123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326 |
- /*
- * linux/mm/percpu.c - percpu memory allocator
- *
- * Copyright (C) 2009 SUSE Linux Products GmbH
- * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
- *
- * This file is released under the GPLv2.
- *
- * This is percpu allocator which can handle both static and dynamic
- * areas. Percpu areas are allocated in chunks in vmalloc area. Each
- * chunk is consisted of num_possible_cpus() units and the first chunk
- * is used for static percpu variables in the kernel image (special
- * boot time alloc/init handling necessary as these areas need to be
- * brought up before allocation services are running). Unit grows as
- * necessary and all units grow or shrink in unison. When a chunk is
- * filled up, another chunk is allocated. ie. in vmalloc area
- *
- * c0 c1 c2
- * ------------------- ------------------- ------------
- * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
- * ------------------- ...... ------------------- .... ------------
- *
- * Allocation is done in offset-size areas of single unit space. Ie,
- * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
- * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
- * percpu base registers UNIT_SIZE apart.
- *
- * There are usually many small percpu allocations many of them as
- * small as 4 bytes. The allocator organizes chunks into lists
- * according to free size and tries to allocate from the fullest one.
- * Each chunk keeps the maximum contiguous area size hint which is
- * guaranteed to be eqaul to or larger than the maximum contiguous
- * area in the chunk. This helps the allocator not to iterate the
- * chunk maps unnecessarily.
- *
- * Allocation state in each chunk is kept using an array of integers
- * on chunk->map. A positive value in the map represents a free
- * region and negative allocated. Allocation inside a chunk is done
- * by scanning this map sequentially and serving the first matching
- * entry. This is mostly copied from the percpu_modalloc() allocator.
- * Chunks are also linked into a rb tree to ease address to chunk
- * mapping during free.
- *
- * To use this allocator, arch code should do the followings.
- *
- * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
- *
- * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
- * regular address to percpu pointer and back if they need to be
- * different from the default
- *
- * - use pcpu_setup_first_chunk() during percpu area initialization to
- * setup the first chunk containing the kernel static percpu area
- */
- #include <linux/bitmap.h>
- #include <linux/bootmem.h>
- #include <linux/list.h>
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/mutex.h>
- #include <linux/percpu.h>
- #include <linux/pfn.h>
- #include <linux/rbtree.h>
- #include <linux/slab.h>
- #include <linux/spinlock.h>
- #include <linux/vmalloc.h>
- #include <linux/workqueue.h>
- #include <asm/cacheflush.h>
- #include <asm/sections.h>
- #include <asm/tlbflush.h>
- #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
- #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
- /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
- #ifndef __addr_to_pcpu_ptr
- #define __addr_to_pcpu_ptr(addr) \
- (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
- + (unsigned long)__per_cpu_start)
- #endif
- #ifndef __pcpu_ptr_to_addr
- #define __pcpu_ptr_to_addr(ptr) \
- (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
- - (unsigned long)__per_cpu_start)
- #endif
- struct pcpu_chunk {
- struct list_head list; /* linked to pcpu_slot lists */
- struct rb_node rb_node; /* key is chunk->vm->addr */
- int free_size; /* free bytes in the chunk */
- int contig_hint; /* max contiguous size hint */
- struct vm_struct *vm; /* mapped vmalloc region */
- int map_used; /* # of map entries used */
- int map_alloc; /* # of map entries allocated */
- int *map; /* allocation map */
- bool immutable; /* no [de]population allowed */
- struct page **page; /* points to page array */
- struct page *page_ar[]; /* #cpus * UNIT_PAGES */
- };
- static int pcpu_unit_pages __read_mostly;
- static int pcpu_unit_size __read_mostly;
- static int pcpu_chunk_size __read_mostly;
- static int pcpu_nr_slots __read_mostly;
- static size_t pcpu_chunk_struct_size __read_mostly;
- /* the address of the first chunk which starts with the kernel static area */
- void *pcpu_base_addr __read_mostly;
- EXPORT_SYMBOL_GPL(pcpu_base_addr);
- /* optional reserved chunk, only accessible for reserved allocations */
- static struct pcpu_chunk *pcpu_reserved_chunk;
- /* offset limit of the reserved chunk */
- static int pcpu_reserved_chunk_limit;
- /*
- * Synchronization rules.
- *
- * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
- * protects allocation/reclaim paths, chunks and chunk->page arrays.
- * The latter is a spinlock and protects the index data structures -
- * chunk slots, rbtree, chunks and area maps in chunks.
- *
- * During allocation, pcpu_alloc_mutex is kept locked all the time and
- * pcpu_lock is grabbed and released as necessary. All actual memory
- * allocations are done using GFP_KERNEL with pcpu_lock released.
