1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771 |
- /*
- * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
- * policies)
- */
- static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
- {
- return container_of(rt_se, struct task_struct, rt);
- }
- #ifdef CONFIG_RT_GROUP_SCHED
- static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
- {
- return rt_rq->rq;
- }
- static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
- {
- return rt_se->rt_rq;
- }
- #else /* CONFIG_RT_GROUP_SCHED */
- static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
- {
- return container_of(rt_rq, struct rq, rt);
- }
- static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
- {
- struct task_struct *p = rt_task_of(rt_se);
- struct rq *rq = task_rq(p);
- return &rq->rt;
- }
- #endif /* CONFIG_RT_GROUP_SCHED */
- #ifdef CONFIG_SMP
- static inline int rt_overloaded(struct rq *rq)
- {
- return atomic_read(&rq->rd->rto_count);
- }
- static inline void rt_set_overload(struct rq *rq)
- {
- if (!rq->online)
- return;
- cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
- /*
- * Make sure the mask is visible before we set
- * the overload count. That is checked to determine
- * if we should look at the mask. It would be a shame
- * if we looked at the mask, but the mask was not
- * updated yet.
- */
- wmb();
- atomic_inc(&rq->rd->rto_count);
- }
- static inline void rt_clear_overload(struct rq *rq)
- {
- if (!rq->online)
- return;
- /* the order here really doesn't matter */
- atomic_dec(&rq->rd->rto_count);
- cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
- }
- static void update_rt_migration(struct rt_rq *rt_rq)
- {
- if (rt_rq->rt_nr_migratory && (rt_rq->rt_nr_running > 1)) {
- if (!rt_rq->overloaded) {
- rt_set_overload(rq_of_rt_rq(rt_rq));
- rt_rq->overloaded = 1;
- }
- } else if (rt_rq->overloaded) {
- rt_clear_overload(rq_of_rt_rq(rt_rq));
- rt_rq->overloaded = 0;
- }
- }
- static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- if (rt_se->nr_cpus_allowed > 1)
- rt_rq->rt_nr_migratory++;
- update_rt_migration(rt_rq);
- }
- static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- if (rt_se->nr_cpus_allowed > 1)
- rt_rq->rt_nr_migratory--;
- update_rt_migration(rt_rq);
- }
- static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
- {
- plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
- plist_node_init(&p->pushable_tasks, p->prio);
- plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
- }
- static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
- {
- plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
- }
- #else
- static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
- {
- }
- static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
- {
- }
- static inline
- void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- }
- static inline
- void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- }
- #endif /* CONFIG_SMP */
- static inline int on_rt_rq(struct sched_rt_entity *rt_se)
- {
- return !list_empty(&rt_se->run_list);
- }
- #ifdef CONFIG_RT_GROUP_SCHED
- static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
- {
- if (!rt_rq->tg)
- return RUNTIME_INF;
- return rt_rq->rt_runtime;
- }
- static inline u64 sched_rt_period(struct rt_rq *rt_rq)
- {
- return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
- }
- #define for_each_leaf_rt_rq(rt_rq, rq) \
- list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
- #define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = rt_se->parent)
- static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
- {
- return rt_se->my_q;
- }
- static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
- static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
- static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
- {
- struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
- struct sched_rt_entity *rt_se = rt_rq->rt_se;
- if (rt_rq->rt_nr_running) {
- if (rt_se && !on_rt_rq(rt_se))
- enqueue_rt_entity(rt_se);
- if (rt_rq->highest_prio.curr < curr->prio)
- resched_task(curr);
- }
- }
- static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
- {
- struct sched_rt_entity *rt_se = rt_rq->rt_se;
- if (rt_se && on_rt_rq(rt_se))
- dequeue_rt_entity(rt_se);
- }
- static inline int rt_rq_throttled(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
- }
- static int rt_se_boosted(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- struct task_struct *p;
- if (rt_rq)
- return !!rt_rq->rt_nr_boosted;
- p = rt_task_of(rt_se);
- return p->prio != p->normal_prio;
- }
- #ifdef CONFIG_SMP
- static inline const struct cpumask *sched_rt_period_mask(void)
- {
- return cpu_rq(smp_processor_id())->rd->span;
- }
- #else
- static inline const struct cpumask *sched_rt_period_mask(void)
- {
- return cpu_online_mask;
- }
- #endif
- static inline
- struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
- {
- return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
- }
- static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
- {
- return &rt_rq->tg->rt_bandwidth;
- }
- #else /* !CONFIG_RT_GROUP_SCHED */
- static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_runtime;
- }
- static inline u64 sched_rt_period(struct rt_rq *rt_rq)
- {
- return ktime_to_ns(def_rt_bandwidth.rt_period);
- }
- #define for_each_leaf_rt_rq(rt_rq, rq) \
- for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
- #define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = NULL)
- static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
- {
- return NULL;
- }
- static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
- {
- if (rt_rq->rt_nr_running)
- resched_task(rq_of_rt_rq(rt_rq)->curr);
- }
- static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
- {
- }
- static inline int rt_rq_throttled(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_throttled;
- }
- static inline const struct cpumask *sched_rt_period_mask(void)
- {
- return cpu_online_mask;
- }
- static inline
- struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
- {
- return &cpu_rq(cpu)->rt;
- }
- static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
- {
- return &def_rt_bandwidth;
- }
- #endif /* CONFIG_RT_GROUP_SCHED */
- #ifdef CONFIG_SMP
- /*
- * We ran out of runtime, see if we can borrow some from our neighbours.
