xfs_inode.c 124 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_btree_trace.h"
  43. #include "xfs_alloc.h"
  44. #include "xfs_ialloc.h"
  45. #include "xfs_bmap.h"
  46. #include "xfs_rw.h"
  47. #include "xfs_error.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_dir2_trace.h"
  50. #include "xfs_quota.h"
  51. #include "xfs_acl.h"
  52. #include "xfs_filestream.h"
  53. #include "xfs_vnodeops.h"
  54. kmem_zone_t *xfs_ifork_zone;
  55. kmem_zone_t *xfs_inode_zone;
  56. /*
  57. * Used in xfs_itruncate(). This is the maximum number of extents
  58. * freed from a file in a single transaction.
  59. */
  60. #define XFS_ITRUNC_MAX_EXTENTS 2
  61. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  62. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  63. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  64. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  65. #ifdef DEBUG
  66. /*
  67. * Make sure that the extents in the given memory buffer
  68. * are valid.
  69. */
  70. STATIC void
  71. xfs_validate_extents(
  72. xfs_ifork_t *ifp,
  73. int nrecs,
  74. xfs_exntfmt_t fmt)
  75. {
  76. xfs_bmbt_irec_t irec;
  77. xfs_bmbt_rec_host_t rec;
  78. int i;
  79. for (i = 0; i < nrecs; i++) {
  80. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  81. rec.l0 = get_unaligned(&ep->l0);
  82. rec.l1 = get_unaligned(&ep->l1);
  83. xfs_bmbt_get_all(&rec, &irec);
  84. if (fmt == XFS_EXTFMT_NOSTATE)
  85. ASSERT(irec.br_state == XFS_EXT_NORM);
  86. }
  87. }
  88. #else /* DEBUG */
  89. #define xfs_validate_extents(ifp, nrecs, fmt)
  90. #endif /* DEBUG */
  91. /*
  92. * Check that none of the inode's in the buffer have a next
  93. * unlinked field of 0.
  94. */
  95. #if defined(DEBUG)
  96. void
  97. xfs_inobp_check(
  98. xfs_mount_t *mp,
  99. xfs_buf_t *bp)
  100. {
  101. int i;
  102. int j;
  103. xfs_dinode_t *dip;
  104. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  105. for (i = 0; i < j; i++) {
  106. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  107. i * mp->m_sb.sb_inodesize);
  108. if (!dip->di_next_unlinked) {
  109. xfs_fs_cmn_err(CE_ALERT, mp,
  110. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  111. bp);
  112. ASSERT(dip->di_next_unlinked);
  113. }
  114. }
  115. }
  116. #endif
  117. /*
  118. * Find the buffer associated with the given inode map
  119. * We do basic validation checks on the buffer once it has been
  120. * retrieved from disk.
  121. */
  122. STATIC int
  123. xfs_imap_to_bp(
  124. xfs_mount_t *mp,
  125. xfs_trans_t *tp,
  126. struct xfs_imap *imap,
  127. xfs_buf_t **bpp,
  128. uint buf_flags,
  129. uint iget_flags)
  130. {
  131. int error;
  132. int i;
  133. int ni;
  134. xfs_buf_t *bp;
  135. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  136. (int)imap->im_len, buf_flags, &bp);
  137. if (error) {
  138. if (error != EAGAIN) {
  139. cmn_err(CE_WARN,
  140. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  141. "an error %d on %s. Returning error.",
  142. error, mp->m_fsname);
  143. } else {
  144. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  145. }
  146. return error;
  147. }
  148. /*
  149. * Validate the magic number and version of every inode in the buffer
  150. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  151. */
  152. #ifdef DEBUG
  153. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  154. #else /* usual case */
  155. ni = 1;
  156. #endif
  157. for (i = 0; i < ni; i++) {
  158. int di_ok;
  159. xfs_dinode_t *dip;
  160. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  161. (i << mp->m_sb.sb_inodelog));
  162. di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
  163. XFS_DINODE_GOOD_VERSION(dip->di_version);
  164. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  165. XFS_ERRTAG_ITOBP_INOTOBP,
  166. XFS_RANDOM_ITOBP_INOTOBP))) {
  167. if (iget_flags & XFS_IGET_BULKSTAT) {
  168. xfs_trans_brelse(tp, bp);
  169. return XFS_ERROR(EINVAL);
  170. }
  171. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  172. XFS_ERRLEVEL_HIGH, mp, dip);
  173. #ifdef DEBUG
  174. cmn_err(CE_PANIC,
  175. "Device %s - bad inode magic/vsn "
  176. "daddr %lld #%d (magic=%x)",
  177. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  178. (unsigned long long)imap->im_blkno, i,
  179. be16_to_cpu(dip->di_magic));
  180. #endif
  181. xfs_trans_brelse(tp, bp);
  182. return XFS_ERROR(EFSCORRUPTED);
  183. }
  184. }
  185. xfs_inobp_check(mp, bp);
  186. /*
  187. * Mark the buffer as an inode buffer now that it looks good
  188. */
  189. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  190. *bpp = bp;
  191. return 0;
  192. }
  193. /*
  194. * This routine is called to map an inode number within a file
  195. * system to the buffer containing the on-disk version of the
  196. * inode. It returns a pointer to the buffer containing the
  197. * on-disk inode in the bpp parameter, and in the dip parameter
  198. * it returns a pointer to the on-disk inode within that buffer.
  199. *
  200. * If a non-zero error is returned, then the contents of bpp and
  201. * dipp are undefined.
  202. *
  203. * Use xfs_imap() to determine the size and location of the
  204. * buffer to read from disk.
  205. */
  206. int
  207. xfs_inotobp(
  208. xfs_mount_t *mp,
  209. xfs_trans_t *tp,
  210. xfs_ino_t ino,
  211. xfs_dinode_t **dipp,
  212. xfs_buf_t **bpp,
  213. int *offset,
  214. uint imap_flags)
  215. {
  216. struct xfs_imap imap;
  217. xfs_buf_t *bp;
  218. int error;
  219. imap.im_blkno = 0;
  220. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  221. if (error)
  222. return error;
  223. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
  224. if (error)
  225. return error;
  226. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  227. *bpp = bp;
  228. *offset = imap.im_boffset;
  229. return 0;
  230. }
  231. /*
  232. * This routine is called to map an inode to the buffer containing
  233. * the on-disk version of the inode. It returns a pointer to the
  234. * buffer containing the on-disk inode in the bpp parameter, and in
  235. * the dip parameter it returns a pointer to the on-disk inode within
  236. * that buffer.
  237. *
  238. * If a non-zero error is returned, then the contents of bpp and
  239. * dipp are undefined.
  240. *
  241. * The inode is expected to already been mapped to its buffer and read
  242. * in once, thus we can use the mapping information stored in the inode
  243. * rather than calling xfs_imap(). This allows us to avoid the overhead
  244. * of looking at the inode btree for small block file systems
  245. * (see xfs_imap()).
  246. */
  247. int
  248. xfs_itobp(
  249. xfs_mount_t *mp,
  250. xfs_trans_t *tp,
  251. xfs_inode_t *ip,
  252. xfs_dinode_t **dipp,
  253. xfs_buf_t **bpp,
  254. uint buf_flags)
  255. {
  256. xfs_buf_t *bp;
  257. int error;
  258. ASSERT(ip->i_imap.im_blkno != 0);
  259. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  260. if (error)
  261. return error;
  262. if (!bp) {
  263. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  264. ASSERT(tp == NULL);
  265. *bpp = NULL;
  266. return EAGAIN;
  267. }
  268. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  269. *bpp = bp;
  270. return 0;
  271. }
  272. /*
  273. * Move inode type and inode format specific information from the
  274. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  275. * this means set if_rdev to the proper value. For files, directories,
  276. * and symlinks this means to bring in the in-line data or extent
  277. * pointers. For a file in B-tree format, only the root is immediately
  278. * brought in-core. The rest will be in-lined in if_extents when it
  279. * is first referenced (see xfs_iread_extents()).
