snapshot.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999
  1. /*
  2. * linux/kernel/power/snapshot.c
  3. *
  4. * This file provides system snapshot/restore functionality for swsusp.
  5. *
  6. * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
  7. * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  8. *
  9. * This file is released under the GPLv2.
  10. *
  11. */
  12. #include <linux/version.h>
  13. #include <linux/module.h>
  14. #include <linux/mm.h>
  15. #include <linux/suspend.h>
  16. #include <linux/delay.h>
  17. #include <linux/bitops.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kernel.h>
  20. #include <linux/pm.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/syscalls.h>
  25. #include <linux/console.h>
  26. #include <linux/highmem.h>
  27. #include <linux/list.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/mmu_context.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/tlbflush.h>
  32. #include <asm/io.h>
  33. #include "power.h"
  34. static int swsusp_page_is_free(struct page *);
  35. static void swsusp_set_page_forbidden(struct page *);
  36. static void swsusp_unset_page_forbidden(struct page *);
  37. /* List of PBEs needed for restoring the pages that were allocated before
  38. * the suspend and included in the suspend image, but have also been
  39. * allocated by the "resume" kernel, so their contents cannot be written
  40. * directly to their "original" page frames.
  41. */
  42. struct pbe *restore_pblist;
  43. /* Pointer to an auxiliary buffer (1 page) */
  44. static void *buffer;
  45. /**
  46. * @safe_needed - on resume, for storing the PBE list and the image,
  47. * we can only use memory pages that do not conflict with the pages
  48. * used before suspend. The unsafe pages have PageNosaveFree set
  49. * and we count them using unsafe_pages.
  50. *
  51. * Each allocated image page is marked as PageNosave and PageNosaveFree
  52. * so that swsusp_free() can release it.
  53. */
  54. #define PG_ANY 0
  55. #define PG_SAFE 1
  56. #define PG_UNSAFE_CLEAR 1
  57. #define PG_UNSAFE_KEEP 0
  58. static unsigned int allocated_unsafe_pages;
  59. static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  60. {
  61. void *res;
  62. res = (void *)get_zeroed_page(gfp_mask);
  63. if (safe_needed)
  64. while (res && swsusp_page_is_free(virt_to_page(res))) {
  65. /* The page is unsafe, mark it for swsusp_free() */
  66. swsusp_set_page_forbidden(virt_to_page(res));
  67. allocated_unsafe_pages++;
  68. res = (void *)get_zeroed_page(gfp_mask);
  69. }
  70. if (res) {
  71. swsusp_set_page_forbidden(virt_to_page(res));
  72. swsusp_set_page_free(virt_to_page(res));
  73. }
  74. return res;
  75. }
  76. unsigned long get_safe_page(gfp_t gfp_mask)
  77. {
  78. return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
  79. }
  80. static struct page *alloc_image_page(gfp_t gfp_mask)
  81. {
  82. struct page *page;
  83. page = alloc_page(gfp_mask);
  84. if (page) {
  85. swsusp_set_page_forbidden(page);
  86. swsusp_set_page_free(page);
  87. }
  88. return page;
  89. }
  90. /**
  91. * free_image_page - free page represented by @addr, allocated with
  92. * get_image_page (page flags set by it must be cleared)
  93. */
  94. static inline void free_image_page(void *addr, int clear_nosave_free)
  95. {
  96. struct page *page;
  97. BUG_ON(!virt_addr_valid(addr));
  98. page = virt_to_page(addr);
  99. swsusp_unset_page_forbidden(page);
  100. if (clear_nosave_free)
  101. swsusp_unset_page_free(page);
  102. __free_page(page);
  103. }
  104. /* struct linked_page is used to build chains of pages */
  105. #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
  106. struct linked_page {
  107. struct linked_page *next;
  108. char data[LINKED_PAGE_DATA_SIZE];
  109. } __attribute__((packed));
  110. static inline void
  111. free_list_of_pages(struct linked_page *list, int clear_page_nosave)
  112. {
  113. while (list) {
  114. struct linked_page *lp = list->next;
  115. free_image_page(list, clear_page_nosave);
  116. list = lp;
  117. }
  118. }
  119. /**
  120. * struct chain_allocator is used for allocating small objects out of
  121. * a linked list of pages called 'the chain'.
  122. *
  123. * The chain grows each time when there is no room for a new object in
  124. * the current page. The allocated objects cannot be freed individually.
  125. * It is only possible to free them all at once, by freeing the entire
  126. * chain.
  127. *
  128. * NOTE: The chain allocator may be inefficient if the allocated objects
  129. * are not much smaller than PAGE_SIZE.
  130. */
  131. struct chain_allocator {
  132. struct linked_page *chain; /* the chain */
  133. unsigned int used_space; /* total size of objects allocated out
  134. * of the current page
  135. */
  136. gfp_t gfp_mask; /* mask for allocating pages */
  137. int safe_needed; /* if set, only "safe" pages are allocated */
  138. };
  139. static void
  140. chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
  141. {
  142. ca->chain = NULL;
  143. ca->used_space = LINKED_PAGE_DATA_SIZE;
  144. ca->gfp_mask = gfp_mask;
  145. ca->safe_needed = safe_needed;
  146. }
  147. static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
  148. {
  149. void *ret;
  150. if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
  151. struct linked_page *lp;
  152. lp = get_image_page(ca->gfp_mask, ca->safe_needed);
  153. if (!lp)
  154. return NULL;
  155. lp->next = ca->chain;
  156. ca->chain = lp;
  157. ca->used_space = 0;
  158. }
  159. ret = ca->chain->data + ca->used_space;
  160. ca->used_space += size;
  161. return ret;
  162. }
  163. /**
  164. * Data types related to memory bitmaps.
  165. *
  166. * Memory bitmap is a structure consiting of many linked lists of
  167. * objects. The main list's elements are of type struct zone_bitmap
  168. * and each of them corresonds to one zone. For each zone bitmap
  169. * object there is a list of objects of type struct bm_block that
  170. * represent each blocks of bitmap in which information is stored.
  171. *
  172. * struct memory_bitmap contains a pointer to the main list of zone
  173. * bitmap objects, a struct bm_position used for browsing the bitmap,
  174. * and a pointer to the list of pages used for allocating all of the
  175. * zone bitmap objects and bitmap block objects.
  176. *
  177. * NOTE: It has to be possible to lay out the bitmap in memory
  178. * using only allocations of order 0. Additionally, the bitmap is
  179. * designed to work with arbitrary number of zones (this is over the
  180. * top for now, but let's avoid making unnecessary assumptions ;-).
  181. *
  182. * struct zone_bitmap contains a pointer to a list of bitmap block
  183. * objects and a pointer to the bitmap block object that has been
  184. * most recently used for setting bits. Additionally, it contains the
  185. * pfns that correspond to the start and end of the represented zone.
  186. *
  187. * struct bm_block contains a pointer to the memory page in which
  188. * information is stored (in the form of a block of bitmap)
  189. * It also contains the pfns that correspond to the start and end of
  190. * the represented memory area.