- */
- static int do_balance_runtime(struct rt_rq *rt_rq)
- {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
- int i, weight, more = 0;
- u64 rt_period;
- weight = cpumask_weight(rd->span);
- spin_lock(&rt_b->rt_runtime_lock);
- rt_period = ktime_to_ns(rt_b->rt_period);
- for_each_cpu(i, rd->span) {
- struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
- s64 diff;
- if (iter == rt_rq)
- continue;
- spin_lock(&iter->rt_runtime_lock);
- /*
- * Either all rqs have inf runtime and there's nothing to steal
- * or __disable_runtime() below sets a specific rq to inf to
- * indicate its been disabled and disalow stealing.
- */
- if (iter->rt_runtime == RUNTIME_INF)
- goto next;
- /*
- * From runqueues with spare time, take 1/n part of their
- * spare time, but no more than our period.
- */
- diff = iter->rt_runtime - iter->rt_time;
- if (diff > 0) {
- diff = div_u64((u64)diff, weight);
- if (rt_rq->rt_runtime + diff > rt_period)
- diff = rt_period - rt_rq->rt_runtime;
- iter->rt_runtime -= diff;
- rt_rq->rt_runtime += diff;
- more = 1;
- if (rt_rq->rt_runtime == rt_period) {
- spin_unlock(&iter->rt_runtime_lock);
- break;
- }
- }
- next:
- spin_unlock(&iter->rt_runtime_lock);
- }
- spin_unlock(&rt_b->rt_runtime_lock);
- return more;
- }
- /*
- * Ensure this RQ takes back all the runtime it lend to its neighbours.
- */
- static void __disable_runtime(struct rq *rq)
- {
- struct root_domain *rd = rq->rd;
- struct rt_rq *rt_rq;
- if (unlikely(!scheduler_running))
- return;
- for_each_leaf_rt_rq(rt_rq, rq) {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- s64 want;
- int i;
- spin_lock(&rt_b->rt_runtime_lock);
- spin_lock(&rt_rq->rt_runtime_lock);
- /*
- * Either we're all inf and nobody needs to borrow, or we're
- * already disabled and thus have nothing to do, or we have
- * exactly the right amount of runtime to take out.
- */
- if (rt_rq->rt_runtime == RUNTIME_INF ||
- rt_rq->rt_runtime == rt_b->rt_runtime)
- goto balanced;
- spin_unlock(&rt_rq->rt_runtime_lock);
- /*
- * Calculate the difference between what we started out with
- * and what we current have, that's the amount of runtime
- * we lend and now have to reclaim.
- */
- want = rt_b->rt_runtime - rt_rq->rt_runtime;
- /*
- * Greedy reclaim, take back as much as we can.
- */
- for_each_cpu(i, rd->span) {
- struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
- s64 diff;
- /*
- * Can't reclaim from ourselves or disabled runqueues.
- */
- if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
- continue;
- spin_lock(&iter->rt_runtime_lock);
- if (want > 0) {
- diff = min_t(s64, iter->rt_runtime, want);
- iter->rt_runtime -= diff;
- want -= diff;
- } else {
- iter->rt_runtime -= want;
- want -= want;
- }
- spin_unlock(&iter->rt_runtime_lock);
- if (!want)
- break;
- }
- spin_lock(&rt_rq->rt_runtime_lock);
- /*
- * We cannot be left wanting - that would mean some runtime
- * leaked out of the system.
- */
- BUG_ON(want);
- balanced:
- /*
- * Disable all the borrow logic by pretending we have inf
- * runtime - in which case borrowing doesn't make sense.