  280. */
  281. STATIC int
  282. xfs_iformat(
  283. xfs_inode_t *ip,
  284. xfs_dinode_t *dip)
  285. {
  286. xfs_attr_shortform_t *atp;
  287. int size;
  288. int error;
  289. xfs_fsize_t di_size;
  290. ip->i_df.if_ext_max =
  291. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  292. error = 0;
  293. if (unlikely(be32_to_cpu(dip->di_nextents) +
  294. be16_to_cpu(dip->di_anextents) >
  295. be64_to_cpu(dip->di_nblocks))) {
  296. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  297. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  298. (unsigned long long)ip->i_ino,
  299. (int)(be32_to_cpu(dip->di_nextents) +
  300. be16_to_cpu(dip->di_anextents)),
  301. (unsigned long long)
  302. be64_to_cpu(dip->di_nblocks));
  303. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  304. ip->i_mount, dip);
  305. return XFS_ERROR(EFSCORRUPTED);
  306. }
  307. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  308. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  309. "corrupt dinode %Lu, forkoff = 0x%x.",
  310. (unsigned long long)ip->i_ino,
  311. dip->di_forkoff);
  312. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  313. ip->i_mount, dip);
  314. return XFS_ERROR(EFSCORRUPTED);
  315. }
  316. switch (ip->i_d.di_mode & S_IFMT) {
  317. case S_IFIFO:
  318. case S_IFCHR:
  319. case S_IFBLK:
  320. case S_IFSOCK:
  321. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  322. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  323. ip->i_mount, dip);
  324. return XFS_ERROR(EFSCORRUPTED);
  325. }
  326. ip->i_d.di_size = 0;
  327. ip->i_size = 0;
  328. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  329. break;
  330. case S_IFREG:
  331. case S_IFLNK:
  332. case S_IFDIR:
  333. switch (dip->di_format) {
  334. case XFS_DINODE_FMT_LOCAL:
  335. /*
  336. * no local regular files yet
  337. */
  338. if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
  339. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  340. "corrupt inode %Lu "
  341. "(local format for regular file).",
  342. (unsigned long long) ip->i_ino);
  343. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  344. XFS_ERRLEVEL_LOW,
  345. ip->i_mount, dip);
  346. return XFS_ERROR(EFSCORRUPTED);
  347. }
  348. di_size = be64_to_cpu(dip->di_size);
  349. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  350. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  351. "corrupt inode %Lu "
  352. "(bad size %Ld for local inode).",
  353. (unsigned long long) ip->i_ino,
  354. (long long) di_size);
  355. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  356. XFS_ERRLEVEL_LOW,
  357. ip->i_mount, dip);
  358. return XFS_ERROR(EFSCORRUPTED);
  359. }
  360. size = (int)di_size;
  361. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  362. break;
  363. case XFS_DINODE_FMT_EXTENTS:
  364. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  365. break;
  366. case XFS_DINODE_FMT_BTREE:
  367. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  368. break;
  369. default:
  370. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  371. ip->i_mount);
  372. return XFS_ERROR(EFSCORRUPTED);
  373. }
  374. break;
  375. default:
  376. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  377. return XFS_ERROR(EFSCORRUPTED);
  378. }
  379. if (error) {
  380. return error;
  381. }
  382. if (!XFS_DFORK_Q(dip))
  383. return 0;
  384. ASSERT(ip->i_afp == NULL);
  385. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  386. ip->i_afp->if_ext_max =
  387. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  388. switch (dip->di_aformat) {
  389. case XFS_DINODE_FMT_LOCAL:
  390. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  391. size = be16_to_cpu(atp->hdr.totsize);
  392. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  393. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  394. "corrupt inode %Lu "
  395. "(bad attr fork size %Ld).",
  396. (unsigned long long) ip->i_ino,
  397. (long long) size);
  398. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  399. XFS_ERRLEVEL_LOW,
  400. ip->i_mount, dip);
  401. return XFS_ERROR(EFSCORRUPTED);
  402. }
  403. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  404. break;
  405. case XFS_DINODE_FMT_EXTENTS:
  406. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  407. break;
  408. case XFS_DINODE_FMT_BTREE:
  409. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  410. break;
  411. default:
  412. error = XFS_ERROR(EFSCORRUPTED);
  413. break;
  414. }
  415. if (error) {
  416. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  417. ip->i_afp = NULL;
  418. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  419. }
  420. return error;
  421. }
  422. /*
  423. * The file is in-lined in the on-disk inode.
  424. * If it fits into if_inline_data, then copy
  425. * it there, otherwise allocate a buffer for it
  426. * and copy the data there. Either way, set
  427. * if_data to point at the data.
  428. * If we allocate a buffer for the data, make
  429. * sure that its size is a multiple of 4 and
  430. * record the real size in i_real_bytes.
  431. */
  432. STATIC int
  433. xfs_iformat_local(
  434. xfs_inode_t *ip,
  435. xfs_dinode_t *dip,
  436. int whichfork,
  437. int size)
  438. {
  439. xfs_ifork_t *ifp;
  440. int real_size;
  441. /*
  442. * If the size is unreasonable, then something
  443. * is wrong and we just bail out rather than crash in
  444. * kmem_alloc() or memcpy() below.
  445. */
  446. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  447. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  448. "corrupt inode %Lu "
  449. "(bad size %d for local fork, size = %d).",
  450. (unsigned long long) ip->i_ino, size,
  451. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  452. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  453. ip->i_mount, dip);
  454. return XFS_ERROR(EFSCORRUPTED);
  455. }
  456. ifp = XFS_IFORK_PTR(ip, whichfork);
  457. real_size = 0;
  458. if (size == 0)
  459. ifp->if_u1.if_data = NULL;
  460. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  461. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  462. else {
  463. real_size = roundup(size, 4);
  464. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  465. }
  466. ifp->if_bytes = size;
  467. ifp->if_real_bytes = real_size;
  468. if (size)
  469. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  470. ifp->if_flags &= ~XFS_IFEXTENTS;
  471. ifp->if_flags |= XFS_IFINLINE;
  472. return 0;
  473. }
  474. /*
  475. * The file consists of a set of extents all
  476. * of which fit into the on-disk inode.
  477. * If there are few enough extents to fit into
  478. * the if_inline_ext, then copy them there.
  479. * Otherwise allocate a buffer for them and copy
  480. * them into it. Either way, set if_extents
  481. * to point at the extents.
  482. */
  483. STATIC int
  484. xfs_iformat_extents(
  485. xfs_inode_t *ip,
  486. xfs_dinode_t *dip,
  487. int whichfork)
  488. {
  489. xfs_bmbt_rec_t *dp;
  490. xfs_ifork_t *ifp;
  491. int nex;
  492. int size;
  493. int i;
  494. ifp = XFS_IFORK_PTR(ip, whichfork);
  495. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  496. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  497. /*
  498. * If the number of extents is unreasonable, then something
  499. * is wrong and we just bail out rather than crash in
  500. * kmem_alloc() or memcpy() below.
  501. */
  502. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  503. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  504. "corrupt inode %Lu ((a)extents = %d).",
  505. (unsigned long long) ip->i_ino, nex);
  506. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  507. ip->i_mount, dip);
  508. return XFS_ERROR(EFSCORRUPTED);
  509. }
  510. ifp->if_real_bytes = 0;
  511. if (nex == 0)
  512. ifp->if_u1.if_extents = NULL;
  513. else if (nex <= XFS_INLINE_EXTS)
  514. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  515. else
  516. xfs_iext_add(ifp, 0, nex);
  517. ifp->if_bytes = size;
  518. if (size) {
  519. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  520. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  521. for (i = 0; i < nex; i++, dp++) {
  522. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  523. ep->l0 = get_unaligned_be64(&dp->l0);
  524. ep->l1 = get_unaligned_be64(&dp->l1);
  525. }
  526. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  527. if (whichfork != XFS_DATA_FORK ||
  528. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  529. if (unlikely(xfs_check_nostate_extents(
  530. ifp, 0, nex))) {
  531. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  532. XFS_ERRLEVEL_LOW,
  533. ip->i_mount);
  534. return XFS_ERROR(EFSCORRUPTED);
  535. }
  536. }
  537. ifp->if_flags |= XFS_IFEXTENTS;
  538. return 0;
  539. }
  540. /*
  541. * The file has too many extents to fit into
  542. * the inode, so they are in B-tree format.
  543. * Allocate a buffer for the root of the B-tree
  544. * and copy the root into it. The i_extents
  545. * field will remain NULL until all of the
  546. * extents are read in (when they are needed).
