sched_clock.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282
  1. /*
  2. * sched_clock for unstable cpu clocks
  3. *
  4. * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  5. *
  6. * Updates and enhancements:
  7. * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8. *
  9. * Based on code by:
  10. * Ingo Molnar <mingo@redhat.com>
  11. * Guillaume Chazarain <guichaz@gmail.com>
  12. *
  13. * Create a semi stable clock from a mixture of other events, including:
  14. * - gtod
  15. * - sched_clock()
  16. * - explicit idle events
  17. *
  18. * We use gtod as base and the unstable clock deltas. The deltas are filtered,
  19. * making it monotonic and keeping it within an expected window.
  20. *
  21. * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  22. * that is otherwise invisible (TSC gets stopped).
  23. *
  24. * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat
  25. * consistent between cpus (never more than 2 jiffies difference).
  26. */
  27. #include <linux/spinlock.h>
  28. #include <linux/hardirq.h>
  29. #include <linux/module.h>
  30. #include <linux/percpu.h>
  31. #include <linux/ktime.h>
  32. #include <linux/sched.h>
  33. /*
  34. * Scheduler clock - returns current time in nanosec units.
  35. * This is default implementation.
  36. * Architectures and sub-architectures can override this.
  37. */
  38. unsigned long long __attribute__((weak)) sched_clock(void)
  39. {
  40. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  41. }
  42. static __read_mostly int sched_clock_running;
  43. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  44. __read_mostly int sched_clock_stable;
  45. struct sched_clock_data {
  46. /*
  47. * Raw spinlock - this is a special case: this might be called
  48. * from within instrumentation code so we dont want to do any
  49. * instrumentation ourselves.
  50. */
  51. raw_spinlock_t lock;
  52. u64 tick_raw;
  53. u64 tick_gtod;
  54. u64 clock;
  55. };
  56. static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  57. static inline struct sched_clock_data *this_scd(void)
  58. {
  59. return &__get_cpu_var(sched_clock_data);
  60. }
  61. static inline struct sched_clock_data *cpu_sdc(int cpu)
  62. {
  63. return &per_cpu(sched_clock_data, cpu);
  64. }
  65. void sched_clock_init(void)
  66. {
  67. u64 ktime_now = ktime_to_ns(ktime_get());
  68. int cpu;
  69. for_each_possible_cpu(cpu) {
  70. struct sched_clock_data *scd = cpu_sdc(cpu);
  71. scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
  72. scd->tick_raw = 0;
  73. scd->tick_gtod = ktime_now;
  74. scd->clock = ktime_now;
  75. }
  76. sched_clock_running = 1;
  77. }
  78. /*
  79. * min, max except they take wrapping into account
  80. */
  81. static inline u64 wrap_min(u64 x, u64 y)
  82. {
  83. return (s64)(x - y) < 0 ? x : y;
  84. }
  85. static inline u64 wrap_max(u64 x, u64 y)
  86. {
  87. return (s64)(x - y) > 0 ? x : y;
  88. }
  89. /*
  90. * update the percpu scd from the raw @now value
  91. *
  92. * - filter out backward motion
  93. * - use the GTOD tick value to create a window to filter crazy TSC values
  94. */
  95. static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now)
  96. {
  97. s64 delta = now - scd->tick_raw;
  98. u64 clock, min_clock, max_clock;
  99. if (unlikely(delta < 0))
  100. delta = 0;
  101. /*
  102. * scd->clock = clamp(scd->tick_gtod + delta,
  103. * max(scd->tick_gtod, scd->clock),
  104. * scd->tick_gtod + TICK_NSEC);
  105. */
  106. clock = scd->tick_gtod + delta;
  107. min_clock = wrap_max(scd->tick_gtod, scd->clock);
  108. max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC);
  109. clock = wrap_max(clock, min_clock);
  110. clock = wrap_min(clock, max_clock);
  111. scd->clock = clock;
  112. return scd->clock;
  113. }
  114. static void lock_double_clock(struct sched_clock_data *data1,
  115. struct sched_clock_data *data2)
  116. {
  117. if (data1 < data2) {
  118. __raw_spin_lock(&data1->lock);
  119. __raw_spin_lock(&data2->lock);
  120. } else {
  121. __raw_spin_lock(&data2->lock);
  122. __raw_spin_lock(&data1->lock);
  123. }
  124. }
  125. u64 sched_clock_cpu(int cpu)
  126. {
  127. u64 now, clock, this_clock, remote_clock;
  128. struct sched_clock_data *scd;
  129. if (sched_clock_stable)
  130. return sched_clock();
  131. scd = cpu_sdc(cpu);
  132. /*
  133. * Normally this is not called in NMI context - but if it is,
  134. * trying to do any locking here is totally lethal.
