first = NULL;
  303. do {
  304. struct vmap_area *tmp;
  305. tmp = rb_entry(n, struct vmap_area, rb_node);
  306. if (tmp->va_end >= addr) {
  307. if (!first && tmp->va_start < addr + size)
  308. first = tmp;
  309. n = n->rb_left;
  310. } else {
  311. first = tmp;
  312. n = n->rb_right;
  313. }
  314. } while (n);
  315. if (!first)
  316. goto found;
  317. if (first->va_end < addr) {
  318. n = rb_next(&first->rb_node);
  319. if (n)
  320. first = rb_entry(n, struct vmap_area, rb_node);
  321. else
  322. goto found;
  323. }
  324. while (addr + size > first->va_start && addr + size <= vend) {
  325. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  326. if (addr + size - 1 < addr)
  327. goto overflow;
  328. n = rb_next(&first->rb_node);
  329. if (n)
  330. first = rb_entry(n, struct vmap_area, rb_node);
  331. else
  332. goto found;
  333. }
  334. }
  335. found:
  336. if (addr + size > vend) {
  337. overflow:
  338. spin_unlock(&vmap_area_lock);
  339. if (!purged) {
  340. purge_vmap_area_lazy();
  341. purged = 1;
  342. goto retry;
  343. }
  344. if (printk_ratelimit())
  345. printk(KERN_WARNING
  346. "vmap allocation for size %lu failed: "
  347. "use vmalloc=<size> to increase size.\n", size);
  348. return ERR_PTR(-EBUSY);
  349. }
  350. BUG_ON(addr & (align-1));
  351. va->va_start = addr;
  352. va->va_end = addr + size;
  353. va->flags = 0;
  354. __insert_vmap_area(va);
  355. spin_unlock(&vmap_area_lock);
  356. return va;
  357. }
  358. static void rcu_free_va(struct rcu_head *head)
  359. {
  360. struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
  361. kfree(va);
  362. }
  363. static void __free_vmap_area(struct vmap_area *va)
  364. {
  365. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  366. rb_erase(&va->rb_node, &vmap_area_root);
  367. RB_CLEAR_NODE(&va->rb_node);
  368. list_del_rcu(&va->list);
  369. call_rcu(&va->rcu_head, rcu_free_va);
  370. }
  371. /*
  372. * Free a region of KVA allocated by alloc_vmap_area
  373. */
  374. static void free_vmap_area(struct vmap_area *va)
  375. {
  376. spin_lock(&vmap_area_lock);
  377. __free_vmap_area(va);
  378. spin_unlock(&vmap_area_lock);
  379. }
  380. /*
  381. * Clear the pagetable entries of a given vmap_area
  382. */
  383. static void unmap_vmap_area(struct vmap_area *va)
  384. {
  385. vunmap_page_range(va->va_start, va->va_end);
  386. }
  387. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  388. {
  389. /*
  390. * Unmap page tables and force a TLB flush immediately if
  391. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  392. * bugs similarly to those in linear kernel virtual address
  393. * space after a page has been freed.
  394. *
  395. * All the lazy freeing logic is still retained, in order to
  396. * minimise intrusiveness of this debugging feature.
  397. *
  398. * This is going to be *slow* (linear kernel virtual address
  399. * debugging doesn't do a broadcast TLB flush so it is a lot
  400. * faster).
  401. */
  402. #ifdef CONFIG_DEBUG_PAGEALLOC
  403. vunmap_page_range(start, end);
  404. flush_tlb_kernel_range(start, end);
  405. #endif
  406. }
  407. /*
  408. * lazy_max_pages is the maximum amount of virtual address space we gather up
  409. * before attempting to purge with a TLB flush.
  410. *
  411. * There is a tradeoff here: a larger number will cover more kernel page tables
  412. * and take slightly longer to purge, but it will linearly reduce the number of
  413. * global TLB flushes that must be performed. It would seem natural to scale
  414. * this number up linearly with the number of CPUs (because vmapping activity
  415. * could also scale linearly with the number of CPUs), however it is likely
  416. * that in practice, workloads might be constrained in other ways that mean
  417. * vmap activity will not scale linearly with CPUs. Also, I want to be
  418. * conservative and not introduce a big latency on huge systems, so go with
  419. * a less aggressive log scale. It will still be an improvement over the old
  420. * code, and it will be simple to change the scale factor if we find that it
  421. * becomes a problem on bigger systems.
  422. */
  423. static unsigned long lazy_max_pages(void)
  424. {
  425. unsigned int log;
  426. log = fls(num_online_cpus());
  427. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  428. }
  429. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  430. /*
  431. * Purges all lazily-freed vmap areas.
  432. *
  433. * If sync is 0 then don't purge if there is already a purge in progress.
  434. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  435. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  436. * their own TLB flushing).
  437. * Returns with *start = min(*start, lowest purged address)
  438. * *end = max(*end, highest purged address)
  439. */
  440. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  441. int sync, int force_flush)
  442. {
  443. static DEFINE_SPINLOCK(purge_lock);
  444. LIST_HEAD(valist);
  445. struct vmap_area *va;
  446. struct vmap_area *n_va;
  447. int nr = 0;
  448. /*
  449. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  450. * should not expect such behaviour. This just simplifies locking for
  451. * the case that isn't actually used at the moment anyway.