  547. */
  548. STATIC int
  549. xfs_iformat_btree(
  550. xfs_inode_t *ip,
  551. xfs_dinode_t *dip,
  552. int whichfork)
  553. {
  554. xfs_bmdr_block_t *dfp;
  555. xfs_ifork_t *ifp;
  556. /* REFERENCED */
  557. int nrecs;
  558. int size;
  559. ifp = XFS_IFORK_PTR(ip, whichfork);
  560. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  561. size = XFS_BMAP_BROOT_SPACE(dfp);
  562. nrecs = be16_to_cpu(dfp->bb_numrecs);
  563. /*
  564. * blow out if -- fork has less extents than can fit in
  565. * fork (fork shouldn't be a btree format), root btree
  566. * block has more records than can fit into the fork,
  567. * or the number of extents is greater than the number of
  568. * blocks.
  569. */
  570. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  571. || XFS_BMDR_SPACE_CALC(nrecs) >
  572. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  573. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  574. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  575. "corrupt inode %Lu (btree).",
  576. (unsigned long long) ip->i_ino);
  577. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  578. ip->i_mount);
  579. return XFS_ERROR(EFSCORRUPTED);
  580. }
  581. ifp->if_broot_bytes = size;
  582. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  583. ASSERT(ifp->if_broot != NULL);
  584. /*
  585. * Copy and convert from the on-disk structure
  586. * to the in-memory structure.
  587. */
  588. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  589. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  590. ifp->if_broot, size);
  591. ifp->if_flags &= ~XFS_IFEXTENTS;
  592. ifp->if_flags |= XFS_IFBROOT;
  593. return 0;
  594. }
  595. void
  596. xfs_dinode_from_disk(
  597. xfs_icdinode_t *to,
  598. xfs_dinode_t *from)
  599. {
  600. to->di_magic = be16_to_cpu(from->di_magic);
  601. to->di_mode = be16_to_cpu(from->di_mode);
  602. to->di_version = from ->di_version;
  603. to->di_format = from->di_format;
  604. to->di_onlink = be16_to_cpu(from->di_onlink);
  605. to->di_uid = be32_to_cpu(from->di_uid);
  606. to->di_gid = be32_to_cpu(from->di_gid);
  607. to->di_nlink = be32_to_cpu(from->di_nlink);
  608. to->di_projid = be16_to_cpu(from->di_projid);
  609. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  610. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  611. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  612. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  613. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  614. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  615. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  616. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  617. to->di_size = be64_to_cpu(from->di_size);
  618. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  619. to->di_extsize = be32_to_cpu(from->di_extsize);
  620. to->di_nextents = be32_to_cpu(from->di_nextents);
  621. to->di_anextents = be16_to_cpu(from->di_anextents);
  622. to->di_forkoff = from->di_forkoff;
  623. to->di_aformat = from->di_aformat;
  624. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  625. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  626. to->di_flags = be16_to_cpu(from->di_flags);
  627. to->di_gen = be32_to_cpu(from->di_gen);
  628. }
  629. void
  630. xfs_dinode_to_disk(
  631. xfs_dinode_t *to,
  632. xfs_icdinode_t *from)
  633. {
  634. to->di_magic = cpu_to_be16(from->di_magic);
  635. to->di_mode = cpu_to_be16(from->di_mode);
  636. to->di_version = from ->di_version;
  637. to->di_format = from->di_format;
  638. to->di_onlink = cpu_to_be16(from->di_onlink);
  639. to->di_uid = cpu_to_be32(from->di_uid);
  640. to->di_gid = cpu_to_be32(from->di_gid);
  641. to->di_nlink = cpu_to_be32(from->di_nlink);
  642. to->di_projid = cpu_to_be16(from->di_projid);
  643. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  644. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  645. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  646. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  647. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  648. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  649. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  650. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  651. to->di_size = cpu_to_be64(from->di_size);
  652. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  653. to->di_extsize = cpu_to_be32(from->di_extsize);
  654. to->di_nextents = cpu_to_be32(from->di_nextents);
  655. to->di_anextents = cpu_to_be16(from->di_anextents);
  656. to->di_forkoff = from->di_forkoff;
  657. to->di_aformat = from->di_aformat;
  658. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  659. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  660. to->di_flags = cpu_to_be16(from->di_flags);
  661. to->di_gen = cpu_to_be32(from->di_gen);
  662. }
  663. STATIC uint
  664. _xfs_dic2xflags(
  665. __uint16_t di_flags)
  666. {
  667. uint flags = 0;
  668. if (di_flags & XFS_DIFLAG_ANY) {
  669. if (di_flags & XFS_DIFLAG_REALTIME)
  670. flags |= XFS_XFLAG_REALTIME;
  671. if (di_flags & XFS_DIFLAG_PREALLOC)
  672. flags |= XFS_XFLAG_PREALLOC;
  673. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  674. flags |= XFS_XFLAG_IMMUTABLE;
  675. if (di_flags & XFS_DIFLAG_APPEND)
  676. flags |= XFS_XFLAG_APPEND;
  677. if (di_flags & XFS_DIFLAG_SYNC)
  678. flags |= XFS_XFLAG_SYNC;
  679. if (di_flags & XFS_DIFLAG_NOATIME)
  680. flags |= XFS_XFLAG_NOATIME;
  681. if (di_flags & XFS_DIFLAG_NODUMP)
  682. flags |= XFS_XFLAG_NODUMP;
  683. if (di_flags & XFS_DIFLAG_RTINHERIT)
  684. flags |= XFS_XFLAG_RTINHERIT;
  685. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  686. flags |= XFS_XFLAG_PROJINHERIT;
  687. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  688. flags |= XFS_XFLAG_NOSYMLINKS;
  689. if (di_flags & XFS_DIFLAG_EXTSIZE)
  690. flags |= XFS_XFLAG_EXTSIZE;
  691. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  692. flags |= XFS_XFLAG_EXTSZINHERIT;
  693. if (di_flags & XFS_DIFLAG_NODEFRAG)
  694. flags |= XFS_XFLAG_NODEFRAG;
  695. if (di_flags & XFS_DIFLAG_FILESTREAM)
  696. flags |= XFS_XFLAG_FILESTREAM;
  697. }
  698. return flags;
  699. }
  700. uint
  701. xfs_ip2xflags(
  702. xfs_inode_t *ip)
  703. {
  704. xfs_icdinode_t *dic = &ip->i_d;
  705. return _xfs_dic2xflags(dic->di_flags) |
  706. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  707. }
  708. uint
  709. xfs_dic2xflags(
  710. xfs_dinode_t *dip)
  711. {
  712. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  713. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  714. }
  715. /*
  716. * Read the disk inode attributes into the in-core inode structure.
  717. */
  718. int
  719. xfs_iread(
  720. xfs_mount_t *mp,
  721. xfs_trans_t *tp,
  722. xfs_inode_t *ip,
  723. xfs_daddr_t bno,
  724. uint iget_flags)
  725. {
  726. xfs_buf_t *bp;
  727. xfs_dinode_t *dip;
  728. int error;
  729. /*
  730. * Fill in the location information in the in-core inode.
  731. */
  732. ip->i_imap.im_blkno = bno;
  733. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  734. if (error)
  735. return error;
  736. ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
  737. /*
  738. * Get pointers to the on-disk inode and the buffer containing it.
  739. */
  740. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  741. XFS_BUF_LOCK, iget_flags);
  742. if (error)
  743. return error;
  744. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  745. /*
  746. * If we got something that isn't an inode it means someone
  747. * (nfs or dmi) has a stale handle.
  748. */
  749. if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
  750. #ifdef DEBUG
  751. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  752. "dip->di_magic (0x%x) != "
  753. "XFS_DINODE_MAGIC (0x%x)",
  754. be16_to_cpu(dip->di_magic),
  755. XFS_DINODE_MAGIC);
  756. #endif /* DEBUG */
  757. error = XFS_ERROR(EINVAL);
  758. goto out_brelse;
  759. }
  760. /*
  761. * If the on-disk inode is already linked to a directory
  762. * entry, copy all of the inode into the in-core inode.
  763. * xfs_iformat() handles copying in the inode format
  764. * specific information.
  765. * Otherwise, just get the truly permanent information.
