slab.c 116 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <trace/kmemtrace.h>
  105. #include <linux/rcupdate.h>
  106. #include <linux/string.h>
  107. #include <linux/uaccess.h>
  108. #include <linux/nodemask.h>
  109. #include <linux/mempolicy.h>
  110. #include <linux/mutex.h>
  111. #include <linux/fault-inject.h>
  112. #include <linux/rtmutex.h>
  113. #include <linux/reciprocal_div.h>
  114. #include <linux/debugobjects.h>
  115. #include <asm/cacheflush.h>
  116. #include <asm/tlbflush.h>
  117. #include <asm/page.h>
  118. /*
  119. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  120. * 0 for faster, smaller code (especially in the critical paths).
  121. *
  122. * STATS - 1 to collect stats for /proc/slabinfo.
  123. * 0 for faster, smaller code (especially in the critical paths).
  124. *
  125. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  126. */
  127. #ifdef CONFIG_DEBUG_SLAB
  128. #define DEBUG 1
  129. #define STATS 1
  130. #define FORCED_DEBUG 1
  131. #else
  132. #define DEBUG 0
  133. #define STATS 0
  134. #define FORCED_DEBUG 0
  135. #endif
  136. /* Shouldn't this be in a header file somewhere? */
  137. #define BYTES_PER_WORD sizeof(void *)
  138. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  139. #ifndef ARCH_KMALLOC_MINALIGN
  140. /*
  141. * Enforce a minimum alignment for the kmalloc caches.
  142. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  143. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  144. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  145. * alignment larger than the alignment of a 64-bit integer.
  146. * ARCH_KMALLOC_MINALIGN allows that.
  147. * Note that increasing this value may disable some debug features.
  148. */
  149. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  150. #endif
  151. #ifndef ARCH_SLAB_MINALIGN
  152. /*
  153. * Enforce a minimum alignment for all caches.
  154. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  155. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  156. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  157. * some debug features.
  158. */
  159. #define ARCH_SLAB_MINALIGN 0
  160. #endif
  161. #ifndef ARCH_KMALLOC_FLAGS
  162. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  163. #endif
  164. /* Legal flag mask for kmem_cache_create(). */
  165. #if DEBUG
  166. # define CREATE_MASK (SLAB_RED_ZONE | \
  167. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  168. SLAB_CACHE_DMA | \
  169. SLAB_STORE_USER | \
  170. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  171. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  172. SLAB_DEBUG_OBJECTS)
  173. #else
  174. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  175. SLAB_CACHE_DMA | \
  176. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  177. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  178. SLAB_DEBUG_OBJECTS)
  179. #endif
  180. /*
  181. * kmem_bufctl_t:
  182. *
  183. * Bufctl's are used for linking objs within a slab
  184. * linked offsets.
  185. *
  186. * This implementation relies on "struct page" for locating the cache &
  187. * slab an object belongs to.
  188. * This allows the bufctl structure to be small (one int), but limits
  189. * the number of objects a slab (not a cache) can contain when off-slab
  190. * bufctls are used. The limit is the size of the largest general cache
  191. * that does not use off-slab slabs.
  192. * For 32bit archs with 4 kB pages, is this 56.
  193. * This is not serious, as it is only for large objects, when it is unwise
  194. * to have too many per slab.
  195. * Note: This limit can be raised by introducing a general cache whose size
  196. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  197. */
  198. typedef unsigned int kmem_bufctl_t;
  199. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  200. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  201. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  202. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  203. /*
  204. * struct slab
  205. *
  206. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  207. * for a slab, or allocated from an general cache.
  208. * Slabs are chained into three list: fully used, partial, fully free slabs.
  209. */
  210. struct slab {
  211. struct list_head list;
  212. unsigned long colouroff;
  213. void *s_mem; /* including colour offset */
  214. unsigned int inuse; /* num of objs active in slab */
  215. kmem_bufctl_t free;
  216. unsigned short nodeid;
  217. };
  218. /*
  219. * struct slab_rcu
  220. *
  221. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  222. * arrange for kmem_freepages to be called via RCU. This is useful if
  223. * we need to approach a kernel structure obliquely, from its address
  224. * obtained without the usual locking. We can lock the structure to
  225. * stabilize it and check it's still at the given address, only if we
  226. * can be sure that the memory has not been meanwhile reused for some
  227. * other kind of object (which our subsystem's lock might corrupt).
  228. *
  229. * rcu_read_lock before reading the address, then rcu_read_unlock after
  230. * taking the spinlock within the structure expected at that address.
  231. *
  232. * We assume struct slab_rcu can overlay struct slab when destroying.
  233. */
  234. struct slab_rcu {
  235. struct rcu_head head;
  236. struct kmem_cache *cachep;
  237. void *addr;
  238. };
  239. /*
  240. * struct array_cache
  241. *
  242. * Purpose:
  243. * - LIFO ordering, to hand out cache-warm objects from _alloc
  244. * - reduce the number of linked list operations
  245. * - reduce spinlock operations
  246. *
  247. * The limit is stored in the per-cpu structure to reduce the data cache
  248. * footprint.
  249. *
  250. */
  251. struct array_cache {
  252. unsigned int avail;
  253. unsigned int limit;
  254. unsigned int batchcount;
  255. unsigned int touched;
  256. spinlock_t lock;
  257. void *entry[]; /*
  258. * Must have this definition in here for the proper
  259. * alignment of array_cache. Also simplifies accessing
  260. * the entries.
  261. */
  262. };
  263. /*
  264. * bootstrap: The caches do not work without cpuarrays anymore, but the
  265. * cpuarrays are allocated from the generic caches...
  266. */
  267. #define BOOT_CPUCACHE_ENTRIES 1
  268. struct arraycache_init {
  269. struct array_cache cache;
  270. void *entries[BOOT_CPUCACHE_ENTRIES];
  271. };
  272. /*
  273. * The slab lists for all objects.
  274. */
  275. struct kmem_list3 {
  276. struct list_head slabs_partial; /* partial list first, better asm code */
  277. struct list_head slabs_full;
  278. struct list_head slabs_free;
  279. unsigned long free_objects;
  280. unsigned int free_limit;
  281. unsigned int colour_next; /* Per-node cache coloring */
  282. spinlock_t list_lock;
  283. struct array_cache *shared; /* shared per node */
  284. struct array_cache **alien; /* on other nodes */
  285. unsigned long next_reap; /* updated without locking */
  286. int free_touched; /* updated without locking */
  287. };
  288. /*
  289. * Need this for bootstrapping a per node allocator.
  290. */
  291. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  292. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  293. #define CACHE_CACHE 0
  294. #define SIZE_AC MAX_NUMNODES
  295. #define SIZE_L3 (2 * MAX_NUMNODES)
  296. static int drain_freelist(struct kmem_cache *cache,
  297. struct kmem_list3 *l3, int tofree);
  298. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  299. int node);
  300. static int enable_cpucache(struct kmem_cache *cachep);
  301. static void cache_reap(struct work_struct *unused);
  302. /*
  303. * This function must be completely optimized away if a constant is passed to
  304. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  305. */
  306. static __always_inline int index_of(const size_t size)
  307. {
  308. extern void __bad_size(void);
  309. if (__builtin_constant_p(size)) {
  310. int i = 0;
  311. #define CACHE(x) \
  312. if (size <=x) \
  313. return i; \
  314. else \
  315. i++;
  316. #include <linux/kmalloc_sizes.h>
  317. #undef CACHE
  318. __bad_size();
  319. } else
  320. __bad_size();
  321. return 0;
  322. }
  323. static int slab_early_init = 1;
  324. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  325. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  326. static void kmem_list3_init(struct kmem_list3 *parent)
  327. {
  328. INIT_LIST_HEAD(&parent->slabs_full);
  329. INIT_LIST_HEAD(&parent->slabs_partial);
  330. INIT_LIST_HEAD(&parent->slabs_free);
  331. parent->shared = NULL;
  332. parent->alien = NULL;
  333. parent->colour_next = 0;
  334. spin_lock_init(&parent->list_lock);
  335. parent->free_objects = 0;
  336. parent->free_touched = 0;
  337. }
  338. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  339. do { \
  340. INIT_LIST_HEAD(listp); \
  341. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  342. } while (0)
  343. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  344. do { \
  345. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  346. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  347. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  348. } while (0)
  349. /*
  350. * struct kmem_cache
  351. *
  352. * manages a cache.
  353. */
  354. struct kmem_cache {
  355. /* 1) per-cpu data, touched during every alloc/free */
  356. struct array_cache *array[NR_CPUS];
  357. /* 2) Cache tunables. Protected by cache_chain_mutex */
  358. unsigned int batchcount;
  359. unsigned int limit;
  360. unsigned int shared;
  361. unsigned int buffer_size;
  362. u32 reciprocal_buffer_size;
  363. /* 3) touched by every alloc & free from the backend */
  364. unsigned int flags; /* constant flags */
  365. unsigned int num; /* # of objs per slab */
  366. /* 4) cache_grow/shrink */
  367. /* order of pgs per slab (2^n) */
  368. unsigned int gfporder;
  369. /* force GFP flags, e.g. GFP_DMA */
  370. gfp_t gfpflags;
  371. size_t colour; /* cache colouring range */
  372. unsigned int colour_off; /* colour offset */
  373. struct kmem_cache *slabp_cache;
  374. unsigned int slab_size;
  375. unsigned int dflags; /* dynamic flags */
  376. /* constructor func */
  377. void (*ctor)(void *obj);
  378. /* 5) cache creation/removal */
  379. const char *name;
  380. struct list_head next;
  381. /* 6) statistics */
  382. #if STATS
  383. unsigned long num_active;
  384. unsigned long num_allocations;
  385. unsigned long high_mark;
  386. unsigned long grown;
  387. unsigned long reaped;
  388. unsigned long errors;
  389. unsigned long max_freeable;
  390. unsigned long node_allocs;
  391. unsigned long node_frees;
  392. unsigned long node_overflow;
  393. atomic_t allochit;
  394. atomic_t allocmiss;
  395. atomic_t freehit;
  396. atomic_t freemiss;
  397. #endif
  398. #if DEBUG
  399. /*
  400. * If debugging is enabled, then the allocator can add additional
  401. * fields and/or padding to every object. buffer_size contains the total
  402. * object size including these internal fields, the following two
  403. * variables contain the offset to the user object and its size.
  404. */
  405. int obj_offset;
  406. int obj_size;
  407. #endif
  408. /*
  409. * We put nodelists[] at the end of kmem_cache, because we want to size
  410. * this array to nr_node_ids slots instead of MAX_NUMNODES
  411. * (see kmem_cache_init())
  412. * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
  413. * is statically defined, so we reserve the max number of nodes.
  414. */
  415. struct kmem_list3 *nodelists[MAX_NUMNODES];
  416. /*
  417. * Do not add fields after nodelists[]
  418. */
  419. };
  420. #define CFLGS_OFF_SLAB (0x80000000UL)
  421. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  422. #define BATCHREFILL_LIMIT 16
  423. /*
  424. * Optimization question: fewer reaps means less probability for unnessary
  425. * cpucache drain/refill cycles.
  426. *
  427. * OTOH the cpuarrays can contain lots of objects,
  428. * which could lock up otherwise freeable slabs.
  429. */
  430. #define REAPTIMEOUT_CPUC (2*HZ)
  431. #define REAPTIMEOUT_LIST3 (4*HZ)
  432. #if STATS
  433. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  434. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  435. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  436. #define STATS_INC_GROWN(x) ((x)->grown++)
  437. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  438. #define STATS_SET_HIGH(x) \
  439. do { \
  440. if ((x)->num_active > (x)->high_mark) \
  441. (x)->high_mark = (x)->num_active; \
  442. } while (0)
  443. #define STATS_INC_ERR(x) ((x)->errors++)
  444. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  445. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  446. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  447. #define STATS_SET_FREEABLE(x, i) \
  448. do { \
  449. if ((x)->max_freeable < i) \
  450. (x)->max_freeable = i; \
  451. } while (0)
  452. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  453. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  454. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  455. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  456. #else
  457. #define STATS_INC_ACTIVE(x) do { } while (0)
  458. #define STATS_DEC_ACTIVE(x) do { } while (0)
  459. #define STATS_INC_ALLOCED(x) do { } while (0)
  460. #define STATS_INC_GROWN(x) do { } while (0)
  461. #define STATS_ADD_REAPED(x,y) do { } while (0)
  462. #define STATS_SET_HIGH(x) do { } while (0)
  463. #define STATS_INC_ERR(x) do { } while (0)
  464. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  465. #define STATS_INC_NODEFREES(x) do { } while (0)
  466. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  467. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  468. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  469. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  470. #define STATS_INC_FREEHIT(x) do { } while (0)
  471. #define STATS_INC_FREEMISS(x) do { } while (0)
  472. #endif
  473. #if DEBUG
  474. /*
  475. * memory layout of objects:
  476. * 0 : objp
  477. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  478. * the end of an object is aligned with the end of the real
  479. * allocation. Catches writes behind the end of the allocation.
  480. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  481. * redzone word.
  482. * cachep->obj_offset: The real object.
  483. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  484. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  485. * [BYTES_PER_WORD long]
  486. */
  487. static int obj_offset(struct kmem_cache *cachep)
  488. {
  489. return cachep->obj_offset;
  490. }
  491. static int obj_size(struct kmem_cache *cachep)
  492. {
  493. return cachep->obj_size;
  494. }
  495. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  496. {
  497. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  498. return (unsigned long long*) (objp + obj_offset(cachep) -
  499. sizeof(unsigned long long));
  500. }
  501. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  502. {
  503. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  504. if (cachep->flags & SLAB_STORE_USER)
  505. return (unsigned long long *)(objp + cachep->buffer_size -
  506. sizeof(unsigned long long) -
  507. REDZONE_ALIGN);
  508. return (unsigned long long *) (objp + cachep->buffer_size -
  509. sizeof(unsigned long long));
  510. }
  511. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  512. {
  513. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  514. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  515. }
  516. #else
  517. #define obj_offset(x) 0
  518. #define obj_size(cachep) (cachep->buffer_size)
  519. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  520. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  521. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  522. #endif
  523. #ifdef CONFIG_KMEMTRACE
  524. size_t slab_buffer_size(struct kmem_cache *cachep)
  525. {
  526. return cachep->buffer_size;
  527. }
  528. EXPORT_SYMBOL(slab_buffer_size);
  529. #endif
  530. /*
  531. * Do not go above this order unless 0 objects fit into the slab.
  532. */
  533. #define BREAK_GFP_ORDER_HI 1
  534. #define BREAK_GFP_ORDER_LO 0
  535. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  536. /*
  537. * Functions for storing/retrieving the cachep and or slab from the page
  538. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  539. * these are used to find the cache which an obj belongs to.
  540. */
  541. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  542. {
  543. page->lru.next = (struct list_head *)cache;
  544. }
  545. static inline struct kmem_cache *page_get_cache(struct page *page)
  546. {
  547. page = compound_head(page);
  548. BUG_ON(!PageSlab(page));
  549. return (struct kmem_cache *)page->lru.next;
  550. }
  551. static inline void page_set_slab(struct page *page, struct slab *slab)
  552. {
  553. page->lru.prev = (struct list_head *)slab;
  554. }
  555. static inline struct slab *page_get_slab(struct page *page)
  556. {
  557. BUG_ON(!PageSlab(page));
  558. return (struct slab *)page->lru.prev;
  559. }
  560. static inline struct kmem_cache *virt_to_cache(const void *obj)
  561. {
  562. struct page *page = virt_to_head_page(obj);
  563. return page_get_cache(page);
  564. }
  565. static inline struct slab *virt_to_slab(const void *obj)
  566. {
  567. struct page *page = virt_to_head_page(obj);
  568. return page_get_slab(page);
  569. }
  570. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  571. unsigned int idx)
  572. {
  573. return slab->s_mem + cache->buffer_size * idx;
  574. }
  575. /*
  576. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  577. * Using the fact that buffer_size is a constant for a particular cache,
  578. * we can replace (offset / cache->buffer_size) by
  579. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  580. */
  581. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  582. const struct slab *slab, void *obj)
  583. {
  584. u32 offset = (obj - slab->s_mem);
  585. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  586. }
  587. /*
  588. * These are the default caches for kmalloc. Custom caches can have other sizes.