  191. */
  192. #define BM_END_OF_MAP (~0UL)
  193. #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
  194. struct bm_block {
  195. struct list_head hook; /* hook into a list of bitmap blocks */
  196. unsigned long start_pfn; /* pfn represented by the first bit */
  197. unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
  198. unsigned long *data; /* bitmap representing pages */
  199. };
  200. static inline unsigned long bm_block_bits(struct bm_block *bb)
  201. {
  202. return bb->end_pfn - bb->start_pfn;
  203. }
  204. /* strcut bm_position is used for browsing memory bitmaps */
  205. struct bm_position {
  206. struct bm_block *block;
  207. int bit;
  208. };
  209. struct memory_bitmap {
  210. struct list_head blocks; /* list of bitmap blocks */
  211. struct linked_page *p_list; /* list of pages used to store zone
  212. * bitmap objects and bitmap block
  213. * objects
  214. */
  215. struct bm_position cur; /* most recently used bit position */
  216. };
  217. /* Functions that operate on memory bitmaps */
  218. static void memory_bm_position_reset(struct memory_bitmap *bm)
  219. {
  220. bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
  221. bm->cur.bit = 0;
  222. }
  223. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
  224. /**
  225. * create_bm_block_list - create a list of block bitmap objects
  226. * @nr_blocks - number of blocks to allocate
  227. * @list - list to put the allocated blocks into
  228. * @ca - chain allocator to be used for allocating memory
  229. */
  230. static int create_bm_block_list(unsigned long pages,
  231. struct list_head *list,
  232. struct chain_allocator *ca)
  233. {
  234. unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
  235. while (nr_blocks-- > 0) {
  236. struct bm_block *bb;
  237. bb = chain_alloc(ca, sizeof(struct bm_block));
  238. if (!bb)
  239. return -ENOMEM;
  240. list_add(&bb->hook, list);
  241. }
  242. return 0;
  243. }
  244. struct mem_extent {
  245. struct list_head hook;
  246. unsigned long start;
  247. unsigned long end;
  248. };
  249. /**
  250. * free_mem_extents - free a list of memory extents
  251. * @list - list of extents to empty
  252. */
  253. static void free_mem_extents(struct list_head *list)
  254. {
  255. struct mem_extent *ext, *aux;
  256. list_for_each_entry_safe(ext, aux, list, hook) {
  257. list_del(&ext->hook);
  258. kfree(ext);
  259. }
  260. }
  261. /**
  262. * create_mem_extents - create a list of memory extents representing
  263. * contiguous ranges of PFNs
  264. * @list - list to put the extents into
  265. * @gfp_mask - mask to use for memory allocations
  266. */
  267. static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
  268. {
  269. struct zone *zone;
  270. INIT_LIST_HEAD(list);
  271. for_each_populated_zone(zone) {
  272. unsigned long zone_start, zone_end;
  273. struct mem_extent *ext, *cur, *aux;
  274. zone_start = zone->zone_start_pfn;
  275. zone_end = zone->zone_start_pfn + zone->spanned_pages;
  276. list_for_each_entry(ext, list, hook)
  277. if (zone_start <= ext->end)
  278. break;
  279. if (&ext->hook == list || zone_end < ext->start) {
  280. /* New extent is necessary */
  281. struct mem_extent *new_ext;
  282. new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
  283. if (!new_ext) {
  284. free_mem_extents(list);
  285. return -ENOMEM;
  286. }
  287. new_ext->start = zone_start;
  288. new_ext->end = zone_end;
  289. list_add_tail(&new_ext->hook, &ext->hook);
  290. continue;
  291. }
  292. /* Merge this zone's range of PFNs with the existing one */
  293. if (zone_start < ext->start)
  294. ext->start = zone_start;
  295. if (zone_end > ext->end)
  296. ext->end = zone_end;
  297. /* More merging may be possible */
  298. cur = ext;
  299. list_for_each_entry_safe_continue(cur, aux, list, hook) {
  300. if (zone_end < cur->start)
  301. break;
  302. if (zone_end < cur->end)
  303. ext->end = cur->end;
  304. list_del(&cur->hook);
  305. kfree(cur);
  306. }
  307. }
  308. return 0;
  309. }
  310. /**
  311. * memory_bm_create - allocate memory for a memory bitmap
  312. */
  313. static int
  314. memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
  315. {
  316. struct chain_allocator ca;
  317. struct list_head mem_extents;
  318. struct mem_extent *ext;
  319. int error;
  320. chain_init(&ca, gfp_mask, safe_needed);
  321. INIT_LIST_HEAD(&bm->blocks);
  322. error = create_mem_extents(&mem_extents, gfp_mask);
  323. if (error)
  324. return error;
  325. list_for_each_entry(ext, &mem_extents, hook) {
  326. struct bm_block *bb;
  327. unsigned long pfn = ext->start;
  328. unsigned long pages = ext->end - ext->start;
  329. bb = list_entry(bm->blocks.prev, struct bm_block, hook);
  330. error = create_bm_block_list(pages, bm->blocks.prev, &ca);
  331. if (error)
  332. goto Error;
  333. list_for_each_entry_continue(bb, &bm->blocks, hook) {
  334. bb->data = get_image_page(gfp_mask, safe_needed);
  335. if (!bb->data) {
  336. error = -ENOMEM;
  337. goto Error;
  338. }
  339. bb->start_pfn = pfn;
  340. if (pages >= BM_BITS_PER_BLOCK) {
  341. pfn += BM_BITS_PER_BLOCK;
  342. pages -= BM_BITS_PER_BLOCK;
  343. } else {
  344. /* This is executed only once in the loop */
  345. pfn += pages;
  346. }
  347. bb->end_pfn = pfn;
  348. }
  349. }
  350. bm->p_list = ca.chain;
  351. memory_bm_position_reset(bm);
  352. Exit:
  353. free_mem_extents(&mem_extents);
  354. return error;
  355. Error:
  356. bm->p_list = ca.chain;
  357. memory_bm_free(bm, PG_UNSAFE_CLEAR);
  358. goto Exit;
  359. }
  360. /**
  361. * memory_bm_free - free memory occupied by the memory bitmap @bm
  362. */
  363. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
  364. {
  365. struct bm_block *bb;
  366. list_for_each_entry(bb, &bm->blocks, hook)
  367. if (bb->data)
  368. free_image_page(bb->data, clear_nosave_free);
  369. free_list_of_pages(bm->p_list, clear_nosave_free);
  370. INIT_LIST_HEAD(&bm->blocks);
  371. }
  372. /**
  373. * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
  374. * to given pfn. The cur_zone_bm member of @bm and the cur_block member
  375. * of @bm->cur_zone_bm are updated.
  376. */
  377. static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
  378. void **addr, unsigned int *bit_nr)
  379. {
  380. struct bm_block *bb;
  381. /*
  382. * Check if the pfn corresponds to the current bitmap block and find
  383. * the block where it fits if this is not the case.
  384. */
  385. bb = bm->cur.block;
  386. if (pfn < bb->start_pfn)
  387. list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
  388. if (pfn >= bb->start_pfn)
  389. break;
  390. if (pfn >= bb->end_pfn)
  391. list_for_each_entry_continue(bb, &bm->blocks, hook)
  392. if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
  393. break;
  394. if (&bb->hook == &bm->blocks)
  395. return -EFAULT;
  396. /* The block has been found */
  397. bm->cur.block = bb;
  398. pfn -= bb->start_pfn;
  399. bm->cur.bit = pfn + 1;
  400. *bit_nr = pfn;
  401. *addr = bb->data;
  402. return 0;
  403. }
  404. static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
  405. {
  406. void *addr;
  407. unsigned int bit;
  408. int error;
  409. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  410. BUG_ON(error);
  411. set_bit(bit, addr);
  412. }
  413. static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
  414. {
  415. void *addr;
  416. unsigned int bit;
  417. int error;
  418. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  419. if (!error)
  420. set_bit(bit, addr);
  421. return error;
  422. }
  423. static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
  424. {
  425. void *addr;
  426. unsigned int bit;
  427. int error;
  428. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  429. BUG_ON(error);
  430. clear_bit(bit, addr);
  431. }
  432. static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
  433. {
  434. void *addr;
  435. unsigned int bit;
  436. int error;
  437. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  438. BUG_ON(error);
  439. return test_bit(bit, addr);
  440. }
  441. static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
  442. {
  443. void *addr;
  444. unsigned int bit;
  445. return !memory_bm_find_bit(bm, pfn, &addr, &bit);
  446. }
  447. /**
  448. * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
  449. * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
  450. * returned.