  766. */
  767. if (dip->di_mode) {
  768. xfs_dinode_from_disk(&ip->i_d, dip);
  769. error = xfs_iformat(ip, dip);
  770. if (error) {
  771. #ifdef DEBUG
  772. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  773. "xfs_iformat() returned error %d",
  774. error);
  775. #endif /* DEBUG */
  776. goto out_brelse;
  777. }
  778. } else {
  779. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  780. ip->i_d.di_version = dip->di_version;
  781. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  782. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  783. /*
  784. * Make sure to pull in the mode here as well in
  785. * case the inode is released without being used.
  786. * This ensures that xfs_inactive() will see that
  787. * the inode is already free and not try to mess
  788. * with the uninitialized part of it.
  789. */
  790. ip->i_d.di_mode = 0;
  791. /*
  792. * Initialize the per-fork minima and maxima for a new
  793. * inode here. xfs_iformat will do it for old inodes.
  794. */
  795. ip->i_df.if_ext_max =
  796. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  797. }
  798. /*
  799. * The inode format changed when we moved the link count and
  800. * made it 32 bits long. If this is an old format inode,
  801. * convert it in memory to look like a new one. If it gets
  802. * flushed to disk we will convert back before flushing or
  803. * logging it. We zero out the new projid field and the old link
  804. * count field. We'll handle clearing the pad field (the remains
  805. * of the old uuid field) when we actually convert the inode to
  806. * the new format. We don't change the version number so that we
  807. * can distinguish this from a real new format inode.
  808. */
  809. if (ip->i_d.di_version == 1) {
  810. ip->i_d.di_nlink = ip->i_d.di_onlink;
  811. ip->i_d.di_onlink = 0;
  812. ip->i_d.di_projid = 0;
  813. }
  814. ip->i_delayed_blks = 0;
  815. ip->i_size = ip->i_d.di_size;
  816. /*
  817. * Mark the buffer containing the inode as something to keep
  818. * around for a while. This helps to keep recently accessed
  819. * meta-data in-core longer.
  820. */
  821. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  822. /*
  823. * Use xfs_trans_brelse() to release the buffer containing the
  824. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  825. * in xfs_itobp() above. If tp is NULL, this is just a normal
  826. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  827. * will only release the buffer if it is not dirty within the
  828. * transaction. It will be OK to release the buffer in this case,
  829. * because inodes on disk are never destroyed and we will be
  830. * locking the new in-core inode before putting it in the hash
  831. * table where other processes can find it. Thus we don't have
  832. * to worry about the inode being changed just because we released
  833. * the buffer.
  834. */
  835. out_brelse:
  836. xfs_trans_brelse(tp, bp);
  837. return error;
  838. }
  839. /*
  840. * Read in extents from a btree-format inode.
  841. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  842. */
  843. int
  844. xfs_iread_extents(
  845. xfs_trans_t *tp,
  846. xfs_inode_t *ip,
  847. int whichfork)
  848. {
  849. int error;
  850. xfs_ifork_t *ifp;
  851. xfs_extnum_t nextents;
  852. size_t size;
  853. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  854. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  855. ip->i_mount);
  856. return XFS_ERROR(EFSCORRUPTED);
  857. }
  858. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  859. size = nextents * sizeof(xfs_bmbt_rec_t);
  860. ifp = XFS_IFORK_PTR(ip, whichfork);
  861. /*
  862. * We know that the size is valid (it's checked in iformat_btree)
  863. */
  864. ifp->if_lastex = NULLEXTNUM;
  865. ifp->if_bytes = ifp->if_real_bytes = 0;
  866. ifp->if_flags |= XFS_IFEXTENTS;
  867. xfs_iext_add(ifp, 0, nextents);
  868. error = xfs_bmap_read_extents(tp, ip, whichfork);
  869. if (error) {
  870. xfs_iext_destroy(ifp);
  871. ifp->if_flags &= ~XFS_IFEXTENTS;
  872. return error;
  873. }
  874. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  875. return 0;
  876. }
  877. /*
  878. * Allocate an inode on disk and return a copy of its in-core version.
  879. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  880. * appropriately within the inode. The uid and gid for the inode are
  881. * set according to the contents of the given cred structure.
  882. *
  883. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  884. * has a free inode available, call xfs_iget()
  885. * to obtain the in-core version of the allocated inode. Finally,
  886. * fill in the inode and log its initial contents. In this case,
  887. * ialloc_context would be set to NULL and call_again set to false.
  888. *
  889. * If xfs_dialloc() does not have an available inode,
  890. * it will replenish its supply by doing an allocation. Since we can
  891. * only do one allocation within a transaction without deadlocks, we
  892. * must commit the current transaction before returning the inode itself.
  893. * In this case, therefore, we will set call_again to true and return.
  894. * The caller should then commit the current transaction, start a new
  895. * transaction, and call xfs_ialloc() again to actually get the inode.
  896. *
  897. * To ensure that some other process does not grab the inode that
  898. * was allocated during the first call to xfs_ialloc(), this routine
  899. * also returns the [locked] bp pointing to the head of the freelist
  900. * as ialloc_context. The caller should hold this buffer across
  901. * the commit and pass it back into this routine on the second call.
  902. *
  903. * If we are allocating quota inodes, we do not have a parent inode
  904. * to attach to or associate with (i.e. pip == NULL) because they
  905. * are not linked into the directory structure - they are attached
  906. * directly to the superblock - and so have no parent.
  907. */
  908. int
  909. xfs_ialloc(
  910. xfs_trans_t *tp,
  911. xfs_inode_t *pip,
  912. mode_t mode,
  913. xfs_nlink_t nlink,
  914. xfs_dev_t rdev,
  915. cred_t *cr,
  916. xfs_prid_t prid,
  917. int okalloc,
  918. xfs_buf_t **ialloc_context,
  919. boolean_t *call_again,
  920. xfs_inode_t **ipp)
  921. {
  922. xfs_ino_t ino;
  923. xfs_inode_t *ip;
  924. uint flags;
  925. int error;
  926. timespec_t tv;
  927. int filestreams = 0;
  928. /*
  929. * Call the space management code to pick
  930. * the on-disk inode to be allocated.
  931. */
  932. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  933. ialloc_context, call_again, &ino);
  934. if (error)
  935. return error;
  936. if (*call_again || ino == NULLFSINO) {
  937. *ipp = NULL;
  938. return 0;
  939. }
  940. ASSERT(*ialloc_context == NULL);
  941. /*
  942. * Get the in-core inode with the lock held exclusively.
  943. * This is because we're setting fields here we need
  944. * to prevent others from looking at until we're done.
  945. */
  946. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  947. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  948. if (error)
  949. return error;
  950. ASSERT(ip != NULL);
  951. ip->i_d.di_mode = (__uint16_t)mode;
  952. ip->i_d.di_onlink = 0;
  953. ip->i_d.di_nlink = nlink;
  954. ASSERT(ip->i_d.di_nlink == nlink);
  955. ip->i_d.di_uid = current_fsuid();
  956. ip->i_d.di_gid = current_fsgid();
  957. ip->i_d.di_projid = prid;
  958. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  959. /*
  960. * If the superblock version is up to where we support new format
  961. * inodes and this is currently an old format inode, then change
  962. * the inode version number now. This way we only do the conversion
  963. * here rather than here and in the flush/logging code.
  964. */
  965. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  966. ip->i_d.di_version == 1) {
  967. ip->i_d.di_version = 2;
  968. /*
  969. * We've already zeroed the old link count, the projid field,
  970. * and the pad field.
  971. */
  972. }
  973. /*
  974. * Project ids won't be stored on disk if we are using a version 1 inode.
  975. */
  976. if ((prid != 0) && (ip->i_d.di_version == 1))
  977. xfs_bump_ino_vers2(tp, ip);
  978. if (pip && XFS_INHERIT_GID(pip)) {
  979. ip->i_d.di_gid = pip->i_d.di_gid;
  980. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  981. ip->i_d.di_mode |= S_ISGID;
  982. }
  983. }
  984. /*
  985. * If the group ID of the new file does not match the effective group
  986. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  987. * (and only if the irix_sgid_inherit compatibility variable is set).