  589. */
  590. struct cache_sizes malloc_sizes[] = {
  591. #define CACHE(x) { .cs_size = (x) },
  592. #include <linux/kmalloc_sizes.h>
  593. CACHE(ULONG_MAX)
  594. #undef CACHE
  595. };
  596. EXPORT_SYMBOL(malloc_sizes);
  597. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  598. struct cache_names {
  599. char *name;
  600. char *name_dma;
  601. };
  602. static struct cache_names __initdata cache_names[] = {
  603. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  604. #include <linux/kmalloc_sizes.h>
  605. {NULL,}
  606. #undef CACHE
  607. };
  608. static struct arraycache_init initarray_cache __initdata =
  609. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  610. static struct arraycache_init initarray_generic =
  611. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  612. /* internal cache of cache description objs */
  613. static struct kmem_cache cache_cache = {
  614. .batchcount = 1,
  615. .limit = BOOT_CPUCACHE_ENTRIES,
  616. .shared = 1,
  617. .buffer_size = sizeof(struct kmem_cache),
  618. .name = "kmem_cache",
  619. };
  620. #define BAD_ALIEN_MAGIC 0x01020304ul
  621. #ifdef CONFIG_LOCKDEP
  622. /*
  623. * Slab sometimes uses the kmalloc slabs to store the slab headers
  624. * for other slabs "off slab".
  625. * The locking for this is tricky in that it nests within the locks
  626. * of all other slabs in a few places; to deal with this special
  627. * locking we put on-slab caches into a separate lock-class.
  628. *
  629. * We set lock class for alien array caches which are up during init.
  630. * The lock annotation will be lost if all cpus of a node goes down and
  631. * then comes back up during hotplug
  632. */
  633. static struct lock_class_key on_slab_l3_key;
  634. static struct lock_class_key on_slab_alc_key;
  635. static inline void init_lock_keys(void)
  636. {
  637. int q;
  638. struct cache_sizes *s = malloc_sizes;
  639. while (s->cs_size != ULONG_MAX) {
  640. for_each_node(q) {
  641. struct array_cache **alc;
  642. int r;
  643. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  644. if (!l3 || OFF_SLAB(s->cs_cachep))
  645. continue;
  646. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  647. alc = l3->alien;
  648. /*
  649. * FIXME: This check for BAD_ALIEN_MAGIC
  650. * should go away when common slab code is taught to
  651. * work even without alien caches.
  652. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  653. * for alloc_alien_cache,
  654. */
  655. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  656. continue;
  657. for_each_node(r) {
  658. if (alc[r])
  659. lockdep_set_class(&alc[r]->lock,
  660. &on_slab_alc_key);
  661. }
  662. }
  663. s++;
  664. }
  665. }
  666. #else
  667. static inline void init_lock_keys(void)
  668. {
  669. }
  670. #endif
  671. /*
  672. * Guard access to the cache-chain.
  673. */
  674. static DEFINE_MUTEX(cache_chain_mutex);
  675. static struct list_head cache_chain;
  676. /*
  677. * chicken and egg problem: delay the per-cpu array allocation
  678. * until the general caches are up.
  679. */
  680. static enum {
  681. NONE,
  682. PARTIAL_AC,
  683. PARTIAL_L3,
  684. FULL
  685. } g_cpucache_up;
  686. /*
  687. * used by boot code to determine if it can use slab based allocator
  688. */
  689. int slab_is_available(void)
  690. {
  691. return g_cpucache_up == FULL;
  692. }
  693. static DEFINE_PER_CPU(struct delayed_work, reap_work);
  694. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  695. {
  696. return cachep->array[smp_processor_id()];
  697. }
  698. static inline struct kmem_cache *__find_general_cachep(size_t size,
  699. gfp_t gfpflags)
  700. {
  701. struct cache_sizes *csizep = malloc_sizes;
  702. #if DEBUG
  703. /* This happens if someone tries to call
  704. * kmem_cache_create(), or __kmalloc(), before
  705. * the generic caches are initialized.
  706. */
  707. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  708. #endif
  709. if (!size)
  710. return ZERO_SIZE_PTR;
  711. while (size > csizep->cs_size)
  712. csizep++;
  713. /*
  714. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  715. * has cs_{dma,}cachep==NULL. Thus no special case
  716. * for large kmalloc calls required.
  717. */
  718. #ifdef CONFIG_ZONE_DMA
  719. if (unlikely(gfpflags & GFP_DMA))
  720. return csizep->cs_dmacachep;
  721. #endif
  722. return csizep->cs_cachep;
  723. }
  724. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  725. {
  726. return __find_general_cachep(size, gfpflags);
  727. }
  728. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  729. {
  730. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  731. }
  732. /*
  733. * Calculate the number of objects and left-over bytes for a given buffer size.
  734. */
  735. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  736. size_t align, int flags, size_t *left_over,
  737. unsigned int *num)
  738. {
  739. int nr_objs;
  740. size_t mgmt_size;
  741. size_t slab_size = PAGE_SIZE << gfporder;
  742. /*
  743. * The slab management structure can be either off the slab or
  744. * on it. For the latter case, the memory allocated for a
  745. * slab is used for:
  746. *
  747. * - The struct slab
  748. * - One kmem_bufctl_t for each object
  749. * - Padding to respect alignment of @align
  750. * - @buffer_size bytes for each object
  751. *
  752. * If the slab management structure is off the slab, then the
  753. * alignment will already be calculated into the size. Because
  754. * the slabs are all pages aligned, the objects will be at the
  755. * correct alignment when allocated.
  756. */
  757. if (flags & CFLGS_OFF_SLAB) {
  758. mgmt_size = 0;
  759. nr_objs = slab_size / buffer_size;
  760. if (nr_objs > SLAB_LIMIT)
  761. nr_objs = SLAB_LIMIT;
  762. } else {
  763. /*
  764. * Ignore padding for the initial guess. The padding
  765. * is at most @align-1 bytes, and @buffer_size is at
  766. * least @align. In the worst case, this result will
  767. * be one greater than the number of objects that fit
  768. * into the memory allocation when taking the padding
  769. * into account.
  770. */
  771. nr_objs = (slab_size - sizeof(struct slab)) /
  772. (buffer_size + sizeof(kmem_bufctl_t));
  773. /*
  774. * This calculated number will be either the right
  775. * amount, or one greater than what we want.
  776. */
  777. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  778. > slab_size)
  779. nr_objs--;
  780. if (nr_objs > SLAB_LIMIT)
  781. nr_objs = SLAB_LIMIT;
  782. mgmt_size = slab_mgmt_size(nr_objs, align);
  783. }
  784. *num = nr_objs;
  785. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  786. }
  787. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  788. static void __slab_error(const char *function, struct kmem_cache *cachep,
  789. char *msg)
  790. {
  791. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  792. function, cachep->name, msg);
  793. dump_stack();
  794. }
  795. /*
  796. * By default on NUMA we use alien caches to stage the freeing of
  797. * objects allocated from other nodes. This causes massive memory
  798. * inefficiencies when using fake NUMA setup to split memory into a
  799. * large number of small nodes, so it can be disabled on the command
  800. * line
  801. */
  802. static int use_alien_caches __read_mostly = 1;
  803. static int numa_platform __read_mostly = 1;
  804. static int __init noaliencache_setup(char *s)
  805. {
  806. use_alien_caches = 0;
  807. return 1;
  808. }
  809. __setup("noaliencache", noaliencache_setup);
  810. #ifdef CONFIG_NUMA
  811. /*
  812. * Special reaping functions for NUMA systems called from cache_reap().
  813. * These take care of doing round robin flushing of alien caches (containing
  814. * objects freed on different nodes from which they were allocated) and the
  815. * flushing of remote pcps by calling drain_node_pages.
  816. */
  817. static DEFINE_PER_CPU(unsigned long, reap_node);
  818. static void init_reap_node(int cpu)
  819. {
  820. int node;
  821. node = next_node(cpu_to_node(cpu), node_online_map);
  822. if (node == MAX_NUMNODES)
  823. node = first_node(node_online_map);
  824. per_cpu(reap_node, cpu) = node;
  825. }
  826. static void next_reap_node(void)
  827. {
  828. int node = __get_cpu_var(reap_node);
  829. node = next_node(node, node_online_map);
  830. if (unlikely(node >= MAX_NUMNODES))
  831. node = first_node(node_online_map);
  832. __get_cpu_var(reap_node) = node;
  833. }
  834. #else
  835. #define init_reap_node(cpu) do { } while (0)
  836. #define next_reap_node(void) do { } while (0)
  837. #endif
  838. /*
  839. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  840. * via the workqueue/eventd.
  841. * Add the CPU number into the expiration time to minimize the possibility of
  842. * the CPUs getting into lockstep and contending for the global cache chain
  843. * lock.
  844. */
  845. static void __cpuinit start_cpu_timer(int cpu)
  846. {
  847. struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
  848. /*
  849. * When this gets called from do_initcalls via cpucache_init(),
  850. * init_workqueues() has already run, so keventd will be setup
  851. * at that time.
  852. */
  853. if (keventd_up() && reap_work->work.func == NULL) {
  854. init_reap_node(cpu);
  855. INIT_DELAYED_WORK(reap_work, cache_reap);
  856. schedule_delayed_work_on(cpu, reap_work,
  857. __round_jiffies_relative(HZ, cpu));
  858. }
  859. }
  860. static struct array_cache *alloc_arraycache(int node, int entries,
  861. int batchcount)
  862. {
  863. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  864. struct array_cache *nc = NULL;
  865. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  866. if (nc) {
  867. nc->avail = 0;
  868. nc->limit = entries;
  869. nc->batchcount = batchcount;
  870. nc->touched = 0;
  871. spin_lock_init(&nc->lock);
  872. }
  873. return nc;
  874. }
  875. /*
  876. * Transfer objects in one arraycache to another.
  877. * Locking must be handled by the caller.
  878. *
  879. * Return the number of entries transferred.
  880. */
  881. static int transfer_objects(struct array_cache *to,
  882. struct array_cache *from, unsigned int max)
  883. {
  884. /* Figure out how many entries to transfer */
  885. int nr = min(min(from->avail, max), to->limit - to->avail);
  886. if (!nr)
  887. return 0;
  888. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  889. sizeof(void *) *nr);
  890. from->avail -= nr;
  891. to->avail += nr;
  892. to->touched = 1;
  893. return nr;
  894. }
  895. #ifndef CONFIG_NUMA
  896. #define drain_alien_cache(cachep, alien) do { } while (0)
  897. #define reap_alien(cachep, l3) do { } while (0)
  898. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  899. {
  900. return (struct array_cache **)BAD_ALIEN_MAGIC;
  901. }
  902. static inline void free_alien_cache(struct array_cache **ac_ptr)
  903. {
  904. }
  905. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  906. {
  907. return 0;
  908. }
  909. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  910. gfp_t flags)
  911. {
  912. return NULL;
  913. }
  914. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  915. gfp_t flags, int nodeid)
  916. {
  917. return NULL;
  918. }
  919. #else /* CONFIG_NUMA */
  920. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  921. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  922. static struct array_cache **alloc_alien_cache(int node, int limit)
  923. {
  924. struct array_cache **ac_ptr;
  925. int memsize = sizeof(void *) * nr_node_ids;
  926. int i;
  927. if (limit > 1)
  928. limit = 12;
  929. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  930. if (ac_ptr) {
  931. for_each_node(i) {
  932. if (i == node || !node_online(i)) {
  933. ac_ptr[i] = NULL;
  934. continue;
  935. }
  936. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  937. if (!ac_ptr[i]) {
  938. for (i--; i >= 0; i--)
  939. kfree(ac_ptr[i]);
  940. kfree(ac_ptr);
  941. return NULL;
  942. }
  943. }
  944. }
  945. return ac_ptr;
  946. }
  947. static void free_alien_cache(struct array_cache **ac_ptr)
  948. {
  949. int i;
  950. if (!ac_ptr)
  951. return;
  952. for_each_node(i)
  953. kfree(ac_ptr[i]);
  954. kfree(ac_ptr);
  955. }
  956. static void __drain_alien_cache(struct kmem_cache *cachep,
  957. struct array_cache *ac, int node)
  958. {
  959. struct kmem_list3 *rl3 = cachep->nodelists[node];
  960. if (ac->avail) {
  961. spin_lock(&rl3->list_lock);
  962. /*
  963. * Stuff objects into the remote nodes shared array first.
  964. * That way we could avoid the overhead of putting the objects
  965. * into the free lists and getting them back later.
  966. */
  967. if (rl3->shared)
  968. transfer_objects(rl3->shared, ac, ac->limit);
  969. free_block(cachep, ac->entry, ac->avail, node);
  970. ac->avail = 0;
  971. spin_unlock(&rl3->list_lock);
  972. }
  973. }
  974. /*
  975. * Called from cache_reap() to regularly drain alien caches round robin.
  976. */
  977. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  978. {
  979. int node = __get_cpu_var(reap_node);
  980. if (l3->alien) {
  981. struct array_cache *ac = l3->alien[node];
  982. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  983. __drain_alien_cache(cachep, ac, node);
  984. spin_unlock_irq(&ac->lock);
  985. }
  986. }
  987. }
  988. static void drain_alien_cache(struct kmem_cache *cachep,
  989. struct array_cache **alien)
  990. {
  991. int i = 0;
  992. struct array_cache *ac;
  993. unsigned long flags;
  994. for_each_online_node(i) {
  995. ac = alien[i];
  996. if (ac) {
  997. spin_lock_irqsave(&ac->lock, flags);
  998. __drain_alien_cache(cachep, ac, i);
  999. spin_unlock_irqrestore(&ac->lock, flags);
  1000. }
  1001. }
  1002. }
  1003. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  1004. {
  1005. struct slab *slabp = virt_to_slab(objp);
  1006. int nodeid = slabp->nodeid;
  1007. struct kmem_list3 *l3;
  1008. struct array_cache *alien = NULL;
  1009. int node;
  1010. node = numa_node_id();
  1011. /*
  1012. * Make sure we are not freeing a object from another node to the array
  1013. * cache on this cpu.
  1014. */
  1015. if (likely(slabp->nodeid == node))
  1016. return 0;
  1017. l3 = cachep->nodelists[node];
  1018. STATS_INC_NODEFREES(cachep);
  1019. if (l3->alien && l3->alien[nodeid]) {
  1020. alien = l3->alien[nodeid];
  1021. spin_lock(&alien->lock);
  1022. if (unlikely(alien->avail == alien->limit)) {
  1023. STATS_INC_ACOVERFLOW(cachep);
  1024. __drain_alien_cache(cachep, alien, nodeid);
  1025. }
  1026. alien->entry[alien->avail++] = objp;
  1027. spin_unlock(&alien->lock);
  1028. } else {
  1029. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  1030. free_block(cachep, &objp, 1, nodeid);
  1031. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  1032. }
  1033. return 1;
  1034. }
  1035. #endif
  1036. static void __cpuinit cpuup_canceled(long cpu)
  1037. {
  1038. struct kmem_cache *cachep;
  1039. struct kmem_list3 *l3 = NULL;
  1040. int node = cpu_to_node(cpu);
  1041. const struct cpumask *mask = cpumask_of_node(node);
  1042. list_for_each_entry(cachep, &cache_chain, next) {
  1043. struct array_cache *nc;
  1044. struct array_cache *shared;
  1045. struct array_cache **alien;
  1046. /* cpu is dead; no one can alloc from it. */
  1047. nc = cachep->array[cpu];
  1048. cachep->array[cpu] = NULL;
  1049. l3 = cachep->nodelists[node];
  1050. if (!l3)
  1051. goto free_array_cache;
  1052. spin_lock_irq(&l3->list_lock);
  1053. /* Free limit for this kmem_list3 */
  1054. l3->free_limit -= cachep->batchcount;
  1055. if (nc)
  1056. free_block(cachep, nc->entry, nc->avail, node);
  1057. if (!cpus_empty(*mask)) {
  1058. spin_unlock_irq(&l3->list_lock);
  1059. goto free_array_cache;
  1060. }
  1061. shared = l3->shared;
  1062. if (shared) {
  1063. free_block(cachep, shared->entry,
  1064. shared->avail, node);
  1065. l3->shared = NULL;
  1066. }
  1067. alien = l3->alien;
  1068. l3->alien = NULL;
  1069. spin_unlock_irq(&l3->list_lock);
  1070. kfree(shared);
  1071. if (alien) {
  1072. drain_alien_cache(cachep, alien);
  1073. free_alien_cache(alien);
  1074. }
  1075. free_array_cache:
  1076. kfree(nc);
  1077. }
  1078. /*
  1079. * In the previous loop, all the objects were freed to
  1080. * the respective cache's slabs, now we can go ahead and
  1081. * shrink each nodelist to its limit.
  1082. */
  1083. list_for_each_entry(cachep, &cache_chain, next) {
  1084. l3 = cachep->nodelists[node];
  1085. if (!l3)
  1086. continue;
  1087. drain_freelist(cachep, l3, l3->free_objects);
  1088. }
  1089. }
  1090. static int __cpuinit cpuup_prepare(long cpu)
  1091. {
  1092. struct kmem_cache *cachep;
  1093. struct kmem_list3 *l3 = NULL;
  1094. int node = cpu_to_node(cpu);
  1095. const int memsize = sizeof(struct kmem_list3);
  1096. /*
  1097. * We need to do this right in the beginning since
  1098. * alloc_arraycache's are going to use this list.