  451. *
  452. * It is required to run memory_bm_position_reset() before the first call to
  453. * this function.
  454. */
  455. static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
  456. {
  457. struct bm_block *bb;
  458. int bit;
  459. bb = bm->cur.block;
  460. do {
  461. bit = bm->cur.bit;
  462. bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
  463. if (bit < bm_block_bits(bb))
  464. goto Return_pfn;
  465. bb = list_entry(bb->hook.next, struct bm_block, hook);
  466. bm->cur.block = bb;
  467. bm->cur.bit = 0;
  468. } while (&bb->hook != &bm->blocks);
  469. memory_bm_position_reset(bm);
  470. return BM_END_OF_MAP;
  471. Return_pfn:
  472. bm->cur.bit = bit + 1;
  473. return bb->start_pfn + bit;
  474. }
  475. /**
  476. * This structure represents a range of page frames the contents of which
  477. * should not be saved during the suspend.
  478. */
  479. struct nosave_region {
  480. struct list_head list;
  481. unsigned long start_pfn;
  482. unsigned long end_pfn;
  483. };
  484. static LIST_HEAD(nosave_regions);
  485. /**
  486. * register_nosave_region - register a range of page frames the contents
  487. * of which should not be saved during the suspend (to be used in the early
  488. * initialization code)
  489. */
  490. void __init
  491. __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
  492. int use_kmalloc)
  493. {
  494. struct nosave_region *region;
  495. if (start_pfn >= end_pfn)
  496. return;
  497. if (!list_empty(&nosave_regions)) {
  498. /* Try to extend the previous region (they should be sorted) */
  499. region = list_entry(nosave_regions.prev,
  500. struct nosave_region, list);
  501. if (region->end_pfn == start_pfn) {
  502. region->end_pfn = end_pfn;
  503. goto Report;
  504. }
  505. }
  506. if (use_kmalloc) {
  507. /* during init, this shouldn't fail */
  508. region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
  509. BUG_ON(!region);
  510. } else
  511. /* This allocation cannot fail */
  512. region = alloc_bootmem_low(sizeof(struct nosave_region));
  513. region->start_pfn = start_pfn;
  514. region->end_pfn = end_pfn;
  515. list_add_tail(&region->list, &nosave_regions);
  516. Report:
  517. printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
  518. start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
  519. }
  520. /*
  521. * Set bits in this map correspond to the page frames the contents of which
  522. * should not be saved during the suspend.
  523. */
  524. static struct memory_bitmap *forbidden_pages_map;
  525. /* Set bits in this map correspond to free page frames. */
  526. static struct memory_bitmap *free_pages_map;
  527. /*
  528. * Each page frame allocated for creating the image is marked by setting the
  529. * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
  530. */
  531. void swsusp_set_page_free(struct page *page)
  532. {
  533. if (free_pages_map)
  534. memory_bm_set_bit(free_pages_map, page_to_pfn(page));
  535. }
  536. static int swsusp_page_is_free(struct page *page)
  537. {
  538. return free_pages_map ?
  539. memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
  540. }
  541. void swsusp_unset_page_free(struct page *page)
  542. {
  543. if (free_pages_map)
  544. memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
  545. }
  546. static void swsusp_set_page_forbidden(struct page *page)
  547. {
  548. if (forbidden_pages_map)
  549. memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
  550. }
  551. int swsusp_page_is_forbidden(struct page *page)
  552. {
  553. return forbidden_pages_map ?
  554. memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
  555. }
  556. static void swsusp_unset_page_forbidden(struct page *page)
  557. {
  558. if (forbidden_pages_map)
  559. memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
  560. }
  561. /**
  562. * mark_nosave_pages - set bits corresponding to the page frames the
  563. * contents of which should not be saved in a given bitmap.
  564. */
  565. static void mark_nosave_pages(struct memory_bitmap *bm)
  566. {
  567. struct nosave_region *region;
  568. if (list_empty(&nosave_regions))
  569. return;
  570. list_for_each_entry(region, &nosave_regions, list) {
  571. unsigned long pfn;
  572. pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
  573. region->start_pfn << PAGE_SHIFT,
  574. region->end_pfn << PAGE_SHIFT);
  575. for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
  576. if (pfn_valid(pfn)) {
  577. /*
  578. * It is safe to ignore the result of
  579. * mem_bm_set_bit_check() here, since we won't
  580. * touch the PFNs for which the error is
  581. * returned anyway.
  582. */
  583. mem_bm_set_bit_check(bm, pfn);
  584. }
  585. }
  586. }
  587. /**
  588. * create_basic_memory_bitmaps - create bitmaps needed for marking page
  589. * frames that should not be saved and free page frames. The pointers
  590. * forbidden_pages_map and free_pages_map are only modified if everything
  591. * goes well, because we don't want the bits to be used before both bitmaps
  592. * are set up.
  593. */
  594. int create_basic_memory_bitmaps(void)
  595. {
  596. struct memory_bitmap *bm1, *bm2;
  597. int error = 0;
  598. BUG_ON(forbidden_pages_map || free_pages_map);
  599. bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  600. if (!bm1)
  601. return -ENOMEM;
  602. error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
  603. if (error)
  604. goto Free_first_object;
  605. bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  606. if (!bm2)
  607. goto Free_first_bitmap;
  608. error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
  609. if (error)
  610. goto Free_second_object;
  611. forbidden_pages_map = bm1;
  612. free_pages_map = bm2;
  613. mark_nosave_pages(forbidden_pages_map);
  614. pr_debug("PM: Basic memory bitmaps created\n");
  615. return 0;
  616. Free_second_object:
  617. kfree(bm2);
  618. Free_first_bitmap:
  619. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  620. Free_first_object:
  621. kfree(bm1);
  622. return -ENOMEM;
  623. }
  624. /**
  625. * free_basic_memory_bitmaps - free memory bitmaps allocated by
  626. * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
  627. * so that the bitmaps themselves are not referred to while they are being
  628. * freed.
  629. */
  630. void free_basic_memory_bitmaps(void)
  631. {
  632. struct memory_bitmap *bm1, *bm2;
  633. BUG_ON(!(forbidden_pages_map && free_pages_map));
  634. bm1 = forbidden_pages_map;
  635. bm2 = free_pages_map;
  636. forbidden_pages_map = NULL;
  637. free_pages_map = NULL;
  638. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  639. kfree(bm1);
  640. memory_bm_free(bm2, PG_UNSAFE_CLEAR);
  641. kfree(bm2);
  642. pr_debug("PM: Basic memory bitmaps freed\n");
  643. }
  644. /**
  645. * snapshot_additional_pages - estimate the number of additional pages
  646. * be needed for setting up the suspend image data structures for given
  647. * zone (usually the returned value is greater than the exact number)
  648. */
  649. unsigned int snapshot_additional_pages(struct zone *zone)
  650. {
  651. unsigned int res;
  652. res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
  653. res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
  654. return 2 * res;
  655. }
  656. #ifdef CONFIG_HIGHMEM
  657. /**
  658. * count_free_highmem_pages - compute the total number of free highmem
  659. * pages, system-wide.
  660. */
  661. static unsigned int count_free_highmem_pages(void)
  662. {
  663. struct zone *zone;
  664. unsigned int cnt = 0;
  665. for_each_populated_zone(zone)
  666. if (is_highmem(zone))
  667. cnt += zone_page_state(zone, NR_FREE_PAGES);
  668. return cnt;
  669. }
  670. /**
  671. * saveable_highmem_page - Determine whether a highmem page should be
  672. * included in the suspend image.