  988. */
  989. if ((irix_sgid_inherit) &&
  990. (ip->i_d.di_mode & S_ISGID) &&
  991. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  992. ip->i_d.di_mode &= ~S_ISGID;
  993. }
  994. ip->i_d.di_size = 0;
  995. ip->i_size = 0;
  996. ip->i_d.di_nextents = 0;
  997. ASSERT(ip->i_d.di_nblocks == 0);
  998. nanotime(&tv);
  999. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  1000. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1001. ip->i_d.di_atime = ip->i_d.di_mtime;
  1002. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1003. /*
  1004. * di_gen will have been taken care of in xfs_iread.
  1005. */
  1006. ip->i_d.di_extsize = 0;
  1007. ip->i_d.di_dmevmask = 0;
  1008. ip->i_d.di_dmstate = 0;
  1009. ip->i_d.di_flags = 0;
  1010. flags = XFS_ILOG_CORE;
  1011. switch (mode & S_IFMT) {
  1012. case S_IFIFO:
  1013. case S_IFCHR:
  1014. case S_IFBLK:
  1015. case S_IFSOCK:
  1016. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1017. ip->i_df.if_u2.if_rdev = rdev;
  1018. ip->i_df.if_flags = 0;
  1019. flags |= XFS_ILOG_DEV;
  1020. break;
  1021. case S_IFREG:
  1022. /*
  1023. * we can't set up filestreams until after the VFS inode
  1024. * is set up properly.
  1025. */
  1026. if (pip && xfs_inode_is_filestream(pip))
  1027. filestreams = 1;
  1028. /* fall through */
  1029. case S_IFDIR:
  1030. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1031. uint di_flags = 0;
  1032. if ((mode & S_IFMT) == S_IFDIR) {
  1033. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1034. di_flags |= XFS_DIFLAG_RTINHERIT;
  1035. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1036. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1037. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1038. }
  1039. } else if ((mode & S_IFMT) == S_IFREG) {
  1040. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1041. di_flags |= XFS_DIFLAG_REALTIME;
  1042. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1043. di_flags |= XFS_DIFLAG_EXTSIZE;
  1044. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1045. }
  1046. }
  1047. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1048. xfs_inherit_noatime)
  1049. di_flags |= XFS_DIFLAG_NOATIME;
  1050. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1051. xfs_inherit_nodump)
  1052. di_flags |= XFS_DIFLAG_NODUMP;
  1053. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1054. xfs_inherit_sync)
  1055. di_flags |= XFS_DIFLAG_SYNC;
  1056. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1057. xfs_inherit_nosymlinks)
  1058. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1059. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1060. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1061. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1062. xfs_inherit_nodefrag)
  1063. di_flags |= XFS_DIFLAG_NODEFRAG;
  1064. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1065. di_flags |= XFS_DIFLAG_FILESTREAM;
  1066. ip->i_d.di_flags |= di_flags;
  1067. }
  1068. /* FALLTHROUGH */
  1069. case S_IFLNK:
  1070. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1071. ip->i_df.if_flags = XFS_IFEXTENTS;
  1072. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1073. ip->i_df.if_u1.if_extents = NULL;
  1074. break;
  1075. default:
  1076. ASSERT(0);
  1077. }
  1078. /*
  1079. * Attribute fork settings for new inode.
  1080. */
  1081. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1082. ip->i_d.di_anextents = 0;
  1083. /*
  1084. * Log the new values stuffed into the inode.
  1085. */
  1086. xfs_trans_log_inode(tp, ip, flags);
  1087. /* now that we have an i_mode we can setup inode ops and unlock */
  1088. xfs_setup_inode(ip);
  1089. /* now we have set up the vfs inode we can associate the filestream */
  1090. if (filestreams) {
  1091. error = xfs_filestream_associate(pip, ip);
  1092. if (error < 0)
  1093. return -error;
  1094. if (!error)
  1095. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1096. }
  1097. *ipp = ip;
  1098. return 0;
  1099. }
  1100. /*
  1101. * Check to make sure that there are no blocks allocated to the
  1102. * file beyond the size of the file. We don't check this for
  1103. * files with fixed size extents or real time extents, but we
  1104. * at least do it for regular files.
  1105. */
  1106. #ifdef DEBUG
  1107. void
  1108. xfs_isize_check(
  1109. xfs_mount_t *mp,
  1110. xfs_inode_t *ip,
  1111. xfs_fsize_t isize)
  1112. {
  1113. xfs_fileoff_t map_first;
  1114. int nimaps;
  1115. xfs_bmbt_irec_t imaps[2];
  1116. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1117. return;
  1118. if (XFS_IS_REALTIME_INODE(ip))
  1119. return;
  1120. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1121. return;
  1122. nimaps = 2;
  1123. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1124. /*
  1125. * The filesystem could be shutting down, so bmapi may return
  1126. * an error.
  1127. */
  1128. if (xfs_bmapi(NULL, ip, map_first,
  1129. (XFS_B_TO_FSB(mp,
  1130. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1131. map_first),
  1132. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1133. NULL, NULL))
  1134. return;
  1135. ASSERT(nimaps == 1);
  1136. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1137. }
  1138. #endif /* DEBUG */
  1139. /*
  1140. * Calculate the last possible buffered byte in a file. This must
  1141. * include data that was buffered beyond the EOF by the write code.
  1142. * This also needs to deal with overflowing the xfs_fsize_t type
  1143. * which can happen for sizes near the limit.
  1144. *
  1145. * We also need to take into account any blocks beyond the EOF. It
  1146. * may be the case that they were buffered by a write which failed.
  1147. * In that case the pages will still be in memory, but the inode size
  1148. * will never have been updated.
  1149. */
  1150. xfs_fsize_t
  1151. xfs_file_last_byte(
  1152. xfs_inode_t *ip)
  1153. {
  1154. xfs_mount_t *mp;
  1155. xfs_fsize_t last_byte;
  1156. xfs_fileoff_t last_block;
  1157. xfs_fileoff_t size_last_block;
  1158. int error;
  1159. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1160. mp = ip->i_mount;
  1161. /*
  1162. * Only check for blocks beyond the EOF if the extents have
  1163. * been read in. This eliminates the need for the inode lock,
  1164. * and it also saves us from looking when it really isn't
  1165. * necessary.
  1166. */
  1167. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1168. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1169. XFS_DATA_FORK);
  1170. if (error) {
  1171. last_block = 0;
  1172. }
  1173. } else {
  1174. last_block = 0;
  1175. }
  1176. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1177. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1178. last_byte = XFS_FSB_TO_B(mp, last_block);
  1179. if (last_byte < 0) {
  1180. return XFS_MAXIOFFSET(mp);
  1181. }
  1182. last_byte += (1 << mp->m_writeio_log);
  1183. if (last_byte < 0) {
  1184. return XFS_MAXIOFFSET(mp);
  1185. }
  1186. return last_byte;
  1187. }
  1188. #if defined(XFS_RW_TRACE)
  1189. STATIC void
  1190. xfs_itrunc_trace(
  1191. int tag,
  1192. xfs_inode_t *ip,
  1193. int flag,
  1194. xfs_fsize_t new_size,
  1195. xfs_off_t toss_start,
  1196. xfs_off_t toss_finish)
  1197. {
  1198. if (ip->i_rwtrace == NULL) {
  1199. return;
  1200. }
  1201. ktrace_enter(ip->i_rwtrace,
  1202. (void*)((long)tag),
  1203. (void*)ip,
  1204. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1205. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1206. (void*)((long)flag),
  1207. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1208. (void*)(unsigned long)(new_size & 0xffffffff),
  1209. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1210. (void*)(unsigned long)(toss_start & 0xffffffff),
  1211. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1212. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1213. (void*)(unsigned long)current_cpu(),
  1214. (void*)(unsigned long)current_pid(),
  1215. (void*)NULL,
  1216. (void*)NULL,
  1217. (void*)NULL);
  1218. }
  1219. #else
  1220. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1221. #endif
  1222. /*
  1223. * Start the truncation of the file to new_size. The new size
  1224. * must be smaller than the current size. This routine will
  1225. * clear the buffer and page caches of file data in the removed
  1226. * range, and xfs_itruncate_finish() will remove the underlying
  1227. * disk blocks.
  1228. *
  1229. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1230. * must NOT have the inode lock held at all. This is because we're
  1231. * calling into the buffer/page cache code and we can't hold the
  1232. * inode lock when we do so.