- */
- rt_rq->rt_runtime = RUNTIME_INF;
- spin_unlock(&rt_rq->rt_runtime_lock);
- spin_unlock(&rt_b->rt_runtime_lock);
- }
- }
- static void disable_runtime(struct rq *rq)
- {
- unsigned long flags;
- spin_lock_irqsave(&rq->lock, flags);
- __disable_runtime(rq);
- spin_unlock_irqrestore(&rq->lock, flags);
- }
- static void __enable_runtime(struct rq *rq)
- {
- struct rt_rq *rt_rq;
- if (unlikely(!scheduler_running))
- return;
- /*
- * Reset each runqueue's bandwidth settings
- */
- for_each_leaf_rt_rq(rt_rq, rq) {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- spin_lock(&rt_b->rt_runtime_lock);
- spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_runtime = rt_b->rt_runtime;
- rt_rq->rt_time = 0;
- rt_rq->rt_throttled = 0;
- spin_unlock(&rt_rq->rt_runtime_lock);
- spin_unlock(&rt_b->rt_runtime_lock);
- }
- }
- static void enable_runtime(struct rq *rq)
- {
- unsigned long flags;
- spin_lock_irqsave(&rq->lock, flags);
- __enable_runtime(rq);
- spin_unlock_irqrestore(&rq->lock, flags);
- }
- static int balance_runtime(struct rt_rq *rt_rq)
- {
- int more = 0;
- if (rt_rq->rt_time > rt_rq->rt_runtime) {
- spin_unlock(&rt_rq->rt_runtime_lock);
- more = do_balance_runtime(rt_rq);
- spin_lock(&rt_rq->rt_runtime_lock);
- }
- return more;
- }
- #else /* !CONFIG_SMP */
- static inline int balance_runtime(struct rt_rq *rt_rq)
- {
- return 0;
- }
- #endif /* CONFIG_SMP */
- static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
- {
- int i, idle = 1;
- const struct cpumask *span;
- if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
- return 1;
- span = sched_rt_period_mask();
- for_each_cpu(i, span) {
- int enqueue = 0;
- struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
- struct rq *rq = rq_of_rt_rq(rt_rq);
- spin_lock(&rq->lock);
- if (rt_rq->rt_time) {
- u64 runtime;
- spin_lock(&rt_rq->rt_runtime_lock);
- if (rt_rq->rt_throttled)
- balance_runtime(rt_rq);
- runtime = rt_rq->rt_runtime;
- rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
- if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
- rt_rq->rt_throttled = 0;
- enqueue = 1;
- }
- if (rt_rq->rt_time || rt_rq->rt_nr_running)
- idle = 0;
- spin_unlock(&rt_rq->rt_runtime_lock);
- } else if (rt_rq->rt_nr_running)
- idle = 0;
- if (enqueue)
- sched_rt_rq_enqueue(rt_rq);
- spin_unlock(&rq->lock);
- }
- return idle;
- }
- static inline int rt_se_prio(struct sched_rt_entity *rt_se)
- {
- #ifdef CONFIG_RT_GROUP_SCHED
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- if (rt_rq)
- return rt_rq->highest_prio.curr;
- #endif
- return rt_task_of(rt_se)->prio;
- }
- static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
- {
- u64 runtime = sched_rt_runtime(rt_rq);
- if (rt_rq->rt_throttled)
- return rt_rq_throttled(rt_rq);
- if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
- return 0;
- balance_runtime(rt_rq);
- runtime = sched_rt_runtime(rt_rq);
- if (runtime == RUNTIME_INF)
- return 0;
- if (rt_rq->rt_time > runtime) {
- rt_rq->rt_throttled = 1;
- if (rt_rq_throttled(rt_rq)) {
- sched_rt_rq_dequeue(rt_rq);
- return 1;
- }
- }
- return 0;
- }
- /*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
- */
- static void update_curr_rt(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- struct sched_rt_entity *rt_se = &curr->rt;
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- u64 delta_exec;
- if (!task_has_rt_policy(curr))
- return;
- delta_exec = rq->clock - curr->se.exec_start;
- if (unlikely((s64)delta_exec < 0))
- delta_exec = 0;
- schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
- curr->se.sum_exec_runtime += delta_exec;
- account_group_exec_runtime(curr, delta_exec);
- curr->se.exec_start = rq->clock;
- cpuacct_charge(curr, delta_exec);
- if (!rt_bandwidth_enabled())
- return;
- for_each_sched_rt_entity(rt_se) {
- rt_rq = rt_rq_of_se(rt_se);
- if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
- spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_time += delta_exec;
- if (sched_rt_runtime_exceeded(rt_rq))
- resched_task(curr);
- spin_unlock(&rt_rq->rt_runtime_lock);
- }
- }
- }
- #if defined CONFIG_SMP
- static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
- static inline int next_prio(struct rq *rq)
- {
- struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
- if (next && rt_prio(next->prio))
- return next->prio;
- else
- return MAX_RT_PRIO;
- }
- static void
- inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
- {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- if (prio < prev_prio) {
- /*
- * If the new task is higher in priority than anything on the
- * run-queue, we know that the previous high becomes our
- * next-highest.