  673. *
  674. * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
  675. * and it isn't a part of a free chunk of pages.
  676. */
  677. static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
  678. {
  679. struct page *page;
  680. if (!pfn_valid(pfn))
  681. return NULL;
  682. page = pfn_to_page(pfn);
  683. if (page_zone(page) != zone)
  684. return NULL;
  685. BUG_ON(!PageHighMem(page));
  686. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
  687. PageReserved(page))
  688. return NULL;
  689. return page;
  690. }
  691. /**
  692. * count_highmem_pages - compute the total number of saveable highmem
  693. * pages.
  694. */
  695. unsigned int count_highmem_pages(void)
  696. {
  697. struct zone *zone;
  698. unsigned int n = 0;
  699. for_each_zone(zone) {
  700. unsigned long pfn, max_zone_pfn;
  701. if (!is_highmem(zone))
  702. continue;
  703. mark_free_pages(zone);
  704. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  705. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  706. if (saveable_highmem_page(zone, pfn))
  707. n++;
  708. }
  709. return n;
  710. }
  711. #else
  712. static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
  713. {
  714. return NULL;
  715. }
  716. #endif /* CONFIG_HIGHMEM */
  717. /**
  718. * saveable_page - Determine whether a non-highmem page should be included
  719. * in the suspend image.
  720. *
  721. * We should save the page if it isn't Nosave, and is not in the range
  722. * of pages statically defined as 'unsaveable', and it isn't a part of
  723. * a free chunk of pages.
  724. */
  725. static struct page *saveable_page(struct zone *zone, unsigned long pfn)
  726. {
  727. struct page *page;
  728. if (!pfn_valid(pfn))
  729. return NULL;
  730. page = pfn_to_page(pfn);
  731. if (page_zone(page) != zone)
  732. return NULL;
  733. BUG_ON(PageHighMem(page));
  734. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
  735. return NULL;
  736. if (PageReserved(page)
  737. && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
  738. return NULL;
  739. return page;
  740. }
  741. /**
  742. * count_data_pages - compute the total number of saveable non-highmem
  743. * pages.
  744. */
  745. unsigned int count_data_pages(void)
  746. {
  747. struct zone *zone;
  748. unsigned long pfn, max_zone_pfn;
  749. unsigned int n = 0;
  750. for_each_zone(zone) {
  751. if (is_highmem(zone))
  752. continue;
  753. mark_free_pages(zone);
  754. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  755. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  756. if (saveable_page(zone, pfn))
  757. n++;
  758. }
  759. return n;
  760. }
  761. /* This is needed, because copy_page and memcpy are not usable for copying
  762. * task structs.
  763. */
  764. static inline void do_copy_page(long *dst, long *src)
  765. {
  766. int n;
  767. for (n = PAGE_SIZE / sizeof(long); n; n--)
  768. *dst++ = *src++;
  769. }
  770. /**
  771. * safe_copy_page - check if the page we are going to copy is marked as
  772. * present in the kernel page tables (this always is the case if
  773. * CONFIG_DEBUG_PAGEALLOC is not set and in that case
  774. * kernel_page_present() always returns 'true').
  775. */
  776. static void safe_copy_page(void *dst, struct page *s_page)
  777. {
  778. if (kernel_page_present(s_page)) {
  779. do_copy_page(dst, page_address(s_page));
  780. } else {
  781. kernel_map_pages(s_page, 1, 1);
  782. do_copy_page(dst, page_address(s_page));
  783. kernel_map_pages(s_page, 1, 0);
  784. }
  785. }
  786. #ifdef CONFIG_HIGHMEM
  787. static inline struct page *
  788. page_is_saveable(struct zone *zone, unsigned long pfn)
  789. {
  790. return is_highmem(zone) ?
  791. saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
  792. }
  793. static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  794. {
  795. struct page *s_page, *d_page;
  796. void *src, *dst;
  797. s_page = pfn_to_page(src_pfn);
  798. d_page = pfn_to_page(dst_pfn);
  799. if (PageHighMem(s_page)) {
  800. src = kmap_atomic(s_page, KM_USER0);
  801. dst = kmap_atomic(d_page, KM_USER1);
  802. do_copy_page(dst, src);
  803. kunmap_atomic(src, KM_USER0);
  804. kunmap_atomic(dst, KM_USER1);
  805. } else {
  806. if (PageHighMem(d_page)) {
  807. /* Page pointed to by src may contain some kernel
  808. * data modified by kmap_atomic()
  809. */
  810. safe_copy_page(buffer, s_page);
  811. dst = kmap_atomic(d_page, KM_USER0);
  812. memcpy(dst, buffer, PAGE_SIZE);
  813. kunmap_atomic(dst, KM_USER0);
  814. } else {
  815. safe_copy_page(page_address(d_page), s_page);
  816. }
  817. }
  818. }
  819. #else
  820. #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
  821. static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  822. {
  823. safe_copy_page(page_address(pfn_to_page(dst_pfn)),
  824. pfn_to_page(src_pfn));
  825. }
  826. #endif /* CONFIG_HIGHMEM */
  827. static void
  828. copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
  829. {
  830. struct zone *zone;
  831. unsigned long pfn;
  832. for_each_zone(zone) {
  833. unsigned long max_zone_pfn;
  834. mark_free_pages(zone);
  835. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  836. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  837. if (page_is_saveable(zone, pfn))
  838. memory_bm_set_bit(orig_bm, pfn);
  839. }
  840. memory_bm_position_reset(orig_bm);
  841. memory_bm_position_reset(copy_bm);
  842. for(;;) {
  843. pfn = memory_bm_next_pfn(orig_bm);
  844. if (unlikely(pfn == BM_END_OF_MAP))
  845. break;
  846. copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
  847. }
  848. }
  849. /* Total number of image pages */
  850. static unsigned int nr_copy_pages;
  851. /* Number of pages needed for saving the original pfns of the image pages */
  852. static unsigned int nr_meta_pages;
  853. /**
  854. * swsusp_free - free pages allocated for the suspend.
  855. *
  856. * Suspend pages are alocated before the atomic copy is made, so we
  857. * need to release them after the resume.
  858. */
  859. void swsusp_free(void)
  860. {
  861. struct zone *zone;
  862. unsigned long pfn, max_zone_pfn;
  863. for_each_zone(zone) {
  864. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  865. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  866. if (pfn_valid(pfn)) {
  867. struct page *page = pfn_to_page(pfn);
  868. if (swsusp_page_is_forbidden(page) &&
  869. swsusp_page_is_free(page)) {
  870. swsusp_unset_page_forbidden(page);
  871. swsusp_unset_page_free(page);
  872. __free_page(page);
  873. }
  874. }
  875. }
  876. nr_copy_pages = 0;
  877. nr_meta_pages = 0;
  878. restore_pblist = NULL;
  879. buffer = NULL;
  880. }
  881. #ifdef CONFIG_HIGHMEM
  882. /**
  883. * count_pages_for_highmem - compute the number of non-highmem pages
  884. * that will be necessary for creating copies of highmem pages.
  885. */
  886. static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
  887. {
  888. unsigned int free_highmem = count_free_highmem_pages();
  889. if (free_highmem >= nr_highmem)
  890. nr_highmem = 0;
  891. else
  892. nr_highmem -= free_highmem;
  893. return nr_highmem;
  894. }
  895. #else
  896. static unsigned int
  897. count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
  898. #endif /* CONFIG_HIGHMEM */
  899. /**
  900. * enough_free_mem - Make sure we have enough free memory for the
  901. * snapshot image.