  1233. *
  1234. * We need to wait for any direct I/Os in flight to complete before we
  1235. * proceed with the truncate. This is needed to prevent the extents
  1236. * being read or written by the direct I/Os from being removed while the
  1237. * I/O is in flight as there is no other method of synchronising
  1238. * direct I/O with the truncate operation. Also, because we hold
  1239. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1240. * started until the truncate completes and drops the lock. Essentially,
  1241. * the xfs_ioend_wait() call forms an I/O barrier that provides strict
  1242. * ordering between direct I/Os and the truncate operation.
  1243. *
  1244. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1245. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1246. * in the case that the caller is locking things out of order and
  1247. * may not be able to call xfs_itruncate_finish() with the inode lock
  1248. * held without dropping the I/O lock. If the caller must drop the
  1249. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1250. * must be called again with all the same restrictions as the initial
  1251. * call.
  1252. */
  1253. int
  1254. xfs_itruncate_start(
  1255. xfs_inode_t *ip,
  1256. uint flags,
  1257. xfs_fsize_t new_size)
  1258. {
  1259. xfs_fsize_t last_byte;
  1260. xfs_off_t toss_start;
  1261. xfs_mount_t *mp;
  1262. int error = 0;
  1263. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1264. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1265. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1266. (flags == XFS_ITRUNC_MAYBE));
  1267. mp = ip->i_mount;
  1268. /* wait for the completion of any pending DIOs */
  1269. if (new_size == 0 || new_size < ip->i_size)
  1270. xfs_ioend_wait(ip);
  1271. /*
  1272. * Call toss_pages or flushinval_pages to get rid of pages
  1273. * overlapping the region being removed. We have to use
  1274. * the less efficient flushinval_pages in the case that the
  1275. * caller may not be able to finish the truncate without
  1276. * dropping the inode's I/O lock. Make sure
  1277. * to catch any pages brought in by buffers overlapping
  1278. * the EOF by searching out beyond the isize by our
  1279. * block size. We round new_size up to a block boundary
  1280. * so that we don't toss things on the same block as
  1281. * new_size but before it.
  1282. *
  1283. * Before calling toss_page or flushinval_pages, make sure to
  1284. * call remapf() over the same region if the file is mapped.
  1285. * This frees up mapped file references to the pages in the
  1286. * given range and for the flushinval_pages case it ensures
  1287. * that we get the latest mapped changes flushed out.
  1288. */
  1289. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1290. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1291. if (toss_start < 0) {
  1292. /*
  1293. * The place to start tossing is beyond our maximum
  1294. * file size, so there is no way that the data extended
  1295. * out there.
  1296. */
  1297. return 0;
  1298. }
  1299. last_byte = xfs_file_last_byte(ip);
  1300. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1301. last_byte);
  1302. if (last_byte > toss_start) {
  1303. if (flags & XFS_ITRUNC_DEFINITE) {
  1304. xfs_tosspages(ip, toss_start,
  1305. -1, FI_REMAPF_LOCKED);
  1306. } else {
  1307. error = xfs_flushinval_pages(ip, toss_start,
  1308. -1, FI_REMAPF_LOCKED);
  1309. }
  1310. }
  1311. #ifdef DEBUG
  1312. if (new_size == 0) {
  1313. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1314. }
  1315. #endif
  1316. return error;
  1317. }
  1318. /*
  1319. * Shrink the file to the given new_size. The new size must be smaller than
  1320. * the current size. This will free up the underlying blocks in the removed
  1321. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1322. *
  1323. * The transaction passed to this routine must have made a permanent log
  1324. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1325. * given transaction and start new ones, so make sure everything involved in
  1326. * the transaction is tidy before calling here. Some transaction will be
  1327. * returned to the caller to be committed. The incoming transaction must
  1328. * already include the inode, and both inode locks must be held exclusively.
  1329. * The inode must also be "held" within the transaction. On return the inode
  1330. * will be "held" within the returned transaction. This routine does NOT
  1331. * require any disk space to be reserved for it within the transaction.
  1332. *
  1333. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1334. * indicates the fork which is to be truncated. For the attribute fork we only
  1335. * support truncation to size 0.
  1336. *
  1337. * We use the sync parameter to indicate whether or not the first transaction
  1338. * we perform might have to be synchronous. For the attr fork, it needs to be
  1339. * so if the unlink of the inode is not yet known to be permanent in the log.
  1340. * This keeps us from freeing and reusing the blocks of the attribute fork
  1341. * before the unlink of the inode becomes permanent.
  1342. *
  1343. * For the data fork, we normally have to run synchronously if we're being
  1344. * called out of the inactive path or we're being called out of the create path
  1345. * where we're truncating an existing file. Either way, the truncate needs to
  1346. * be sync so blocks don't reappear in the file with altered data in case of a
  1347. * crash. wsync filesystems can run the first case async because anything that
  1348. * shrinks the inode has to run sync so by the time we're called here from
  1349. * inactive, the inode size is permanently set to 0.
  1350. *
  1351. * Calls from the truncate path always need to be sync unless we're in a wsync
  1352. * filesystem and the file has already been unlinked.
  1353. *
  1354. * The caller is responsible for correctly setting the sync parameter. It gets
  1355. * too hard for us to guess here which path we're being called out of just
  1356. * based on inode state.
  1357. *
  1358. * If we get an error, we must return with the inode locked and linked into the
  1359. * current transaction. This keeps things simple for the higher level code,
  1360. * because it always knows that the inode is locked and held in the transaction
  1361. * that returns to it whether errors occur or not. We don't mark the inode
  1362. * dirty on error so that transactions can be easily aborted if possible.
  1363. */
  1364. int
  1365. xfs_itruncate_finish(
  1366. xfs_trans_t **tp,
  1367. xfs_inode_t *ip,
  1368. xfs_fsize_t new_size,
  1369. int fork,
  1370. int sync)
  1371. {
  1372. xfs_fsblock_t first_block;
  1373. xfs_fileoff_t first_unmap_block;
  1374. xfs_fileoff_t last_block;
  1375. xfs_filblks_t unmap_len=0;
  1376. xfs_mount_t *mp;
  1377. xfs_trans_t *ntp;
  1378. int done;
  1379. int committed;
  1380. xfs_bmap_free_t free_list;
  1381. int error;
  1382. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1383. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1384. ASSERT(*tp != NULL);
  1385. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1386. ASSERT(ip->i_transp == *tp);
  1387. ASSERT(ip->i_itemp != NULL);
  1388. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1389. ntp = *tp;
  1390. mp = (ntp)->t_mountp;
  1391. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1392. /*
  1393. * We only support truncating the entire attribute fork.
  1394. */
  1395. if (fork == XFS_ATTR_FORK) {
  1396. new_size = 0LL;
  1397. }
  1398. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1399. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1400. /*
  1401. * The first thing we do is set the size to new_size permanently
  1402. * on disk. This way we don't have to worry about anyone ever
  1403. * being able to look at the data being freed even in the face
  1404. * of a crash. What we're getting around here is the case where
  1405. * we free a block, it is allocated to another file, it is written
  1406. * to, and then we crash. If the new data gets written to the
  1407. * file but the log buffers containing the free and reallocation
  1408. * don't, then we'd end up with garbage in the blocks being freed.
  1409. * As long as we make the new_size permanent before actually
  1410. * freeing any blocks it doesn't matter if they get writtten to.
  1411. *
  1412. * The callers must signal into us whether or not the size
  1413. * setting here must be synchronous. There are a few cases
  1414. * where it doesn't have to be synchronous. Those cases
  1415. * occur if the file is unlinked and we know the unlink is
  1416. * permanent or if the blocks being truncated are guaranteed
  1417. * to be beyond the inode eof (regardless of the link count)
  1418. * and the eof value is permanent. Both of these cases occur
  1419. * only on wsync-mounted filesystems. In those cases, we're
  1420. * guaranteed that no user will ever see the data in the blocks
  1421. * that are being truncated so the truncate can run async.
  1422. * In the free beyond eof case, the file may wind up with
  1423. * more blocks allocated to it than it needs if we crash
  1424. * and that won't get fixed until the next time the file
  1425. * is re-opened and closed but that's ok as that shouldn't
  1426. * be too many blocks.
