slob.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. /*
  2. * SLOB Allocator: Simple List Of Blocks
  3. *
  4. * Matt Mackall <mpm@selenic.com> 12/30/03
  5. *
  6. * NUMA support by Paul Mundt, 2007.
  7. *
  8. * How SLOB works:
  9. *
  10. * The core of SLOB is a traditional K&R style heap allocator, with
  11. * support for returning aligned objects. The granularity of this
  12. * allocator is as little as 2 bytes, however typically most architectures
  13. * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
  14. *
  15. * The slob heap is a set of linked list of pages from alloc_pages(),
  16. * and within each page, there is a singly-linked list of free blocks
  17. * (slob_t). The heap is grown on demand. To reduce fragmentation,
  18. * heap pages are segregated into three lists, with objects less than
  19. * 256 bytes, objects less than 1024 bytes, and all other objects.
  20. *
  21. * Allocation from heap involves first searching for a page with
  22. * sufficient free blocks (using a next-fit-like approach) followed by
  23. * a first-fit scan of the page. Deallocation inserts objects back
  24. * into the free list in address order, so this is effectively an
  25. * address-ordered first fit.
  26. *
  27. * Above this is an implementation of kmalloc/kfree. Blocks returned
  28. * from kmalloc are prepended with a 4-byte header with the kmalloc size.
  29. * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
  30. * alloc_pages() directly, allocating compound pages so the page order
  31. * does not have to be separately tracked, and also stores the exact
  32. * allocation size in page->private so that it can be used to accurately
  33. * provide ksize(). These objects are detected in kfree() because slob_page()
  34. * is false for them.
  35. *
  36. * SLAB is emulated on top of SLOB by simply calling constructors and
  37. * destructors for every SLAB allocation. Objects are returned with the
  38. * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
  39. * case the low-level allocator will fragment blocks to create the proper
  40. * alignment. Again, objects of page-size or greater are allocated by
  41. * calling alloc_pages(). As SLAB objects know their size, no separate
  42. * size bookkeeping is necessary and there is essentially no allocation
  43. * space overhead, and compound pages aren't needed for multi-page
  44. * allocations.
  45. *
  46. * NUMA support in SLOB is fairly simplistic, pushing most of the real
  47. * logic down to the page allocator, and simply doing the node accounting
  48. * on the upper levels. In the event that a node id is explicitly
  49. * provided, alloc_pages_node() with the specified node id is used
  50. * instead. The common case (or when the node id isn't explicitly provided)
  51. * will default to the current node, as per numa_node_id().
  52. *
  53. * Node aware pages are still inserted in to the global freelist, and
  54. * these are scanned for by matching against the node id encoded in the
  55. * page flags. As a result, block allocations that can be satisfied from
  56. * the freelist will only be done so on pages residing on the same node,
  57. * in order to prevent random node placement.
  58. */
  59. #include <linux/kernel.h>
  60. #include <linux/slab.h>
  61. #include <linux/mm.h>
  62. #include <linux/cache.h>
  63. #include <linux/init.h>
  64. #include <linux/module.h>
  65. #include <linux/rcupdate.h>
  66. #include <linux/list.h>
  67. #include <trace/kmemtrace.h>
  68. #include <asm/atomic.h>
  69. /*
  70. * slob_block has a field 'units', which indicates size of block if +ve,
  71. * or offset of next block if -ve (in SLOB_UNITs).
  72. *
  73. * Free blocks of size 1 unit simply contain the offset of the next block.
  74. * Those with larger size contain their size in the first SLOB_UNIT of
  75. * memory, and the offset of the next free block in the second SLOB_UNIT.
  76. */
  77. #if PAGE_SIZE <= (32767 * 2)
  78. typedef s16 slobidx_t;
  79. #else
  80. typedef s32 slobidx_t;
  81. #endif
  82. struct slob_block {
  83. slobidx_t units;
  84. };
  85. typedef struct slob_block slob_t;
  86. /*
  87. * We use struct page fields to manage some slob allocation aspects,
  88. * however to avoid the horrible mess in include/linux/mm_types.h, we'll
  89. * just define our own struct page type variant here.