  135. */
  136. if (unlikely(in_nmi()))
  137. return scd->clock;
  138. if (unlikely(!sched_clock_running))
  139. return 0ull;
  140. WARN_ON_ONCE(!irqs_disabled());
  141. now = sched_clock();
  142. if (cpu != raw_smp_processor_id()) {
  143. struct sched_clock_data *my_scd = this_scd();
  144. lock_double_clock(scd, my_scd);
  145. this_clock = __update_sched_clock(my_scd, now);
  146. remote_clock = scd->clock;
  147. /*
  148. * Use the opportunity that we have both locks
  149. * taken to couple the two clocks: we take the
  150. * larger time as the latest time for both
  151. * runqueues. (this creates monotonic movement)
  152. */
  153. if (likely((s64)(remote_clock - this_clock) < 0)) {
  154. clock = this_clock;
  155. scd->clock = clock;
  156. } else {
  157. /*
  158. * Should be rare, but possible:
  159. */
  160. clock = remote_clock;
  161. my_scd->clock = remote_clock;
  162. }
  163. __raw_spin_unlock(&my_scd->lock);
  164. } else {
  165. __raw_spin_lock(&scd->lock);
  166. clock = __update_sched_clock(scd, now);
  167. }
  168. __raw_spin_unlock(&scd->lock);
  169. return clock;
  170. }
  171. void sched_clock_tick(void)
  172. {
  173. struct sched_clock_data *scd;
  174. u64 now, now_gtod;
  175. if (sched_clock_stable)
  176. return;
  177. if (unlikely(!sched_clock_running))
  178. return;
  179. WARN_ON_ONCE(!irqs_disabled());
  180. scd = this_scd();
  181. now_gtod = ktime_to_ns(ktime_get());
  182. now = sched_clock();
  183. __raw_spin_lock(&scd->lock);
  184. scd->tick_raw = now;
  185. scd->tick_gtod = now_gtod;
  186. __update_sched_clock(scd, now);
  187. __raw_spin_unlock(&scd->lock);
  188. }
  189. /*
  190. * We are going deep-idle (irqs are disabled):
  191. */
  192. void sched_clock_idle_sleep_event(void)
  193. {
  194. sched_clock_cpu(smp_processor_id());
  195. }
  196. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  197. /*
  198. * We just idled delta nanoseconds (called with irqs disabled):
  199. */
  200. void sched_clock_idle_wakeup_event(u64 delta_ns)
  201. {
  202. if (timekeeping_suspended)
  203. return;
  204. sched_clock_tick();
  205. touch_softlockup_watchdog();
  206. }
  207. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  208. #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  209. void sched_clock_init(void)
  210. {
  211. sched_clock_running = 1;
  212. }
  213. u64 sched_clock_cpu(int cpu)
  214. {
  215. if (unlikely(!sched_clock_running))
  216. return 0;
  217. return sched_clock();
  218. }
  219. #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  220. unsigned long long cpu_clock(int cpu)
  221. {
  222. unsigned long long clock;
  223. unsigned long flags;
  224. local_irq_save(flags);
  225. clock = sched_clock_cpu(cpu);
  226. local_irq_restore(flags);
  227. return clock;
  228. }
  229. EXPORT_SYMBOL_GPL(cpu_clock);