  902. */
  903. static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
  904. {
  905. struct zone *zone;
  906. unsigned int free = 0, meta = 0;
  907. for_each_zone(zone) {
  908. meta += snapshot_additional_pages(zone);
  909. if (!is_highmem(zone))
  910. free += zone_page_state(zone, NR_FREE_PAGES);
  911. }
  912. nr_pages += count_pages_for_highmem(nr_highmem);
  913. pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
  914. nr_pages, PAGES_FOR_IO, meta, free);
  915. return free > nr_pages + PAGES_FOR_IO + meta;
  916. }
  917. #ifdef CONFIG_HIGHMEM
  918. /**
  919. * get_highmem_buffer - if there are some highmem pages in the suspend
  920. * image, we may need the buffer to copy them and/or load their data.
  921. */
  922. static inline int get_highmem_buffer(int safe_needed)
  923. {
  924. buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
  925. return buffer ? 0 : -ENOMEM;
  926. }
  927. /**
  928. * alloc_highmem_image_pages - allocate some highmem pages for the image.
  929. * Try to allocate as many pages as needed, but if the number of free
  930. * highmem pages is lesser than that, allocate them all.
  931. */
  932. static inline unsigned int
  933. alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
  934. {
  935. unsigned int to_alloc = count_free_highmem_pages();
  936. if (to_alloc > nr_highmem)
  937. to_alloc = nr_highmem;
  938. nr_highmem -= to_alloc;
  939. while (to_alloc-- > 0) {
  940. struct page *page;
  941. page = alloc_image_page(__GFP_HIGHMEM);
  942. memory_bm_set_bit(bm, page_to_pfn(page));
  943. }
  944. return nr_highmem;
  945. }
  946. #else
  947. static inline int get_highmem_buffer(int safe_needed) { return 0; }
  948. static inline unsigned int
  949. alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
  950. #endif /* CONFIG_HIGHMEM */
  951. /**
  952. * swsusp_alloc - allocate memory for the suspend image
  953. *
  954. * We first try to allocate as many highmem pages as there are
  955. * saveable highmem pages in the system. If that fails, we allocate
  956. * non-highmem pages for the copies of the remaining highmem ones.
  957. *
  958. * In this approach it is likely that the copies of highmem pages will
  959. * also be located in the high memory, because of the way in which
  960. * copy_data_pages() works.
  961. */
  962. static int
  963. swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
  964. unsigned int nr_pages, unsigned int nr_highmem)
  965. {
  966. int error;
  967. error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
  968. if (error)
  969. goto Free;
  970. error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
  971. if (error)
  972. goto Free;
  973. if (nr_highmem > 0) {
  974. error = get_highmem_buffer(PG_ANY);
  975. if (error)
  976. goto Free;
  977. nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
  978. }
  979. while (nr_pages-- > 0) {
  980. struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
  981. if (!page)
  982. goto Free;
  983. memory_bm_set_bit(copy_bm, page_to_pfn(page));
  984. }
  985. return 0;
  986. Free:
  987. swsusp_free();
  988. return -ENOMEM;
  989. }
  990. /* Memory bitmap used for marking saveable pages (during suspend) or the
  991. * suspend image pages (during resume)
  992. */
  993. static struct memory_bitmap orig_bm;
  994. /* Memory bitmap used on suspend for marking allocated pages that will contain
  995. * the copies of saveable pages. During resume it is initially used for
  996. * marking the suspend image pages, but then its set bits are duplicated in
  997. * @orig_bm and it is released. Next, on systems with high memory, it may be
  998. * used for marking "safe" highmem pages, but it has to be reinitialized for
  999. * this purpose.
  1000. */
  1001. static struct memory_bitmap copy_bm;
  1002. asmlinkage int swsusp_save(void)
  1003. {
  1004. unsigned int nr_pages, nr_highmem;
  1005. printk(KERN_INFO "PM: Creating hibernation image: \n");
  1006. drain_local_pages(NULL);
  1007. nr_pages = count_data_pages();
  1008. nr_highmem = count_highmem_pages();
  1009. printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
  1010. if (!enough_free_mem(nr_pages, nr_highmem)) {
  1011. printk(KERN_ERR "PM: Not enough free memory\n");
  1012. return -ENOMEM;
  1013. }
  1014. if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
  1015. printk(KERN_ERR "PM: Memory allocation failed\n");
  1016. return -ENOMEM;
  1017. }
  1018. /* During allocating of suspend pagedir, new cold pages may appear.
  1019. * Kill them.
  1020. */
  1021. drain_local_pages(NULL);
  1022. copy_data_pages(&copy_bm, &orig_bm);
  1023. /*
  1024. * End of critical section. From now on, we can write to memory,
  1025. * but we should not touch disk. This specially means we must _not_
  1026. * touch swap space! Except we must write out our image of course.
  1027. */
  1028. nr_pages += nr_highmem;
  1029. nr_copy_pages = nr_pages;
  1030. nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
  1031. printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
  1032. nr_pages);
  1033. return 0;
  1034. }
  1035. #ifndef CONFIG_ARCH_HIBERNATION_HEADER
  1036. static int init_header_complete(struct swsusp_info *info)
  1037. {
  1038. memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
  1039. info->version_code = LINUX_VERSION_CODE;
  1040. return 0;
  1041. }
  1042. static char *check_image_kernel(struct swsusp_info *info)
  1043. {
  1044. if (info->version_code != LINUX_VERSION_CODE)
  1045. return "kernel version";
  1046. if (strcmp(info->uts.sysname,init_utsname()->sysname))
  1047. return "system type";
  1048. if (strcmp(info->uts.release,init_utsname()->release))
  1049. return "kernel release";
  1050. if (strcmp(info->uts.version,init_utsname()->version))
  1051. return "version";
  1052. if (strcmp(info->uts.machine,init_utsname()->machine))
  1053. return "machine";
  1054. return NULL;
  1055. }
  1056. #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
  1057. unsigned long snapshot_get_image_size(void)
  1058. {
  1059. return nr_copy_pages + nr_meta_pages + 1;
  1060. }
  1061. static int init_header(struct swsusp_info *info)
  1062. {
  1063. memset(info, 0, sizeof(struct swsusp_info));
  1064. info->num_physpages = num_physpages;
  1065. info->image_pages = nr_copy_pages;
  1066. info->pages = snapshot_get_image_size();
  1067. info->size = info->pages;
  1068. info->size <<= PAGE_SHIFT;
  1069. return init_header_complete(info);
  1070. }
  1071. /**
  1072. * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
  1073. * are stored in the array @buf[] (1 page at a time)
  1074. */
  1075. static inline void
  1076. pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1077. {
  1078. int j;
  1079. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1080. buf[j] = memory_bm_next_pfn(bm);
  1081. if (unlikely(buf[j] == BM_END_OF_MAP))
  1082. break;
  1083. }
  1084. }
  1085. /**
  1086. * snapshot_read_next - used for reading the system memory snapshot.
  1087. *
  1088. * On the first call to it @handle should point to a zeroed
  1089. * snapshot_handle structure. The structure gets updated and a pointer
  1090. * to it should be passed to this function every next time.
  1091. *
  1092. * The @count parameter should contain the number of bytes the caller
  1093. * wants to read from the snapshot. It must not be zero.
  1094. *
  1095. * On success the function returns a positive number. Then, the caller
  1096. * is allowed to read up to the returned number of bytes from the memory
  1097. * location computed by the data_of() macro. The number returned
  1098. * may be smaller than @count, but this only happens if the read would
  1099. * cross a page boundary otherwise.