- *
- * Free path accesses and alters only the index data structures, so it
- * can be safely called from atomic context. When memory needs to be
- * returned to the system, free path schedules reclaim_work which
- * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
- * reclaimed, release both locks and frees the chunks. Note that it's
- * necessary to grab both locks to remove a chunk from circulation as
- * allocation path might be referencing the chunk with only
- * pcpu_alloc_mutex locked.
- */
- static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
- static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
- static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
- static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
- /* reclaim work to release fully free chunks, scheduled from free path */
- static void pcpu_reclaim(struct work_struct *work);
- static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
- static int __pcpu_size_to_slot(int size)
- {
- int highbit = fls(size); /* size is in bytes */
- return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
- }
- static int pcpu_size_to_slot(int size)
- {
- if (size == pcpu_unit_size)
- return pcpu_nr_slots - 1;
- return __pcpu_size_to_slot(size);
- }
- static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
- {
- if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
- return 0;
- return pcpu_size_to_slot(chunk->free_size);
- }
- static int pcpu_page_idx(unsigned int cpu, int page_idx)
- {
- return cpu * pcpu_unit_pages + page_idx;
- }
- static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
- unsigned int cpu, int page_idx)
- {
- return &chunk->page[pcpu_page_idx(cpu, page_idx)];
- }
- static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
- unsigned int cpu, int page_idx)
- {
- return (unsigned long)chunk->vm->addr +
- (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
- }
- static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
- int page_idx)
- {
- return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
- }
- /**
- * pcpu_mem_alloc - allocate memory
- * @size: bytes to allocate
- *
- * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
- * kzalloc() is used; otherwise, vmalloc() is used. The returned
- * memory is always zeroed.
- *
- * CONTEXT:
- * Does GFP_KERNEL allocation.
- *
- * RETURNS:
- * Pointer to the allocated area on success, NULL on failure.
- */
- static void *pcpu_mem_alloc(size_t size)
- {
- if (size <= PAGE_SIZE)
- return kzalloc(size, GFP_KERNEL);
- else {
- void *ptr = vmalloc(size);
- if (ptr)
- memset(ptr, 0, size);
- return ptr;
- }
- }
- /**
- * pcpu_mem_free - free memory
- * @ptr: memory to free
- * @size: size of the area
- *
- * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
- */
- static void pcpu_mem_free(void *ptr, size_t size)
- {
- if (size <= PAGE_SIZE)
- kfree(ptr);
- else
- vfree(ptr);
- }
- /**
- * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
- * @chunk: chunk of interest
- * @oslot: the previous slot it was on
- *
- * This function is called after an allocation or free changed @chunk.
- * New slot according to the changed state is determined and @chunk is
- * moved to the slot. Note that the reserved chunk is never put on
- * chunk slots.
- *
- * CONTEXT:
- * pcpu_lock.
- */
- static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
- {
- int nslot = pcpu_chunk_slot(chunk);
- if (chunk != pcpu_reserved_chunk && oslot != nslot) {
- if (oslot < nslot)
- list_move(&chunk->list, &pcpu_slot[nslot]);
- else
- list_move_tail(&chunk->list, &pcpu_slot[nslot]);
- }
- }
- static struct rb_node **pcpu_chunk_rb_search(void *addr,
- struct rb_node **parentp)
- {
- struct rb_node **p = &pcpu_addr_root.rb_node;
- struct rb_node *parent = NULL;
- struct pcpu_chunk *chunk;
- while (*p) {
- parent = *p;
- chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
- if (addr < chunk->vm->addr)
- p = &(*p)->rb_left;
- else if (addr > chunk->vm->addr)
- p = &(*p)->rb_right;
- else
- break;
- }
- if (parentp)
- *parentp = parent;
- return p;
- }
- /**
- * pcpu_chunk_addr_search - search for chunk containing specified address
- * @addr: address to search for
- *
- * Look for chunk which might contain @addr. More specifically, it
- * searchs for the chunk with the highest start address which isn't
- * beyond @addr.
- *
- * CONTEXT:
- * pcpu_lock.
- *
- * RETURNS:
- * The address of the found chunk.
- */
- static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
- {
- struct rb_node *n, *parent;
- struct pcpu_chunk *chunk;
- /* is it in the reserved chunk? */
- if (pcpu_reserved_chunk) {
- void *start = pcpu_reserved_chunk->vm->addr;
- if (addr >= start && addr < start + pcpu_reserved_chunk_limit)
- return pcpu_reserved_chunk;
- }
- /* nah... search the regular ones */
- n = *pcpu_chunk_rb_search(addr, &parent);
- if (!n) {
- /* no exactly matching chunk, the parent is the closest */
- n = parent;
- BUG_ON(!n);
- }
- chunk = rb_entry(n, struct pcpu_chunk, rb_node);
- if (addr < chunk->vm->addr) {
- /* the parent was the next one, look for the previous one */
- n = rb_prev(n);
- BUG_ON(!n);
- chunk = rb_entry(n, struct pcpu_chunk, rb_node);
- }
- return chunk;
- }
- /**
- * pcpu_chunk_addr_insert - insert chunk into address rb tree
- * @new: chunk to insert
- *
- * Insert @new into address rb tree.