  452. */
  453. if (!sync && !force_flush) {
  454. if (!spin_trylock(&purge_lock))
  455. return;
  456. } else
  457. spin_lock(&purge_lock);
  458. rcu_read_lock();
  459. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  460. if (va->flags & VM_LAZY_FREE) {
  461. if (va->va_start < *start)
  462. *start = va->va_start;
  463. if (va->va_end > *end)
  464. *end = va->va_end;
  465. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  466. unmap_vmap_area(va);
  467. list_add_tail(&va->purge_list, &valist);
  468. va->flags |= VM_LAZY_FREEING;
  469. va->flags &= ~VM_LAZY_FREE;
  470. }
  471. }
  472. rcu_read_unlock();
  473. if (nr) {
  474. BUG_ON(nr > atomic_read(&vmap_lazy_nr));
  475. atomic_sub(nr, &vmap_lazy_nr);
  476. }
  477. if (nr || force_flush)
  478. flush_tlb_kernel_range(*start, *end);
  479. if (nr) {
  480. spin_lock(&vmap_area_lock);
  481. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  482. __free_vmap_area(va);
  483. spin_unlock(&vmap_area_lock);
  484. }
  485. spin_unlock(&purge_lock);
  486. }
  487. /*
  488. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  489. * is already purging.
  490. */
  491. static void try_purge_vmap_area_lazy(void)
  492. {
  493. unsigned long start = ULONG_MAX, end = 0;
  494. __purge_vmap_area_lazy(&start, &end, 0, 0);
  495. }
  496. /*
  497. * Kick off a purge of the outstanding lazy areas.
  498. */
  499. static void purge_vmap_area_lazy(void)
  500. {
  501. unsigned long start = ULONG_MAX, end = 0;
  502. __purge_vmap_area_lazy(&start, &end, 1, 0);
  503. }
  504. /*
  505. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  506. * called for the correct range previously.
  507. */
  508. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  509. {
  510. va->flags |= VM_LAZY_FREE;
  511. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  512. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  513. try_purge_vmap_area_lazy();
  514. }
  515. /*
  516. * Free and unmap a vmap area
  517. */
  518. static void free_unmap_vmap_area(struct vmap_area *va)
  519. {
  520. flush_cache_vunmap(va->va_start, va->va_end);
  521. free_unmap_vmap_area_noflush(va);
  522. }
  523. static struct vmap_area *find_vmap_area(unsigned long addr)
  524. {
  525. struct vmap_area *va;
  526. spin_lock(&vmap_area_lock);
  527. va = __find_vmap_area(addr);
  528. spin_unlock(&vmap_area_lock);
  529. return va;
  530. }
  531. static void free_unmap_vmap_area_addr(unsigned long addr)
  532. {
  533. struct vmap_area *va;
  534. va = find_vmap_area(addr);
  535. BUG_ON(!va);
  536. free_unmap_vmap_area(va);
  537. }
  538. /*** Per cpu kva allocator ***/
  539. /*
  540. * vmap space is limited especially on 32 bit architectures. Ensure there is
  541. * room for at least 16 percpu vmap blocks per CPU.
  542. */
  543. /*
  544. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  545. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  546. * instead (we just need a rough idea)
  547. */
  548. #if BITS_PER_LONG == 32
  549. #define VMALLOC_SPACE (128UL*1024*1024)
  550. #else
  551. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  552. #endif
  553. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  554. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  555. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  556. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  557. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  558. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  559. #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  560. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  561. VMALLOC_PAGES / NR_CPUS / 16))
  562. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  563. static bool vmap_initialized __read_mostly = false;
  564. struct vmap_block_queue {
  565. spinlock_t lock;
  566. struct list_head free;
  567. struct list_head dirty;
  568. unsigned int nr_dirty;
  569. };
  570. struct vmap_block {
  571. spinlock_t lock;
  572. struct vmap_area *va;
  573. struct vmap_block_queue *vbq;
  574. unsigned long free, dirty;
  575. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  576. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  577. union {
  578. struct list_head free_list;
  579. struct rcu_head rcu_head;
  580. };
  581. };
  582. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  583. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  584. /*
  585. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  586. * in the free path. Could get rid of this if we change the API to return a
  587. * "cookie" from alloc, to be passed to free. But no big deal yet.
  588. */
  589. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  590. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  591. /*
  592. * We should probably have a fallback mechanism to allocate virtual memory
  593. * out of partially filled vmap blocks. However vmap block sizing should be
  594. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  595. * big problem.