  90. */
  91. struct slob_page {
  92. union {
  93. struct {
  94. unsigned long flags; /* mandatory */
  95. atomic_t _count; /* mandatory */
  96. slobidx_t units; /* free units left in page */
  97. unsigned long pad[2];
  98. slob_t *free; /* first free slob_t in page */
  99. struct list_head list; /* linked list of free pages */
  100. };
  101. struct page page;
  102. };
  103. };
  104. static inline void struct_slob_page_wrong_size(void)
  105. { BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
  106. /*
  107. * free_slob_page: call before a slob_page is returned to the page allocator.
  108. */
  109. static inline void free_slob_page(struct slob_page *sp)
  110. {
  111. reset_page_mapcount(&sp->page);
  112. sp->page.mapping = NULL;
  113. }
  114. /*
  115. * All partially free slob pages go on these lists.
  116. */
  117. #define SLOB_BREAK1 256
  118. #define SLOB_BREAK2 1024
  119. static LIST_HEAD(free_slob_small);
  120. static LIST_HEAD(free_slob_medium);
  121. static LIST_HEAD(free_slob_large);
  122. /*
  123. * is_slob_page: True for all slob pages (false for bigblock pages)
  124. */
  125. static inline int is_slob_page(struct slob_page *sp)
  126. {
  127. return PageSlobPage((struct page *)sp);
  128. }
  129. static inline void set_slob_page(struct slob_page *sp)
  130. {
  131. __SetPageSlobPage((struct page *)sp);
  132. }
  133. static inline void clear_slob_page(struct slob_page *sp)
  134. {
  135. __ClearPageSlobPage((struct page *)sp);
  136. }
  137. static inline struct slob_page *slob_page(const void *addr)
  138. {
  139. return (struct slob_page *)virt_to_page(addr);
  140. }
  141. /*
  142. * slob_page_free: true for pages on free_slob_pages list.
  143. */
  144. static inline int slob_page_free(struct slob_page *sp)
  145. {
  146. return PageSlobFree((struct page *)sp);
  147. }
  148. static void set_slob_page_free(struct slob_page *sp, struct list_head *list)
  149. {
  150. list_add(&sp->list, list);
  151. __SetPageSlobFree((struct page *)sp);
  152. }
  153. static inline void clear_slob_page_free(struct slob_page *sp)
  154. {
  155. list_del(&sp->list);
  156. __ClearPageSlobFree((struct page *)sp);
  157. }
  158. #define SLOB_UNIT sizeof(slob_t)
  159. #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
  160. #define SLOB_ALIGN L1_CACHE_BYTES
  161. /*
  162. * struct slob_rcu is inserted at the tail of allocated slob blocks, which
  163. * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
  164. * the block using call_rcu.
  165. */
  166. struct slob_rcu {
  167. struct rcu_head head;
  168. int size;
  169. };
  170. /*
  171. * slob_lock protects all slob allocator structures.
  172. */
  173. static DEFINE_SPINLOCK(slob_lock);
  174. /*
  175. * Encode the given size and next info into a free slob block s.
  176. */
  177. static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
  178. {
  179. slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
  180. slobidx_t offset = next - base;
  181. if (size > 1) {
  182. s[0].units = size;
  183. s[1].units = offset;
  184. } else
  185. s[0].units = -offset;
  186. }
  187. /*
  188. * Return the size of a slob block.
  189. */
  190. static slobidx_t slob_units(slob_t *s)
  191. {
  192. if (s->units > 0)
  193. return s->units;
  194. return 1;
  195. }
  196. /*
  197. * Return the next free slob block pointer after this one.
  198. */
  199. static slob_t *slob_next(slob_t *s)
  200. {
  201. slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
  202. slobidx_t next;
  203. if (s[0].units < 0)
  204. next = -s[0].units;
  205. else
  206. next = s[1].units;
  207. return base+next;
  208. }
  209. /*
  210. * Returns true if s is the last free block in its page.
  211. */
  212. static int slob_last(slob_t *s)
  213. {
  214. return !((unsigned long)slob_next(s) & ~PAGE_MASK);
  215. }
  216. static void *slob_new_pages(gfp_t gfp, int order, int node)
  217. {
  218. void *page;
  219. #ifdef CONFIG_NUMA
  220. if (node != -1)
  221. page = alloc_pages_node(node, gfp, order);
  222. else
  223. #endif
  224. page = alloc_pages(gfp, order);
  225. if (!page)
  226. return NULL;
  227. return page_address(page);
  228. }
  229. static void slob_free_pages(void *b, int order)
  230. {
  231. free_pages((unsigned long)b, order);
  232. }
  233. /*
  234. * Allocate a slob block within a given slob_page sp.