- *
- * CONTEXT:
- * pcpu_lock.
- */
- static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
- {
- struct rb_node **p, *parent;
- p = pcpu_chunk_rb_search(new->vm->addr, &parent);
- BUG_ON(*p);
- rb_link_node(&new->rb_node, parent, p);
- rb_insert_color(&new->rb_node, &pcpu_addr_root);
- }
- /**
- * pcpu_extend_area_map - extend area map for allocation
- * @chunk: target chunk
- *
- * Extend area map of @chunk so that it can accomodate an allocation.
- * A single allocation can split an area into three areas, so this
- * function makes sure that @chunk->map has at least two extra slots.
- *
- * CONTEXT:
- * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
- * if area map is extended.
- *
- * RETURNS:
- * 0 if noop, 1 if successfully extended, -errno on failure.
- */
- static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
- {
- int new_alloc;
- int *new;
- size_t size;
- /* has enough? */
- if (chunk->map_alloc >= chunk->map_used + 2)
- return 0;
- spin_unlock_irq(&pcpu_lock);
- new_alloc = PCPU_DFL_MAP_ALLOC;
- while (new_alloc < chunk->map_used + 2)
- new_alloc *= 2;
- new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
- if (!new) {
- spin_lock_irq(&pcpu_lock);
- return -ENOMEM;
- }
- /*
- * Acquire pcpu_lock and switch to new area map. Only free
- * could have happened inbetween, so map_used couldn't have
- * grown.
- */
- spin_lock_irq(&pcpu_lock);
- BUG_ON(new_alloc < chunk->map_used + 2);
- size = chunk->map_alloc * sizeof(chunk->map[0]);
- memcpy(new, chunk->map, size);
- /*
- * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
- * one of the first chunks and still using static map.
- */
- if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
- pcpu_mem_free(chunk->map, size);
- chunk->map_alloc = new_alloc;
- chunk->map = new;
- return 0;
- }
- /**
- * pcpu_split_block - split a map block
- * @chunk: chunk of interest
- * @i: index of map block to split
- * @head: head size in bytes (can be 0)
- * @tail: tail size in bytes (can be 0)
- *
- * Split the @i'th map block into two or three blocks. If @head is
- * non-zero, @head bytes block is inserted before block @i moving it
- * to @i+1 and reducing its size by @head bytes.
- *
- * If @tail is non-zero, the target block, which can be @i or @i+1
- * depending on @head, is reduced by @tail bytes and @tail byte block
- * is inserted after the target block.
- *
- * @chunk->map must have enough free slots to accomodate the split.
- *
- * CONTEXT:
- * pcpu_lock.
- */
- static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
- int head, int tail)
- {
- int nr_extra = !!head + !!tail;
- BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
- /* insert new subblocks */
- memmove(&chunk->map[i + nr_extra], &chunk->map[i],
- sizeof(chunk->map[0]) * (chunk->map_used - i));
- chunk->map_used += nr_extra;
- if (head) {
- chunk->map[i + 1] = chunk->map[i] - head;
- chunk->map[i++] = head;
- }
- if (tail) {
- chunk->map[i++] -= tail;
- chunk->map[i] = tail;
- }
- }
- /**
- * pcpu_alloc_area - allocate area from a pcpu_chunk
- * @chunk: chunk of interest
- * @size: wanted size in bytes
- * @align: wanted align
- *
- * Try to allocate @size bytes area aligned at @align from @chunk.
- * Note that this function only allocates the offset. It doesn't
- * populate or map the area.
- *
- * @chunk->map must have at least two free slots.
- *
- * CONTEXT:
- * pcpu_lock.
- *
- * RETURNS:
- * Allocated offset in @chunk on success, -1 if no matching area is
- * found.
- */
- static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
- {
- int oslot = pcpu_chunk_slot(chunk);
- int max_contig = 0;
- int i, off;
- for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
- bool is_last = i + 1 == chunk->map_used;
- int head, tail;
- /* extra for alignment requirement */
- head = ALIGN(off, align) - off;
- BUG_ON(i == 0 && head != 0);
- if (chunk->map[i] < 0)
- continue;
- if (chunk->map[i] < head + size) {
- max_contig = max(chunk->map[i], max_contig);
- continue;
- }
- /*
- * If head is small or the previous block is free,
- * merge'em. Note that 'small' is defined as smaller
- * than sizeof(int), which is very small but isn't too
- * uncommon for percpu allocations.