- */
- rt_rq->highest_prio.next = prev_prio;
- if (rq->online)
- cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
- } else if (prio == rt_rq->highest_prio.curr)
- /*
- * If the next task is equal in priority to the highest on
- * the run-queue, then we implicitly know that the next highest
- * task cannot be any lower than current
- */
- rt_rq->highest_prio.next = prio;
- else if (prio < rt_rq->highest_prio.next)
- /*
- * Otherwise, we need to recompute next-highest
- */
- rt_rq->highest_prio.next = next_prio(rq);
- }
- static void
- dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
- {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
- rt_rq->highest_prio.next = next_prio(rq);
- if (rq->online && rt_rq->highest_prio.curr != prev_prio)
- cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
- }
- #else /* CONFIG_SMP */
- static inline
- void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
- static inline
- void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
- #endif /* CONFIG_SMP */
- #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
- static void
- inc_rt_prio(struct rt_rq *rt_rq, int prio)
- {
- int prev_prio = rt_rq->highest_prio.curr;
- if (prio < prev_prio)
- rt_rq->highest_prio.curr = prio;
- inc_rt_prio_smp(rt_rq, prio, prev_prio);
- }
- static void
- dec_rt_prio(struct rt_rq *rt_rq, int prio)
- {
- int prev_prio = rt_rq->highest_prio.curr;
- if (rt_rq->rt_nr_running) {
- WARN_ON(prio < prev_prio);
- /*
- * This may have been our highest task, and therefore
- * we may have some recomputation to do
- */
- if (prio == prev_prio) {
- struct rt_prio_array *array = &rt_rq->active;
- rt_rq->highest_prio.curr =
- sched_find_first_bit(array->bitmap);
- }
- } else
- rt_rq->highest_prio.curr = MAX_RT_PRIO;
- dec_rt_prio_smp(rt_rq, prio, prev_prio);
- }
- #else
- static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
- static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
- #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
- #ifdef CONFIG_RT_GROUP_SCHED
- static void
- inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- if (rt_se_boosted(rt_se))
- rt_rq->rt_nr_boosted++;
- if (rt_rq->tg)
- start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
- }
- static void
- dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- if (rt_se_boosted(rt_se))
- rt_rq->rt_nr_boosted--;
- WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
- }
- #else /* CONFIG_RT_GROUP_SCHED */
- static void
- inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- start_rt_bandwidth(&def_rt_bandwidth);
- }
- static inline
- void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
- #endif /* CONFIG_RT_GROUP_SCHED */
- static inline
- void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- int prio = rt_se_prio(rt_se);
- WARN_ON(!rt_prio(prio));
- rt_rq->rt_nr_running++;
- inc_rt_prio(rt_rq, prio);
- inc_rt_migration(rt_se, rt_rq);
- inc_rt_group(rt_se, rt_rq);
- }
- static inline
- void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- WARN_ON(!rt_prio(rt_se_prio(rt_se)));
- WARN_ON(!rt_rq->rt_nr_running);
- rt_rq->rt_nr_running--;
- dec_rt_prio(rt_rq, rt_se_prio(rt_se));
- dec_rt_migration(rt_se, rt_rq);
- dec_rt_group(rt_se, rt_rq);
- }
- static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- struct rt_prio_array *array = &rt_rq->active;
- struct rt_rq *group_rq = group_rt_rq(rt_se);
- struct list_head *queue = array->queue + rt_se_prio(rt_se);
- /*
- * Don't enqueue the group if its throttled, or when empty.
- * The latter is a consequence of the former when a child group
- * get throttled and the current group doesn't have any other
- * active members.
- */
- if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
- return;
- list_add_tail(&rt_se->run_list, queue);
- __set_bit(rt_se_prio(rt_se), array->bitmap);
- inc_rt_tasks(rt_se, rt_rq);
- }
- static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- struct rt_prio_array *array = &rt_rq->active;
- list_del_init(&rt_se->run_list);
- if (list_empty(array->queue + rt_se_prio(rt_se)))
- __clear_bit(rt_se_prio(rt_se), array->bitmap);
- dec_rt_tasks(rt_se, rt_rq);
- }
- /*
- * Because the prio of an upper entry depends on the lower
- * entries, we must remove entries top - down.
- */
- static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
- {
- struct sched_rt_entity *back = NULL;
- for_each_sched_rt_entity(rt_se) {
- rt_se->back = back;
- back = rt_se;
- }
- for (rt_se = back; rt_se; rt_se = rt_se->back) {
- if (on_rt_rq(rt_se))
- __dequeue_rt_entity(rt_se);
- }
- }
- static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
- {
- dequeue_rt_stack(rt_se);
- for_each_sched_rt_entity(rt_se)
- __enqueue_rt_entity(rt_se);
- }
- static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
- {
- dequeue_rt_stack(rt_se);
- for_each_sched_rt_entity(rt_se) {
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- if (rt_rq && rt_rq->rt_nr_running)
- __enqueue_rt_entity(rt_se);
- }
- }
- /*
- * Adding/removing a task to/from a priority array:
- */
- static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- if (wakeup)
- rt_se->timeout = 0;
- enqueue_rt_entity(rt_se);
- if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
- enqueue_pushable_task(rq, p);
- inc_cpu_load(rq, p->se.load.weight);
- }
- static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- update_curr_rt(rq);
- dequeue_rt_entity(rt_se);
- dequeue_pushable_task(rq, p);
- dec_cpu_load(rq, p->se.load.weight);
- }
- /*
- * Put task to the end of the run list without the overhead of dequeue
- * followed by enqueue.
- */
- static void
- requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
- {
- if (on_rt_rq(rt_se)) {
- struct rt_prio_array *array = &rt_rq->active;
- struct list_head *queue = array->queue + rt_se_prio(rt_se);
- if (head)
- list_move(&rt_se->run_list, queue);
- else
- list_move_tail(&rt_se->run_list, queue);
- }
- }
- static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- struct rt_rq *rt_rq;
- for_each_sched_rt_entity(rt_se) {
- rt_rq = rt_rq_of_se(rt_se);
- requeue_rt_entity(rt_rq, rt_se, head);
- }
- }
- static void yield_task_rt(struct rq *rq)
- {
- requeue_task_rt(rq, rq->curr, 0);
- }
- #ifdef CONFIG_SMP
- static int find_lowest_rq(struct task_struct *task);
- static int select_task_rq_rt(struct task_struct *p, int sync)
- {
- struct rq *rq = task_rq(p);
- /*
- * If the current task is an RT task, then
- * try to see if we can wake this RT task up on another
- * runqueue. Otherwise simply start this RT task
- * on its current runqueue.
- *
- * We want to avoid overloading runqueues. Even if
- * the RT task is of higher priority than the current RT task.