  1100. *
  1101. * The function returns 0 to indicate the end of data stream condition,
  1102. * and a negative number is returned on error. In such cases the
  1103. * structure pointed to by @handle is not updated and should not be used
  1104. * any more.
  1105. */
  1106. int snapshot_read_next(struct snapshot_handle *handle, size_t count)
  1107. {
  1108. if (handle->cur > nr_meta_pages + nr_copy_pages)
  1109. return 0;
  1110. if (!buffer) {
  1111. /* This makes the buffer be freed by swsusp_free() */
  1112. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1113. if (!buffer)
  1114. return -ENOMEM;
  1115. }
  1116. if (!handle->offset) {
  1117. int error;
  1118. error = init_header((struct swsusp_info *)buffer);
  1119. if (error)
  1120. return error;
  1121. handle->buffer = buffer;
  1122. memory_bm_position_reset(&orig_bm);
  1123. memory_bm_position_reset(&copy_bm);
  1124. }
  1125. if (handle->prev < handle->cur) {
  1126. if (handle->cur <= nr_meta_pages) {
  1127. memset(buffer, 0, PAGE_SIZE);
  1128. pack_pfns(buffer, &orig_bm);
  1129. } else {
  1130. struct page *page;
  1131. page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
  1132. if (PageHighMem(page)) {
  1133. /* Highmem pages are copied to the buffer,
  1134. * because we can't return with a kmapped
  1135. * highmem page (we may not be called again).
  1136. */
  1137. void *kaddr;
  1138. kaddr = kmap_atomic(page, KM_USER0);
  1139. memcpy(buffer, kaddr, PAGE_SIZE);
  1140. kunmap_atomic(kaddr, KM_USER0);
  1141. handle->buffer = buffer;
  1142. } else {
  1143. handle->buffer = page_address(page);
  1144. }
  1145. }
  1146. handle->prev = handle->cur;
  1147. }
  1148. handle->buf_offset = handle->cur_offset;
  1149. if (handle->cur_offset + count >= PAGE_SIZE) {
  1150. count = PAGE_SIZE - handle->cur_offset;
  1151. handle->cur_offset = 0;
  1152. handle->cur++;
  1153. } else {
  1154. handle->cur_offset += count;
  1155. }
  1156. handle->offset += count;
  1157. return count;
  1158. }
  1159. /**
  1160. * mark_unsafe_pages - mark the pages that cannot be used for storing
  1161. * the image during resume, because they conflict with the pages that
  1162. * had been used before suspend
  1163. */
  1164. static int mark_unsafe_pages(struct memory_bitmap *bm)
  1165. {
  1166. struct zone *zone;
  1167. unsigned long pfn, max_zone_pfn;
  1168. /* Clear page flags */
  1169. for_each_zone(zone) {
  1170. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1171. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1172. if (pfn_valid(pfn))
  1173. swsusp_unset_page_free(pfn_to_page(pfn));
  1174. }
  1175. /* Mark pages that correspond to the "original" pfns as "unsafe" */
  1176. memory_bm_position_reset(bm);
  1177. do {
  1178. pfn = memory_bm_next_pfn(bm);
  1179. if (likely(pfn != BM_END_OF_MAP)) {
  1180. if (likely(pfn_valid(pfn)))
  1181. swsusp_set_page_free(pfn_to_page(pfn));
  1182. else
  1183. return -EFAULT;
  1184. }
  1185. } while (pfn != BM_END_OF_MAP);
  1186. allocated_unsafe_pages = 0;
  1187. return 0;
  1188. }
  1189. static void
  1190. duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
  1191. {
  1192. unsigned long pfn;
  1193. memory_bm_position_reset(src);
  1194. pfn = memory_bm_next_pfn(src);
  1195. while (pfn != BM_END_OF_MAP) {
  1196. memory_bm_set_bit(dst, pfn);
  1197. pfn = memory_bm_next_pfn(src);
  1198. }
  1199. }
  1200. static int check_header(struct swsusp_info *info)
  1201. {
  1202. char *reason;
  1203. reason = check_image_kernel(info);
  1204. if (!reason && info->num_physpages != num_physpages)
  1205. reason = "memory size";
  1206. if (reason) {
  1207. printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
  1208. return -EPERM;
  1209. }
  1210. return 0;
  1211. }
  1212. /**
  1213. * load header - check the image header and copy data from it
  1214. */
  1215. static int
  1216. load_header(struct swsusp_info *info)
  1217. {
  1218. int error;
  1219. restore_pblist = NULL;
  1220. error = check_header(info);
  1221. if (!error) {
  1222. nr_copy_pages = info->image_pages;
  1223. nr_meta_pages = info->pages - info->image_pages - 1;
  1224. }
  1225. return error;
  1226. }
  1227. /**
  1228. * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
  1229. * the corresponding bit in the memory bitmap @bm
  1230. */
  1231. static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1232. {
  1233. int j;
  1234. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1235. if (unlikely(buf[j] == BM_END_OF_MAP))
  1236. break;
  1237. if (memory_bm_pfn_present(bm, buf[j]))
  1238. memory_bm_set_bit(bm, buf[j]);
  1239. else
  1240. return -EFAULT;
  1241. }
  1242. return 0;
  1243. }
  1244. /* List of "safe" pages that may be used to store data loaded from the suspend
  1245. * image
  1246. */
  1247. static struct linked_page *safe_pages_list;
  1248. #ifdef CONFIG_HIGHMEM
  1249. /* struct highmem_pbe is used for creating the list of highmem pages that
  1250. * should be restored atomically during the resume from disk, because the page
  1251. * frames they have occupied before the suspend are in use.
  1252. */
  1253. struct highmem_pbe {
  1254. struct page *copy_page; /* data is here now */
  1255. struct page *orig_page; /* data was here before the suspend */
  1256. struct highmem_pbe *next;
  1257. };
  1258. /* List of highmem PBEs needed for restoring the highmem pages that were
  1259. * allocated before the suspend and included in the suspend image, but have
  1260. * also been allocated by the "resume" kernel, so their contents cannot be
  1261. * written directly to their "original" page frames.
  1262. */
  1263. static struct highmem_pbe *highmem_pblist;
  1264. /**
  1265. * count_highmem_image_pages - compute the number of highmem pages in the
  1266. * suspend image. The bits in the memory bitmap @bm that correspond to the
  1267. * image pages are assumed to be set.
  1268. */
  1269. static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
  1270. {
  1271. unsigned long pfn;
  1272. unsigned int cnt = 0;
  1273. memory_bm_position_reset(bm);
  1274. pfn = memory_bm_next_pfn(bm);
  1275. while (pfn != BM_END_OF_MAP) {
  1276. if (PageHighMem(pfn_to_page(pfn)))
  1277. cnt++;
  1278. pfn = memory_bm_next_pfn(bm);
  1279. }
  1280. return cnt;
  1281. }
  1282. /**
  1283. * prepare_highmem_image - try to allocate as many highmem pages as
  1284. * there are highmem image pages (@nr_highmem_p points to the variable
  1285. * containing the number of highmem image pages). The pages that are
  1286. * "safe" (ie. will not be overwritten when the suspend image is
  1287. * restored) have the corresponding bits set in @bm (it must be
  1288. * unitialized).
  1289. *
  1290. * NOTE: This function should not be called if there are no highmem
  1291. * image pages.