  235. */
  236. static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
  237. {
  238. slob_t *prev, *cur, *aligned = NULL;
  239. int delta = 0, units = SLOB_UNITS(size);
  240. for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
  241. slobidx_t avail = slob_units(cur);
  242. if (align) {
  243. aligned = (slob_t *)ALIGN((unsigned long)cur, align);
  244. delta = aligned - cur;
  245. }
  246. if (avail >= units + delta) { /* room enough? */
  247. slob_t *next;
  248. if (delta) { /* need to fragment head to align? */
  249. next = slob_next(cur);
  250. set_slob(aligned, avail - delta, next);
  251. set_slob(cur, delta, aligned);
  252. prev = cur;
  253. cur = aligned;
  254. avail = slob_units(cur);
  255. }
  256. next = slob_next(cur);
  257. if (avail == units) { /* exact fit? unlink. */
  258. if (prev)
  259. set_slob(prev, slob_units(prev), next);
  260. else
  261. sp->free = next;
  262. } else { /* fragment */
  263. if (prev)
  264. set_slob(prev, slob_units(prev), cur + units);
  265. else
  266. sp->free = cur + units;
  267. set_slob(cur + units, avail - units, next);
  268. }
  269. sp->units -= units;
  270. if (!sp->units)
  271. clear_slob_page_free(sp);
  272. return cur;
  273. }
  274. if (slob_last(cur))
  275. return NULL;
  276. }
  277. }
  278. /*
  279. * slob_alloc: entry point into the slob allocator.
  280. */
  281. static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
  282. {
  283. struct slob_page *sp;
  284. struct list_head *prev;
  285. struct list_head *slob_list;
  286. slob_t *b = NULL;
  287. unsigned long flags;
  288. if (size < SLOB_BREAK1)
  289. slob_list = &free_slob_small;
  290. else if (size < SLOB_BREAK2)
  291. slob_list = &free_slob_medium;
  292. else
  293. slob_list = &free_slob_large;
  294. spin_lock_irqsave(&slob_lock, flags);
  295. /* Iterate through each partially free page, try to find room */
  296. list_for_each_entry(sp, slob_list, list) {
  297. #ifdef CONFIG_NUMA
  298. /*
  299. * If there's a node specification, search for a partial
  300. * page with a matching node id in the freelist.
  301. */
  302. if (node != -1 && page_to_nid(&sp->page) != node)
  303. continue;
  304. #endif
  305. /* Enough room on this page? */
  306. if (sp->units < SLOB_UNITS(size))
  307. continue;
  308. /* Attempt to alloc */
  309. prev = sp->list.prev;
  310. b = slob_page_alloc(sp, size, align);
  311. if (!b)
  312. continue;
  313. /* Improve fragment distribution and reduce our average
  314. * search time by starting our next search here. (see
  315. * Knuth vol 1, sec 2.5, pg 449) */
  316. if (prev != slob_list->prev &&
  317. slob_list->next != prev->next)
  318. list_move_tail(slob_list, prev->next);
  319. break;
  320. }
  321. spin_unlock_irqrestore(&slob_lock, flags);
  322. /* Not enough space: must allocate a new page */
  323. if (!b) {
  324. b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
  325. if (!b)
  326. return NULL;
  327. sp = slob_page(b);
  328. set_slob_page(sp);
  329. spin_lock_irqsave(&slob_lock, flags);
  330. sp->units = SLOB_UNITS(PAGE_SIZE);
  331. sp->free = b;
  332. INIT_LIST_HEAD(&sp->list);
  333. set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
  334. set_slob_page_free(sp, slob_list);
  335. b = slob_page_alloc(sp, size, align);
  336. BUG_ON(!b);
  337. spin_unlock_irqrestore(&slob_lock, flags);
  338. }
  339. if (unlikely((gfp & __GFP_ZERO) && b))
  340. memset(b, 0, size);
  341. return b;
  342. }
  343. /*
  344. * slob_free: entry point into the slob allocator.