  1099. * kmalloc_node allows us to add the slab to the right
  1100. * kmem_list3 and not this cpu's kmem_list3
  1101. */
  1102. list_for_each_entry(cachep, &cache_chain, next) {
  1103. /*
  1104. * Set up the size64 kmemlist for cpu before we can
  1105. * begin anything. Make sure some other cpu on this
  1106. * node has not already allocated this
  1107. */
  1108. if (!cachep->nodelists[node]) {
  1109. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1110. if (!l3)
  1111. goto bad;
  1112. kmem_list3_init(l3);
  1113. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1114. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1115. /*
  1116. * The l3s don't come and go as CPUs come and
  1117. * go. cache_chain_mutex is sufficient
  1118. * protection here.
  1119. */
  1120. cachep->nodelists[node] = l3;
  1121. }
  1122. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1123. cachep->nodelists[node]->free_limit =
  1124. (1 + nr_cpus_node(node)) *
  1125. cachep->batchcount + cachep->num;
  1126. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1127. }
  1128. /*
  1129. * Now we can go ahead with allocating the shared arrays and
  1130. * array caches
  1131. */
  1132. list_for_each_entry(cachep, &cache_chain, next) {
  1133. struct array_cache *nc;
  1134. struct array_cache *shared = NULL;
  1135. struct array_cache **alien = NULL;
  1136. nc = alloc_arraycache(node, cachep->limit,
  1137. cachep->batchcount);
  1138. if (!nc)
  1139. goto bad;
  1140. if (cachep->shared) {
  1141. shared = alloc_arraycache(node,
  1142. cachep->shared * cachep->batchcount,
  1143. 0xbaadf00d);
  1144. if (!shared) {
  1145. kfree(nc);
  1146. goto bad;
  1147. }
  1148. }
  1149. if (use_alien_caches) {
  1150. alien = alloc_alien_cache(node, cachep->limit);
  1151. if (!alien) {
  1152. kfree(shared);
  1153. kfree(nc);
  1154. goto bad;
  1155. }
  1156. }
  1157. cachep->array[cpu] = nc;
  1158. l3 = cachep->nodelists[node];
  1159. BUG_ON(!l3);
  1160. spin_lock_irq(&l3->list_lock);
  1161. if (!l3->shared) {
  1162. /*
  1163. * We are serialised from CPU_DEAD or
  1164. * CPU_UP_CANCELLED by the cpucontrol lock
  1165. */
  1166. l3->shared = shared;
  1167. shared = NULL;
  1168. }
  1169. #ifdef CONFIG_NUMA
  1170. if (!l3->alien) {
  1171. l3->alien = alien;
  1172. alien = NULL;
  1173. }
  1174. #endif
  1175. spin_unlock_irq(&l3->list_lock);
  1176. kfree(shared);
  1177. free_alien_cache(alien);
  1178. }
  1179. return 0;
  1180. bad:
  1181. cpuup_canceled(cpu);
  1182. return -ENOMEM;
  1183. }
  1184. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1185. unsigned long action, void *hcpu)
  1186. {
  1187. long cpu = (long)hcpu;
  1188. int err = 0;
  1189. switch (action) {
  1190. case CPU_UP_PREPARE:
  1191. case CPU_UP_PREPARE_FROZEN:
  1192. mutex_lock(&cache_chain_mutex);
  1193. err = cpuup_prepare(cpu);
  1194. mutex_unlock(&cache_chain_mutex);
  1195. break;
  1196. case CPU_ONLINE:
  1197. case CPU_ONLINE_FROZEN:
  1198. start_cpu_timer(cpu);
  1199. break;
  1200. #ifdef CONFIG_HOTPLUG_CPU
  1201. case CPU_DOWN_PREPARE:
  1202. case CPU_DOWN_PREPARE_FROZEN:
  1203. /*
  1204. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1205. * held so that if cache_reap() is invoked it cannot do
  1206. * anything expensive but will only modify reap_work
  1207. * and reschedule the timer.
  1208. */
  1209. cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
  1210. /* Now the cache_reaper is guaranteed to be not running. */
  1211. per_cpu(reap_work, cpu).work.func = NULL;
  1212. break;
  1213. case CPU_DOWN_FAILED:
  1214. case CPU_DOWN_FAILED_FROZEN:
  1215. start_cpu_timer(cpu);
  1216. break;
  1217. case CPU_DEAD:
  1218. case CPU_DEAD_FROZEN:
  1219. /*
  1220. * Even if all the cpus of a node are down, we don't free the
  1221. * kmem_list3 of any cache. This to avoid a race between
  1222. * cpu_down, and a kmalloc allocation from another cpu for
  1223. * memory from the node of the cpu going down. The list3
  1224. * structure is usually allocated from kmem_cache_create() and
  1225. * gets destroyed at kmem_cache_destroy().
  1226. */
  1227. /* fall through */
  1228. #endif
  1229. case CPU_UP_CANCELED:
  1230. case CPU_UP_CANCELED_FROZEN:
  1231. mutex_lock(&cache_chain_mutex);
  1232. cpuup_canceled(cpu);
  1233. mutex_unlock(&cache_chain_mutex);
  1234. break;
  1235. }
  1236. return err ? NOTIFY_BAD : NOTIFY_OK;
  1237. }
  1238. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1239. &cpuup_callback, NULL, 0
  1240. };
  1241. /*
  1242. * swap the static kmem_list3 with kmalloced memory
  1243. */
  1244. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1245. int nodeid)
  1246. {
  1247. struct kmem_list3 *ptr;
  1248. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1249. BUG_ON(!ptr);
  1250. local_irq_disable();
  1251. memcpy(ptr, list, sizeof(struct kmem_list3));
  1252. /*
  1253. * Do not assume that spinlocks can be initialized via memcpy:
  1254. */
  1255. spin_lock_init(&ptr->list_lock);
  1256. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1257. cachep->nodelists[nodeid] = ptr;
  1258. local_irq_enable();
  1259. }
  1260. /*
  1261. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1262. * size of kmem_list3.
  1263. */
  1264. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1265. {
  1266. int node;
  1267. for_each_online_node(node) {
  1268. cachep->nodelists[node] = &initkmem_list3[index + node];
  1269. cachep->nodelists[node]->next_reap = jiffies +
  1270. REAPTIMEOUT_LIST3 +
  1271. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1272. }
  1273. }
  1274. /*
  1275. * Initialisation. Called after the page allocator have been initialised and
  1276. * before smp_init().
  1277. */
  1278. void __init kmem_cache_init(void)
  1279. {
  1280. size_t left_over;
  1281. struct cache_sizes *sizes;
  1282. struct cache_names *names;
  1283. int i;
  1284. int order;
  1285. int node;
  1286. if (num_possible_nodes() == 1) {
  1287. use_alien_caches = 0;
  1288. numa_platform = 0;
  1289. }
  1290. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1291. kmem_list3_init(&initkmem_list3[i]);
  1292. if (i < MAX_NUMNODES)
  1293. cache_cache.nodelists[i] = NULL;
  1294. }
  1295. set_up_list3s(&cache_cache, CACHE_CACHE);
  1296. /*
  1297. * Fragmentation resistance on low memory - only use bigger
  1298. * page orders on machines with more than 32MB of memory.
  1299. */
  1300. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1301. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1302. /* Bootstrap is tricky, because several objects are allocated
  1303. * from caches that do not exist yet:
  1304. * 1) initialize the cache_cache cache: it contains the struct
  1305. * kmem_cache structures of all caches, except cache_cache itself:
  1306. * cache_cache is statically allocated.
  1307. * Initially an __init data area is used for the head array and the
  1308. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1309. * array at the end of the bootstrap.
  1310. * 2) Create the first kmalloc cache.
  1311. * The struct kmem_cache for the new cache is allocated normally.
  1312. * An __init data area is used for the head array.
  1313. * 3) Create the remaining kmalloc caches, with minimally sized
  1314. * head arrays.
  1315. * 4) Replace the __init data head arrays for cache_cache and the first
  1316. * kmalloc cache with kmalloc allocated arrays.
  1317. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1318. * the other cache's with kmalloc allocated memory.
  1319. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1320. */
  1321. node = numa_node_id();
  1322. /* 1) create the cache_cache */
  1323. INIT_LIST_HEAD(&cache_chain);
  1324. list_add(&cache_cache.next, &cache_chain);
  1325. cache_cache.colour_off = cache_line_size();
  1326. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1327. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1328. /*
  1329. * struct kmem_cache size depends on nr_node_ids, which
  1330. * can be less than MAX_NUMNODES.
  1331. */
  1332. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1333. nr_node_ids * sizeof(struct kmem_list3 *);
  1334. #if DEBUG
  1335. cache_cache.obj_size = cache_cache.buffer_size;
  1336. #endif
  1337. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1338. cache_line_size());
  1339. cache_cache.reciprocal_buffer_size =
  1340. reciprocal_value(cache_cache.buffer_size);
  1341. for (order = 0; order < MAX_ORDER; order++) {
  1342. cache_estimate(order, cache_cache.buffer_size,
  1343. cache_line_size(), 0, &left_over, &cache_cache.num);
  1344. if (cache_cache.num)
  1345. break;
  1346. }
  1347. BUG_ON(!cache_cache.num);
  1348. cache_cache.gfporder = order;
  1349. cache_cache.colour = left_over / cache_cache.colour_off;
  1350. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1351. sizeof(struct slab), cache_line_size());
  1352. /* 2+3) create the kmalloc caches */
  1353. sizes = malloc_sizes;
  1354. names = cache_names;
  1355. /*
  1356. * Initialize the caches that provide memory for the array cache and the
  1357. * kmem_list3 structures first. Without this, further allocations will
  1358. * bug.
  1359. */
  1360. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1361. sizes[INDEX_AC].cs_size,
  1362. ARCH_KMALLOC_MINALIGN,
  1363. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1364. NULL);
  1365. if (INDEX_AC != INDEX_L3) {
  1366. sizes[INDEX_L3].cs_cachep =
  1367. kmem_cache_create(names[INDEX_L3].name,
  1368. sizes[INDEX_L3].cs_size,
  1369. ARCH_KMALLOC_MINALIGN,
  1370. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1371. NULL);
  1372. }
  1373. slab_early_init = 0;
  1374. while (sizes->cs_size != ULONG_MAX) {
  1375. /*
  1376. * For performance, all the general caches are L1 aligned.
  1377. * This should be particularly beneficial on SMP boxes, as it
  1378. * eliminates "false sharing".
  1379. * Note for systems short on memory removing the alignment will
  1380. * allow tighter packing of the smaller caches.
  1381. */
  1382. if (!sizes->cs_cachep) {
  1383. sizes->cs_cachep = kmem_cache_create(names->name,
  1384. sizes->cs_size,
  1385. ARCH_KMALLOC_MINALIGN,
  1386. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1387. NULL);
  1388. }
  1389. #ifdef CONFIG_ZONE_DMA
  1390. sizes->cs_dmacachep = kmem_cache_create(
  1391. names->name_dma,
  1392. sizes->cs_size,
  1393. ARCH_KMALLOC_MINALIGN,
  1394. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1395. SLAB_PANIC,
  1396. NULL);
  1397. #endif
  1398. sizes++;
  1399. names++;
  1400. }
  1401. /* 4) Replace the bootstrap head arrays */
  1402. {
  1403. struct array_cache *ptr;
  1404. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1405. local_irq_disable();
  1406. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1407. memcpy(ptr, cpu_cache_get(&cache_cache),
  1408. sizeof(struct arraycache_init));
  1409. /*
  1410. * Do not assume that spinlocks can be initialized via memcpy:
  1411. */
  1412. spin_lock_init(&ptr->lock);
  1413. cache_cache.array[smp_processor_id()] = ptr;
  1414. local_irq_enable();
  1415. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1416. local_irq_disable();
  1417. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1418. != &initarray_generic.cache);
  1419. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1420. sizeof(struct arraycache_init));
  1421. /*
  1422. * Do not assume that spinlocks can be initialized via memcpy:
  1423. */
  1424. spin_lock_init(&ptr->lock);
  1425. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1426. ptr;
  1427. local_irq_enable();
  1428. }
  1429. /* 5) Replace the bootstrap kmem_list3's */
  1430. {
  1431. int nid;
  1432. for_each_online_node(nid) {
  1433. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1434. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1435. &initkmem_list3[SIZE_AC + nid], nid);
  1436. if (INDEX_AC != INDEX_L3) {
  1437. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1438. &initkmem_list3[SIZE_L3 + nid], nid);
  1439. }
  1440. }
  1441. }
  1442. /* 6) resize the head arrays to their final sizes */
  1443. {
  1444. struct kmem_cache *cachep;
  1445. mutex_lock(&cache_chain_mutex);
  1446. list_for_each_entry(cachep, &cache_chain, next)
  1447. if (enable_cpucache(cachep))
  1448. BUG();
  1449. mutex_unlock(&cache_chain_mutex);
  1450. }
  1451. /* Annotate slab for lockdep -- annotate the malloc caches */
  1452. init_lock_keys();
  1453. /* Done! */
  1454. g_cpucache_up = FULL;
  1455. /*
  1456. * Register a cpu startup notifier callback that initializes
  1457. * cpu_cache_get for all new cpus
  1458. */
  1459. register_cpu_notifier(&cpucache_notifier);
  1460. /*
  1461. * The reap timers are started later, with a module init call: That part
  1462. * of the kernel is not yet operational.
  1463. */
  1464. }
  1465. static int __init cpucache_init(void)
  1466. {
  1467. int cpu;
  1468. /*
  1469. * Register the timers that return unneeded pages to the page allocator
  1470. */
  1471. for_each_online_cpu(cpu)
  1472. start_cpu_timer(cpu);
  1473. return 0;
  1474. }
  1475. __initcall(cpucache_init);
  1476. /*
  1477. * Interface to system's page allocator. No need to hold the cache-lock.
  1478. *
  1479. * If we requested dmaable memory, we will get it. Even if we
  1480. * did not request dmaable memory, we might get it, but that
  1481. * would be relatively rare and ignorable.
  1482. */
  1483. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1484. {
  1485. struct page *page;
  1486. int nr_pages;
  1487. int i;
  1488. #ifndef CONFIG_MMU
  1489. /*
  1490. * Nommu uses slab's for process anonymous memory allocations, and thus
  1491. * requires __GFP_COMP to properly refcount higher order allocations
  1492. */
  1493. flags |= __GFP_COMP;
  1494. #endif
  1495. flags |= cachep->gfpflags;
  1496. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1497. flags |= __GFP_RECLAIMABLE;
  1498. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1499. if (!page)
  1500. return NULL;
  1501. nr_pages = (1 << cachep->gfporder);
  1502. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1503. add_zone_page_state(page_zone(page),
  1504. NR_SLAB_RECLAIMABLE, nr_pages);
  1505. else
  1506. add_zone_page_state(page_zone(page),
  1507. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1508. for (i = 0; i < nr_pages; i++)
  1509. __SetPageSlab(page + i);
  1510. return page_address(page);
  1511. }
  1512. /*
  1513. * Interface to system's page release.