  596. */
  597. static unsigned long addr_to_vb_idx(unsigned long addr)
  598. {
  599. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  600. addr /= VMAP_BLOCK_SIZE;
  601. return addr;
  602. }
  603. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  604. {
  605. struct vmap_block_queue *vbq;
  606. struct vmap_block *vb;
  607. struct vmap_area *va;
  608. unsigned long vb_idx;
  609. int node, err;
  610. node = numa_node_id();
  611. vb = kmalloc_node(sizeof(struct vmap_block),
  612. gfp_mask & GFP_RECLAIM_MASK, node);
  613. if (unlikely(!vb))
  614. return ERR_PTR(-ENOMEM);
  615. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  616. VMALLOC_START, VMALLOC_END,
  617. node, gfp_mask);
  618. if (unlikely(IS_ERR(va))) {
  619. kfree(vb);
  620. return ERR_PTR(PTR_ERR(va));
  621. }
  622. err = radix_tree_preload(gfp_mask);
  623. if (unlikely(err)) {
  624. kfree(vb);
  625. free_vmap_area(va);
  626. return ERR_PTR(err);
  627. }
  628. spin_lock_init(&vb->lock);
  629. vb->va = va;
  630. vb->free = VMAP_BBMAP_BITS;
  631. vb->dirty = 0;
  632. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  633. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  634. INIT_LIST_HEAD(&vb->free_list);
  635. vb_idx = addr_to_vb_idx(va->va_start);
  636. spin_lock(&vmap_block_tree_lock);
  637. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  638. spin_unlock(&vmap_block_tree_lock);
  639. BUG_ON(err);
  640. radix_tree_preload_end();
  641. vbq = &get_cpu_var(vmap_block_queue);
  642. vb->vbq = vbq;
  643. spin_lock(&vbq->lock);
  644. list_add(&vb->free_list, &vbq->free);
  645. spin_unlock(&vbq->lock);
  646. put_cpu_var(vmap_cpu_blocks);
  647. return vb;
  648. }
  649. static void rcu_free_vb(struct rcu_head *head)
  650. {
  651. struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
  652. kfree(vb);
  653. }
  654. static void free_vmap_block(struct vmap_block *vb)
  655. {
  656. struct vmap_block *tmp;
  657. unsigned long vb_idx;
  658. BUG_ON(!list_empty(&vb->free_list));
  659. vb_idx = addr_to_vb_idx(vb->va->va_start);
  660. spin_lock(&vmap_block_tree_lock);
  661. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  662. spin_unlock(&vmap_block_tree_lock);
  663. BUG_ON(tmp != vb);
  664. free_unmap_vmap_area_noflush(vb->va);
  665. call_rcu(&vb->rcu_head, rcu_free_vb);
  666. }
  667. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  668. {
  669. struct vmap_block_queue *vbq;
  670. struct vmap_block *vb;
  671. unsigned long addr = 0;
  672. unsigned int order;
  673. BUG_ON(size & ~PAGE_MASK);
  674. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  675. order = get_order(size);
  676. again:
  677. rcu_read_lock();
  678. vbq = &get_cpu_var(vmap_block_queue);
  679. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  680. int i;
  681. spin_lock(&vb->lock);
  682. i = bitmap_find_free_region(vb->alloc_map,
  683. VMAP_BBMAP_BITS, order);
  684. if (i >= 0) {
  685. addr = vb->va->va_start + (i << PAGE_SHIFT);
  686. BUG_ON(addr_to_vb_idx(addr) !=
  687. addr_to_vb_idx(vb->va->va_start));
  688. vb->free -= 1UL << order;
  689. if (vb->free == 0) {
  690. spin_lock(&vbq->lock);
  691. list_del_init(&vb->free_list);
  692. spin_unlock(&vbq->lock);
  693. }
  694. spin_unlock(&vb->lock);
  695. break;
  696. }
  697. spin_unlock(&vb->lock);
  698. }
  699. put_cpu_var(vmap_cpu_blocks);
  700. rcu_read_unlock();
  701. if (!addr) {
  702. vb = new_vmap_block(gfp_mask);
  703. if (IS_ERR(vb))
  704. return vb;
  705. goto again;
  706. }
  707. return (void *)addr;
  708. }
  709. static void vb_free(const void *addr, unsigned long size)
  710. {
  711. unsigned long offset;
  712. unsigned long vb_idx;
  713. unsigned int order;
  714. struct vmap_block *vb;
  715. BUG_ON(size & ~PAGE_MASK);
  716. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  717. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  718. order = get_order(size);
  719. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  720. vb_idx = addr_to_vb_idx((unsigned long)addr);
  721. rcu_read_lock();
  722. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  723. rcu_read_unlock();
  724. BUG_ON(!vb);
  725. spin_lock(&vb->lock);
  726. bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
  727. vb->dirty += 1UL << order;
  728. if (vb->dirty == VMAP_BBMAP_BITS) {
  729. BUG_ON(vb->free || !list_empty(&vb->free_list));
  730. spin_unlock(&vb->lock);
  731. free_vmap_block(vb);
  732. } else
  733. spin_unlock(&vb->lock);
  734. }
  735. /**
  736. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  737. *
  738. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  739. * to amortize TLB flushing overheads. What this means is that any page you
  740. * have now, may, in a former life, have been mapped into kernel virtual
  741. * address by the vmap layer and so there might be some CPUs with TLB entries
  742. * still referencing that page (additional to the regular 1:1 kernel mapping).
  743. *
  744. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  745. * be sure that none of the pages we have control over will have any aliases
  746. * from the vmap layer.
  747. */
  748. void vm_unmap_aliases(void)
  749. {
  750. unsigned long start = ULONG_MAX, end = 0;
  751. int cpu;
  752. int flush = 0;
  753. if (unlikely(!vmap_initialized))
  754. return;
  755. for_each_possible_cpu(cpu) {
  756. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  757. struct vmap_block *vb;
  758. rcu_read_lock();
  759. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  760. int i;
  761. spin_lock(&vb->lock);
  762. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  763. while (i < VMAP_BBMAP_BITS) {
  764. unsigned long s, e;
  765. int j;
  766. j = find_next_zero_bit(vb->dirty_map,
  767. VMAP_BBMAP_BITS, i);
  768. s = vb->va->va_start + (i << PAGE_SHIFT);
  769. e = vb->va->va_start + (j << PAGE_SHIFT);
  770. vunmap_page_range(s, e);
  771. flush = 1;
  772. if (s < start)
  773. start = s;
  774. if (e > end)
  775. end = e;
  776. i = j;
  777. i = find_next_bit(vb->dirty_map,
  778. VMAP_BBMAP_BITS, i);
  779. }
  780. spin_unlock(&vb->lock);
  781. }
  782. rcu_read_unlock();
  783. }
  784. __purge_vmap_area_lazy(&start, &end, 1, flush);
  785. }
  786. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  787. /**
  788. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  789. * @mem: the pointer returned by vm_map_ram
  790. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  791. */
  792. void vm_unmap_ram(const void *mem, unsigned int count)
  793. {