- * RT tasks behave differently than other tasks. If
- * one gets preempted, we try to push it off to another queue.
- * So trying to keep a preempting RT task on the same
- * cache hot CPU will force the running RT task to
- * a cold CPU. So we waste all the cache for the lower
- * RT task in hopes of saving some of a RT task
- * that is just being woken and probably will have
- * cold cache anyway.
- */
- if (unlikely(rt_task(rq->curr)) &&
- (p->rt.nr_cpus_allowed > 1)) {
- int cpu = find_lowest_rq(p);
- return (cpu == -1) ? task_cpu(p) : cpu;
- }
- /*
- * Otherwise, just let it ride on the affined RQ and the
- * post-schedule router will push the preempted task away
- */
- return task_cpu(p);
- }
- static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
- {
- if (rq->curr->rt.nr_cpus_allowed == 1)
- return;
- if (p->rt.nr_cpus_allowed != 1
- && cpupri_find(&rq->rd->cpupri, p, NULL))
- return;
- if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
- return;
- /*
- * There appears to be other cpus that can accept
- * current and none to run 'p', so lets reschedule
- * to try and push current away:
- */
- requeue_task_rt(rq, p, 1);
- resched_task(rq->curr);
- }
- #endif /* CONFIG_SMP */
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
- {
- if (p->prio < rq->curr->prio) {
- resched_task(rq->curr);
- return;
- }
- #ifdef CONFIG_SMP
- /*
- * If:
- *
- * - the newly woken task is of equal priority to the current task
- * - the newly woken task is non-migratable while current is migratable
- * - current will be preempted on the next reschedule
- *
- * we should check to see if current can readily move to a different
- * cpu. If so, we will reschedule to allow the push logic to try
- * to move current somewhere else, making room for our non-migratable
- * task.
- */
- if (p->prio == rq->curr->prio && !need_resched())
- check_preempt_equal_prio(rq, p);
- #endif
- }
- static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
- struct rt_rq *rt_rq)
- {
- struct rt_prio_array *array = &rt_rq->active;
- struct sched_rt_entity *next = NULL;
- struct list_head *queue;
- int idx;
- idx = sched_find_first_bit(array->bitmap);
- BUG_ON(idx >= MAX_RT_PRIO);
- queue = array->queue + idx;
- next = list_entry(queue->next, struct sched_rt_entity, run_list);
- return next;
- }
- static struct task_struct *_pick_next_task_rt(struct rq *rq)
- {
- struct sched_rt_entity *rt_se;
- struct task_struct *p;
- struct rt_rq *rt_rq;
- rt_rq = &rq->rt;
- if (unlikely(!rt_rq->rt_nr_running))
- return NULL;
- if (rt_rq_throttled(rt_rq))
- return NULL;
- do {
- rt_se = pick_next_rt_entity(rq, rt_rq);
- BUG_ON(!rt_se);
- rt_rq = group_rt_rq(rt_se);
- } while (rt_rq);
- p = rt_task_of(rt_se);
- p->se.exec_start = rq->clock;
- return p;
- }
- static struct task_struct *pick_next_task_rt(struct rq *rq)
- {
- struct task_struct *p = _pick_next_task_rt(rq);
- /* The running task is never eligible for pushing */
- if (p)
- dequeue_pushable_task(rq, p);
- return p;
- }
- static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
- {
- update_curr_rt(rq);
- p->se.exec_start = 0;
- /*
- * The previous task needs to be made eligible for pushing
- * if it is still active
- */
- if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
- enqueue_pushable_task(rq, p);
- }
- #ifdef CONFIG_SMP
- /* Only try algorithms three times */
- #define RT_MAX_TRIES 3
- static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
- static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
- {
- if (!task_running(rq, p) &&
- (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
- (p->rt.nr_cpus_allowed > 1))
- return 1;
- return 0;
- }
- /* Return the second highest RT task, NULL otherwise */
- static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
- {
- struct task_struct *next = NULL;
- struct sched_rt_entity *rt_se;
- struct rt_prio_array *array;
- struct rt_rq *rt_rq;
- int idx;
- for_each_leaf_rt_rq(rt_rq, rq) {
- array = &rt_rq->active;
- idx = sched_find_first_bit(array->bitmap);
- next_idx:
- if (idx >= MAX_RT_PRIO)
- continue;
- if (next && next->prio < idx)
- continue;
- list_for_each_entry(rt_se, array->queue + idx, run_list) {
- struct task_struct *p = rt_task_of(rt_se);
- if (pick_rt_task(rq, p, cpu)) {
- next = p;
- break;
- }
- }
- if (!next) {
- idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
- goto next_idx;
- }
- }
- return next;
- }
- static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
- static inline int pick_optimal_cpu(int this_cpu,
- const struct cpumask *mask)
- {
- int first;
- /* "this_cpu" is cheaper to preempt than a remote processor */
- if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
- return this_cpu;
- first = cpumask_first(mask);
- if (first < nr_cpu_ids)
- return first;
- return -1;
- }
- static int find_lowest_rq(struct task_struct *task)
- {
- struct sched_domain *sd;
- struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
- int this_cpu = smp_processor_id();
- int cpu = task_cpu(task);
- cpumask_var_t domain_mask;
- if (task->rt.nr_cpus_allowed == 1)
- return -1; /* No other targets possible */
- if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
- return -1; /* No targets found */
- /*
- * Only consider CPUs that are usable for migration.