  1514. */
  1515. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1516. {
  1517. unsigned long i = (1 << cachep->gfporder);
  1518. struct page *page = virt_to_page(addr);
  1519. const unsigned long nr_freed = i;
  1520. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1521. sub_zone_page_state(page_zone(page),
  1522. NR_SLAB_RECLAIMABLE, nr_freed);
  1523. else
  1524. sub_zone_page_state(page_zone(page),
  1525. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1526. while (i--) {
  1527. BUG_ON(!PageSlab(page));
  1528. __ClearPageSlab(page);
  1529. page++;
  1530. }
  1531. if (current->reclaim_state)
  1532. current->reclaim_state->reclaimed_slab += nr_freed;
  1533. free_pages((unsigned long)addr, cachep->gfporder);
  1534. }
  1535. static void kmem_rcu_free(struct rcu_head *head)
  1536. {
  1537. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1538. struct kmem_cache *cachep = slab_rcu->cachep;
  1539. kmem_freepages(cachep, slab_rcu->addr);
  1540. if (OFF_SLAB(cachep))
  1541. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1542. }
  1543. #if DEBUG
  1544. #ifdef CONFIG_DEBUG_PAGEALLOC
  1545. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1546. unsigned long caller)
  1547. {
  1548. int size = obj_size(cachep);
  1549. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1550. if (size < 5 * sizeof(unsigned long))
  1551. return;
  1552. *addr++ = 0x12345678;
  1553. *addr++ = caller;
  1554. *addr++ = smp_processor_id();
  1555. size -= 3 * sizeof(unsigned long);
  1556. {
  1557. unsigned long *sptr = &caller;
  1558. unsigned long svalue;
  1559. while (!kstack_end(sptr)) {
  1560. svalue = *sptr++;
  1561. if (kernel_text_address(svalue)) {
  1562. *addr++ = svalue;
  1563. size -= sizeof(unsigned long);
  1564. if (size <= sizeof(unsigned long))
  1565. break;
  1566. }
  1567. }
  1568. }
  1569. *addr++ = 0x87654321;
  1570. }
  1571. #endif
  1572. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1573. {
  1574. int size = obj_size(cachep);
  1575. addr = &((char *)addr)[obj_offset(cachep)];
  1576. memset(addr, val, size);
  1577. *(unsigned char *)(addr + size - 1) = POISON_END;
  1578. }
  1579. static void dump_line(char *data, int offset, int limit)
  1580. {
  1581. int i;
  1582. unsigned char error = 0;
  1583. int bad_count = 0;
  1584. printk(KERN_ERR "%03x:", offset);
  1585. for (i = 0; i < limit; i++) {
  1586. if (data[offset + i] != POISON_FREE) {
  1587. error = data[offset + i];
  1588. bad_count++;
  1589. }
  1590. printk(" %02x", (unsigned char)data[offset + i]);
  1591. }
  1592. printk("\n");
  1593. if (bad_count == 1) {
  1594. error ^= POISON_FREE;
  1595. if (!(error & (error - 1))) {
  1596. printk(KERN_ERR "Single bit error detected. Probably "
  1597. "bad RAM.\n");
  1598. #ifdef CONFIG_X86
  1599. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1600. "test tool.\n");
  1601. #else
  1602. printk(KERN_ERR "Run a memory test tool.\n");
  1603. #endif
  1604. }
  1605. }
  1606. }
  1607. #endif
  1608. #if DEBUG
  1609. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1610. {
  1611. int i, size;
  1612. char *realobj;
  1613. if (cachep->flags & SLAB_RED_ZONE) {
  1614. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1615. *dbg_redzone1(cachep, objp),
  1616. *dbg_redzone2(cachep, objp));
  1617. }
  1618. if (cachep->flags & SLAB_STORE_USER) {
  1619. printk(KERN_ERR "Last user: [<%p>]",
  1620. *dbg_userword(cachep, objp));
  1621. print_symbol("(%s)",
  1622. (unsigned long)*dbg_userword(cachep, objp));
  1623. printk("\n");
  1624. }
  1625. realobj = (char *)objp + obj_offset(cachep);
  1626. size = obj_size(cachep);
  1627. for (i = 0; i < size && lines; i += 16, lines--) {
  1628. int limit;
  1629. limit = 16;
  1630. if (i + limit > size)
  1631. limit = size - i;
  1632. dump_line(realobj, i, limit);
  1633. }
  1634. }
  1635. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1636. {
  1637. char *realobj;
  1638. int size, i;
  1639. int lines = 0;
  1640. realobj = (char *)objp + obj_offset(cachep);
  1641. size = obj_size(cachep);
  1642. for (i = 0; i < size; i++) {
  1643. char exp = POISON_FREE;
  1644. if (i == size - 1)
  1645. exp = POISON_END;
  1646. if (realobj[i] != exp) {
  1647. int limit;
  1648. /* Mismatch ! */
  1649. /* Print header */
  1650. if (lines == 0) {
  1651. printk(KERN_ERR
  1652. "Slab corruption: %s start=%p, len=%d\n",
  1653. cachep->name, realobj, size);
  1654. print_objinfo(cachep, objp, 0);
  1655. }
  1656. /* Hexdump the affected line */
  1657. i = (i / 16) * 16;
  1658. limit = 16;
  1659. if (i + limit > size)
  1660. limit = size - i;
  1661. dump_line(realobj, i, limit);
  1662. i += 16;
  1663. lines++;
  1664. /* Limit to 5 lines */
  1665. if (lines > 5)
  1666. break;
  1667. }
  1668. }
  1669. if (lines != 0) {
  1670. /* Print some data about the neighboring objects, if they
  1671. * exist:
  1672. */
  1673. struct slab *slabp = virt_to_slab(objp);
  1674. unsigned int objnr;
  1675. objnr = obj_to_index(cachep, slabp, objp);
  1676. if (objnr) {
  1677. objp = index_to_obj(cachep, slabp, objnr - 1);
  1678. realobj = (char *)objp + obj_offset(cachep);
  1679. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1680. realobj, size);
  1681. print_objinfo(cachep, objp, 2);
  1682. }
  1683. if (objnr + 1 < cachep->num) {
  1684. objp = index_to_obj(cachep, slabp, objnr + 1);
  1685. realobj = (char *)objp + obj_offset(cachep);
  1686. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1687. realobj, size);
  1688. print_objinfo(cachep, objp, 2);
  1689. }
  1690. }
  1691. }
  1692. #endif
  1693. #if DEBUG
  1694. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1695. {
  1696. int i;
  1697. for (i = 0; i < cachep->num; i++) {
  1698. void *objp = index_to_obj(cachep, slabp, i);
  1699. if (cachep->flags & SLAB_POISON) {
  1700. #ifdef CONFIG_DEBUG_PAGEALLOC
  1701. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1702. OFF_SLAB(cachep))
  1703. kernel_map_pages(virt_to_page(objp),
  1704. cachep->buffer_size / PAGE_SIZE, 1);
  1705. else
  1706. check_poison_obj(cachep, objp);
  1707. #else
  1708. check_poison_obj(cachep, objp);
  1709. #endif
  1710. }
  1711. if (cachep->flags & SLAB_RED_ZONE) {
  1712. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1713. slab_error(cachep, "start of a freed object "
  1714. "was overwritten");
  1715. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1716. slab_error(cachep, "end of a freed object "
  1717. "was overwritten");
  1718. }
  1719. }
  1720. }
  1721. #else
  1722. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1723. {
  1724. }
  1725. #endif
  1726. /**
  1727. * slab_destroy - destroy and release all objects in a slab
  1728. * @cachep: cache pointer being destroyed
  1729. * @slabp: slab pointer being destroyed
  1730. *
  1731. * Destroy all the objs in a slab, and release the mem back to the system.
  1732. * Before calling the slab must have been unlinked from the cache. The
  1733. * cache-lock is not held/needed.
  1734. */
  1735. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1736. {
  1737. void *addr = slabp->s_mem - slabp->colouroff;
  1738. slab_destroy_debugcheck(cachep, slabp);
  1739. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1740. struct slab_rcu *slab_rcu;
  1741. slab_rcu = (struct slab_rcu *)slabp;
  1742. slab_rcu->cachep = cachep;
  1743. slab_rcu->addr = addr;
  1744. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1745. } else {
  1746. kmem_freepages(cachep, addr);
  1747. if (OFF_SLAB(cachep))
  1748. kmem_cache_free(cachep->slabp_cache, slabp);
  1749. }
  1750. }
  1751. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1752. {
  1753. int i;
  1754. struct kmem_list3 *l3;
  1755. for_each_online_cpu(i)
  1756. kfree(cachep->array[i]);
  1757. /* NUMA: free the list3 structures */
  1758. for_each_online_node(i) {
  1759. l3 = cachep->nodelists[i];
  1760. if (l3) {
  1761. kfree(l3->shared);
  1762. free_alien_cache(l3->alien);
  1763. kfree(l3);
  1764. }
  1765. }
  1766. kmem_cache_free(&cache_cache, cachep);
  1767. }
  1768. /**
  1769. * calculate_slab_order - calculate size (page order) of slabs
  1770. * @cachep: pointer to the cache that is being created
  1771. * @size: size of objects to be created in this cache.
  1772. * @align: required alignment for the objects.
  1773. * @flags: slab allocation flags
  1774. *
  1775. * Also calculates the number of objects per slab.
  1776. *
  1777. * This could be made much more intelligent. For now, try to avoid using
  1778. * high order pages for slabs. When the gfp() functions are more friendly
  1779. * towards high-order requests, this should be changed.
  1780. */
  1781. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1782. size_t size, size_t align, unsigned long flags)
  1783. {
  1784. unsigned long offslab_limit;
  1785. size_t left_over = 0;
  1786. int gfporder;
  1787. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1788. unsigned int num;
  1789. size_t remainder;
  1790. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1791. if (!num)
  1792. continue;
  1793. if (flags & CFLGS_OFF_SLAB) {
  1794. /*
  1795. * Max number of objs-per-slab for caches which
  1796. * use off-slab slabs. Needed to avoid a possible
  1797. * looping condition in cache_grow().
  1798. */
  1799. offslab_limit = size - sizeof(struct slab);
  1800. offslab_limit /= sizeof(kmem_bufctl_t);
  1801. if (num > offslab_limit)
  1802. break;
  1803. }
  1804. /* Found something acceptable - save it away */
  1805. cachep->num = num;
  1806. cachep->gfporder = gfporder;
  1807. left_over = remainder;
  1808. /*
  1809. * A VFS-reclaimable slab tends to have most allocations
  1810. * as GFP_NOFS and we really don't want to have to be allocating
  1811. * higher-order pages when we are unable to shrink dcache.
  1812. */
  1813. if (flags & SLAB_RECLAIM_ACCOUNT)
  1814. break;
  1815. /*
  1816. * Large number of objects is good, but very large slabs are
  1817. * currently bad for the gfp()s.
  1818. */
  1819. if (gfporder >= slab_break_gfp_order)
  1820. break;
  1821. /*
  1822. * Acceptable internal fragmentation?
  1823. */
  1824. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1825. break;
  1826. }
  1827. return left_over;
  1828. }
  1829. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
  1830. {
  1831. if (g_cpucache_up == FULL)
  1832. return enable_cpucache(cachep);
  1833. if (g_cpucache_up == NONE) {
  1834. /*
  1835. * Note: the first kmem_cache_create must create the cache
  1836. * that's used by kmalloc(24), otherwise the creation of
  1837. * further caches will BUG().
  1838. */
  1839. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1840. /*
  1841. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1842. * the first cache, then we need to set up all its list3s,
  1843. * otherwise the creation of further caches will BUG().
  1844. */
  1845. set_up_list3s(cachep, SIZE_AC);
  1846. if (INDEX_AC == INDEX_L3)
  1847. g_cpucache_up = PARTIAL_L3;
  1848. else
  1849. g_cpucache_up = PARTIAL_AC;
  1850. } else {
  1851. cachep->array[smp_processor_id()] =
  1852. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1853. if (g_cpucache_up == PARTIAL_AC) {
  1854. set_up_list3s(cachep, SIZE_L3);
  1855. g_cpucache_up = PARTIAL_L3;
  1856. } else {
  1857. int node;
  1858. for_each_online_node(node) {
  1859. cachep->nodelists[node] =
  1860. kmalloc_node(sizeof(struct kmem_list3),
  1861. GFP_KERNEL, node);
  1862. BUG_ON(!cachep->nodelists[node]);
  1863. kmem_list3_init(cachep->nodelists[node]);
  1864. }
  1865. }
  1866. }
  1867. cachep->nodelists[numa_node_id()]->next_reap =
  1868. jiffies + REAPTIMEOUT_LIST3 +
  1869. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1870. cpu_cache_get(cachep)->avail = 0;
  1871. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1872. cpu_cache_get(cachep)->batchcount = 1;
  1873. cpu_cache_get(cachep)->touched = 0;
  1874. cachep->batchcount = 1;
  1875. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1876. return 0;
  1877. }
  1878. /**
  1879. * kmem_cache_create - Create a cache.
  1880. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1881. * @size: The size of objects to be created in this cache.
  1882. * @align: The required alignment for the objects.
  1883. * @flags: SLAB flags
  1884. * @ctor: A constructor for the objects.
  1885. *
  1886. * Returns a ptr to the cache on success, NULL on failure.
  1887. * Cannot be called within a int, but can be interrupted.
  1888. * The @ctor is run when new pages are allocated by the cache.
  1889. *
  1890. * @name must be valid until the cache is destroyed. This implies that
  1891. * the module calling this has to destroy the cache before getting unloaded.
  1892. * Note that kmem_cache_name() is not guaranteed to return the same pointer,
  1893. * therefore applications must manage it themselves.
  1894. *
  1895. * The flags are
  1896. *
  1897. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1898. * to catch references to uninitialised memory.
  1899. *
  1900. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1901. * for buffer overruns.
  1902. *
  1903. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1904. * cacheline. This can be beneficial if you're counting cycles as closely
  1905. * as davem.
  1906. */
  1907. struct kmem_cache *
  1908. kmem_cache_create (const char *name, size_t size, size_t align,
  1909. unsigned long flags, void (*ctor)(void *))
  1910. {
  1911. size_t left_over, slab_size, ralign;
  1912. struct kmem_cache *cachep = NULL, *pc;
  1913. /*
  1914. * Sanity checks... these are all serious usage bugs.
  1915. */
  1916. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1917. size > KMALLOC_MAX_SIZE) {
  1918. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1919. name);
  1920. BUG();
  1921. }
  1922. /*
  1923. * We use cache_chain_mutex to ensure a consistent view of
  1924. * cpu_online_mask as well. Please see cpuup_callback
  1925. */
  1926. get_online_cpus();
  1927. mutex_lock(&cache_chain_mutex);
  1928. list_for_each_entry(pc, &cache_chain, next) {
  1929. char tmp;
  1930. int res;
  1931. /*
  1932. * This happens when the module gets unloaded and doesn't
  1933. * destroy its slab cache and no-one else reuses the vmalloc
  1934. * area of the module. Print a warning.
  1935. */
  1936. res = probe_kernel_address(pc->name, tmp);
  1937. if (res) {
  1938. printk(KERN_ERR
  1939. "SLAB: cache with size %d has lost its name\n",
  1940. pc->buffer_size);
  1941. continue;
  1942. }
  1943. if (!strcmp(pc->name, name)) {
  1944. printk(KERN_ERR
  1945. "kmem_cache_create: duplicate cache %s\n", name);
  1946. dump_stack();
  1947. goto oops;
  1948. }
  1949. }
  1950. #if DEBUG
  1951. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1952. #if FORCED_DEBUG
  1953. /*
  1954. * Enable redzoning and last user accounting, except for caches with
  1955. * large objects, if the increased size would increase the object size
  1956. * above the next power of two: caches with object sizes just above a
  1957. * power of two have a significant amount of internal fragmentation.
  1958. */
  1959. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1960. 2 * sizeof(unsigned long long)))
  1961. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1962. if (!(flags & SLAB_DESTROY_BY_RCU))
  1963. flags |= SLAB_POISON;
  1964. #endif
  1965. if (flags & SLAB_DESTROY_BY_RCU)
  1966. BUG_ON(flags & SLAB_POISON);
  1967. #endif
  1968. /*
  1969. * Always checks flags, a caller might be expecting debug support which
  1970. * isn't available.
  1971. */
  1972. BUG_ON(flags & ~CREATE_MASK);
  1973. /*
  1974. * Check that size is in terms of words. This is needed to avoid
  1975. * unaligned accesses for some archs when redzoning is used, and makes
  1976. * sure any on-slab bufctl's are also correctly aligned.
  1977. */
  1978. if (size & (BYTES_PER_WORD - 1)) {
  1979. size += (BYTES_PER_WORD - 1);
  1980. size &= ~(BYTES_PER_WORD - 1);
  1981. }
  1982. /* calculate the final buffer alignment: */
  1983. /* 1) arch recommendation: can be overridden for debug */
  1984. if (flags & SLAB_HWCACHE_ALIGN) {
  1985. /*
  1986. * Default alignment: as specified by the arch code. Except if
  1987. * an object is really small, then squeeze multiple objects into
  1988. * one cacheline.
  1989. */
  1990. ralign = cache_line_size();
  1991. while (size <= ralign / 2)
  1992. ralign /= 2;
  1993. } else {
  1994. ralign = BYTES_PER_WORD;
  1995. }
  1996. /*
  1997. * Redzoning and user store require word alignment or possibly larger.
  1998. * Note this will be overridden by architecture or caller mandated
  1999. * alignment if either is greater than BYTES_PER_WORD.
  2000. */
  2001. if (flags & SLAB_STORE_USER)
  2002. ralign = BYTES_PER_WORD;
  2003. if (flags & SLAB_RED_ZONE) {
  2004. ralign = REDZONE_ALIGN;
  2005. /* If redzoning, ensure that the second redzone is suitably
  2006. * aligned, by adjusting the object size accordingly. */
  2007. size += REDZONE_ALIGN - 1;
  2008. size &= ~(REDZONE_ALIGN - 1);
  2009. }
  2010. /* 2) arch mandated alignment */
  2011. if (ralign < ARCH_SLAB_MINALIGN) {
  2012. ralign = ARCH_SLAB_MINALIGN;
  2013. }
  2014. /* 3) caller mandated alignment */
  2015. if (ralign < align) {
  2016. ralign = align;
  2017. }
  2018. /* disable debug if necessary */
  2019. if (ralign > __alignof__(unsigned long long))
  2020. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2021. /*
  2022. * 4) Store it.
  2023. */
  2024. align = ralign;
  2025. /* Get cache's description obj. */
  2026. cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
  2027. if (!cachep)
  2028. goto oops;
  2029. #if DEBUG
  2030. cachep->obj_size = size;
  2031. /*
  2032. * Both debugging options require word-alignment which is calculated
  2033. * into align above.