  1427. *
  1428. * However, we can't just make all wsync xactions run async
  1429. * because there's one call out of the create path that needs
  1430. * to run sync where it's truncating an existing file to size
  1431. * 0 whose size is > 0.
  1432. *
  1433. * It's probably possible to come up with a test in this
  1434. * routine that would correctly distinguish all the above
  1435. * cases from the values of the function parameters and the
  1436. * inode state but for sanity's sake, I've decided to let the
  1437. * layers above just tell us. It's simpler to correctly figure
  1438. * out in the layer above exactly under what conditions we
  1439. * can run async and I think it's easier for others read and
  1440. * follow the logic in case something has to be changed.
  1441. * cscope is your friend -- rcc.
  1442. *
  1443. * The attribute fork is much simpler.
  1444. *
  1445. * For the attribute fork we allow the caller to tell us whether
  1446. * the unlink of the inode that led to this call is yet permanent
  1447. * in the on disk log. If it is not and we will be freeing extents
  1448. * in this inode then we make the first transaction synchronous
  1449. * to make sure that the unlink is permanent by the time we free
  1450. * the blocks.
  1451. */
  1452. if (fork == XFS_DATA_FORK) {
  1453. if (ip->i_d.di_nextents > 0) {
  1454. /*
  1455. * If we are not changing the file size then do
  1456. * not update the on-disk file size - we may be
  1457. * called from xfs_inactive_free_eofblocks(). If we
  1458. * update the on-disk file size and then the system
  1459. * crashes before the contents of the file are
  1460. * flushed to disk then the files may be full of
  1461. * holes (ie NULL files bug).
  1462. */
  1463. if (ip->i_size != new_size) {
  1464. ip->i_d.di_size = new_size;
  1465. ip->i_size = new_size;
  1466. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1467. }
  1468. }
  1469. } else if (sync) {
  1470. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1471. if (ip->i_d.di_anextents > 0)
  1472. xfs_trans_set_sync(ntp);
  1473. }
  1474. ASSERT(fork == XFS_DATA_FORK ||
  1475. (fork == XFS_ATTR_FORK &&
  1476. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1477. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1478. /*
  1479. * Since it is possible for space to become allocated beyond
  1480. * the end of the file (in a crash where the space is allocated
  1481. * but the inode size is not yet updated), simply remove any
  1482. * blocks which show up between the new EOF and the maximum
  1483. * possible file size. If the first block to be removed is
  1484. * beyond the maximum file size (ie it is the same as last_block),
  1485. * then there is nothing to do.
  1486. */
  1487. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1488. ASSERT(first_unmap_block <= last_block);
  1489. done = 0;
  1490. if (last_block == first_unmap_block) {
  1491. done = 1;
  1492. } else {
  1493. unmap_len = last_block - first_unmap_block + 1;
  1494. }
  1495. while (!done) {
  1496. /*
  1497. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1498. * will tell us whether it freed the entire range or
  1499. * not. If this is a synchronous mount (wsync),
  1500. * then we can tell bunmapi to keep all the
  1501. * transactions asynchronous since the unlink
  1502. * transaction that made this inode inactive has
  1503. * already hit the disk. There's no danger of
  1504. * the freed blocks being reused, there being a
  1505. * crash, and the reused blocks suddenly reappearing
  1506. * in this file with garbage in them once recovery
  1507. * runs.
  1508. */
  1509. xfs_bmap_init(&free_list, &first_block);
  1510. error = xfs_bunmapi(ntp, ip,
  1511. first_unmap_block, unmap_len,
  1512. xfs_bmapi_aflag(fork) |
  1513. (sync ? 0 : XFS_BMAPI_ASYNC),
  1514. XFS_ITRUNC_MAX_EXTENTS,
  1515. &first_block, &free_list,
  1516. NULL, &done);
  1517. if (error) {
  1518. /*
  1519. * If the bunmapi call encounters an error,
  1520. * return to the caller where the transaction
  1521. * can be properly aborted. We just need to
  1522. * make sure we're not holding any resources
  1523. * that we were not when we came in.
  1524. */
  1525. xfs_bmap_cancel(&free_list);
  1526. return error;
  1527. }
  1528. /*
  1529. * Duplicate the transaction that has the permanent
  1530. * reservation and commit the old transaction.
  1531. */
  1532. error = xfs_bmap_finish(tp, &free_list, &committed);
  1533. ntp = *tp;
  1534. if (committed) {
  1535. /* link the inode into the next xact in the chain */
  1536. xfs_trans_ijoin(ntp, ip,
  1537. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1538. xfs_trans_ihold(ntp, ip);
  1539. }
  1540. if (error) {
  1541. /*
  1542. * If the bmap finish call encounters an error, return
  1543. * to the caller where the transaction can be properly
  1544. * aborted. We just need to make sure we're not
  1545. * holding any resources that we were not when we came
  1546. * in.
  1547. *
  1548. * Aborting from this point might lose some blocks in
  1549. * the file system, but oh well.
  1550. */
  1551. xfs_bmap_cancel(&free_list);
  1552. return error;
  1553. }
  1554. if (committed) {
  1555. /*
  1556. * Mark the inode dirty so it will be logged and
  1557. * moved forward in the log as part of every commit.
  1558. */
  1559. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1560. }
  1561. ntp = xfs_trans_dup(ntp);
  1562. error = xfs_trans_commit(*tp, 0);
  1563. *tp = ntp;
  1564. /* link the inode into the next transaction in the chain */
  1565. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1566. xfs_trans_ihold(ntp, ip);
  1567. if (error)
  1568. return error;
  1569. /*
  1570. * transaction commit worked ok so we can drop the extra ticket
  1571. * reference that we gained in xfs_trans_dup()
  1572. */
  1573. xfs_log_ticket_put(ntp->t_ticket);
  1574. error = xfs_trans_reserve(ntp, 0,
  1575. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1576. XFS_TRANS_PERM_LOG_RES,
  1577. XFS_ITRUNCATE_LOG_COUNT);
  1578. if (error)
  1579. return error;
  1580. }
  1581. /*
  1582. * Only update the size in the case of the data fork, but
  1583. * always re-log the inode so that our permanent transaction
  1584. * can keep on rolling it forward in the log.
  1585. */
  1586. if (fork == XFS_DATA_FORK) {
  1587. xfs_isize_check(mp, ip, new_size);
  1588. /*
  1589. * If we are not changing the file size then do
  1590. * not update the on-disk file size - we may be
  1591. * called from xfs_inactive_free_eofblocks(). If we
  1592. * update the on-disk file size and then the system
  1593. * crashes before the contents of the file are
  1594. * flushed to disk then the files may be full of
  1595. * holes (ie NULL files bug).
  1596. */
  1597. if (ip->i_size != new_size) {
  1598. ip->i_d.di_size = new_size;
  1599. ip->i_size = new_size;
  1600. }
  1601. }
  1602. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1603. ASSERT((new_size != 0) ||
  1604. (fork == XFS_ATTR_FORK) ||
  1605. (ip->i_delayed_blks == 0));
  1606. ASSERT((new_size != 0) ||
  1607. (fork == XFS_ATTR_FORK) ||
  1608. (ip->i_d.di_nextents == 0));
  1609. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1610. return 0;
  1611. }
  1612. /*
  1613. * This is called when the inode's link count goes to 0.
  1614. * We place the on-disk inode on a list in the AGI. It
  1615. * will be pulled from this list when the inode is freed.
  1616. */
  1617. int
  1618. xfs_iunlink(
  1619. xfs_trans_t *tp,
  1620. xfs_inode_t *ip)
  1621. {
  1622. xfs_mount_t *mp;
  1623. xfs_agi_t *agi;
  1624. xfs_dinode_t *dip;
  1625. xfs_buf_t *agibp;
  1626. xfs_buf_t *ibp;
  1627. xfs_agino_t agino;
  1628. short bucket_index;
  1629. int offset;
  1630. int error;
  1631. ASSERT(ip->i_d.di_nlink == 0);
  1632. ASSERT(ip->i_d.di_mode != 0);
  1633. ASSERT(ip->i_transp == tp);
  1634. mp = tp->t_mountp;
  1635. /*
  1636. * Get the agi buffer first. It ensures lock ordering
  1637. * on the list.