- * I guess we might want to change cpupri_find() to ignore those
- * in the first place.
- */
- cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
- /*
- * At this point we have built a mask of cpus representing the
- * lowest priority tasks in the system. Now we want to elect
- * the best one based on our affinity and topology.
- *
- * We prioritize the last cpu that the task executed on since
- * it is most likely cache-hot in that location.
- */
- if (cpumask_test_cpu(cpu, lowest_mask))
- return cpu;
- /*
- * Otherwise, we consult the sched_domains span maps to figure
- * out which cpu is logically closest to our hot cache data.
- */
- if (this_cpu == cpu)
- this_cpu = -1; /* Skip this_cpu opt if the same */
- if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
- for_each_domain(cpu, sd) {
- if (sd->flags & SD_WAKE_AFFINE) {
- int best_cpu;
- cpumask_and(domain_mask,
- sched_domain_span(sd),
- lowest_mask);
- best_cpu = pick_optimal_cpu(this_cpu,
- domain_mask);
- if (best_cpu != -1) {
- free_cpumask_var(domain_mask);
- return best_cpu;
- }
- }
- }
- free_cpumask_var(domain_mask);
- }
- /*
- * And finally, if there were no matches within the domains
- * just give the caller *something* to work with from the compatible
- * locations.
- */
- return pick_optimal_cpu(this_cpu, lowest_mask);
- }
- /* Will lock the rq it finds */
- static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
- {
- struct rq *lowest_rq = NULL;
- int tries;
- int cpu;
- for (tries = 0; tries < RT_MAX_TRIES; tries++) {
- cpu = find_lowest_rq(task);
- if ((cpu == -1) || (cpu == rq->cpu))
- break;
- lowest_rq = cpu_rq(cpu);
- /* if the prio of this runqueue changed, try again */
- if (double_lock_balance(rq, lowest_rq)) {
- /*
- * We had to unlock the run queue. In
- * the mean time, task could have
- * migrated already or had its affinity changed.
- * Also make sure that it wasn't scheduled on its rq.
- */
- if (unlikely(task_rq(task) != rq ||
- !cpumask_test_cpu(lowest_rq->cpu,
- &task->cpus_allowed) ||
- task_running(rq, task) ||
- !task->se.on_rq)) {
- spin_unlock(&lowest_rq->lock);
- lowest_rq = NULL;
- break;
- }
- }
- /* If this rq is still suitable use it. */
- if (lowest_rq->rt.highest_prio.curr > task->prio)
- break;
- /* try again */
- double_unlock_balance(rq, lowest_rq);
- lowest_rq = NULL;
- }
- return lowest_rq;
- }
- static inline int has_pushable_tasks(struct rq *rq)
- {
- return !plist_head_empty(&rq->rt.pushable_tasks);
- }
- static struct task_struct *pick_next_pushable_task(struct rq *rq)
- {
- struct task_struct *p;
- if (!has_pushable_tasks(rq))
- return NULL;
- p = plist_first_entry(&rq->rt.pushable_tasks,
- struct task_struct, pushable_tasks);
- BUG_ON(rq->cpu != task_cpu(p));
- BUG_ON(task_current(rq, p));
- BUG_ON(p->rt.nr_cpus_allowed <= 1);
- BUG_ON(!p->se.on_rq);
- BUG_ON(!rt_task(p));
- return p;
- }
- /*
- * If the current CPU has more than one RT task, see if the non
- * running task can migrate over to a CPU that is running a task
- * of lesser priority.
- */
- static int push_rt_task(struct rq *rq)
- {
- struct task_struct *next_task;
- struct rq *lowest_rq;
- if (!rq->rt.overloaded)
- return 0;
- next_task = pick_next_pushable_task(rq);
- if (!next_task)
- return 0;
- retry:
- if (unlikely(next_task == rq->curr)) {
- WARN_ON(1);
- return 0;
- }
- /*
- * It's possible that the next_task slipped in of
- * higher priority than current. If that's the case
- * just reschedule current.
- */
- if (unlikely(next_task->prio < rq->curr->prio)) {
- resched_task(rq->curr);
- return 0;
- }
- /* We might release rq lock */
- get_task_struct(next_task);
- /* find_lock_lowest_rq locks the rq if found */
- lowest_rq = find_lock_lowest_rq(next_task, rq);
- if (!lowest_rq) {
- struct task_struct *task;
- /*
- * find lock_lowest_rq releases rq->lock
- * so it is possible that next_task has migrated.
- *
- * We need to make sure that the task is still on the same
- * run-queue and is also still the next task eligible for
- * pushing.
- */
- task = pick_next_pushable_task(rq);
- if (task_cpu(next_task) == rq->cpu && task == next_task) {
- /*
- * If we get here, the task hasnt moved at all, but
- * it has failed to push. We will not try again,
- * since the other cpus will pull from us when they
- * are ready.
- */
- dequeue_pushable_task(rq, next_task);
- goto out;
- }
- if (!task)
- /* No more tasks, just exit */
- goto out;
- /*
- * Something has shifted, try again.