  2034. */
  2035. if (flags & SLAB_RED_ZONE) {
  2036. /* add space for red zone words */
  2037. cachep->obj_offset += sizeof(unsigned long long);
  2038. size += 2 * sizeof(unsigned long long);
  2039. }
  2040. if (flags & SLAB_STORE_USER) {
  2041. /* user store requires one word storage behind the end of
  2042. * the real object. But if the second red zone needs to be
  2043. * aligned to 64 bits, we must allow that much space.
  2044. */
  2045. if (flags & SLAB_RED_ZONE)
  2046. size += REDZONE_ALIGN;
  2047. else
  2048. size += BYTES_PER_WORD;
  2049. }
  2050. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2051. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2052. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2053. cachep->obj_offset += PAGE_SIZE - size;
  2054. size = PAGE_SIZE;
  2055. }
  2056. #endif
  2057. #endif
  2058. /*
  2059. * Determine if the slab management is 'on' or 'off' slab.
  2060. * (bootstrapping cannot cope with offslab caches so don't do
  2061. * it too early on.)
  2062. */
  2063. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  2064. /*
  2065. * Size is large, assume best to place the slab management obj
  2066. * off-slab (should allow better packing of objs).
  2067. */
  2068. flags |= CFLGS_OFF_SLAB;
  2069. size = ALIGN(size, align);
  2070. left_over = calculate_slab_order(cachep, size, align, flags);
  2071. if (!cachep->num) {
  2072. printk(KERN_ERR
  2073. "kmem_cache_create: couldn't create cache %s.\n", name);
  2074. kmem_cache_free(&cache_cache, cachep);
  2075. cachep = NULL;
  2076. goto oops;
  2077. }
  2078. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2079. + sizeof(struct slab), align);
  2080. /*
  2081. * If the slab has been placed off-slab, and we have enough space then
  2082. * move it on-slab. This is at the expense of any extra colouring.
  2083. */
  2084. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2085. flags &= ~CFLGS_OFF_SLAB;
  2086. left_over -= slab_size;
  2087. }
  2088. if (flags & CFLGS_OFF_SLAB) {
  2089. /* really off slab. No need for manual alignment */
  2090. slab_size =
  2091. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2092. }
  2093. cachep->colour_off = cache_line_size();
  2094. /* Offset must be a multiple of the alignment. */
  2095. if (cachep->colour_off < align)
  2096. cachep->colour_off = align;
  2097. cachep->colour = left_over / cachep->colour_off;
  2098. cachep->slab_size = slab_size;
  2099. cachep->flags = flags;
  2100. cachep->gfpflags = 0;
  2101. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2102. cachep->gfpflags |= GFP_DMA;
  2103. cachep->buffer_size = size;
  2104. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2105. if (flags & CFLGS_OFF_SLAB) {
  2106. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2107. /*
  2108. * This is a possibility for one of the malloc_sizes caches.
  2109. * But since we go off slab only for object size greater than
  2110. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2111. * this should not happen at all.
  2112. * But leave a BUG_ON for some lucky dude.
  2113. */
  2114. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2115. }
  2116. cachep->ctor = ctor;
  2117. cachep->name = name;
  2118. if (setup_cpu_cache(cachep)) {
  2119. __kmem_cache_destroy(cachep);
  2120. cachep = NULL;
  2121. goto oops;
  2122. }
  2123. /* cache setup completed, link it into the list */
  2124. list_add(&cachep->next, &cache_chain);
  2125. oops:
  2126. if (!cachep && (flags & SLAB_PANIC))
  2127. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2128. name);
  2129. mutex_unlock(&cache_chain_mutex);
  2130. put_online_cpus();
  2131. return cachep;
  2132. }
  2133. EXPORT_SYMBOL(kmem_cache_create);
  2134. #if DEBUG
  2135. static void check_irq_off(void)
  2136. {
  2137. BUG_ON(!irqs_disabled());
  2138. }
  2139. static void check_irq_on(void)
  2140. {
  2141. BUG_ON(irqs_disabled());
  2142. }
  2143. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2144. {
  2145. #ifdef CONFIG_SMP
  2146. check_irq_off();
  2147. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2148. #endif
  2149. }
  2150. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2151. {
  2152. #ifdef CONFIG_SMP
  2153. check_irq_off();
  2154. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2155. #endif
  2156. }
  2157. #else
  2158. #define check_irq_off() do { } while(0)
  2159. #define check_irq_on() do { } while(0)
  2160. #define check_spinlock_acquired(x) do { } while(0)
  2161. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2162. #endif
  2163. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2164. struct array_cache *ac,
  2165. int force, int node);
  2166. static void do_drain(void *arg)
  2167. {
  2168. struct kmem_cache *cachep = arg;
  2169. struct array_cache *ac;
  2170. int node = numa_node_id();
  2171. check_irq_off();
  2172. ac = cpu_cache_get(cachep);
  2173. spin_lock(&cachep->nodelists[node]->list_lock);
  2174. free_block(cachep, ac->entry, ac->avail, node);
  2175. spin_unlock(&cachep->nodelists[node]->list_lock);
  2176. ac->avail = 0;
  2177. }
  2178. static void drain_cpu_caches(struct kmem_cache *cachep)
  2179. {
  2180. struct kmem_list3 *l3;
  2181. int node;
  2182. on_each_cpu(do_drain, cachep, 1);
  2183. check_irq_on();
  2184. for_each_online_node(node) {
  2185. l3 = cachep->nodelists[node];
  2186. if (l3 && l3->alien)
  2187. drain_alien_cache(cachep, l3->alien);
  2188. }
  2189. for_each_online_node(node) {
  2190. l3 = cachep->nodelists[node];
  2191. if (l3)
  2192. drain_array(cachep, l3, l3->shared, 1, node);
  2193. }
  2194. }
  2195. /*
  2196. * Remove slabs from the list of free slabs.
  2197. * Specify the number of slabs to drain in tofree.
  2198. *
  2199. * Returns the actual number of slabs released.
  2200. */
  2201. static int drain_freelist(struct kmem_cache *cache,
  2202. struct kmem_list3 *l3, int tofree)
  2203. {
  2204. struct list_head *p;
  2205. int nr_freed;
  2206. struct slab *slabp;
  2207. nr_freed = 0;
  2208. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2209. spin_lock_irq(&l3->list_lock);
  2210. p = l3->slabs_free.prev;
  2211. if (p == &l3->slabs_free) {
  2212. spin_unlock_irq(&l3->list_lock);
  2213. goto out;
  2214. }
  2215. slabp = list_entry(p, struct slab, list);
  2216. #if DEBUG
  2217. BUG_ON(slabp->inuse);
  2218. #endif
  2219. list_del(&slabp->list);
  2220. /*
  2221. * Safe to drop the lock. The slab is no longer linked
  2222. * to the cache.
  2223. */
  2224. l3->free_objects -= cache->num;
  2225. spin_unlock_irq(&l3->list_lock);
  2226. slab_destroy(cache, slabp);
  2227. nr_freed++;
  2228. }
  2229. out:
  2230. return nr_freed;
  2231. }
  2232. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2233. static int __cache_shrink(struct kmem_cache *cachep)
  2234. {
  2235. int ret = 0, i = 0;
  2236. struct kmem_list3 *l3;
  2237. drain_cpu_caches(cachep);
  2238. check_irq_on();
  2239. for_each_online_node(i) {
  2240. l3 = cachep->nodelists[i];
  2241. if (!l3)
  2242. continue;
  2243. drain_freelist(cachep, l3, l3->free_objects);
  2244. ret += !list_empty(&l3->slabs_full) ||
  2245. !list_empty(&l3->slabs_partial);
  2246. }
  2247. return (ret ? 1 : 0);
  2248. }
  2249. /**
  2250. * kmem_cache_shrink - Shrink a cache.
  2251. * @cachep: The cache to shrink.
  2252. *
  2253. * Releases as many slabs as possible for a cache.
  2254. * To help debugging, a zero exit status indicates all slabs were released.
  2255. */
  2256. int kmem_cache_shrink(struct kmem_cache *cachep)
  2257. {
  2258. int ret;
  2259. BUG_ON(!cachep || in_interrupt());
  2260. get_online_cpus();
  2261. mutex_lock(&cache_chain_mutex);
  2262. ret = __cache_shrink(cachep);
  2263. mutex_unlock(&cache_chain_mutex);
  2264. put_online_cpus();
  2265. return ret;
  2266. }
  2267. EXPORT_SYMBOL(kmem_cache_shrink);
  2268. /**
  2269. * kmem_cache_destroy - delete a cache
  2270. * @cachep: the cache to destroy
  2271. *
  2272. * Remove a &struct kmem_cache object from the slab cache.
  2273. *
  2274. * It is expected this function will be called by a module when it is
  2275. * unloaded. This will remove the cache completely, and avoid a duplicate
  2276. * cache being allocated each time a module is loaded and unloaded, if the
  2277. * module doesn't have persistent in-kernel storage across loads and unloads.
  2278. *
  2279. * The cache must be empty before calling this function.
  2280. *
  2281. * The caller must guarantee that noone will allocate memory from the cache
  2282. * during the kmem_cache_destroy().
  2283. */
  2284. void kmem_cache_destroy(struct kmem_cache *cachep)
  2285. {
  2286. BUG_ON(!cachep || in_interrupt());
  2287. /* Find the cache in the chain of caches. */
  2288. get_online_cpus();
  2289. mutex_lock(&cache_chain_mutex);
  2290. /*
  2291. * the chain is never empty, cache_cache is never destroyed
  2292. */
  2293. list_del(&cachep->next);
  2294. if (__cache_shrink(cachep)) {
  2295. slab_error(cachep, "Can't free all objects");
  2296. list_add(&cachep->next, &cache_chain);
  2297. mutex_unlock(&cache_chain_mutex);
  2298. put_online_cpus();
  2299. return;
  2300. }
  2301. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2302. synchronize_rcu();
  2303. __kmem_cache_destroy(cachep);
  2304. mutex_unlock(&cache_chain_mutex);
  2305. put_online_cpus();
  2306. }
  2307. EXPORT_SYMBOL(kmem_cache_destroy);
  2308. /*
  2309. * Get the memory for a slab management obj.
  2310. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2311. * always come from malloc_sizes caches. The slab descriptor cannot
  2312. * come from the same cache which is getting created because,
  2313. * when we are searching for an appropriate cache for these
  2314. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2315. * If we are creating a malloc_sizes cache here it would not be visible to
  2316. * kmem_find_general_cachep till the initialization is complete.
  2317. * Hence we cannot have slabp_cache same as the original cache.
  2318. */
  2319. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2320. int colour_off, gfp_t local_flags,
  2321. int nodeid)
  2322. {
  2323. struct slab *slabp;
  2324. if (OFF_SLAB(cachep)) {
  2325. /* Slab management obj is off-slab. */
  2326. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2327. local_flags, nodeid);
  2328. if (!slabp)
  2329. return NULL;
  2330. } else {
  2331. slabp = objp + colour_off;
  2332. colour_off += cachep->slab_size;
  2333. }
  2334. slabp->inuse = 0;
  2335. slabp->colouroff = colour_off;
  2336. slabp->s_mem = objp + colour_off;
  2337. slabp->nodeid = nodeid;
  2338. slabp->free = 0;
  2339. return slabp;
  2340. }
  2341. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2342. {
  2343. return (kmem_bufctl_t *) (slabp + 1);
  2344. }
  2345. static void cache_init_objs(struct kmem_cache *cachep,
  2346. struct slab *slabp)
  2347. {
  2348. int i;
  2349. for (i = 0; i < cachep->num; i++) {
  2350. void *objp = index_to_obj(cachep, slabp, i);
  2351. #if DEBUG
  2352. /* need to poison the objs? */
  2353. if (cachep->flags & SLAB_POISON)
  2354. poison_obj(cachep, objp, POISON_FREE);
  2355. if (cachep->flags & SLAB_STORE_USER)
  2356. *dbg_userword(cachep, objp) = NULL;
  2357. if (cachep->flags & SLAB_RED_ZONE) {
  2358. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2359. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2360. }
  2361. /*
  2362. * Constructors are not allowed to allocate memory from the same
  2363. * cache which they are a constructor for. Otherwise, deadlock.
  2364. * They must also be threaded.
  2365. */
  2366. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2367. cachep->ctor(objp + obj_offset(cachep));
  2368. if (cachep->flags & SLAB_RED_ZONE) {
  2369. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2370. slab_error(cachep, "constructor overwrote the"
  2371. " end of an object");
  2372. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2373. slab_error(cachep, "constructor overwrote the"
  2374. " start of an object");
  2375. }
  2376. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2377. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2378. kernel_map_pages(virt_to_page(objp),
  2379. cachep->buffer_size / PAGE_SIZE, 0);
  2380. #else
  2381. if (cachep->ctor)
  2382. cachep->ctor(objp);
  2383. #endif
  2384. slab_bufctl(slabp)[i] = i + 1;
  2385. }
  2386. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2387. }
  2388. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2389. {
  2390. if (CONFIG_ZONE_DMA_FLAG) {
  2391. if (flags & GFP_DMA)
  2392. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2393. else
  2394. BUG_ON(cachep->gfpflags & GFP_DMA);
  2395. }
  2396. }
  2397. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2398. int nodeid)
  2399. {
  2400. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2401. kmem_bufctl_t next;
  2402. slabp->inuse++;
  2403. next = slab_bufctl(slabp)[slabp->free];
  2404. #if DEBUG
  2405. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2406. WARN_ON(slabp->nodeid != nodeid);
  2407. #endif
  2408. slabp->free = next;
  2409. return objp;
  2410. }
  2411. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2412. void *objp, int nodeid)
  2413. {
  2414. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2415. #if DEBUG
  2416. /* Verify that the slab belongs to the intended node */
  2417. WARN_ON(slabp->nodeid != nodeid);
  2418. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2419. printk(KERN_ERR "slab: double free detected in cache "
  2420. "'%s', objp %p\n", cachep->name, objp);
  2421. BUG();
  2422. }
  2423. #endif
  2424. slab_bufctl(slabp)[objnr] = slabp->free;
  2425. slabp->free = objnr;
  2426. slabp->inuse--;
  2427. }
  2428. /*
  2429. * Map pages beginning at addr to the given cache and slab. This is required
  2430. * for the slab allocator to be able to lookup the cache and slab of a
  2431. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2432. */
  2433. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2434. void *addr)
  2435. {
  2436. int nr_pages;
  2437. struct page *page;
  2438. page = virt_to_page(addr);
  2439. nr_pages = 1;
  2440. if (likely(!PageCompound(page)))
  2441. nr_pages <<= cache->gfporder;
  2442. do {
  2443. page_set_cache(page, cache);
  2444. page_set_slab(page, slab);
  2445. page++;
  2446. } while (--nr_pages);
  2447. }
  2448. /*
  2449. * Grow (by 1) the number of slabs within a cache. This is called by
  2450. * kmem_cache_alloc() when there are no active objs left in a cache.
  2451. */
  2452. static int cache_grow(struct kmem_cache *cachep,
  2453. gfp_t flags, int nodeid, void *objp)
  2454. {
  2455. struct slab *slabp;
  2456. size_t offset;
  2457. gfp_t local_flags;
  2458. struct kmem_list3 *l3;
  2459. /*
  2460. * Be lazy and only check for valid flags here, keeping it out of the
  2461. * critical path in kmem_cache_alloc().
  2462. */
  2463. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2464. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2465. /* Take the l3 list lock to change the colour_next on this node */
  2466. check_irq_off();
  2467. l3 = cachep->nodelists[nodeid];
  2468. spin_lock(&l3->list_lock);
  2469. /* Get colour for the slab, and cal the next value. */
  2470. offset = l3->colour_next;
  2471. l3->colour_next++;
  2472. if (l3->colour_next >= cachep->colour)
  2473. l3->colour_next = 0;
  2474. spin_unlock(&l3->list_lock);
  2475. offset *= cachep->colour_off;
  2476. if (local_flags & __GFP_WAIT)
  2477. local_irq_enable();
  2478. /*
  2479. * The test for missing atomic flag is performed here, rather than
  2480. * the more obvious place, simply to reduce the critical path length
  2481. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2482. * will eventually be caught here (where it matters).
  2483. */
  2484. kmem_flagcheck(cachep, flags);
  2485. /*
  2486. * Get mem for the objs. Attempt to allocate a physical page from
  2487. * 'nodeid'.