- */
- if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
- if (chunk->map[i - 1] > 0)
- chunk->map[i - 1] += head;
- else {
- chunk->map[i - 1] -= head;
- chunk->free_size -= head;
- }
- chunk->map[i] -= head;
- off += head;
- head = 0;
- }
- /* if tail is small, just keep it around */
- tail = chunk->map[i] - head - size;
- if (tail < sizeof(int))
- tail = 0;
- /* split if warranted */
- if (head || tail) {
- pcpu_split_block(chunk, i, head, tail);
- if (head) {
- i++;
- off += head;
- max_contig = max(chunk->map[i - 1], max_contig);
- }
- if (tail)
- max_contig = max(chunk->map[i + 1], max_contig);
- }
- /* update hint and mark allocated */
- if (is_last)
- chunk->contig_hint = max_contig; /* fully scanned */
- else
- chunk->contig_hint = max(chunk->contig_hint,
- max_contig);
- chunk->free_size -= chunk->map[i];
- chunk->map[i] = -chunk->map[i];
- pcpu_chunk_relocate(chunk, oslot);
- return off;
- }
- chunk->contig_hint = max_contig; /* fully scanned */
- pcpu_chunk_relocate(chunk, oslot);
- /* tell the upper layer that this chunk has no matching area */
- return -1;
- }
- /**
- * pcpu_free_area - free area to a pcpu_chunk
- * @chunk: chunk of interest
- * @freeme: offset of area to free
- *
- * Free area starting from @freeme to @chunk. Note that this function
- * only modifies the allocation map. It doesn't depopulate or unmap
- * the area.
- *
- * CONTEXT:
- * pcpu_lock.
- */
- static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
- {
- int oslot = pcpu_chunk_slot(chunk);
- int i, off;
- for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
- if (off == freeme)
- break;
- BUG_ON(off != freeme);
- BUG_ON(chunk->map[i] > 0);
- chunk->map[i] = -chunk->map[i];
- chunk->free_size += chunk->map[i];
- /* merge with previous? */
- if (i > 0 && chunk->map[i - 1] >= 0) {
- chunk->map[i - 1] += chunk->map[i];
- chunk->map_used--;
- memmove(&chunk->map[i], &chunk->map[i + 1],
- (chunk->map_used - i) * sizeof(chunk->map[0]));
- i--;
- }
- /* merge with next? */
- if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
- chunk->map[i] += chunk->map[i + 1];
- chunk->map_used--;
- memmove(&chunk->map[i + 1], &chunk->map[i + 2],
- (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
- }
- chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
- pcpu_chunk_relocate(chunk, oslot);
- }
- /**
- * pcpu_unmap - unmap pages out of a pcpu_chunk
- * @chunk: chunk of interest
- * @page_start: page index of the first page to unmap
- * @page_end: page index of the last page to unmap + 1
- * @flush: whether to flush cache and tlb or not
- *
- * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
- * If @flush is true, vcache is flushed before unmapping and tlb
- * after.
- */
- static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
- bool flush)
- {
- unsigned int last = num_possible_cpus() - 1;
- unsigned int cpu;
- /* unmap must not be done on immutable chunk */
- WARN_ON(chunk->immutable);
- /*
- * Each flushing trial can be very expensive, issue flush on
- * the whole region at once rather than doing it for each cpu.
- * This could be an overkill but is more scalable.
- */
- if (flush)
- flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
- pcpu_chunk_addr(chunk, last, page_end));
- for_each_possible_cpu(cpu)
- unmap_kernel_range_noflush(
- pcpu_chunk_addr(chunk, cpu, page_start),
- (page_end - page_start) << PAGE_SHIFT);
- /* ditto as flush_cache_vunmap() */
- if (flush)
- flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
- pcpu_chunk_addr(chunk, last, page_end));
- }
- /**
- * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
- * @chunk: chunk to depopulate
- * @off: offset to the area to depopulate
- * @size: size of the area to depopulate in bytes
- * @flush: whether to flush cache and tlb or not
- *
- * For each cpu, depopulate and unmap pages [@page_start,@page_end)
- * from @chunk. If @flush is true, vcache is flushed before unmapping
- * and tlb after.
- *
- * CONTEXT:
- * pcpu_alloc_mutex.
- */
- static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
- bool flush)
- {
- int page_start = PFN_DOWN(off);
- int page_end = PFN_UP(off + size);
- int unmap_start = -1;
- int uninitialized_var(unmap_end);
- unsigned int cpu;
- int i;
- for (i = page_start; i < page_end; i++) {
- for_each_possible_cpu(cpu) {
- struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
- if (!*pagep)
- continue;
- __free_page(*pagep);
- /*
- * If it's partial depopulation, it might get
- * populated or depopulated again. Mark the
- * page gone.