  345. */
  346. static void slob_free(void *block, int size)
  347. {
  348. struct slob_page *sp;
  349. slob_t *prev, *next, *b = (slob_t *)block;
  350. slobidx_t units;
  351. unsigned long flags;
  352. if (unlikely(ZERO_OR_NULL_PTR(block)))
  353. return;
  354. BUG_ON(!size);
  355. sp = slob_page(block);
  356. units = SLOB_UNITS(size);
  357. spin_lock_irqsave(&slob_lock, flags);
  358. if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
  359. /* Go directly to page allocator. Do not pass slob allocator */
  360. if (slob_page_free(sp))
  361. clear_slob_page_free(sp);
  362. spin_unlock_irqrestore(&slob_lock, flags);
  363. clear_slob_page(sp);
  364. free_slob_page(sp);
  365. free_page((unsigned long)b);
  366. return;
  367. }
  368. if (!slob_page_free(sp)) {
  369. /* This slob page is about to become partially free. Easy! */
  370. sp->units = units;
  371. sp->free = b;
  372. set_slob(b, units,
  373. (void *)((unsigned long)(b +
  374. SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
  375. set_slob_page_free(sp, &free_slob_small);
  376. goto out;
  377. }
  378. /*
  379. * Otherwise the page is already partially free, so find reinsertion
  380. * point.
  381. */
  382. sp->units += units;
  383. if (b < sp->free) {
  384. if (b + units == sp->free) {
  385. units += slob_units(sp->free);
  386. sp->free = slob_next(sp->free);
  387. }
  388. set_slob(b, units, sp->free);
  389. sp->free = b;
  390. } else {
  391. prev = sp->free;
  392. next = slob_next(prev);
  393. while (b > next) {
  394. prev = next;
  395. next = slob_next(prev);
  396. }
  397. if (!slob_last(prev) && b + units == next) {
  398. units += slob_units(next);
  399. set_slob(b, units, slob_next(next));
  400. } else
  401. set_slob(b, units, next);
  402. if (prev + slob_units(prev) == b) {
  403. units = slob_units(b) + slob_units(prev);
  404. set_slob(prev, units, slob_next(b));
  405. } else
  406. set_slob(prev, slob_units(prev), b);
  407. }
  408. out:
  409. spin_unlock_irqrestore(&slob_lock, flags);
  410. }
  411. /*
  412. * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
  413. */
  414. #ifndef ARCH_KMALLOC_MINALIGN
  415. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
  416. #endif
  417. #ifndef ARCH_SLAB_MINALIGN
  418. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
  419. #endif
  420. void *__kmalloc_node(size_t size, gfp_t gfp, int node)
  421. {
  422. unsigned int *m;
  423. int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
  424. void *ret;
  425. lockdep_trace_alloc(gfp);
  426. if (size < PAGE_SIZE - align) {
  427. if (!size)
  428. return ZERO_SIZE_PTR;
  429. m = slob_alloc(size + align, gfp, align, node);
  430. if (!m)
  431. return NULL;
  432. *m = size;
  433. ret = (void *)m + align;
  434. trace_kmalloc_node(_RET_IP_, ret,
  435. size, size + align, gfp, node);
  436. } else {
  437. unsigned int order = get_order(size);
  438. ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node);
  439. if (ret) {
  440. struct page *page;
  441. page = virt_to_page(ret);
  442. page->private = size;
  443. }
  444. trace_kmalloc_node(_RET_IP_, ret,
  445. size, PAGE_SIZE << order, gfp, node);
  446. }
  447. return ret;
  448. }
  449. EXPORT_SYMBOL(__kmalloc_node);
  450. void kfree(const void *block)
  451. {
  452. struct slob_page *sp;
  453. trace_kfree(_RET_IP_, block);
  454. if (unlikely(ZERO_OR_NULL_PTR(block)))
  455. return;
  456. sp = slob_page(block);
  457. if (is_slob_page(sp)) {
  458. int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
  459. unsigned int *m = (unsigned int *)(block - align);
  460. slob_free(m, *m + align);
  461. } else
  462. put_page(&sp->page);
  463. }
  464. EXPORT_SYMBOL(kfree);
  465. /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
  466. size_t ksize(const void *block)
  467. {
  468. struct slob_page *sp;
  469. BUG_ON(!block);