  794. unsigned long size = count << PAGE_SHIFT;
  795. unsigned long addr = (unsigned long)mem;
  796. BUG_ON(!addr);
  797. BUG_ON(addr < VMALLOC_START);
  798. BUG_ON(addr > VMALLOC_END);
  799. BUG_ON(addr & (PAGE_SIZE-1));
  800. debug_check_no_locks_freed(mem, size);
  801. vmap_debug_free_range(addr, addr+size);
  802. if (likely(count <= VMAP_MAX_ALLOC))
  803. vb_free(mem, size);
  804. else
  805. free_unmap_vmap_area_addr(addr);
  806. }
  807. EXPORT_SYMBOL(vm_unmap_ram);
  808. /**
  809. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  810. * @pages: an array of pointers to the pages to be mapped
  811. * @count: number of pages
  812. * @node: prefer to allocate data structures on this node
  813. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  814. *
  815. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  816. */
  817. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  818. {
  819. unsigned long size = count << PAGE_SHIFT;
  820. unsigned long addr;
  821. void *mem;
  822. if (likely(count <= VMAP_MAX_ALLOC)) {
  823. mem = vb_alloc(size, GFP_KERNEL);
  824. if (IS_ERR(mem))
  825. return NULL;
  826. addr = (unsigned long)mem;
  827. } else {
  828. struct vmap_area *va;
  829. va = alloc_vmap_area(size, PAGE_SIZE,
  830. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  831. if (IS_ERR(va))
  832. return NULL;
  833. addr = va->va_start;
  834. mem = (void *)addr;
  835. }
  836. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  837. vm_unmap_ram(mem, count);
  838. return NULL;
  839. }
  840. return mem;
  841. }
  842. EXPORT_SYMBOL(vm_map_ram);
  843. /**
  844. * vm_area_register_early - register vmap area early during boot
  845. * @vm: vm_struct to register
  846. * @align: requested alignment
  847. *
  848. * This function is used to register kernel vm area before
  849. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  850. * proper values on entry and other fields should be zero. On return,
  851. * vm->addr contains the allocated address.
  852. *
  853. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  854. */
  855. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  856. {
  857. static size_t vm_init_off __initdata;
  858. unsigned long addr;
  859. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  860. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  861. vm->addr = (void *)addr;
  862. vm->next = vmlist;
  863. vmlist = vm;
  864. }
  865. void __init vmalloc_init(void)
  866. {
  867. struct vmap_area *va;
  868. struct vm_struct *tmp;
  869. int i;
  870. for_each_possible_cpu(i) {
  871. struct vmap_block_queue *vbq;
  872. vbq = &per_cpu(vmap_block_queue, i);
  873. spin_lock_init(&vbq->lock);
  874. INIT_LIST_HEAD(&vbq->free);
  875. INIT_LIST_HEAD(&vbq->dirty);
  876. vbq->nr_dirty = 0;
  877. }
  878. /* Import existing vmlist entries. */
  879. for (tmp = vmlist; tmp; tmp = tmp->next) {
  880. va = alloc_bootmem(sizeof(struct vmap_area));
  881. va->flags = tmp->flags | VM_VM_AREA;
  882. va->va_start = (unsigned long)tmp->addr;
  883. va->va_end = va->va_start + tmp->size;
  884. __insert_vmap_area(va);
  885. }
  886. vmap_initialized = true;
  887. }
  888. /**
  889. * map_kernel_range_noflush - map kernel VM area with the specified pages
  890. * @addr: start of the VM area to map
  891. * @size: size of the VM area to map
  892. * @prot: page protection flags to use
  893. * @pages: pages to map
  894. *
  895. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  896. * specify should have been allocated using get_vm_area() and its
  897. * friends.
  898. *
  899. * NOTE:
  900. * This function does NOT do any cache flushing. The caller is
  901. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  902. * before calling this function.
  903. *
  904. * RETURNS:
  905. * The number of pages mapped on success, -errno on failure.
  906. */
  907. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  908. pgprot_t prot, struct page **pages)
  909. {
  910. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  911. }
  912. /**
  913. * unmap_kernel_range_noflush - unmap kernel VM area
  914. * @addr: start of the VM area to unmap
  915. * @size: size of the VM area to unmap
  916. *
  917. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  918. * specify should have been allocated using get_vm_area() and its
  919. * friends.
  920. *
  921. * NOTE:
  922. * This function does NOT do any cache flushing. The caller is
  923. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  924. * before calling this function and flush_tlb_kernel_range() after.
  925. */
  926. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  927. {
  928. vunmap_page_range(addr, addr + size);
  929. }
  930. /**
  931. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  932. * @addr: start of the VM area to unmap
  933. * @size: size of the VM area to unmap
  934. *
  935. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  936. * the unmapping and tlb after.
  937. */
  938. void unmap_kernel_range(unsigned long addr, unsigned long size)
  939. {
  940. unsigned long end = addr + size;
  941. flush_cache_vunmap(addr, end);
  942. vunmap_page_range(addr, end);
  943. flush_tlb_kernel_range(addr, end);
  944. }
  945. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  946. {
  947. unsigned long addr = (unsigned long)area->addr;
  948. unsigned long end = addr + area->size - PAGE_SIZE;
  949. int err;
  950. err = vmap_page_range(addr, end, prot, *pages);
  951. if (err > 0) {
  952. *pages += err;
  953. err = 0;
  954. }
  955. return err;
  956. }
  957. EXPORT_SYMBOL_GPL(map_vm_area);
  958. /*** Old vmalloc interfaces ***/
  959. DEFINE_RWLOCK(vmlist_lock);
  960. struct vm_struct *vmlist;
  961. static struct vm_struct *__get_vm_area_node(unsigned long size,
  962. unsigned long flags, unsigned long start, unsigned long end,
  963. int node, gfp_t gfp_mask, void *caller)
  964. {
  965. static struct vmap_area *va;
  966. struct vm_struct *area;
  967. struct vm_struct *tmp, **p;
  968. unsigned long align = 1;
  969. BUG_ON(in_interrupt());
  970. if (flags & VM_IOREMAP) {
  971. int bit = fls(size);
  972. if (bit > IOREMAP_MAX_ORDER)
  973. bit = IOREMAP_MAX_ORDER;
  974. else if (bit < PAGE_SHIFT)
  975. bit = PAGE_SHIFT;
  976. align = 1ul << bit;
  977. }
  978. size = PAGE_ALIGN(size);
  979. if (unlikely(!size))
  980. return NULL;
  981. area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  982. if (unlikely(!area))
  983. return NULL;
  984. /*
  985. * We always allocate a guard page.