  1292. */
  1293. static unsigned int safe_highmem_pages;
  1294. static struct memory_bitmap *safe_highmem_bm;
  1295. static int
  1296. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1297. {
  1298. unsigned int to_alloc;
  1299. if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
  1300. return -ENOMEM;
  1301. if (get_highmem_buffer(PG_SAFE))
  1302. return -ENOMEM;
  1303. to_alloc = count_free_highmem_pages();
  1304. if (to_alloc > *nr_highmem_p)
  1305. to_alloc = *nr_highmem_p;
  1306. else
  1307. *nr_highmem_p = to_alloc;
  1308. safe_highmem_pages = 0;
  1309. while (to_alloc-- > 0) {
  1310. struct page *page;
  1311. page = alloc_page(__GFP_HIGHMEM);
  1312. if (!swsusp_page_is_free(page)) {
  1313. /* The page is "safe", set its bit the bitmap */
  1314. memory_bm_set_bit(bm, page_to_pfn(page));
  1315. safe_highmem_pages++;
  1316. }
  1317. /* Mark the page as allocated */
  1318. swsusp_set_page_forbidden(page);
  1319. swsusp_set_page_free(page);
  1320. }
  1321. memory_bm_position_reset(bm);
  1322. safe_highmem_bm = bm;
  1323. return 0;
  1324. }
  1325. /**
  1326. * get_highmem_page_buffer - for given highmem image page find the buffer
  1327. * that suspend_write_next() should set for its caller to write to.
  1328. *
  1329. * If the page is to be saved to its "original" page frame or a copy of
  1330. * the page is to be made in the highmem, @buffer is returned. Otherwise,
  1331. * the copy of the page is to be made in normal memory, so the address of
  1332. * the copy is returned.
  1333. *
  1334. * If @buffer is returned, the caller of suspend_write_next() will write
  1335. * the page's contents to @buffer, so they will have to be copied to the
  1336. * right location on the next call to suspend_write_next() and it is done
  1337. * with the help of copy_last_highmem_page(). For this purpose, if
  1338. * @buffer is returned, @last_highmem page is set to the page to which
  1339. * the data will have to be copied from @buffer.
  1340. */
  1341. static struct page *last_highmem_page;
  1342. static void *
  1343. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1344. {
  1345. struct highmem_pbe *pbe;
  1346. void *kaddr;
  1347. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
  1348. /* We have allocated the "original" page frame and we can
  1349. * use it directly to store the loaded page.
  1350. */
  1351. last_highmem_page = page;
  1352. return buffer;
  1353. }
  1354. /* The "original" page frame has not been allocated and we have to
  1355. * use a "safe" page frame to store the loaded page.
  1356. */
  1357. pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
  1358. if (!pbe) {
  1359. swsusp_free();
  1360. return ERR_PTR(-ENOMEM);
  1361. }
  1362. pbe->orig_page = page;
  1363. if (safe_highmem_pages > 0) {
  1364. struct page *tmp;
  1365. /* Copy of the page will be stored in high memory */
  1366. kaddr = buffer;
  1367. tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
  1368. safe_highmem_pages--;
  1369. last_highmem_page = tmp;
  1370. pbe->copy_page = tmp;
  1371. } else {
  1372. /* Copy of the page will be stored in normal memory */
  1373. kaddr = safe_pages_list;
  1374. safe_pages_list = safe_pages_list->next;
  1375. pbe->copy_page = virt_to_page(kaddr);
  1376. }
  1377. pbe->next = highmem_pblist;
  1378. highmem_pblist = pbe;
  1379. return kaddr;
  1380. }
  1381. /**
  1382. * copy_last_highmem_page - copy the contents of a highmem image from
  1383. * @buffer, where the caller of snapshot_write_next() has place them,
  1384. * to the right location represented by @last_highmem_page .
  1385. */
  1386. static void copy_last_highmem_page(void)
  1387. {
  1388. if (last_highmem_page) {
  1389. void *dst;
  1390. dst = kmap_atomic(last_highmem_page, KM_USER0);
  1391. memcpy(dst, buffer, PAGE_SIZE);
  1392. kunmap_atomic(dst, KM_USER0);
  1393. last_highmem_page = NULL;
  1394. }
  1395. }
  1396. static inline int last_highmem_page_copied(void)
  1397. {
  1398. return !last_highmem_page;
  1399. }
  1400. static inline void free_highmem_data(void)
  1401. {
  1402. if (safe_highmem_bm)
  1403. memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
  1404. if (buffer)
  1405. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1406. }
  1407. #else
  1408. static inline int get_safe_write_buffer(void) { return 0; }
  1409. static unsigned int
  1410. count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
  1411. static inline int
  1412. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1413. {
  1414. return 0;
  1415. }
  1416. static inline void *
  1417. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1418. {
  1419. return ERR_PTR(-EINVAL);
  1420. }
  1421. static inline void copy_last_highmem_page(void) {}
  1422. static inline int last_highmem_page_copied(void) { return 1; }
  1423. static inline void free_highmem_data(void) {}
  1424. #endif /* CONFIG_HIGHMEM */
  1425. /**
  1426. * prepare_image - use the memory bitmap @bm to mark the pages that will
  1427. * be overwritten in the process of restoring the system memory state
  1428. * from the suspend image ("unsafe" pages) and allocate memory for the
  1429. * image.
  1430. *
  1431. * The idea is to allocate a new memory bitmap first and then allocate
  1432. * as many pages as needed for the image data, but not to assign these
  1433. * pages to specific tasks initially. Instead, we just mark them as
  1434. * allocated and create a lists of "safe" pages that will be used
  1435. * later. On systems with high memory a list of "safe" highmem pages is
  1436. * also created.
  1437. */
  1438. #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
  1439. static int
  1440. prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
  1441. {
  1442. unsigned int nr_pages, nr_highmem;
  1443. struct linked_page *sp_list, *lp;
  1444. int error;
  1445. /* If there is no highmem, the buffer will not be necessary */
  1446. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1447. buffer = NULL;
  1448. nr_highmem = count_highmem_image_pages(bm);
  1449. error = mark_unsafe_pages(bm);
  1450. if (error)
  1451. goto Free;
  1452. error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
  1453. if (error)
  1454. goto Free;
  1455. duplicate_memory_bitmap(new_bm, bm);
  1456. memory_bm_free(bm, PG_UNSAFE_KEEP);
  1457. if (nr_highmem > 0) {
  1458. error = prepare_highmem_image(bm, &nr_highmem);
  1459. if (error)
  1460. goto Free;
  1461. }
  1462. /* Reserve some safe pages for potential later use.
  1463. *
  1464. * NOTE: This way we make sure there will be enough safe pages for the
  1465. * chain_alloc() in get_buffer(). It is a bit wasteful, but
  1466. * nr_copy_pages cannot be greater than 50% of the memory anyway.
  1467. */
  1468. sp_list = NULL;
  1469. /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
  1470. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1471. nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
  1472. while (nr_pages > 0) {
  1473. lp = get_image_page(GFP_ATOMIC, PG_SAFE);
  1474. if (!lp) {
  1475. error = -ENOMEM;
  1476. goto Free;
  1477. }
  1478. lp->next = sp_list;
  1479. sp_list = lp;
  1480. nr_pages--;
  1481. }
  1482. /* Preallocate memory for the image */
  1483. safe_pages_list = NULL;
  1484. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1485. while (nr_pages > 0) {
  1486. lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
  1487. if (!lp) {
  1488. error = -ENOMEM;
  1489. goto Free;
  1490. }
  1491. if (!swsusp_page_is_free(virt_to_page(lp))) {
  1492. /* The page is "safe", add it to the list */
  1493. lp->next = safe_pages_list;
  1494. safe_pages_list = lp;
  1495. }
  1496. /* Mark the page as allocated */
  1497. swsusp_set_page_forbidden(virt_to_page(lp));
  1498. swsusp_set_page_free(virt_to_page(lp));
  1499. nr_pages--;
  1500. }
  1501. /* Free the reserved safe pages so that chain_alloc() can use them */
  1502. while (sp_list) {
  1503. lp = sp_list->next;
  1504. free_image_page(sp_list, PG_UNSAFE_CLEAR);
  1505. sp_list = lp;
  1506. }
  1507. return 0;
  1508. Free:
  1509. swsusp_free();
  1510. return error;
  1511. }
  1512. /**
  1513. * get_buffer - compute the address that snapshot_write_next() should
  1514. * set for its caller to write to.