- */
- *pagep = NULL;
- unmap_start = unmap_start < 0 ? i : unmap_start;
- unmap_end = i + 1;
- }
- }
- if (unmap_start >= 0)
- pcpu_unmap(chunk, unmap_start, unmap_end, flush);
- }
- /**
- * pcpu_map - map pages into a pcpu_chunk
- * @chunk: chunk of interest
- * @page_start: page index of the first page to map
- * @page_end: page index of the last page to map + 1
- *
- * For each cpu, map pages [@page_start,@page_end) into @chunk.
- * vcache is flushed afterwards.
- */
- static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
- {
- unsigned int last = num_possible_cpus() - 1;
- unsigned int cpu;
- int err;
- /* map must not be done on immutable chunk */
- WARN_ON(chunk->immutable);
- for_each_possible_cpu(cpu) {
- err = map_kernel_range_noflush(
- pcpu_chunk_addr(chunk, cpu, page_start),
- (page_end - page_start) << PAGE_SHIFT,
- PAGE_KERNEL,
- pcpu_chunk_pagep(chunk, cpu, page_start));
- if (err < 0)
- return err;
- }
- /* flush at once, please read comments in pcpu_unmap() */
- flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
- pcpu_chunk_addr(chunk, last, page_end));
- return 0;
- }
- /**
- * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
- * @chunk: chunk of interest
- * @off: offset to the area to populate
- * @size: size of the area to populate in bytes
- *
- * For each cpu, populate and map pages [@page_start,@page_end) into
- * @chunk. The area is cleared on return.
- *
- * CONTEXT:
- * pcpu_alloc_mutex, does GFP_KERNEL allocation.
- */
- static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
- {
- const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
- int page_start = PFN_DOWN(off);
- int page_end = PFN_UP(off + size);
- int map_start = -1;
- int uninitialized_var(map_end);
- unsigned int cpu;
- int i;
- for (i = page_start; i < page_end; i++) {
- if (pcpu_chunk_page_occupied(chunk, i)) {
- if (map_start >= 0) {
- if (pcpu_map(chunk, map_start, map_end))
- goto err;
- map_start = -1;
- }
- continue;
- }
- map_start = map_start < 0 ? i : map_start;
- map_end = i + 1;
- for_each_possible_cpu(cpu) {
- struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
- *pagep = alloc_pages_node(cpu_to_node(cpu),
- alloc_mask, 0);
- if (!*pagep)
- goto err;
- }
- }
- if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
- goto err;
- for_each_possible_cpu(cpu)
- memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
- size);
- return 0;
- err:
- /* likely under heavy memory pressure, give memory back */
- pcpu_depopulate_chunk(chunk, off, size, true);
- return -ENOMEM;
- }
- static void free_pcpu_chunk(struct pcpu_chunk *chunk)
- {
- if (!chunk)
- return;
- if (chunk->vm)
- free_vm_area(chunk->vm);
- pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
- kfree(chunk);
- }
- static struct pcpu_chunk *alloc_pcpu_chunk(void)
- {
- struct pcpu_chunk *chunk;
- chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
- if (!chunk)
- return NULL;
- chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
- chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
- chunk->map[chunk->map_used++] = pcpu_unit_size;
- chunk->page = chunk->page_ar;
- chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
- if (!chunk->vm) {
- free_pcpu_chunk(chunk);
- return NULL;
- }
- INIT_LIST_HEAD(&chunk->list);
- chunk->free_size = pcpu_unit_size;
- chunk->contig_hint = pcpu_unit_size;
- return chunk;
- }
- /**
- * pcpu_alloc - the percpu allocator
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- * @reserved: allocate from the reserved chunk if available
- *
- * Allocate percpu area of @size bytes aligned at @align.