  986. */
  987. size += PAGE_SIZE;
  988. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  989. if (IS_ERR(va)) {
  990. kfree(area);
  991. return NULL;
  992. }
  993. area->flags = flags;
  994. area->addr = (void *)va->va_start;
  995. area->size = size;
  996. area->pages = NULL;
  997. area->nr_pages = 0;
  998. area->phys_addr = 0;
  999. area->caller = caller;
  1000. va->private = area;
  1001. va->flags |= VM_VM_AREA;
  1002. write_lock(&vmlist_lock);
  1003. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1004. if (tmp->addr >= area->addr)
  1005. break;
  1006. }
  1007. area->next = *p;
  1008. *p = area;
  1009. write_unlock(&vmlist_lock);
  1010. return area;
  1011. }
  1012. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1013. unsigned long start, unsigned long end)
  1014. {
  1015. return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
  1016. __builtin_return_address(0));
  1017. }
  1018. EXPORT_SYMBOL_GPL(__get_vm_area);
  1019. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1020. unsigned long start, unsigned long end,
  1021. void *caller)
  1022. {
  1023. return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
  1024. caller);
  1025. }
  1026. /**
  1027. * get_vm_area - reserve a contiguous kernel virtual area
  1028. * @size: size of the area
  1029. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1030. *
  1031. * Search an area of @size in the kernel virtual mapping area,
  1032. * and reserved it for out purposes. Returns the area descriptor
  1033. * on success or %NULL on failure.
  1034. */
  1035. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1036. {
  1037. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  1038. -1, GFP_KERNEL, __builtin_return_address(0));
  1039. }
  1040. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1041. void *caller)
  1042. {
  1043. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  1044. -1, GFP_KERNEL, caller);
  1045. }
  1046. struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
  1047. int node, gfp_t gfp_mask)
  1048. {
  1049. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
  1050. gfp_mask, __builtin_return_address(0));
  1051. }
  1052. static struct vm_struct *find_vm_area(const void *addr)
  1053. {
  1054. struct vmap_area *va;
  1055. va = find_vmap_area((unsigned long)addr);
  1056. if (va && va->flags & VM_VM_AREA)
  1057. return va->private;
  1058. return NULL;
  1059. }
  1060. /**
  1061. * remove_vm_area - find and remove a continuous kernel virtual area
  1062. * @addr: base address
  1063. *
  1064. * Search for the kernel VM area starting at @addr, and remove it.
  1065. * This function returns the found VM area, but using it is NOT safe
  1066. * on SMP machines, except for its size or flags.
  1067. */
  1068. struct vm_struct *remove_vm_area(const void *addr)
  1069. {
  1070. struct vmap_area *va;
  1071. va = find_vmap_area((unsigned long)addr);
  1072. if (va && va->flags & VM_VM_AREA) {
  1073. struct vm_struct *vm = va->private;
  1074. struct vm_struct *tmp, **p;
  1075. vmap_debug_free_range(va->va_start, va->va_end);
  1076. free_unmap_vmap_area(va);
  1077. vm->size -= PAGE_SIZE;
  1078. write_lock(&vmlist_lock);
  1079. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1080. ;
  1081. *p = tmp->next;
  1082. write_unlock(&vmlist_lock);
  1083. return vm;
  1084. }
  1085. return NULL;
  1086. }
  1087. static void __vunmap(const void *addr, int deallocate_pages)
  1088. {
  1089. struct vm_struct *area;
  1090. if (!addr)
  1091. return;
  1092. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1093. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1094. return;
  1095. }
  1096. area = remove_vm_area(addr);
  1097. if (unlikely(!area)) {
  1098. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1099. addr);
  1100. return;
  1101. }
  1102. debug_check_no_locks_freed(addr, area->size);
  1103. debug_check_no_obj_freed(addr, area->size);
  1104. if (deallocate_pages) {
  1105. int i;
  1106. for (i = 0; i < area->nr_pages; i++) {
  1107. struct page *page = area->pages[i];
  1108. BUG_ON(!page);
  1109. __free_page(page);
  1110. }
  1111. if (area->flags & VM_VPAGES)
  1112. vfree(area->pages);
  1113. else
  1114. kfree(area->pages);
  1115. }
  1116. kfree(area);
  1117. return;
  1118. }
  1119. /**
  1120. * vfree - release memory allocated by vmalloc()
  1121. * @addr: memory base address
  1122. *
  1123. * Free the virtually continuous memory area starting at @addr, as
  1124. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1125. * NULL, no operation is performed.
  1126. *
  1127. * Must not be called in interrupt context.
  1128. */
  1129. void vfree(const void *addr)
  1130. {
  1131. BUG_ON(in_interrupt());
  1132. __vunmap(addr, 1);
  1133. }
  1134. EXPORT_SYMBOL(vfree);
  1135. /**
  1136. * vunmap - release virtual mapping obtained by vmap()
  1137. * @addr: memory base address
  1138. *
  1139. * Free the virtually contiguous memory area starting at @addr,
  1140. * which was created from the page array passed to vmap().
  1141. *
  1142. * Must not be called in interrupt context.