  1515. */
  1516. static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
  1517. {
  1518. struct pbe *pbe;
  1519. struct page *page;
  1520. unsigned long pfn = memory_bm_next_pfn(bm);
  1521. if (pfn == BM_END_OF_MAP)
  1522. return ERR_PTR(-EFAULT);
  1523. page = pfn_to_page(pfn);
  1524. if (PageHighMem(page))
  1525. return get_highmem_page_buffer(page, ca);
  1526. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
  1527. /* We have allocated the "original" page frame and we can
  1528. * use it directly to store the loaded page.
  1529. */
  1530. return page_address(page);
  1531. /* The "original" page frame has not been allocated and we have to
  1532. * use a "safe" page frame to store the loaded page.
  1533. */
  1534. pbe = chain_alloc(ca, sizeof(struct pbe));
  1535. if (!pbe) {
  1536. swsusp_free();
  1537. return ERR_PTR(-ENOMEM);
  1538. }
  1539. pbe->orig_address = page_address(page);
  1540. pbe->address = safe_pages_list;
  1541. safe_pages_list = safe_pages_list->next;
  1542. pbe->next = restore_pblist;
  1543. restore_pblist = pbe;
  1544. return pbe->address;
  1545. }
  1546. /**
  1547. * snapshot_write_next - used for writing the system memory snapshot.
  1548. *
  1549. * On the first call to it @handle should point to a zeroed
  1550. * snapshot_handle structure. The structure gets updated and a pointer
  1551. * to it should be passed to this function every next time.
  1552. *
  1553. * The @count parameter should contain the number of bytes the caller
  1554. * wants to write to the image. It must not be zero.
  1555. *
  1556. * On success the function returns a positive number. Then, the caller
  1557. * is allowed to write up to the returned number of bytes to the memory
  1558. * location computed by the data_of() macro. The number returned
  1559. * may be smaller than @count, but this only happens if the write would
  1560. * cross a page boundary otherwise.
  1561. *
  1562. * The function returns 0 to indicate the "end of file" condition,
  1563. * and a negative number is returned on error. In such cases the
  1564. * structure pointed to by @handle is not updated and should not be used
  1565. * any more.
  1566. */
  1567. int snapshot_write_next(struct snapshot_handle *handle, size_t count)
  1568. {
  1569. static struct chain_allocator ca;
  1570. int error = 0;
  1571. /* Check if we have already loaded the entire image */
  1572. if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
  1573. return 0;
  1574. if (handle->offset == 0) {
  1575. if (!buffer)
  1576. /* This makes the buffer be freed by swsusp_free() */
  1577. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1578. if (!buffer)
  1579. return -ENOMEM;
  1580. handle->buffer = buffer;
  1581. }
  1582. handle->sync_read = 1;
  1583. if (handle->prev < handle->cur) {
  1584. if (handle->prev == 0) {
  1585. error = load_header(buffer);
  1586. if (error)
  1587. return error;
  1588. error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
  1589. if (error)
  1590. return error;
  1591. } else if (handle->prev <= nr_meta_pages) {
  1592. error = unpack_orig_pfns(buffer, &copy_bm);
  1593. if (error)
  1594. return error;
  1595. if (handle->prev == nr_meta_pages) {
  1596. error = prepare_image(&orig_bm, &copy_bm);
  1597. if (error)
  1598. return error;
  1599. chain_init(&ca, GFP_ATOMIC, PG_SAFE);
  1600. memory_bm_position_reset(&orig_bm);
  1601. restore_pblist = NULL;
  1602. handle->buffer = get_buffer(&orig_bm, &ca);
  1603. handle->sync_read = 0;
  1604. if (IS_ERR(handle->buffer))
  1605. return PTR_ERR(handle->buffer);
  1606. }
  1607. } else {
  1608. copy_last_highmem_page();
  1609. handle->buffer = get_buffer(&orig_bm, &ca);
  1610. if (IS_ERR(handle->buffer))
  1611. return PTR_ERR(handle->buffer);
  1612. if (handle->buffer != buffer)
  1613. handle->sync_read = 0;
  1614. }
  1615. handle->prev = handle->cur;
  1616. }
  1617. handle->buf_offset = handle->cur_offset;
  1618. if (handle->cur_offset + count >= PAGE_SIZE) {
  1619. count = PAGE_SIZE - handle->cur_offset;
  1620. handle->cur_offset = 0;
  1621. handle->cur++;
  1622. } else {
  1623. handle->cur_offset += count;
  1624. }
  1625. handle->offset += count;
  1626. return count;
  1627. }
  1628. /**
  1629. * snapshot_write_finalize - must be called after the last call to
  1630. * snapshot_write_next() in case the last page in the image happens
  1631. * to be a highmem page and its contents should be stored in the
  1632. * highmem. Additionally, it releases the memory that will not be
  1633. * used any more.
  1634. */
  1635. void snapshot_write_finalize(struct snapshot_handle *handle)
  1636. {
  1637. copy_last_highmem_page();
  1638. /* Free only if we have loaded the image entirely */
  1639. if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
  1640. memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
  1641. free_highmem_data();
  1642. }
  1643. }
  1644. int snapshot_image_loaded(struct snapshot_handle *handle)
  1645. {
  1646. return !(!nr_copy_pages || !last_highmem_page_copied() ||
  1647. handle->cur <= nr_meta_pages + nr_copy_pages);
  1648. }
  1649. #ifdef CONFIG_HIGHMEM
  1650. /* Assumes that @buf is ready and points to a "safe" page */
  1651. static inline void
  1652. swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
  1653. {
  1654. void *kaddr1, *kaddr2;
  1655. kaddr1 = kmap_atomic(p1, KM_USER0);
  1656. kaddr2 = kmap_atomic(p2, KM_USER1);
  1657. memcpy(buf, kaddr1, PAGE_SIZE);
  1658. memcpy(kaddr1, kaddr2, PAGE_SIZE);
  1659. memcpy(kaddr2, buf, PAGE_SIZE);
  1660. kunmap_atomic(kaddr1, KM_USER0);
  1661. kunmap_atomic(kaddr2, KM_USER1);
  1662. }
  1663. /**
  1664. * restore_highmem - for each highmem page that was allocated before
  1665. * the suspend and included in the suspend image, and also has been
  1666. * allocated by the "resume" kernel swap its current (ie. "before
  1667. * resume") contents with the previous (ie. "before suspend") one.
  1668. *
  1669. * If the resume eventually fails, we can call this function once
  1670. * again and restore the "before resume" highmem state.
  1671. */
  1672. int restore_highmem(void)
  1673. {
  1674. struct highmem_pbe *pbe = highmem_pblist;
  1675. void *buf;
  1676. if (!pbe)
  1677. return 0;
  1678. buf = get_image_page(GFP_ATOMIC, PG_SAFE);
  1679. if (!buf)
  1680. return -ENOMEM;
  1681. while (pbe) {
  1682. swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
  1683. pbe = pbe->next;
  1684. }
  1685. free_image_page(buf, PG_UNSAFE_CLEAR);
  1686. return 0;
  1687. }
  1688. #endif /* CONFIG_HIGHMEM */