- *
- * CONTEXT:
- * Does GFP_KERNEL allocation.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
- static void *pcpu_alloc(size_t size, size_t align, bool reserved)
- {
- struct pcpu_chunk *chunk;
- int slot, off;
- if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
- WARN(true, "illegal size (%zu) or align (%zu) for "
- "percpu allocation\n", size, align);
- return NULL;
- }
- mutex_lock(&pcpu_alloc_mutex);
- spin_lock_irq(&pcpu_lock);
- /* serve reserved allocations from the reserved chunk if available */
- if (reserved && pcpu_reserved_chunk) {
- chunk = pcpu_reserved_chunk;
- if (size > chunk->contig_hint ||
- pcpu_extend_area_map(chunk) < 0)
- goto fail_unlock;
- off = pcpu_alloc_area(chunk, size, align);
- if (off >= 0)
- goto area_found;
- goto fail_unlock;
- }
- restart:
- /* search through normal chunks */
- for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
- list_for_each_entry(chunk, &pcpu_slot[slot], list) {
- if (size > chunk->contig_hint)
- continue;
- switch (pcpu_extend_area_map(chunk)) {
- case 0:
- break;
- case 1:
- goto restart; /* pcpu_lock dropped, restart */
- default:
- goto fail_unlock;
- }
- off = pcpu_alloc_area(chunk, size, align);
- if (off >= 0)
- goto area_found;
- }
- }
- /* hmmm... no space left, create a new chunk */
- spin_unlock_irq(&pcpu_lock);
- chunk = alloc_pcpu_chunk();
- if (!chunk)
- goto fail_unlock_mutex;
- spin_lock_irq(&pcpu_lock);
- pcpu_chunk_relocate(chunk, -1);
- pcpu_chunk_addr_insert(chunk);
- goto restart;
- area_found:
- spin_unlock_irq(&pcpu_lock);
- /* populate, map and clear the area */
- if (pcpu_populate_chunk(chunk, off, size)) {
- spin_lock_irq(&pcpu_lock);
- pcpu_free_area(chunk, off);
- goto fail_unlock;
- }
- mutex_unlock(&pcpu_alloc_mutex);
- return __addr_to_pcpu_ptr(chunk->vm->addr + off);
- fail_unlock:
- spin_unlock_irq(&pcpu_lock);
- fail_unlock_mutex:
- mutex_unlock(&pcpu_alloc_mutex);
- return NULL;
- }
- /**
- * __alloc_percpu - allocate dynamic percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- *
- * Allocate percpu area of @size bytes aligned at @align. Might
- * sleep. Might trigger writeouts.
- *
- * CONTEXT:
- * Does GFP_KERNEL allocation.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
- void *__alloc_percpu(size_t size, size_t align)
- {
- return pcpu_alloc(size, align, false);
- }
- EXPORT_SYMBOL_GPL(__alloc_percpu);
- /**
- * __alloc_reserved_percpu - allocate reserved percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- *
- * Allocate percpu area of @size bytes aligned at @align from reserved
- * percpu area if arch has set it up; otherwise, allocation is served
- * from the same dynamic area. Might sleep. Might trigger writeouts.
- *
- * CONTEXT:
- * Does GFP_KERNEL allocation.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
- void *__alloc_reserved_percpu(size_t size, size_t align)
- {
- return pcpu_alloc(size, align, true);
- }
- /**
- * pcpu_reclaim - reclaim fully free chunks, workqueue function
- * @work: unused
- *
- * Reclaim all fully free chunks except for the first one.
- *
- * CONTEXT:
- * workqueue context.
- */
- static void pcpu_reclaim(struct work_struct *work)
- {
- LIST_HEAD(todo);
- struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
- struct pcpu_chunk *chunk, *next;
- mutex_lock(&pcpu_alloc_mutex);
- spin_lock_irq(&pcpu_lock);
- list_for_each_entry_safe(chunk, next, head, list) {
- WARN_ON(chunk->immutable);
- /* spare the first one */
- if (chunk == list_first_entry(head, struct pcpu_chunk, list))
- continue;
- rb_erase(&chunk->rb_node, &pcpu_addr_root);
- list_move(&chunk->list, &todo);
- }
- spin_unlock_irq(&pcpu_lock);
- mutex_unlock(&pcpu_alloc_mutex);
- list_for_each_entry_safe(chunk, next, &todo, list) {
- pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
- free_pcpu_chunk(chunk);
- }
- }
- /**
- * free_percpu - free percpu area
- * @ptr: pointer to area to free
- *
- * Free percpu area @ptr.
- *
- * CONTEXT:
- * Can be called from atomic context.
- */
- void free_percpu(void *ptr)
- {
- void *addr = __pcpu_ptr_to_addr(ptr);
- struct pcpu_chunk *chunk;
- unsigned long flags;
- int off;
- if (!ptr)
- return;
- spin_lock_irqsave(&pcpu_lock, flags);
- chunk = pcpu_chunk_addr_search(addr);
- off = addr - chunk->vm->addr;
- pcpu_free_area(chunk, off);
- /* if there are more than one fully free chunks, wake up grim reaper */
- if (chunk->free_size == pcpu_unit_size) {
- struct pcpu_chunk *pos;
- list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
- if (pos != chunk) {
- schedule_work(&pcpu_reclaim_work);
- break;
- }
- }
- spin_unlock_irqrestore(&pcpu_lock, flags);
- }
- EXPORT_SYMBOL_GPL(free_percpu);
- /**
- * pcpu_setup_first_chunk - initialize the first percpu chunk
- * @get_page_fn: callback to fetch page pointer
- * @static_size: the size of static percpu area in bytes
- * @reserved_size: the size of reserved percpu area in bytes
- * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
- * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
- * @base_addr: mapped address, NULL for auto
- * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
- *
- * Initialize the first percpu chunk which contains the kernel static
- * perpcu area. This function is to be called from arch percpu area
- * setup path. The first two parameters are mandatory. The rest are
- * optional.