  2488. */
  2489. if (!objp)
  2490. objp = kmem_getpages(cachep, local_flags, nodeid);
  2491. if (!objp)
  2492. goto failed;
  2493. /* Get slab management. */
  2494. slabp = alloc_slabmgmt(cachep, objp, offset,
  2495. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2496. if (!slabp)
  2497. goto opps1;
  2498. slab_map_pages(cachep, slabp, objp);
  2499. cache_init_objs(cachep, slabp);
  2500. if (local_flags & __GFP_WAIT)
  2501. local_irq_disable();
  2502. check_irq_off();
  2503. spin_lock(&l3->list_lock);
  2504. /* Make slab active. */
  2505. list_add_tail(&slabp->list, &(l3->slabs_free));
  2506. STATS_INC_GROWN(cachep);
  2507. l3->free_objects += cachep->num;
  2508. spin_unlock(&l3->list_lock);
  2509. return 1;
  2510. opps1:
  2511. kmem_freepages(cachep, objp);
  2512. failed:
  2513. if (local_flags & __GFP_WAIT)
  2514. local_irq_disable();
  2515. return 0;
  2516. }
  2517. #if DEBUG
  2518. /*
  2519. * Perform extra freeing checks:
  2520. * - detect bad pointers.
  2521. * - POISON/RED_ZONE checking
  2522. */
  2523. static void kfree_debugcheck(const void *objp)
  2524. {
  2525. if (!virt_addr_valid(objp)) {
  2526. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2527. (unsigned long)objp);
  2528. BUG();
  2529. }
  2530. }
  2531. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2532. {
  2533. unsigned long long redzone1, redzone2;
  2534. redzone1 = *dbg_redzone1(cache, obj);
  2535. redzone2 = *dbg_redzone2(cache, obj);
  2536. /*
  2537. * Redzone is ok.
  2538. */
  2539. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2540. return;
  2541. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2542. slab_error(cache, "double free detected");
  2543. else
  2544. slab_error(cache, "memory outside object was overwritten");
  2545. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2546. obj, redzone1, redzone2);
  2547. }
  2548. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2549. void *caller)
  2550. {
  2551. struct page *page;
  2552. unsigned int objnr;
  2553. struct slab *slabp;
  2554. BUG_ON(virt_to_cache(objp) != cachep);
  2555. objp -= obj_offset(cachep);
  2556. kfree_debugcheck(objp);
  2557. page = virt_to_head_page(objp);
  2558. slabp = page_get_slab(page);
  2559. if (cachep->flags & SLAB_RED_ZONE) {
  2560. verify_redzone_free(cachep, objp);
  2561. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2562. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2563. }
  2564. if (cachep->flags & SLAB_STORE_USER)
  2565. *dbg_userword(cachep, objp) = caller;
  2566. objnr = obj_to_index(cachep, slabp, objp);
  2567. BUG_ON(objnr >= cachep->num);
  2568. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2569. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2570. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2571. #endif
  2572. if (cachep->flags & SLAB_POISON) {
  2573. #ifdef CONFIG_DEBUG_PAGEALLOC
  2574. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2575. store_stackinfo(cachep, objp, (unsigned long)caller);
  2576. kernel_map_pages(virt_to_page(objp),
  2577. cachep->buffer_size / PAGE_SIZE, 0);
  2578. } else {
  2579. poison_obj(cachep, objp, POISON_FREE);
  2580. }
  2581. #else
  2582. poison_obj(cachep, objp, POISON_FREE);
  2583. #endif
  2584. }
  2585. return objp;
  2586. }
  2587. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2588. {
  2589. kmem_bufctl_t i;
  2590. int entries = 0;
  2591. /* Check slab's freelist to see if this obj is there. */
  2592. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2593. entries++;
  2594. if (entries > cachep->num || i >= cachep->num)
  2595. goto bad;
  2596. }
  2597. if (entries != cachep->num - slabp->inuse) {
  2598. bad:
  2599. printk(KERN_ERR "slab: Internal list corruption detected in "
  2600. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2601. cachep->name, cachep->num, slabp, slabp->inuse);
  2602. for (i = 0;
  2603. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2604. i++) {
  2605. if (i % 16 == 0)
  2606. printk("\n%03x:", i);
  2607. printk(" %02x", ((unsigned char *)slabp)[i]);
  2608. }
  2609. printk("\n");
  2610. BUG();
  2611. }
  2612. }
  2613. #else
  2614. #define kfree_debugcheck(x) do { } while(0)
  2615. #define cache_free_debugcheck(x,objp,z) (objp)
  2616. #define check_slabp(x,y) do { } while(0)
  2617. #endif
  2618. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2619. {
  2620. int batchcount;
  2621. struct kmem_list3 *l3;
  2622. struct array_cache *ac;
  2623. int node;
  2624. retry:
  2625. check_irq_off();
  2626. node = numa_node_id();
  2627. ac = cpu_cache_get(cachep);
  2628. batchcount = ac->batchcount;
  2629. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2630. /*
  2631. * If there was little recent activity on this cache, then
  2632. * perform only a partial refill. Otherwise we could generate
  2633. * refill bouncing.
  2634. */
  2635. batchcount = BATCHREFILL_LIMIT;
  2636. }
  2637. l3 = cachep->nodelists[node];
  2638. BUG_ON(ac->avail > 0 || !l3);
  2639. spin_lock(&l3->list_lock);
  2640. /* See if we can refill from the shared array */
  2641. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2642. goto alloc_done;
  2643. while (batchcount > 0) {
  2644. struct list_head *entry;
  2645. struct slab *slabp;
  2646. /* Get slab alloc is to come from. */
  2647. entry = l3->slabs_partial.next;
  2648. if (entry == &l3->slabs_partial) {
  2649. l3->free_touched = 1;
  2650. entry = l3->slabs_free.next;
  2651. if (entry == &l3->slabs_free)
  2652. goto must_grow;
  2653. }
  2654. slabp = list_entry(entry, struct slab, list);
  2655. check_slabp(cachep, slabp);
  2656. check_spinlock_acquired(cachep);
  2657. /*
  2658. * The slab was either on partial or free list so
  2659. * there must be at least one object available for
  2660. * allocation.
  2661. */
  2662. BUG_ON(slabp->inuse >= cachep->num);
  2663. while (slabp->inuse < cachep->num && batchcount--) {
  2664. STATS_INC_ALLOCED(cachep);
  2665. STATS_INC_ACTIVE(cachep);
  2666. STATS_SET_HIGH(cachep);
  2667. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2668. node);
  2669. }
  2670. check_slabp(cachep, slabp);
  2671. /* move slabp to correct slabp list: */
  2672. list_del(&slabp->list);
  2673. if (slabp->free == BUFCTL_END)
  2674. list_add(&slabp->list, &l3->slabs_full);
  2675. else
  2676. list_add(&slabp->list, &l3->slabs_partial);
  2677. }
  2678. must_grow:
  2679. l3->free_objects -= ac->avail;
  2680. alloc_done:
  2681. spin_unlock(&l3->list_lock);
  2682. if (unlikely(!ac->avail)) {
  2683. int x;
  2684. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2685. /* cache_grow can reenable interrupts, then ac could change. */
  2686. ac = cpu_cache_get(cachep);
  2687. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2688. return NULL;
  2689. if (!ac->avail) /* objects refilled by interrupt? */
  2690. goto retry;
  2691. }
  2692. ac->touched = 1;
  2693. return ac->entry[--ac->avail];
  2694. }
  2695. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2696. gfp_t flags)
  2697. {
  2698. might_sleep_if(flags & __GFP_WAIT);
  2699. #if DEBUG
  2700. kmem_flagcheck(cachep, flags);
  2701. #endif
  2702. }
  2703. #if DEBUG
  2704. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2705. gfp_t flags, void *objp, void *caller)
  2706. {
  2707. if (!objp)
  2708. return objp;
  2709. if (cachep->flags & SLAB_POISON) {
  2710. #ifdef CONFIG_DEBUG_PAGEALLOC
  2711. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2712. kernel_map_pages(virt_to_page(objp),
  2713. cachep->buffer_size / PAGE_SIZE, 1);
  2714. else
  2715. check_poison_obj(cachep, objp);
  2716. #else
  2717. check_poison_obj(cachep, objp);
  2718. #endif
  2719. poison_obj(cachep, objp, POISON_INUSE);
  2720. }
  2721. if (cachep->flags & SLAB_STORE_USER)
  2722. *dbg_userword(cachep, objp) = caller;
  2723. if (cachep->flags & SLAB_RED_ZONE) {
  2724. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2725. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2726. slab_error(cachep, "double free, or memory outside"
  2727. " object was overwritten");
  2728. printk(KERN_ERR
  2729. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2730. objp, *dbg_redzone1(cachep, objp),
  2731. *dbg_redzone2(cachep, objp));
  2732. }
  2733. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2734. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2735. }
  2736. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2737. {
  2738. struct slab *slabp;
  2739. unsigned objnr;
  2740. slabp = page_get_slab(virt_to_head_page(objp));
  2741. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2742. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2743. }
  2744. #endif
  2745. objp += obj_offset(cachep);
  2746. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2747. cachep->ctor(objp);
  2748. #if ARCH_SLAB_MINALIGN
  2749. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2750. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2751. objp, ARCH_SLAB_MINALIGN);
  2752. }
  2753. #endif
  2754. return objp;
  2755. }
  2756. #else
  2757. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2758. #endif
  2759. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2760. {
  2761. if (cachep == &cache_cache)
  2762. return false;
  2763. return should_failslab(obj_size(cachep), flags);
  2764. }
  2765. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2766. {
  2767. void *objp;
  2768. struct array_cache *ac;
  2769. check_irq_off();
  2770. ac = cpu_cache_get(cachep);
  2771. if (likely(ac->avail)) {
  2772. STATS_INC_ALLOCHIT(cachep);
  2773. ac->touched = 1;
  2774. objp = ac->entry[--ac->avail];
  2775. } else {
  2776. STATS_INC_ALLOCMISS(cachep);
  2777. objp = cache_alloc_refill(cachep, flags);
  2778. }
  2779. return objp;
  2780. }
  2781. #ifdef CONFIG_NUMA
  2782. /*
  2783. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2784. *
  2785. * If we are in_interrupt, then process context, including cpusets and
  2786. * mempolicy, may not apply and should not be used for allocation policy.
  2787. */
  2788. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2789. {
  2790. int nid_alloc, nid_here;
  2791. if (in_interrupt() || (flags & __GFP_THISNODE))
  2792. return NULL;
  2793. nid_alloc = nid_here = numa_node_id();
  2794. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2795. nid_alloc = cpuset_mem_spread_node();
  2796. else if (current->mempolicy)
  2797. nid_alloc = slab_node(current->mempolicy);
  2798. if (nid_alloc != nid_here)
  2799. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2800. return NULL;
  2801. }
  2802. /*
  2803. * Fallback function if there was no memory available and no objects on a
  2804. * certain node and fall back is permitted. First we scan all the
  2805. * available nodelists for available objects. If that fails then we
  2806. * perform an allocation without specifying a node. This allows the page
  2807. * allocator to do its reclaim / fallback magic. We then insert the
  2808. * slab into the proper nodelist and then allocate from it.
  2809. */
  2810. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2811. {
  2812. struct zonelist *zonelist;
  2813. gfp_t local_flags;
  2814. struct zoneref *z;
  2815. struct zone *zone;
  2816. enum zone_type high_zoneidx = gfp_zone(flags);
  2817. void *obj = NULL;
  2818. int nid;
  2819. if (flags & __GFP_THISNODE)
  2820. return NULL;
  2821. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2822. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2823. retry:
  2824. /*
  2825. * Look through allowed nodes for objects available
  2826. * from existing per node queues.
  2827. */
  2828. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2829. nid = zone_to_nid(zone);
  2830. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2831. cache->nodelists[nid] &&
  2832. cache->nodelists[nid]->free_objects) {
  2833. obj = ____cache_alloc_node(cache,
  2834. flags | GFP_THISNODE, nid);
  2835. if (obj)
  2836. break;
  2837. }
  2838. }
  2839. if (!obj) {
  2840. /*
  2841. * This allocation will be performed within the constraints
  2842. * of the current cpuset / memory policy requirements.
  2843. * We may trigger various forms of reclaim on the allowed
  2844. * set and go into memory reserves if necessary.
  2845. */
  2846. if (local_flags & __GFP_WAIT)
  2847. local_irq_enable();
  2848. kmem_flagcheck(cache, flags);
  2849. obj = kmem_getpages(cache, local_flags, -1);
  2850. if (local_flags & __GFP_WAIT)
  2851. local_irq_disable();
  2852. if (obj) {
  2853. /*
  2854. * Insert into the appropriate per node queues
  2855. */
  2856. nid = page_to_nid(virt_to_page(obj));
  2857. if (cache_grow(cache, flags, nid, obj)) {
  2858. obj = ____cache_alloc_node(cache,
  2859. flags | GFP_THISNODE, nid);
  2860. if (!obj)
  2861. /*
  2862. * Another processor may allocate the
  2863. * objects in the slab since we are
  2864. * not holding any locks.
  2865. */
  2866. goto retry;
  2867. } else {
  2868. /* cache_grow already freed obj */
  2869. obj = NULL;
  2870. }
  2871. }
  2872. }
  2873. return obj;
  2874. }
  2875. /*
  2876. * A interface to enable slab creation on nodeid
  2877. */
  2878. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2879. int nodeid)
  2880. {
  2881. struct list_head *entry;
  2882. struct slab *slabp;
  2883. struct kmem_list3 *l3;
  2884. void *obj;
  2885. int x;
  2886. l3 = cachep->nodelists[nodeid];
  2887. BUG_ON(!l3);
  2888. retry:
  2889. check_irq_off();
  2890. spin_lock(&l3->list_lock);
  2891. entry = l3->slabs_partial.next;
  2892. if (entry == &l3->slabs_partial) {
  2893. l3->free_touched = 1;
  2894. entry = l3->slabs_free.next;
  2895. if (entry == &l3->slabs_free)
  2896. goto must_grow;
  2897. }
  2898. slabp = list_entry(entry, struct slab, list);
  2899. check_spinlock_acquired_node(cachep, nodeid);
  2900. check_slabp(cachep, slabp);
  2901. STATS_INC_NODEALLOCS(cachep);
  2902. STATS_INC_ACTIVE(cachep);
  2903. STATS_SET_HIGH(cachep);
  2904. BUG_ON(slabp->inuse == cachep->num);
  2905. obj = slab_get_obj(cachep, slabp, nodeid);
  2906. check_slabp(cachep, slabp);
  2907. l3->free_objects--;
  2908. /* move slabp to correct slabp list: */
  2909. list_del(&slabp->list);
  2910. if (slabp->free == BUFCTL_END)
  2911. list_add(&slabp->list, &l3->slabs_full);
  2912. else
  2913. list_add(&slabp->list, &l3->slabs_partial);
  2914. spin_unlock(&l3->list_lock);
  2915. goto done;
  2916. must_grow:
  2917. spin_unlock(&l3->list_lock);
  2918. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2919. if (x)
  2920. goto retry;
  2921. return fallback_alloc(cachep, flags);
  2922. done:
  2923. return obj;
  2924. }
  2925. /**
  2926. * kmem_cache_alloc_node - Allocate an object on the specified node
  2927. * @cachep: The cache to allocate from.
  2928. * @flags: See kmalloc().
  2929. * @nodeid: node number of the target node.
  2930. * @caller: return address of caller, used for debug information
  2931. *
  2932. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2933. * node, which can improve the performance for cpu bound structures.
  2934. *
  2935. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2936. */
  2937. static __always_inline void *
  2938. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2939. void *caller)
  2940. {
  2941. unsigned long save_flags;
  2942. void *ptr;
  2943. lockdep_trace_alloc(flags);
  2944. if (slab_should_failslab(cachep, flags))
  2945. return NULL;
  2946. cache_alloc_debugcheck_before(cachep, flags);
  2947. local_irq_save(save_flags);
  2948. if (unlikely(nodeid == -1))
  2949. nodeid = numa_node_id();
  2950. if (unlikely(!cachep->nodelists[nodeid])) {
  2951. /* Node not bootstrapped yet */
  2952. ptr = fallback_alloc(cachep, flags);
  2953. goto out;
  2954. }
  2955. if (nodeid == numa_node_id()) {
  2956. /*
  2957. * Use the locally cached objects if possible.
  2958. * However ____cache_alloc does not allow fallback
  2959. * to other nodes. It may fail while we still have
  2960. * objects on other nodes available.
  2961. */
  2962. ptr = ____cache_alloc(cachep, flags);
  2963. if (ptr)
  2964. goto out;
  2965. }
  2966. /* ___cache_alloc_node can fall back to other nodes */
  2967. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  2968. out:
  2969. local_irq_restore(save_flags);
  2970. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  2971. if (unlikely((flags & __GFP_ZERO) && ptr))
  2972. memset(ptr, 0, obj_size(cachep));
  2973. return ptr;
  2974. }
  2975. static __always_inline void *
  2976. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  2977. {
  2978. void *objp;
  2979. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2980. objp = alternate_node_alloc(cache, flags);
  2981. if (objp)
  2982. goto out;
  2983. }
  2984. objp = ____cache_alloc(cache, flags);
  2985. /*
  2986. * We may just have run out of memory on the local node.