  470. if (unlikely(block == ZERO_SIZE_PTR))
  471. return 0;
  472. sp = slob_page(block);
  473. if (is_slob_page(sp)) {
  474. int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
  475. unsigned int *m = (unsigned int *)(block - align);
  476. return SLOB_UNITS(*m) * SLOB_UNIT;
  477. } else
  478. return sp->page.private;
  479. }
  480. EXPORT_SYMBOL(ksize);
  481. struct kmem_cache {
  482. unsigned int size, align;
  483. unsigned long flags;
  484. const char *name;
  485. void (*ctor)(void *);
  486. };
  487. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  488. size_t align, unsigned long flags, void (*ctor)(void *))
  489. {
  490. struct kmem_cache *c;
  491. c = slob_alloc(sizeof(struct kmem_cache),
  492. GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
  493. if (c) {
  494. c->name = name;
  495. c->size = size;
  496. if (flags & SLAB_DESTROY_BY_RCU) {
  497. /* leave room for rcu footer at the end of object */
  498. c->size += sizeof(struct slob_rcu);
  499. }
  500. c->flags = flags;
  501. c->ctor = ctor;
  502. /* ignore alignment unless it's forced */
  503. c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
  504. if (c->align < ARCH_SLAB_MINALIGN)
  505. c->align = ARCH_SLAB_MINALIGN;
  506. if (c->align < align)
  507. c->align = align;
  508. } else if (flags & SLAB_PANIC)
  509. panic("Cannot create slab cache %s\n", name);
  510. return c;
  511. }
  512. EXPORT_SYMBOL(kmem_cache_create);
  513. void kmem_cache_destroy(struct kmem_cache *c)
  514. {
  515. slob_free(c, sizeof(struct kmem_cache));
  516. }
  517. EXPORT_SYMBOL(kmem_cache_destroy);
  518. void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
  519. {
  520. void *b;
  521. if (c->size < PAGE_SIZE) {
  522. b = slob_alloc(c->size, flags, c->align, node);
  523. trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
  524. SLOB_UNITS(c->size) * SLOB_UNIT,
  525. flags, node);
  526. } else {
  527. b = slob_new_pages(flags, get_order(c->size), node);
  528. trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
  529. PAGE_SIZE << get_order(c->size),
  530. flags, node);
  531. }
  532. if (c->ctor)
  533. c->ctor(b);
  534. return b;
  535. }
  536. EXPORT_SYMBOL(kmem_cache_alloc_node);
  537. static void __kmem_cache_free(void *b, int size)
  538. {
  539. if (size < PAGE_SIZE)
  540. slob_free(b, size);
  541. else
  542. slob_free_pages(b, get_order(size));
  543. }
  544. static void kmem_rcu_free(struct rcu_head *head)
  545. {
  546. struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
  547. void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
  548. __kmem_cache_free(b, slob_rcu->size);
  549. }
  550. void kmem_cache_free(struct kmem_cache *c, void *b)
  551. {
  552. if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
  553. struct slob_rcu *slob_rcu;
  554. slob_rcu = b + (c->size - sizeof(struct slob_rcu));
  555. INIT_RCU_HEAD(&slob_rcu->head);
  556. slob_rcu->size = c->size;
  557. call_rcu(&slob_rcu->head, kmem_rcu_free);
  558. } else {
  559. __kmem_cache_free(b, c->size);
  560. }
  561. trace_kmem_cache_free(_RET_IP_, b);
  562. }
  563. EXPORT_SYMBOL(kmem_cache_free);
  564. unsigned int kmem_cache_size(struct kmem_cache *c)
  565. {
  566. return c->size;
  567. }
  568. EXPORT_SYMBOL(kmem_cache_size);
  569. const char *kmem_cache_name(struct kmem_cache *c)
  570. {
  571. return c->name;
  572. }
  573. EXPORT_SYMBOL(kmem_cache_name);
  574. int kmem_cache_shrink(struct kmem_cache *d)
  575. {
  576. return 0;
  577. }
  578. EXPORT_SYMBOL(kmem_cache_shrink);
  579. int kmem_ptr_validate(struct kmem_cache *a, const void *b)
  580. {
  581. return 0;
  582. }
  583. static unsigned int slob_ready __read_mostly;
  584. int slab_is_available(void)
  585. {
  586. return slob_ready;
  587. }
  588. void __init kmem_cache_init(void)
  589. {
  590. slob_ready = 1;
  591. }