- *
- * @get_page_fn() should return pointer to percpu page given cpu
- * number and page number. It should at least return enough pages to
- * cover the static area. The returned pages for static area should
- * have been initialized with valid data. If @unit_size is specified,
- * it can also return pages after the static area. NULL return
- * indicates end of pages for the cpu. Note that @get_page_fn() must
- * return the same number of pages for all cpus.
- *
- * @reserved_size, if non-zero, specifies the amount of bytes to
- * reserve after the static area in the first chunk. This reserves
- * the first chunk such that it's available only through reserved
- * percpu allocation. This is primarily used to serve module percpu
- * static areas on architectures where the addressing model has
- * limited offset range for symbol relocations to guarantee module
- * percpu symbols fall inside the relocatable range.
- *
- * @dyn_size, if non-negative, determines the number of bytes
- * available for dynamic allocation in the first chunk. Specifying
- * non-negative value makes percpu leave alone the area beyond
- * @static_size + @reserved_size + @dyn_size.
- *
- * @unit_size, if non-negative, specifies unit size and must be
- * aligned to PAGE_SIZE and equal to or larger than @static_size +
- * @reserved_size + if non-negative, @dyn_size.
- *
- * Non-null @base_addr means that the caller already allocated virtual
- * region for the first chunk and mapped it. percpu must not mess
- * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL
- * @populate_pte_fn doesn't make any sense.
- *
- * @populate_pte_fn is used to populate the pagetable. NULL means the
- * caller already populated the pagetable.
- *
- * If the first chunk ends up with both reserved and dynamic areas, it
- * is served by two chunks - one to serve the core static and reserved
- * areas and the other for the dynamic area. They share the same vm
- * and page map but uses different area allocation map to stay away
- * from each other. The latter chunk is circulated in the chunk slots
- * and available for dynamic allocation like any other chunks.
- *
- * RETURNS:
- * The determined pcpu_unit_size which can be used to initialize
- * percpu access.
- */
- size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
- size_t static_size, size_t reserved_size,
- ssize_t dyn_size, ssize_t unit_size,
- void *base_addr,
- pcpu_populate_pte_fn_t populate_pte_fn)
- {
- static struct vm_struct first_vm;
- static int smap[2], dmap[2];
- size_t size_sum = static_size + reserved_size +
- (dyn_size >= 0 ? dyn_size : 0);
- struct pcpu_chunk *schunk, *dchunk = NULL;
- unsigned int cpu;
- int nr_pages;
- int err, i;
- /* santiy checks */
- BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
- ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
- BUG_ON(!static_size);
- if (unit_size >= 0) {
- BUG_ON(unit_size < size_sum);
- BUG_ON(unit_size & ~PAGE_MASK);
- BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
- } else
- BUG_ON(base_addr);
- BUG_ON(base_addr && populate_pte_fn);
- if (unit_size >= 0)
- pcpu_unit_pages = unit_size >> PAGE_SHIFT;
- else
- pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
- PFN_UP(size_sum));
- pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
- pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
- pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
- + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
- if (dyn_size < 0)
- dyn_size = pcpu_unit_size - static_size - reserved_size;
- /*
- * Allocate chunk slots. The additional last slot is for
- * empty chunks.
- */
- pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
- pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
- for (i = 0; i < pcpu_nr_slots; i++)
- INIT_LIST_HEAD(&pcpu_slot[i]);
- /*
- * Initialize static chunk. If reserved_size is zero, the
- * static chunk covers static area + dynamic allocation area
- * in the first chunk. If reserved_size is not zero, it
- * covers static area + reserved area (mostly used for module
- * static percpu allocation).
- */
- schunk = alloc_bootmem(pcpu_chunk_struct_size);
- INIT_LIST_HEAD(&schunk->list);
- schunk->vm = &first_vm;
- schunk->map = smap;
- schunk->map_alloc = ARRAY_SIZE(smap);
- schunk->page = schunk->page_ar;
- if (reserved_size) {
- schunk->free_size = reserved_size;
- pcpu_reserved_chunk = schunk; /* not for dynamic alloc */
- } else {
- schunk->free_size = dyn_size;
- dyn_size = 0; /* dynamic area covered */
- }
- schunk->contig_hint = schunk->free_size;
- schunk->map[schunk->map_used++] = -static_size;
- if (schunk->free_size)
- schunk->map[schunk->map_used++] = schunk->free_size;
- pcpu_reserved_chunk_limit = static_size + schunk->free_size;
- /* init dynamic chunk if necessary */
- if (dyn_size) {
- dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
- INIT_LIST_HEAD(&dchunk->list);
- dchunk->vm = &first_vm;
- dchunk->map = dmap;
- dchunk->map_alloc = ARRAY_SIZE(dmap);
- dchunk->page = schunk->page_ar; /* share page map with schunk */
- dchunk->contig_hint = dchunk->free_size = dyn_size;
- dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
- dchunk->map[dchunk->map_used++] = dchunk->free_size;
- }
- /* allocate vm address */
- first_vm.flags = VM_ALLOC;
- first_vm.size = pcpu_chunk_size;
- if (!base_addr)
- vm_area_register_early(&first_vm, PAGE_SIZE);
- else {
- /*
- * Pages already mapped. No need to remap into
- * vmalloc area. In this case the first chunks can't
- * be mapped or unmapped by percpu and are marked
- * immutable.