  2987. * ____cache_alloc_node() knows how to locate memory on other nodes
  2988. */
  2989. if (!objp)
  2990. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  2991. out:
  2992. return objp;
  2993. }
  2994. #else
  2995. static __always_inline void *
  2996. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2997. {
  2998. return ____cache_alloc(cachep, flags);
  2999. }
  3000. #endif /* CONFIG_NUMA */
  3001. static __always_inline void *
  3002. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3003. {
  3004. unsigned long save_flags;
  3005. void *objp;
  3006. lockdep_trace_alloc(flags);
  3007. if (slab_should_failslab(cachep, flags))
  3008. return NULL;
  3009. cache_alloc_debugcheck_before(cachep, flags);
  3010. local_irq_save(save_flags);
  3011. objp = __do_cache_alloc(cachep, flags);
  3012. local_irq_restore(save_flags);
  3013. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3014. prefetchw(objp);
  3015. if (unlikely((flags & __GFP_ZERO) && objp))
  3016. memset(objp, 0, obj_size(cachep));
  3017. return objp;
  3018. }
  3019. /*
  3020. * Caller needs to acquire correct kmem_list's list_lock
  3021. */
  3022. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3023. int node)
  3024. {
  3025. int i;
  3026. struct kmem_list3 *l3;
  3027. for (i = 0; i < nr_objects; i++) {
  3028. void *objp = objpp[i];
  3029. struct slab *slabp;
  3030. slabp = virt_to_slab(objp);
  3031. l3 = cachep->nodelists[node];
  3032. list_del(&slabp->list);
  3033. check_spinlock_acquired_node(cachep, node);
  3034. check_slabp(cachep, slabp);
  3035. slab_put_obj(cachep, slabp, objp, node);
  3036. STATS_DEC_ACTIVE(cachep);
  3037. l3->free_objects++;
  3038. check_slabp(cachep, slabp);
  3039. /* fixup slab chains */
  3040. if (slabp->inuse == 0) {
  3041. if (l3->free_objects > l3->free_limit) {
  3042. l3->free_objects -= cachep->num;
  3043. /* No need to drop any previously held
  3044. * lock here, even if we have a off-slab slab
  3045. * descriptor it is guaranteed to come from
  3046. * a different cache, refer to comments before
  3047. * alloc_slabmgmt.
  3048. */
  3049. slab_destroy(cachep, slabp);
  3050. } else {
  3051. list_add(&slabp->list, &l3->slabs_free);
  3052. }
  3053. } else {
  3054. /* Unconditionally move a slab to the end of the
  3055. * partial list on free - maximum time for the
  3056. * other objects to be freed, too.
  3057. */
  3058. list_add_tail(&slabp->list, &l3->slabs_partial);
  3059. }
  3060. }
  3061. }
  3062. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3063. {
  3064. int batchcount;
  3065. struct kmem_list3 *l3;
  3066. int node = numa_node_id();
  3067. batchcount = ac->batchcount;
  3068. #if DEBUG
  3069. BUG_ON(!batchcount || batchcount > ac->avail);
  3070. #endif
  3071. check_irq_off();
  3072. l3 = cachep->nodelists[node];
  3073. spin_lock(&l3->list_lock);
  3074. if (l3->shared) {
  3075. struct array_cache *shared_array = l3->shared;
  3076. int max = shared_array->limit - shared_array->avail;
  3077. if (max) {
  3078. if (batchcount > max)
  3079. batchcount = max;
  3080. memcpy(&(shared_array->entry[shared_array->avail]),
  3081. ac->entry, sizeof(void *) * batchcount);
  3082. shared_array->avail += batchcount;
  3083. goto free_done;
  3084. }
  3085. }
  3086. free_block(cachep, ac->entry, batchcount, node);
  3087. free_done:
  3088. #if STATS
  3089. {
  3090. int i = 0;
  3091. struct list_head *p;
  3092. p = l3->slabs_free.next;
  3093. while (p != &(l3->slabs_free)) {
  3094. struct slab *slabp;
  3095. slabp = list_entry(p, struct slab, list);
  3096. BUG_ON(slabp->inuse);
  3097. i++;
  3098. p = p->next;
  3099. }
  3100. STATS_SET_FREEABLE(cachep, i);
  3101. }
  3102. #endif
  3103. spin_unlock(&l3->list_lock);
  3104. ac->avail -= batchcount;
  3105. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3106. }
  3107. /*
  3108. * Release an obj back to its cache. If the obj has a constructed state, it must
  3109. * be in this state _before_ it is released. Called with disabled ints.
  3110. */
  3111. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3112. {
  3113. struct array_cache *ac = cpu_cache_get(cachep);
  3114. check_irq_off();
  3115. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3116. /*
  3117. * Skip calling cache_free_alien() when the platform is not numa.
  3118. * This will avoid cache misses that happen while accessing slabp (which
  3119. * is per page memory reference) to get nodeid. Instead use a global
  3120. * variable to skip the call, which is mostly likely to be present in
  3121. * the cache.
  3122. */
  3123. if (numa_platform && cache_free_alien(cachep, objp))
  3124. return;
  3125. if (likely(ac->avail < ac->limit)) {
  3126. STATS_INC_FREEHIT(cachep);
  3127. ac->entry[ac->avail++] = objp;
  3128. return;
  3129. } else {
  3130. STATS_INC_FREEMISS(cachep);
  3131. cache_flusharray(cachep, ac);
  3132. ac->entry[ac->avail++] = objp;
  3133. }
  3134. }
  3135. /**
  3136. * kmem_cache_alloc - Allocate an object
  3137. * @cachep: The cache to allocate from.
  3138. * @flags: See kmalloc().
  3139. *
  3140. * Allocate an object from this cache. The flags are only relevant
  3141. * if the cache has no available objects.
  3142. */
  3143. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3144. {
  3145. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3146. trace_kmem_cache_alloc(_RET_IP_, ret,
  3147. obj_size(cachep), cachep->buffer_size, flags);
  3148. return ret;
  3149. }
  3150. EXPORT_SYMBOL(kmem_cache_alloc);
  3151. #ifdef CONFIG_KMEMTRACE
  3152. void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
  3153. {
  3154. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3155. }
  3156. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  3157. #endif
  3158. /**
  3159. * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
  3160. * @cachep: the cache we're checking against
  3161. * @ptr: pointer to validate
  3162. *
  3163. * This verifies that the untrusted pointer looks sane;
  3164. * it is _not_ a guarantee that the pointer is actually
  3165. * part of the slab cache in question, but it at least
  3166. * validates that the pointer can be dereferenced and
  3167. * looks half-way sane.
  3168. *
  3169. * Currently only used for dentry validation.
  3170. */
  3171. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3172. {
  3173. unsigned long addr = (unsigned long)ptr;
  3174. unsigned long min_addr = PAGE_OFFSET;
  3175. unsigned long align_mask = BYTES_PER_WORD - 1;
  3176. unsigned long size = cachep->buffer_size;
  3177. struct page *page;
  3178. if (unlikely(addr < min_addr))
  3179. goto out;
  3180. if (unlikely(addr > (unsigned long)high_memory - size))
  3181. goto out;
  3182. if (unlikely(addr & align_mask))
  3183. goto out;
  3184. if (unlikely(!kern_addr_valid(addr)))
  3185. goto out;
  3186. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3187. goto out;
  3188. page = virt_to_page(ptr);
  3189. if (unlikely(!PageSlab(page)))
  3190. goto out;
  3191. if (unlikely(page_get_cache(page) != cachep))
  3192. goto out;
  3193. return 1;
  3194. out:
  3195. return 0;
  3196. }
  3197. #ifdef CONFIG_NUMA
  3198. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3199. {
  3200. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3201. __builtin_return_address(0));
  3202. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3203. obj_size(cachep), cachep->buffer_size,
  3204. flags, nodeid);
  3205. return ret;
  3206. }
  3207. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3208. #ifdef CONFIG_KMEMTRACE
  3209. void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
  3210. gfp_t flags,
  3211. int nodeid)
  3212. {
  3213. return __cache_alloc_node(cachep, flags, nodeid,
  3214. __builtin_return_address(0));
  3215. }
  3216. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  3217. #endif
  3218. static __always_inline void *
  3219. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3220. {
  3221. struct kmem_cache *cachep;
  3222. void *ret;
  3223. cachep = kmem_find_general_cachep(size, flags);
  3224. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3225. return cachep;
  3226. ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
  3227. trace_kmalloc_node((unsigned long) caller, ret,
  3228. size, cachep->buffer_size, flags, node);
  3229. return ret;
  3230. }
  3231. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
  3232. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3233. {
  3234. return __do_kmalloc_node(size, flags, node,
  3235. __builtin_return_address(0));
  3236. }
  3237. EXPORT_SYMBOL(__kmalloc_node);
  3238. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3239. int node, unsigned long caller)
  3240. {
  3241. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3242. }
  3243. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3244. #else
  3245. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3246. {
  3247. return __do_kmalloc_node(size, flags, node, NULL);
  3248. }
  3249. EXPORT_SYMBOL(__kmalloc_node);
  3250. #endif /* CONFIG_DEBUG_SLAB */
  3251. #endif /* CONFIG_NUMA */
  3252. /**
  3253. * __do_kmalloc - allocate memory
  3254. * @size: how many bytes of memory are required.
  3255. * @flags: the type of memory to allocate (see kmalloc).
  3256. * @caller: function caller for debug tracking of the caller
  3257. */
  3258. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3259. void *caller)
  3260. {
  3261. struct kmem_cache *cachep;
  3262. void *ret;
  3263. /* If you want to save a few bytes .text space: replace
  3264. * __ with kmem_.
  3265. * Then kmalloc uses the uninlined functions instead of the inline
  3266. * functions.
  3267. */
  3268. cachep = __find_general_cachep(size, flags);
  3269. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3270. return cachep;
  3271. ret = __cache_alloc(cachep, flags, caller);
  3272. trace_kmalloc((unsigned long) caller, ret,
  3273. size, cachep->buffer_size, flags);
  3274. return ret;
  3275. }
  3276. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
  3277. void *__kmalloc(size_t size, gfp_t flags)
  3278. {
  3279. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3280. }
  3281. EXPORT_SYMBOL(__kmalloc);
  3282. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3283. {
  3284. return __do_kmalloc(size, flags, (void *)caller);
  3285. }
  3286. EXPORT_SYMBOL(__kmalloc_track_caller);
  3287. #else
  3288. void *__kmalloc(size_t size, gfp_t flags)
  3289. {
  3290. return __do_kmalloc(size, flags, NULL);
  3291. }
  3292. EXPORT_SYMBOL(__kmalloc);
  3293. #endif
  3294. /**
  3295. * kmem_cache_free - Deallocate an object
  3296. * @cachep: The cache the allocation was from.
  3297. * @objp: The previously allocated object.
  3298. *
  3299. * Free an object which was previously allocated from this
  3300. * cache.
  3301. */
  3302. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3303. {
  3304. unsigned long flags;
  3305. local_irq_save(flags);
  3306. debug_check_no_locks_freed(objp, obj_size(cachep));
  3307. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3308. debug_check_no_obj_freed(objp, obj_size(cachep));
  3309. __cache_free(cachep, objp);
  3310. local_irq_restore(flags);
  3311. trace_kmem_cache_free(_RET_IP_, objp);
  3312. }
  3313. EXPORT_SYMBOL(kmem_cache_free);
  3314. /**
  3315. * kfree - free previously allocated memory
  3316. * @objp: pointer returned by kmalloc.
  3317. *
  3318. * If @objp is NULL, no operation is performed.
  3319. *
  3320. * Don't free memory not originally allocated by kmalloc()
  3321. * or you will run into trouble.
  3322. */
  3323. void kfree(const void *objp)
  3324. {
  3325. struct kmem_cache *c;
  3326. unsigned long flags;
  3327. trace_kfree(_RET_IP_, objp);
  3328. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3329. return;
  3330. local_irq_save(flags);
  3331. kfree_debugcheck(objp);
  3332. c = virt_to_cache(objp);
  3333. debug_check_no_locks_freed(objp, obj_size(c));
  3334. debug_check_no_obj_freed(objp, obj_size(c));
  3335. __cache_free(c, (void *)objp);
  3336. local_irq_restore(flags);
  3337. }
  3338. EXPORT_SYMBOL(kfree);
  3339. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3340. {
  3341. return obj_size(cachep);
  3342. }
  3343. EXPORT_SYMBOL(kmem_cache_size);
  3344. const char *kmem_cache_name(struct kmem_cache *cachep)
  3345. {
  3346. return cachep->name;
  3347. }
  3348. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3349. /*
  3350. * This initializes kmem_list3 or resizes various caches for all nodes.
  3351. */
  3352. static int alloc_kmemlist(struct kmem_cache *cachep)
  3353. {
  3354. int node;
  3355. struct kmem_list3 *l3;
  3356. struct array_cache *new_shared;
  3357. struct array_cache **new_alien = NULL;
  3358. for_each_online_node(node) {
  3359. if (use_alien_caches) {
  3360. new_alien = alloc_alien_cache(node, cachep->limit);
  3361. if (!new_alien)
  3362. goto fail;
  3363. }
  3364. new_shared = NULL;
  3365. if (cachep->shared) {
  3366. new_shared = alloc_arraycache(node,
  3367. cachep->shared*cachep->batchcount,
  3368. 0xbaadf00d);
  3369. if (!new_shared) {
  3370. free_alien_cache(new_alien);
  3371. goto fail;
  3372. }
  3373. }
  3374. l3 = cachep->nodelists[node];
  3375. if (l3) {
  3376. struct array_cache *shared = l3->shared;
  3377. spin_lock_irq(&l3->list_lock);
  3378. if (shared)
  3379. free_block(cachep, shared->entry,
  3380. shared->avail, node);
  3381. l3->shared = new_shared;
  3382. if (!l3->alien) {
  3383. l3->alien = new_alien;
  3384. new_alien = NULL;
  3385. }
  3386. l3->free_limit = (1 + nr_cpus_node(node)) *
  3387. cachep->batchcount + cachep->num;
  3388. spin_unlock_irq(&l3->list_lock);
  3389. kfree(shared);
  3390. free_alien_cache(new_alien);
  3391. continue;
  3392. }
  3393. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3394. if (!l3) {
  3395. free_alien_cache(new_alien);
  3396. kfree(new_shared);
  3397. goto fail;
  3398. }
  3399. kmem_list3_init(l3);
  3400. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3401. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3402. l3->shared = new_shared;
  3403. l3->alien = new_alien;
  3404. l3->free_limit = (1 + nr_cpus_node(node)) *
  3405. cachep->batchcount + cachep->num;
  3406. cachep->nodelists[node] = l3;
  3407. }
  3408. return 0;
  3409. fail:
  3410. if (!cachep->next.next) {
  3411. /* Cache is not active yet. Roll back what we did */
  3412. node--;
  3413. while (node >= 0) {
  3414. if (cachep->nodelists[node]) {
  3415. l3 = cachep->nodelists[node];
  3416. kfree(l3->shared);
  3417. free_alien_cache(l3->alien);
  3418. kfree(l3);
  3419. cachep->nodelists[node] = NULL;
  3420. }
  3421. node--;
  3422. }
  3423. }
  3424. return -ENOMEM;
  3425. }
  3426. struct ccupdate_struct {
  3427. struct kmem_cache *cachep;
  3428. struct array_cache *new[NR_CPUS];
  3429. };
  3430. static void do_ccupdate_local(void *info)
  3431. {
  3432. struct ccupdate_struct *new = info;
  3433. struct array_cache *old;
  3434. check_irq_off();
  3435. old = cpu_cache_get(new->cachep);
  3436. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3437. new->new[smp_processor_id()] = old;
  3438. }
  3439. /* Always called with the cache_chain_mutex held */
  3440. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3441. int batchcount, int shared)
  3442. {
  3443. struct ccupdate_struct *new;
  3444. int i;
  3445. new = kzalloc(sizeof(*new), GFP_KERNEL);
  3446. if (!new)
  3447. return -ENOMEM;
  3448. for_each_online_cpu(i) {
  3449. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3450. batchcount);
  3451. if (!new->new[i]) {
  3452. for (i--; i >= 0; i--)
  3453. kfree(new->new[i]);
  3454. kfree(new);
  3455. return -ENOMEM;
  3456. }
  3457. }
  3458. new->cachep = cachep;
  3459. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3460. check_irq_on();
  3461. cachep->batchcount = batchcount;
  3462. cachep->limit = limit;
  3463. cachep->shared = shared;
  3464. for_each_online_cpu(i) {
  3465. struct array_cache *ccold = new->new[i];
  3466. if (!ccold)
  3467. continue;
  3468. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3469. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3470. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3471. kfree(ccold);
  3472. }
  3473. kfree(new);
  3474. return alloc_kmemlist(cachep);
  3475. }
  3476. /* Called with cache_chain_mutex held always */
  3477. static int enable_cpucache(struct kmem_cache *cachep)
  3478. {
  3479. int err;
  3480. int limit, shared;
  3481. /*
  3482. * The head array serves three purposes:
  3483. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3484. * - reduce the number of spinlock operations.