  1143. */
  1144. void vunmap(const void *addr)
  1145. {
  1146. BUG_ON(in_interrupt());
  1147. might_sleep();
  1148. __vunmap(addr, 0);
  1149. }
  1150. EXPORT_SYMBOL(vunmap);
  1151. /**
  1152. * vmap - map an array of pages into virtually contiguous space
  1153. * @pages: array of page pointers
  1154. * @count: number of pages to map
  1155. * @flags: vm_area->flags
  1156. * @prot: page protection for the mapping
  1157. *
  1158. * Maps @count pages from @pages into contiguous kernel virtual
  1159. * space.
  1160. */
  1161. void *vmap(struct page **pages, unsigned int count,
  1162. unsigned long flags, pgprot_t prot)
  1163. {
  1164. struct vm_struct *area;
  1165. might_sleep();
  1166. if (count > num_physpages)
  1167. return NULL;
  1168. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1169. __builtin_return_address(0));
  1170. if (!area)
  1171. return NULL;
  1172. if (map_vm_area(area, prot, &pages)) {
  1173. vunmap(area->addr);
  1174. return NULL;
  1175. }
  1176. return area->addr;
  1177. }
  1178. EXPORT_SYMBOL(vmap);
  1179. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1180. int node, void *caller);
  1181. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1182. pgprot_t prot, int node, void *caller)
  1183. {
  1184. struct page **pages;
  1185. unsigned int nr_pages, array_size, i;
  1186. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1187. array_size = (nr_pages * sizeof(struct page *));
  1188. area->nr_pages = nr_pages;
  1189. /* Please note that the recursion is strictly bounded. */
  1190. if (array_size > PAGE_SIZE) {
  1191. pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
  1192. PAGE_KERNEL, node, caller);
  1193. area->flags |= VM_VPAGES;
  1194. } else {
  1195. pages = kmalloc_node(array_size,
  1196. (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
  1197. node);
  1198. }
  1199. area->pages = pages;
  1200. area->caller = caller;
  1201. if (!area->pages) {
  1202. remove_vm_area(area->addr);
  1203. kfree(area);
  1204. return NULL;
  1205. }
  1206. for (i = 0; i < area->nr_pages; i++) {
  1207. struct page *page;
  1208. if (node < 0)
  1209. page = alloc_page(gfp_mask);
  1210. else
  1211. page = alloc_pages_node(node, gfp_mask, 0);
  1212. if (unlikely(!page)) {
  1213. /* Successfully allocated i pages, free them in __vunmap() */
  1214. area->nr_pages = i;
  1215. goto fail;
  1216. }
  1217. area->pages[i] = page;
  1218. }
  1219. if (map_vm_area(area, prot, &pages))
  1220. goto fail;
  1221. return area->addr;
  1222. fail:
  1223. vfree(area->addr);
  1224. return NULL;
  1225. }
  1226. void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
  1227. {
  1228. return __vmalloc_area_node(area, gfp_mask, prot, -1,
  1229. __builtin_return_address(0));
  1230. }
  1231. /**
  1232. * __vmalloc_node - allocate virtually contiguous memory
  1233. * @size: allocation size
  1234. * @gfp_mask: flags for the page level allocator
  1235. * @prot: protection mask for the allocated pages
  1236. * @node: node to use for allocation or -1
  1237. * @caller: caller's return address
  1238. *
  1239. * Allocate enough pages to cover @size from the page level
  1240. * allocator with @gfp_mask flags. Map them into contiguous
  1241. * kernel virtual space, using a pagetable protection of @prot.
  1242. */
  1243. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1244. int node, void *caller)
  1245. {
  1246. struct vm_struct *area;
  1247. size = PAGE_ALIGN(size);
  1248. if (!size || (size >> PAGE_SHIFT) > num_physpages)
  1249. return NULL;
  1250. area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
  1251. node, gfp_mask, caller);
  1252. if (!area)
  1253. return NULL;
  1254. return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1255. }
  1256. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1257. {
  1258. return __vmalloc_node(size, gfp_mask, prot, -1,
  1259. __builtin_return_address(0));
  1260. }
  1261. EXPORT_SYMBOL(__vmalloc);
  1262. /**
  1263. * vmalloc - allocate virtually contiguous memory
  1264. * @size: allocation size
  1265. * Allocate enough pages to cover @size from the page level
  1266. * allocator and map them into contiguous kernel virtual space.
  1267. *
  1268. * For tight control over page level allocator and protection flags
  1269. * use __vmalloc() instead.
  1270. */
  1271. void *vmalloc(unsigned long size)
  1272. {
  1273. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1274. -1, __builtin_return_address(0));
  1275. }
  1276. EXPORT_SYMBOL(vmalloc);
  1277. /**
  1278. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1279. * @size: allocation size
  1280. *
  1281. * The resulting memory area is zeroed so it can be mapped to userspace
  1282. * without leaking data.
  1283. */
  1284. void *vmalloc_user(unsigned long size)
  1285. {
  1286. struct vm_struct *area;
  1287. void *ret;
  1288. ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1289. PAGE_KERNEL, -1, __builtin_return_address(0));
  1290. if (ret) {
  1291. area = find_vm_area(ret);
  1292. area->flags |= VM_USERMAP;
  1293. }
  1294. return ret;
  1295. }
  1296. EXPORT_SYMBOL(vmalloc_user);
  1297. /**
  1298. * vmalloc_node - allocate memory on a specific node
  1299. * @size: allocation size
  1300. * @node: numa node
  1301. *
  1302. * Allocate enough pages to cover @size from the page level
  1303. * allocator and map them into contiguous kernel virtual space.
  1304. *
  1305. * For tight control over page level allocator and protection flags
  1306. * use __vmalloc() instead.