- */
- put_task_struct(next_task);
- next_task = task;
- goto retry;
- }
- deactivate_task(rq, next_task, 0);
- set_task_cpu(next_task, lowest_rq->cpu);
- activate_task(lowest_rq, next_task, 0);
- resched_task(lowest_rq->curr);
- double_unlock_balance(rq, lowest_rq);
- out:
- put_task_struct(next_task);
- return 1;
- }
- static void push_rt_tasks(struct rq *rq)
- {
- /* push_rt_task will return true if it moved an RT */
- while (push_rt_task(rq))
- ;
- }
- static int pull_rt_task(struct rq *this_rq)
- {
- int this_cpu = this_rq->cpu, ret = 0, cpu;
- struct task_struct *p;
- struct rq *src_rq;
- if (likely(!rt_overloaded(this_rq)))
- return 0;
- for_each_cpu(cpu, this_rq->rd->rto_mask) {
- if (this_cpu == cpu)
- continue;
- src_rq = cpu_rq(cpu);
- /*
- * Don't bother taking the src_rq->lock if the next highest
- * task is known to be lower-priority than our current task.
- * This may look racy, but if this value is about to go
- * logically higher, the src_rq will push this task away.
- * And if its going logically lower, we do not care
- */
- if (src_rq->rt.highest_prio.next >=
- this_rq->rt.highest_prio.curr)
- continue;
- /*
- * We can potentially drop this_rq's lock in
- * double_lock_balance, and another CPU could
- * alter this_rq
- */
- double_lock_balance(this_rq, src_rq);
- /*
- * Are there still pullable RT tasks?
- */
- if (src_rq->rt.rt_nr_running <= 1)
- goto skip;
- p = pick_next_highest_task_rt(src_rq, this_cpu);
- /*
- * Do we have an RT task that preempts
- * the to-be-scheduled task?
- */
- if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
- WARN_ON(p == src_rq->curr);
- WARN_ON(!p->se.on_rq);
- /*
- * There's a chance that p is higher in priority
- * than what's currently running on its cpu.
- * This is just that p is wakeing up and hasn't
- * had a chance to schedule. We only pull
- * p if it is lower in priority than the
- * current task on the run queue
- */
- if (p->prio < src_rq->curr->prio)
- goto skip;
- ret = 1;
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
- /*
- * We continue with the search, just in
- * case there's an even higher prio task
- * in another runqueue. (low likelyhood
- * but possible)
- */
- }
- skip:
- double_unlock_balance(this_rq, src_rq);
- }
- return ret;
- }
- static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
- {
- /* Try to pull RT tasks here if we lower this rq's prio */
- if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
- pull_rt_task(rq);
- }
- /*
- * assumes rq->lock is held
- */
- static int needs_post_schedule_rt(struct rq *rq)
- {
- return has_pushable_tasks(rq);
- }
- static void post_schedule_rt(struct rq *rq)
- {
- /*
- * This is only called if needs_post_schedule_rt() indicates that
- * we need to push tasks away
- */
- spin_lock_irq(&rq->lock);
- push_rt_tasks(rq);
- spin_unlock_irq(&rq->lock);
- }
- /*
- * If we are not running and we are not going to reschedule soon, we should
- * try to push tasks away now
- */
- static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
- {
- if (!task_running(rq, p) &&
- !test_tsk_need_resched(rq->curr) &&
- has_pushable_tasks(rq) &&
- p->rt.nr_cpus_allowed > 1)
- push_rt_tasks(rq);
- }
- static unsigned long
- load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_load_move,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *all_pinned, int *this_best_prio)
- {
- /* don't touch RT tasks */
- return 0;
- }
- static int
- move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
- struct sched_domain *sd, enum cpu_idle_type idle)
- {
- /* don't touch RT tasks */
- return 0;
- }
- static void set_cpus_allowed_rt(struct task_struct *p,
- const struct cpumask *new_mask)
- {
- int weight = cpumask_weight(new_mask);
- BUG_ON(!rt_task(p));
- /*
- * Update the migration status of the RQ if we have an RT task
- * which is running AND changing its weight value.
- */
- if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
- struct rq *rq = task_rq(p);
- if (!task_current(rq, p)) {
- /*
- * Make sure we dequeue this task from the pushable list
- * before going further. It will either remain off of
- * the list because we are no longer pushable, or it
- * will be requeued.
- */
- if (p->rt.nr_cpus_allowed > 1)
- dequeue_pushable_task(rq, p);
- /*
- * Requeue if our weight is changing and still > 1
- */
- if (weight > 1)
- enqueue_pushable_task(rq, p);
- }
- if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
- rq->rt.rt_nr_migratory++;
- } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
- BUG_ON(!rq->rt.rt_nr_migratory);
- rq->rt.rt_nr_migratory--;
- }
- update_rt_migration(&rq->rt);
- }
- cpumask_copy(&p->cpus_allowed, new_mask);
- p->rt.nr_cpus_allowed = weight;
- }
- /* Assumes rq->lock is held */
- static void rq_online_rt(struct rq *rq)
- {
- if (rq->rt.overloaded)
- rt_set_overload(rq);
- __enable_runtime(rq);
- cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
- }
- /* Assumes rq->lock is held */
- static void rq_offline_rt(struct rq *rq)
- {
- if (rq->rt.overloaded)
- rt_clear_overload(rq);
- __disable_runtime(rq);
- cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
- }
- /*
- * When switch from the rt queue, we bring ourselves to a position
- * that we might want to pull RT tasks from other runqueues.