  3485. * - reduce the number of linked list operations on the slab and
  3486. * bufctl chains: array operations are cheaper.
  3487. * The numbers are guessed, we should auto-tune as described by
  3488. * Bonwick.
  3489. */
  3490. if (cachep->buffer_size > 131072)
  3491. limit = 1;
  3492. else if (cachep->buffer_size > PAGE_SIZE)
  3493. limit = 8;
  3494. else if (cachep->buffer_size > 1024)
  3495. limit = 24;
  3496. else if (cachep->buffer_size > 256)
  3497. limit = 54;
  3498. else
  3499. limit = 120;
  3500. /*
  3501. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3502. * allocation behaviour: Most allocs on one cpu, most free operations
  3503. * on another cpu. For these cases, an efficient object passing between
  3504. * cpus is necessary. This is provided by a shared array. The array
  3505. * replaces Bonwick's magazine layer.
  3506. * On uniprocessor, it's functionally equivalent (but less efficient)
  3507. * to a larger limit. Thus disabled by default.
  3508. */
  3509. shared = 0;
  3510. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3511. shared = 8;
  3512. #if DEBUG
  3513. /*
  3514. * With debugging enabled, large batchcount lead to excessively long
  3515. * periods with disabled local interrupts. Limit the batchcount
  3516. */
  3517. if (limit > 32)
  3518. limit = 32;
  3519. #endif
  3520. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3521. if (err)
  3522. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3523. cachep->name, -err);
  3524. return err;
  3525. }
  3526. /*
  3527. * Drain an array if it contains any elements taking the l3 lock only if
  3528. * necessary. Note that the l3 listlock also protects the array_cache
  3529. * if drain_array() is used on the shared array.
  3530. */
  3531. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3532. struct array_cache *ac, int force, int node)
  3533. {
  3534. int tofree;
  3535. if (!ac || !ac->avail)
  3536. return;
  3537. if (ac->touched && !force) {
  3538. ac->touched = 0;
  3539. } else {
  3540. spin_lock_irq(&l3->list_lock);
  3541. if (ac->avail) {
  3542. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3543. if (tofree > ac->avail)
  3544. tofree = (ac->avail + 1) / 2;
  3545. free_block(cachep, ac->entry, tofree, node);
  3546. ac->avail -= tofree;
  3547. memmove(ac->entry, &(ac->entry[tofree]),
  3548. sizeof(void *) * ac->avail);
  3549. }
  3550. spin_unlock_irq(&l3->list_lock);
  3551. }
  3552. }
  3553. /**
  3554. * cache_reap - Reclaim memory from caches.
  3555. * @w: work descriptor
  3556. *
  3557. * Called from workqueue/eventd every few seconds.
  3558. * Purpose:
  3559. * - clear the per-cpu caches for this CPU.
  3560. * - return freeable pages to the main free memory pool.
  3561. *
  3562. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3563. * again on the next iteration.
  3564. */
  3565. static void cache_reap(struct work_struct *w)
  3566. {
  3567. struct kmem_cache *searchp;
  3568. struct kmem_list3 *l3;
  3569. int node = numa_node_id();
  3570. struct delayed_work *work = to_delayed_work(w);
  3571. if (!mutex_trylock(&cache_chain_mutex))
  3572. /* Give up. Setup the next iteration. */
  3573. goto out;
  3574. list_for_each_entry(searchp, &cache_chain, next) {
  3575. check_irq_on();
  3576. /*
  3577. * We only take the l3 lock if absolutely necessary and we
  3578. * have established with reasonable certainty that
  3579. * we can do some work if the lock was obtained.
  3580. */
  3581. l3 = searchp->nodelists[node];
  3582. reap_alien(searchp, l3);
  3583. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3584. /*
  3585. * These are racy checks but it does not matter
  3586. * if we skip one check or scan twice.
  3587. */
  3588. if (time_after(l3->next_reap, jiffies))
  3589. goto next;
  3590. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3591. drain_array(searchp, l3, l3->shared, 0, node);
  3592. if (l3->free_touched)
  3593. l3->free_touched = 0;
  3594. else {
  3595. int freed;
  3596. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3597. 5 * searchp->num - 1) / (5 * searchp->num));
  3598. STATS_ADD_REAPED(searchp, freed);
  3599. }
  3600. next:
  3601. cond_resched();
  3602. }
  3603. check_irq_on();
  3604. mutex_unlock(&cache_chain_mutex);
  3605. next_reap_node();
  3606. out:
  3607. /* Set up the next iteration */
  3608. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3609. }
  3610. #ifdef CONFIG_SLABINFO
  3611. static void print_slabinfo_header(struct seq_file *m)
  3612. {
  3613. /*
  3614. * Output format version, so at least we can change it
  3615. * without _too_ many complaints.
  3616. */
  3617. #if STATS
  3618. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3619. #else
  3620. seq_puts(m, "slabinfo - version: 2.1\n");
  3621. #endif
  3622. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3623. "<objperslab> <pagesperslab>");
  3624. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3625. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3626. #if STATS
  3627. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3628. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3629. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3630. #endif
  3631. seq_putc(m, '\n');
  3632. }
  3633. static void *s_start(struct seq_file *m, loff_t *pos)
  3634. {
  3635. loff_t n = *pos;
  3636. mutex_lock(&cache_chain_mutex);
  3637. if (!n)
  3638. print_slabinfo_header(m);
  3639. return seq_list_start(&cache_chain, *pos);
  3640. }
  3641. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3642. {
  3643. return seq_list_next(p, &cache_chain, pos);
  3644. }
  3645. static void s_stop(struct seq_file *m, void *p)
  3646. {
  3647. mutex_unlock(&cache_chain_mutex);
  3648. }
  3649. static int s_show(struct seq_file *m, void *p)
  3650. {
  3651. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3652. struct slab *slabp;
  3653. unsigned long active_objs;
  3654. unsigned long num_objs;
  3655. unsigned long active_slabs = 0;
  3656. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3657. const char *name;
  3658. char *error = NULL;
  3659. int node;
  3660. struct kmem_list3 *l3;
  3661. active_objs = 0;
  3662. num_slabs = 0;
  3663. for_each_online_node(node) {
  3664. l3 = cachep->nodelists[node];
  3665. if (!l3)
  3666. continue;
  3667. check_irq_on();
  3668. spin_lock_irq(&l3->list_lock);
  3669. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3670. if (slabp->inuse != cachep->num && !error)
  3671. error = "slabs_full accounting error";
  3672. active_objs += cachep->num;
  3673. active_slabs++;
  3674. }
  3675. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3676. if (slabp->inuse == cachep->num && !error)
  3677. error = "slabs_partial inuse accounting error";
  3678. if (!slabp->inuse && !error)
  3679. error = "slabs_partial/inuse accounting error";
  3680. active_objs += slabp->inuse;
  3681. active_slabs++;
  3682. }
  3683. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3684. if (slabp->inuse && !error)
  3685. error = "slabs_free/inuse accounting error";
  3686. num_slabs++;
  3687. }
  3688. free_objects += l3->free_objects;
  3689. if (l3->shared)
  3690. shared_avail += l3->shared->avail;
  3691. spin_unlock_irq(&l3->list_lock);
  3692. }
  3693. num_slabs += active_slabs;
  3694. num_objs = num_slabs * cachep->num;
  3695. if (num_objs - active_objs != free_objects && !error)
  3696. error = "free_objects accounting error";
  3697. name = cachep->name;
  3698. if (error)
  3699. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3700. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3701. name, active_objs, num_objs, cachep->buffer_size,
  3702. cachep->num, (1 << cachep->gfporder));
  3703. seq_printf(m, " : tunables %4u %4u %4u",
  3704. cachep->limit, cachep->batchcount, cachep->shared);
  3705. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3706. active_slabs, num_slabs, shared_avail);
  3707. #if STATS
  3708. { /* list3 stats */
  3709. unsigned long high = cachep->high_mark;
  3710. unsigned long allocs = cachep->num_allocations;
  3711. unsigned long grown = cachep->grown;
  3712. unsigned long reaped = cachep->reaped;
  3713. unsigned long errors = cachep->errors;
  3714. unsigned long max_freeable = cachep->max_freeable;
  3715. unsigned long node_allocs = cachep->node_allocs;
  3716. unsigned long node_frees = cachep->node_frees;
  3717. unsigned long overflows = cachep->node_overflow;
  3718. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3719. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3720. reaped, errors, max_freeable, node_allocs,
  3721. node_frees, overflows);
  3722. }
  3723. /* cpu stats */
  3724. {
  3725. unsigned long allochit = atomic_read(&cachep->allochit);
  3726. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3727. unsigned long freehit = atomic_read(&cachep->freehit);
  3728. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3729. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3730. allochit, allocmiss, freehit, freemiss);
  3731. }
  3732. #endif
  3733. seq_putc(m, '\n');
  3734. return 0;
  3735. }
  3736. /*
  3737. * slabinfo_op - iterator that generates /proc/slabinfo
  3738. *
  3739. * Output layout:
  3740. * cache-name
  3741. * num-active-objs
  3742. * total-objs
  3743. * object size
  3744. * num-active-slabs
  3745. * total-slabs
  3746. * num-pages-per-slab
  3747. * + further values on SMP and with statistics enabled
  3748. */
  3749. static const struct seq_operations slabinfo_op = {
  3750. .start = s_start,
  3751. .next = s_next,
  3752. .stop = s_stop,
  3753. .show = s_show,
  3754. };
  3755. #define MAX_SLABINFO_WRITE 128
  3756. /**
  3757. * slabinfo_write - Tuning for the slab allocator
  3758. * @file: unused
  3759. * @buffer: user buffer
  3760. * @count: data length
  3761. * @ppos: unused
  3762. */
  3763. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3764. size_t count, loff_t *ppos)
  3765. {
  3766. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3767. int limit, batchcount, shared, res;
  3768. struct kmem_cache *cachep;
  3769. if (count > MAX_SLABINFO_WRITE)
  3770. return -EINVAL;
  3771. if (copy_from_user(&kbuf, buffer, count))
  3772. return -EFAULT;
  3773. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3774. tmp = strchr(kbuf, ' ');
  3775. if (!tmp)
  3776. return -EINVAL;
  3777. *tmp = '\0';
  3778. tmp++;
  3779. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3780. return -EINVAL;
  3781. /* Find the cache in the chain of caches. */
  3782. mutex_lock(&cache_chain_mutex);
  3783. res = -EINVAL;
  3784. list_for_each_entry(cachep, &cache_chain, next) {
  3785. if (!strcmp(cachep->name, kbuf)) {
  3786. if (limit < 1 || batchcount < 1 ||
  3787. batchcount > limit || shared < 0) {
  3788. res = 0;
  3789. } else {
  3790. res = do_tune_cpucache(cachep, limit,
  3791. batchcount, shared);
  3792. }
  3793. break;
  3794. }
  3795. }
  3796. mutex_unlock(&cache_chain_mutex);
  3797. if (res >= 0)
  3798. res = count;
  3799. return res;
  3800. }
  3801. static int slabinfo_open(struct inode *inode, struct file *file)
  3802. {
  3803. return seq_open(file, &slabinfo_op);
  3804. }
  3805. static const struct file_operations proc_slabinfo_operations = {
  3806. .open = slabinfo_open,
  3807. .read = seq_read,
  3808. .write = slabinfo_write,
  3809. .llseek = seq_lseek,
  3810. .release = seq_release,
  3811. };
  3812. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3813. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3814. {
  3815. mutex_lock(&cache_chain_mutex);
  3816. return seq_list_start(&cache_chain, *pos);
  3817. }
  3818. static inline int add_caller(unsigned long *n, unsigned long v)
  3819. {
  3820. unsigned long *p;
  3821. int l;
  3822. if (!v)
  3823. return 1;
  3824. l = n[1];
  3825. p = n + 2;
  3826. while (l) {
  3827. int i = l/2;
  3828. unsigned long *q = p + 2 * i;
  3829. if (*q == v) {
  3830. q[1]++;
  3831. return 1;
  3832. }
  3833. if (*q > v) {
  3834. l = i;
  3835. } else {
  3836. p = q + 2;
  3837. l -= i + 1;
  3838. }
  3839. }
  3840. if (++n[1] == n[0])
  3841. return 0;
  3842. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3843. p[0] = v;
  3844. p[1] = 1;
  3845. return 1;
  3846. }
  3847. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3848. {
  3849. void *p;
  3850. int i;
  3851. if (n[0] == n[1])
  3852. return;
  3853. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3854. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3855. continue;
  3856. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3857. return;
  3858. }
  3859. }
  3860. static void show_symbol(struct seq_file *m, unsigned long address)
  3861. {
  3862. #ifdef CONFIG_KALLSYMS
  3863. unsigned long offset, size;
  3864. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3865. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3866. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3867. if (modname[0])
  3868. seq_printf(m, " [%s]", modname);
  3869. return;
  3870. }
  3871. #endif
  3872. seq_printf(m, "%p", (void *)address);
  3873. }
  3874. static int leaks_show(struct seq_file *m, void *p)
  3875. {
  3876. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3877. struct slab *slabp;
  3878. struct kmem_list3 *l3;
  3879. const char *name;
  3880. unsigned long *n = m->private;
  3881. int node;
  3882. int i;
  3883. if (!(cachep->flags & SLAB_STORE_USER))
  3884. return 0;
  3885. if (!(cachep->flags & SLAB_RED_ZONE))
  3886. return 0;
  3887. /* OK, we can do it */
  3888. n[1] = 0;
  3889. for_each_online_node(node) {
  3890. l3 = cachep->nodelists[node];
  3891. if (!l3)
  3892. continue;
  3893. check_irq_on();
  3894. spin_lock_irq(&l3->list_lock);
  3895. list_for_each_entry(slabp, &l3->slabs_full, list)
  3896. handle_slab(n, cachep, slabp);
  3897. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3898. handle_slab(n, cachep, slabp);
  3899. spin_unlock_irq(&l3->list_lock);
  3900. }
  3901. name = cachep->name;
  3902. if (n[0] == n[1]) {
  3903. /* Increase the buffer size */
  3904. mutex_unlock(&cache_chain_mutex);
  3905. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3906. if (!m->private) {
  3907. /* Too bad, we are really out */
  3908. m->private = n;
  3909. mutex_lock(&cache_chain_mutex);
  3910. return -ENOMEM;
  3911. }
  3912. *(unsigned long *)m->private = n[0] * 2;
  3913. kfree(n);
  3914. mutex_lock(&cache_chain_mutex);
  3915. /* Now make sure this entry will be retried */
  3916. m->count = m->size;
  3917. return 0;
  3918. }
  3919. for (i = 0; i < n[1]; i++) {
  3920. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3921. show_symbol(m, n[2*i+2]);
  3922. seq_putc(m, '\n');
  3923. }
  3924. return 0;
  3925. }
  3926. static const struct seq_operations slabstats_op = {
  3927. .start = leaks_start,
  3928. .next = s_next,
  3929. .stop = s_stop,
  3930. .show = leaks_show,
  3931. };
  3932. static int slabstats_open(struct inode *inode, struct file *file)
  3933. {
  3934. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3935. int ret = -ENOMEM;
  3936. if (n) {
  3937. ret = seq_open(file, &slabstats_op);
  3938. if (!ret) {
  3939. struct seq_file *m = file->private_data;
  3940. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3941. m->private = n;
  3942. n = NULL;
  3943. }
  3944. kfree(n);
  3945. }
  3946. return ret;
  3947. }
  3948. static const struct file_operations proc_slabstats_operations = {
  3949. .open = slabstats_open,
  3950. .read = seq_read,
  3951. .llseek = seq_lseek,
  3952. .release = seq_release_private,
  3953. };
  3954. #endif
  3955. static int __init slab_proc_init(void)
  3956. {
  3957. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3958. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3959. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  3960. #endif
  3961. return 0;
  3962. }
  3963. module_init(slab_proc_init);
  3964. #endif
  3965. /**
  3966. * ksize - get the actual amount of memory allocated for a given object
  3967. * @objp: Pointer to the object
  3968. *
  3969. * kmalloc may internally round up allocations and return more memory
  3970. * than requested. ksize() can be used to determine the actual amount of
  3971. * memory allocated. The caller may use this additional memory, even though
  3972. * a smaller amount of memory was initially specified with the kmalloc call.
  3973. * The caller must guarantee that objp points to a valid object previously
  3974. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3975. * must not be freed during the duration of the call.
  3976. */
  3977. size_t ksize(const void *objp)
  3978. {
  3979. BUG_ON(!objp);
  3980. if (unlikely(objp == ZERO_SIZE_PTR))
  3981. return 0;
  3982. return obj_size(virt_to_cache(objp));
  3983. }
  3984. EXPORT_SYMBOL(ksize);