  1307. */
  1308. void *vmalloc_node(unsigned long size, int node)
  1309. {
  1310. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1311. node, __builtin_return_address(0));
  1312. }
  1313. EXPORT_SYMBOL(vmalloc_node);
  1314. #ifndef PAGE_KERNEL_EXEC
  1315. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1316. #endif
  1317. /**
  1318. * vmalloc_exec - allocate virtually contiguous, executable memory
  1319. * @size: allocation size
  1320. *
  1321. * Kernel-internal function to allocate enough pages to cover @size
  1322. * the page level allocator and map them into contiguous and
  1323. * executable kernel virtual space.
  1324. *
  1325. * For tight control over page level allocator and protection flags
  1326. * use __vmalloc() instead.
  1327. */
  1328. void *vmalloc_exec(unsigned long size)
  1329. {
  1330. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1331. -1, __builtin_return_address(0));
  1332. }
  1333. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1334. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1335. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1336. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1337. #else
  1338. #define GFP_VMALLOC32 GFP_KERNEL
  1339. #endif
  1340. /**
  1341. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1342. * @size: allocation size
  1343. *
  1344. * Allocate enough 32bit PA addressable pages to cover @size from the
  1345. * page level allocator and map them into contiguous kernel virtual space.
  1346. */
  1347. void *vmalloc_32(unsigned long size)
  1348. {
  1349. return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
  1350. -1, __builtin_return_address(0));
  1351. }
  1352. EXPORT_SYMBOL(vmalloc_32);
  1353. /**
  1354. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1355. * @size: allocation size
  1356. *
  1357. * The resulting memory area is 32bit addressable and zeroed so it can be
  1358. * mapped to userspace without leaking data.
  1359. */
  1360. void *vmalloc_32_user(unsigned long size)
  1361. {
  1362. struct vm_struct *area;
  1363. void *ret;
  1364. ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1365. -1, __builtin_return_address(0));
  1366. if (ret) {
  1367. area = find_vm_area(ret);
  1368. area->flags |= VM_USERMAP;
  1369. }
  1370. return ret;
  1371. }
  1372. EXPORT_SYMBOL(vmalloc_32_user);
  1373. long vread(char *buf, char *addr, unsigned long count)
  1374. {
  1375. struct vm_struct *tmp;
  1376. char *vaddr, *buf_start = buf;
  1377. unsigned long n;
  1378. /* Don't allow overflow */
  1379. if ((unsigned long) addr + count < count)
  1380. count = -(unsigned long) addr;
  1381. read_lock(&vmlist_lock);
  1382. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1383. vaddr = (char *) tmp->addr;
  1384. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1385. continue;
  1386. while (addr < vaddr) {
  1387. if (count == 0)
  1388. goto finished;
  1389. *buf = '\0';
  1390. buf++;
  1391. addr++;
  1392. count--;
  1393. }
  1394. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1395. do {
  1396. if (count == 0)
  1397. goto finished;
  1398. *buf = *addr;
  1399. buf++;
  1400. addr++;
  1401. count--;
  1402. } while (--n > 0);
  1403. }
  1404. finished:
  1405. read_unlock(&vmlist_lock);
  1406. return buf - buf_start;
  1407. }
  1408. long vwrite(char *buf, char *addr, unsigned long count)
  1409. {
  1410. struct vm_struct *tmp;
  1411. char *vaddr, *buf_start = buf;
  1412. unsigned long n;
  1413. /* Don't allow overflow */
  1414. if ((unsigned long) addr + count < count)
  1415. count = -(unsigned long) addr;
  1416. read_lock(&vmlist_lock);
  1417. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1418. vaddr = (char *) tmp->addr;
  1419. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1420. continue;
  1421. while (addr < vaddr) {
  1422. if (count == 0)
  1423. goto finished;
  1424. buf++;
  1425. addr++;
  1426. count--;
  1427. }
  1428. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1429. do {
  1430. if (count == 0)
  1431. goto finished;
  1432. *addr = *buf;
  1433. buf++;
  1434. addr++;
  1435. count--;
  1436. } while (--n > 0);
  1437. }
  1438. finished:
  1439. read_unlock(&vmlist_lock);
  1440. return buf - buf_start;
  1441. }
  1442. /**
  1443. * remap_vmalloc_range - map vmalloc pages to userspace
  1444. * @vma: vma to cover (map full range of vma)
  1445. * @addr: vmalloc memory
  1446. * @pgoff: number of pages into addr before first page to map
  1447. *
  1448. * Returns: 0 for success, -Exxx on failure
  1449. *
  1450. * This function checks that addr is a valid vmalloc'ed area, and
  1451. * that it is big enough to cover the vma. Will return failure if
  1452. * that criteria isn't met.
  1453. *
  1454. * Similar to remap_pfn_range() (see mm/memory.c)
  1455. */
  1456. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1457. unsigned long pgoff)
  1458. {
  1459. struct vm_struct *area;
  1460. unsigned long uaddr = vma->vm_start;
  1461. unsigned long usize = vma->vm_end - vma->vm_start;
  1462. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1463. return -EINVAL;
  1464. area = find_vm_area(addr);
  1465. if (!area)
  1466. return -EINVAL;
  1467. if (!(area->flags & VM_USERMAP))
  1468. return -EINVAL;
  1469. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1470. return -EINVAL;
  1471. addr += pgoff << PAGE_SHIFT;
  1472. do {
  1473. struct page *page = vmalloc_to_page(addr);
  1474. int ret;
  1475. ret = vm_insert_page(vma, uaddr, page);
  1476. if (ret)
  1477. return ret;
  1478. uaddr += PAGE_SIZE;
  1479. addr += PAGE_SIZE;
  1480. usize -= PAGE_SIZE;
  1481. } while (usize > 0);
  1482. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1483. vma->vm_flags |= VM_RESERVED;
  1484. return 0;
  1485. }
  1486. EXPORT_SYMBOL(remap_vmalloc_range);
  1487. /*
  1488. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1489. * have one.