- */
- first_vm.addr = base_addr;
- schunk->immutable = true;
- if (dchunk)
- dchunk->immutable = true;
- }
- /* assign pages */
- nr_pages = -1;
- for_each_possible_cpu(cpu) {
- for (i = 0; i < pcpu_unit_pages; i++) {
- struct page *page = get_page_fn(cpu, i);
- if (!page)
- break;
- *pcpu_chunk_pagep(schunk, cpu, i) = page;
- }
- BUG_ON(i < PFN_UP(static_size));
- if (nr_pages < 0)
- nr_pages = i;
- else
- BUG_ON(nr_pages != i);
- }
- /* map them */
- if (populate_pte_fn) {
- for_each_possible_cpu(cpu)
- for (i = 0; i < nr_pages; i++)
- populate_pte_fn(pcpu_chunk_addr(schunk,
- cpu, i));
- err = pcpu_map(schunk, 0, nr_pages);
- if (err)
- panic("failed to setup static percpu area, err=%d\n",
- err);
- }
- /* link the first chunk in */
- if (!dchunk) {
- pcpu_chunk_relocate(schunk, -1);
- pcpu_chunk_addr_insert(schunk);
- } else {
- pcpu_chunk_relocate(dchunk, -1);
- pcpu_chunk_addr_insert(dchunk);
- }
- /* we're done */
- pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
- return pcpu_unit_size;
- }
- /*
- * Embedding first chunk setup helper.
- */
- static void *pcpue_ptr __initdata;
- static size_t pcpue_size __initdata;
- static size_t pcpue_unit_size __initdata;
- static struct page * __init pcpue_get_page(unsigned int cpu, int pageno)
- {
- size_t off = (size_t)pageno << PAGE_SHIFT;
- if (off >= pcpue_size)
- return NULL;
- return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off);
- }
- /**
- * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
- * @static_size: the size of static percpu area in bytes
- * @reserved_size: the size of reserved percpu area in bytes
- * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
- * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
- *
- * This is a helper to ease setting up embedded first percpu chunk and
- * can be called where pcpu_setup_first_chunk() is expected.
- *
- * If this function is used to setup the first chunk, it is allocated
- * as a contiguous area using bootmem allocator and used as-is without
- * being mapped into vmalloc area. This enables the first chunk to
- * piggy back on the linear physical mapping which often uses larger
- * page size.
- *
- * When @dyn_size is positive, dynamic area might be larger than
- * specified to fill page alignment. Also, when @dyn_size is auto,
- * @dyn_size does not fill the whole first chunk but only what's
- * necessary for page alignment after static and reserved areas.
- *
- * If the needed size is smaller than the minimum or specified unit
- * size, the leftover is returned to the bootmem allocator.
- *
- * RETURNS:
- * The determined pcpu_unit_size which can be used to initialize
- * percpu access on success, -errno on failure.
- */
- ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
- ssize_t dyn_size, ssize_t unit_size)
- {
- unsigned int cpu;
- /* determine parameters and allocate */
- pcpue_size = PFN_ALIGN(static_size + reserved_size +
- (dyn_size >= 0 ? dyn_size : 0));
- if (dyn_size != 0)
- dyn_size = pcpue_size - static_size - reserved_size;
- if (unit_size >= 0) {
- BUG_ON(unit_size < pcpue_size);
- pcpue_unit_size = unit_size;
- } else
- pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE);
- pcpue_ptr = __alloc_bootmem_nopanic(
- num_possible_cpus() * pcpue_unit_size,
- PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
- if (!pcpue_ptr)
- return -ENOMEM;
- /* return the leftover and copy */
- for_each_possible_cpu(cpu) {
- void *ptr = pcpue_ptr + cpu * pcpue_unit_size;
- free_bootmem(__pa(ptr + pcpue_size),
- pcpue_unit_size - pcpue_size);
- memcpy(ptr, __per_cpu_load, static_size);
- }
- /* we're ready, commit */
- pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
- pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size);
- return pcpu_setup_first_chunk(pcpue_get_page, static_size,
- reserved_size, dyn_size,
- pcpue_unit_size, pcpue_ptr, NULL);
- }
|