- */
- static void switched_from_rt(struct rq *rq, struct task_struct *p,
- int running)
- {
- /*
- * If there are other RT tasks then we will reschedule
- * and the scheduling of the other RT tasks will handle
- * the balancing. But if we are the last RT task
- * we may need to handle the pulling of RT tasks
- * now.
- */
- if (!rq->rt.rt_nr_running)
- pull_rt_task(rq);
- }
- static inline void init_sched_rt_class(void)
- {
- unsigned int i;
- for_each_possible_cpu(i)
- alloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
- GFP_KERNEL, cpu_to_node(i));
- }
- #endif /* CONFIG_SMP */
- /*
- * When switching a task to RT, we may overload the runqueue
- * with RT tasks. In this case we try to push them off to
- * other runqueues.
- */
- static void switched_to_rt(struct rq *rq, struct task_struct *p,
- int running)
- {
- int check_resched = 1;
- /*
- * If we are already running, then there's nothing
- * that needs to be done. But if we are not running
- * we may need to preempt the current running task.
- * If that current running task is also an RT task
- * then see if we can move to another run queue.
- */
- if (!running) {
- #ifdef CONFIG_SMP
- if (rq->rt.overloaded && push_rt_task(rq) &&
- /* Don't resched if we changed runqueues */
- rq != task_rq(p))
- check_resched = 0;
- #endif /* CONFIG_SMP */
- if (check_resched && p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
- }
- /*
- * Priority of the task has changed. This may cause
- * us to initiate a push or pull.
- */
- static void prio_changed_rt(struct rq *rq, struct task_struct *p,
- int oldprio, int running)
- {
- if (running) {
- #ifdef CONFIG_SMP
- /*
- * If our priority decreases while running, we
- * may need to pull tasks to this runqueue.
- */
- if (oldprio < p->prio)
- pull_rt_task(rq);
- /*
- * If there's a higher priority task waiting to run
- * then reschedule. Note, the above pull_rt_task
- * can release the rq lock and p could migrate.
- * Only reschedule if p is still on the same runqueue.
- */
- if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
- resched_task(p);
- #else
- /* For UP simply resched on drop of prio */
- if (oldprio < p->prio)
- resched_task(p);
- #endif /* CONFIG_SMP */
- } else {
- /*
- * This task is not running, but if it is
- * greater than the current running task
- * then reschedule.
- */
- if (p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
- }
- static void watchdog(struct rq *rq, struct task_struct *p)
- {
- unsigned long soft, hard;
- if (!p->signal)
- return;
- soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
- hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
- if (soft != RLIM_INFINITY) {
- unsigned long next;
- p->rt.timeout++;
- next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
- if (p->rt.timeout > next)
- p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
- }
- }
- static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
- {
- update_curr_rt(rq);
- watchdog(rq, p);
- /*
- * RR tasks need a special form of timeslice management.
- * FIFO tasks have no timeslices.
- */
- if (p->policy != SCHED_RR)
- return;
- if (--p->rt.time_slice)
- return;
- p->rt.time_slice = DEF_TIMESLICE;
- /*
- * Requeue to the end of queue if we are not the only element
- * on the queue:
- */
- if (p->rt.run_list.prev != p->rt.run_list.next) {
- requeue_task_rt(rq, p, 0);
- set_tsk_need_resched(p);
- }
- }
- static void set_curr_task_rt(struct rq *rq)
- {
- struct task_struct *p = rq->curr;
- p->se.exec_start = rq->clock;
- /* The running task is never eligible for pushing */
- dequeue_pushable_task(rq, p);
- }
- static const struct sched_class rt_sched_class = {
- .next = &fair_sched_class,
- .enqueue_task = enqueue_task_rt,
- .dequeue_task = dequeue_task_rt,
- .yield_task = yield_task_rt,
- .check_preempt_curr = check_preempt_curr_rt,
- .pick_next_task = pick_next_task_rt,
- .put_prev_task = put_prev_task_rt,
- #ifdef CONFIG_SMP
- .select_task_rq = select_task_rq_rt,
- .load_balance = load_balance_rt,
- .move_one_task = move_one_task_rt,
- .set_cpus_allowed = set_cpus_allowed_rt,
- .rq_online = rq_online_rt,
- .rq_offline = rq_offline_rt,
- .pre_schedule = pre_schedule_rt,
- .needs_post_schedule = needs_post_schedule_rt,
- .post_schedule = post_schedule_rt,
- .task_wake_up = task_wake_up_rt,
- .switched_from = switched_from_rt,
- #endif
- .set_curr_task = set_curr_task_rt,
- .task_tick = task_tick_rt,
- .prio_changed = prio_changed_rt,
- .switched_to = switched_to_rt,
- };
- #ifdef CONFIG_SCHED_DEBUG
- extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
- static void print_rt_stats(struct seq_file *m, int cpu)
- {
- struct rt_rq *rt_rq;
- rcu_read_lock();
- for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
- print_rt_rq(m, cpu, rt_rq);
- rcu_read_unlock();
- }
- #endif /* CONFIG_SCHED_DEBUG */
|