  1490. */
  1491. void __attribute__((weak)) vmalloc_sync_all(void)
  1492. {
  1493. }
  1494. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1495. {
  1496. /* apply_to_page_range() does all the hard work. */
  1497. return 0;
  1498. }
  1499. /**
  1500. * alloc_vm_area - allocate a range of kernel address space
  1501. * @size: size of the area
  1502. *
  1503. * Returns: NULL on failure, vm_struct on success
  1504. *
  1505. * This function reserves a range of kernel address space, and
  1506. * allocates pagetables to map that range. No actual mappings
  1507. * are created. If the kernel address space is not shared
  1508. * between processes, it syncs the pagetable across all
  1509. * processes.
  1510. */
  1511. struct vm_struct *alloc_vm_area(size_t size)
  1512. {
  1513. struct vm_struct *area;
  1514. area = get_vm_area_caller(size, VM_IOREMAP,
  1515. __builtin_return_address(0));
  1516. if (area == NULL)
  1517. return NULL;
  1518. /*
  1519. * This ensures that page tables are constructed for this region
  1520. * of kernel virtual address space and mapped into init_mm.
  1521. */
  1522. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1523. area->size, f, NULL)) {
  1524. free_vm_area(area);
  1525. return NULL;
  1526. }
  1527. /* Make sure the pagetables are constructed in process kernel
  1528. mappings */
  1529. vmalloc_sync_all();
  1530. return area;
  1531. }
  1532. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1533. void free_vm_area(struct vm_struct *area)
  1534. {
  1535. struct vm_struct *ret;
  1536. ret = remove_vm_area(area->addr);
  1537. BUG_ON(ret != area);
  1538. kfree(area);
  1539. }
  1540. EXPORT_SYMBOL_GPL(free_vm_area);
  1541. #ifdef CONFIG_PROC_FS
  1542. static void *s_start(struct seq_file *m, loff_t *pos)
  1543. {
  1544. loff_t n = *pos;
  1545. struct vm_struct *v;
  1546. read_lock(&vmlist_lock);
  1547. v = vmlist;
  1548. while (n > 0 && v) {
  1549. n--;
  1550. v = v->next;
  1551. }
  1552. if (!n)
  1553. return v;
  1554. return NULL;
  1555. }
  1556. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  1557. {
  1558. struct vm_struct *v = p;
  1559. ++*pos;
  1560. return v->next;
  1561. }
  1562. static void s_stop(struct seq_file *m, void *p)
  1563. {
  1564. read_unlock(&vmlist_lock);
  1565. }
  1566. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  1567. {
  1568. if (NUMA_BUILD) {
  1569. unsigned int nr, *counters = m->private;
  1570. if (!counters)
  1571. return;
  1572. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  1573. for (nr = 0; nr < v->nr_pages; nr++)
  1574. counters[page_to_nid(v->pages[nr])]++;
  1575. for_each_node_state(nr, N_HIGH_MEMORY)
  1576. if (counters[nr])
  1577. seq_printf(m, " N%u=%u", nr, counters[nr]);
  1578. }
  1579. }
  1580. static int s_show(struct seq_file *m, void *p)
  1581. {
  1582. struct vm_struct *v = p;
  1583. seq_printf(m, "0x%p-0x%p %7ld",
  1584. v->addr, v->addr + v->size, v->size);
  1585. if (v->caller) {
  1586. char buff[KSYM_SYMBOL_LEN];
  1587. seq_putc(m, ' ');
  1588. sprint_symbol(buff, (unsigned long)v->caller);
  1589. seq_puts(m, buff);
  1590. }
  1591. if (v->nr_pages)
  1592. seq_printf(m, " pages=%d", v->nr_pages);
  1593. if (v->phys_addr)
  1594. seq_printf(m, " phys=%lx", v->phys_addr);
  1595. if (v->flags & VM_IOREMAP)
  1596. seq_printf(m, " ioremap");
  1597. if (v->flags & VM_ALLOC)
  1598. seq_printf(m, " vmalloc");
  1599. if (v->flags & VM_MAP)
  1600. seq_printf(m, " vmap");
  1601. if (v->flags & VM_USERMAP)
  1602. seq_printf(m, " user");
  1603. if (v->flags & VM_VPAGES)
  1604. seq_printf(m, " vpages");
  1605. show_numa_info(m, v);
  1606. seq_putc(m, '\n');
  1607. return 0;
  1608. }
  1609. static const struct seq_operations vmalloc_op = {
  1610. .start = s_start,
  1611. .next = s_next,
  1612. .stop = s_stop,
  1613. .show = s_show,
  1614. };
  1615. static int vmalloc_open(struct inode *inode, struct file *file)
  1616. {
  1617. unsigned int *ptr = NULL;
  1618. int ret;
  1619. if (NUMA_BUILD)
  1620. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  1621. ret = seq_open(file, &vmalloc_op);
  1622. if (!ret) {
  1623. struct seq_file *m = file->private_data;
  1624. m->private = ptr;
  1625. } else
  1626. kfree(ptr);
  1627. return ret;
  1628. }
  1629. static const struct file_operations proc_vmalloc_operations = {
  1630. .open = vmalloc_open,
  1631. .read = seq_read,
  1632. .llseek = seq_lseek,
  1633. .release = seq_release_private,
  1634. };
  1635. static int __init proc_vmalloc_init(void)
  1636. {
  1637. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  1638. return 0;
  1639. }
  1640. module_init(proc_vmalloc_init);
  1641. #endif