  1638. */
  1639. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1640. if (error)
  1641. return error;
  1642. agi = XFS_BUF_TO_AGI(agibp);
  1643. /*
  1644. * Get the index into the agi hash table for the
  1645. * list this inode will go on.
  1646. */
  1647. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1648. ASSERT(agino != 0);
  1649. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1650. ASSERT(agi->agi_unlinked[bucket_index]);
  1651. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1652. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1653. /*
  1654. * There is already another inode in the bucket we need
  1655. * to add ourselves to. Add us at the front of the list.
  1656. * Here we put the head pointer into our next pointer,
  1657. * and then we fall through to point the head at us.
  1658. */
  1659. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  1660. if (error)
  1661. return error;
  1662. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1663. /* both on-disk, don't endian flip twice */
  1664. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1665. offset = ip->i_imap.im_boffset +
  1666. offsetof(xfs_dinode_t, di_next_unlinked);
  1667. xfs_trans_inode_buf(tp, ibp);
  1668. xfs_trans_log_buf(tp, ibp, offset,
  1669. (offset + sizeof(xfs_agino_t) - 1));
  1670. xfs_inobp_check(mp, ibp);
  1671. }
  1672. /*
  1673. * Point the bucket head pointer at the inode being inserted.
  1674. */
  1675. ASSERT(agino != 0);
  1676. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1677. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1678. (sizeof(xfs_agino_t) * bucket_index);
  1679. xfs_trans_log_buf(tp, agibp, offset,
  1680. (offset + sizeof(xfs_agino_t) - 1));
  1681. return 0;
  1682. }
  1683. /*
  1684. * Pull the on-disk inode from the AGI unlinked list.
  1685. */
  1686. STATIC int
  1687. xfs_iunlink_remove(
  1688. xfs_trans_t *tp,
  1689. xfs_inode_t *ip)
  1690. {
  1691. xfs_ino_t next_ino;
  1692. xfs_mount_t *mp;
  1693. xfs_agi_t *agi;
  1694. xfs_dinode_t *dip;
  1695. xfs_buf_t *agibp;
  1696. xfs_buf_t *ibp;
  1697. xfs_agnumber_t agno;
  1698. xfs_agino_t agino;
  1699. xfs_agino_t next_agino;
  1700. xfs_buf_t *last_ibp;
  1701. xfs_dinode_t *last_dip = NULL;
  1702. short bucket_index;
  1703. int offset, last_offset = 0;
  1704. int error;
  1705. mp = tp->t_mountp;
  1706. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1707. /*
  1708. * Get the agi buffer first. It ensures lock ordering
  1709. * on the list.
  1710. */
  1711. error = xfs_read_agi(mp, tp, agno, &agibp);
  1712. if (error)
  1713. return error;
  1714. agi = XFS_BUF_TO_AGI(agibp);
  1715. /*
  1716. * Get the index into the agi hash table for the
  1717. * list this inode will go on.
  1718. */
  1719. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1720. ASSERT(agino != 0);
  1721. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1722. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1723. ASSERT(agi->agi_unlinked[bucket_index]);
  1724. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1725. /*
  1726. * We're at the head of the list. Get the inode's
  1727. * on-disk buffer to see if there is anyone after us
  1728. * on the list. Only modify our next pointer if it
  1729. * is not already NULLAGINO. This saves us the overhead
  1730. * of dealing with the buffer when there is no need to
  1731. * change it.
  1732. */
  1733. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  1734. if (error) {
  1735. cmn_err(CE_WARN,
  1736. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1737. error, mp->m_fsname);
  1738. return error;
  1739. }
  1740. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1741. ASSERT(next_agino != 0);
  1742. if (next_agino != NULLAGINO) {
  1743. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1744. offset = ip->i_imap.im_boffset +
  1745. offsetof(xfs_dinode_t, di_next_unlinked);
  1746. xfs_trans_inode_buf(tp, ibp);
  1747. xfs_trans_log_buf(tp, ibp, offset,
  1748. (offset + sizeof(xfs_agino_t) - 1));
  1749. xfs_inobp_check(mp, ibp);
  1750. } else {
  1751. xfs_trans_brelse(tp, ibp);
  1752. }
  1753. /*
  1754. * Point the bucket head pointer at the next inode.
  1755. */
  1756. ASSERT(next_agino != 0);
  1757. ASSERT(next_agino != agino);
  1758. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1759. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1760. (sizeof(xfs_agino_t) * bucket_index);
  1761. xfs_trans_log_buf(tp, agibp, offset,
  1762. (offset + sizeof(xfs_agino_t) - 1));
  1763. } else {
  1764. /*
  1765. * We need to search the list for the inode being freed.
  1766. */
  1767. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1768. last_ibp = NULL;
  1769. while (next_agino != agino) {
  1770. /*
  1771. * If the last inode wasn't the one pointing to
  1772. * us, then release its buffer since we're not
  1773. * going to do anything with it.
  1774. */
  1775. if (last_ibp != NULL) {
  1776. xfs_trans_brelse(tp, last_ibp);
  1777. }
  1778. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1779. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1780. &last_ibp, &last_offset, 0);
  1781. if (error) {
  1782. cmn_err(CE_WARN,
  1783. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1784. error, mp->m_fsname);
  1785. return error;
  1786. }
  1787. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1788. ASSERT(next_agino != NULLAGINO);
  1789. ASSERT(next_agino != 0);
  1790. }
  1791. /*
  1792. * Now last_ibp points to the buffer previous to us on
  1793. * the unlinked list. Pull us from the list.
  1794. */
  1795. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  1796. if (error) {
  1797. cmn_err(CE_WARN,
  1798. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1799. error, mp->m_fsname);
  1800. return error;
  1801. }
  1802. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1803. ASSERT(next_agino != 0);
  1804. ASSERT(next_agino != agino);
  1805. if (next_agino != NULLAGINO) {
  1806. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1807. offset = ip->i_imap.im_boffset +
  1808. offsetof(xfs_dinode_t, di_next_unlinked);
  1809. xfs_trans_inode_buf(tp, ibp);
  1810. xfs_trans_log_buf(tp, ibp, offset,
  1811. (offset + sizeof(xfs_agino_t) - 1));
  1812. xfs_inobp_check(mp, ibp);
  1813. } else {
  1814. xfs_trans_brelse(tp, ibp);
  1815. }
  1816. /*
  1817. * Point the previous inode on the list to the next inode.
  1818. */
  1819. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1820. ASSERT(next_agino != 0);
  1821. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1822. xfs_trans_inode_buf(tp, last_ibp);
  1823. xfs_trans_log_buf(tp, last_ibp, offset,
  1824. (offset + sizeof(xfs_agino_t) - 1));
  1825. xfs_inobp_check(mp, last_ibp);
  1826. }
  1827. return 0;
  1828. }
  1829. STATIC void
  1830. xfs_ifree_cluster(
  1831. xfs_inode_t *free_ip,
  1832. xfs_trans_t *tp,
  1833. xfs_ino_t inum)
  1834. {
  1835. xfs_mount_t *mp = free_ip->i_mount;
  1836. int blks_per_cluster;
  1837. int nbufs;
  1838. int ninodes;
  1839. int i, j, found, pre_flushed;
  1840. xfs_daddr_t blkno;
  1841. xfs_buf_t *bp;
  1842. xfs_inode_t *ip, **ip_found;
  1843. xfs_inode_log_item_t *iip;
  1844. xfs_log_item_t *lip;
  1845. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  1846. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1847. blks_per_cluster = 1;
  1848. ninodes = mp->m_sb.sb_inopblock;
  1849. nbufs = XFS_IALLOC_BLOCKS(mp);
  1850. } else {
  1851. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1852. mp->m_sb.sb_blocksize;
  1853. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1854. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1855. }
  1856. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  1857. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1858. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1859. XFS_INO_TO_AGBNO(mp, inum));
  1860. /*
  1861. * Look for each inode in memory and attempt to lock it,
  1862. * we can be racing with flush and tail pushing here.
  1863. * any inode we get the locks on, add to an array of
  1864. * inode items to process later.
  1865. *
  1866. * The get the buffer lock, we could beat a flush
  1867. * or tail pushing thread to the lock here, in which
  1868. * case they will go looking for the inode buffer
  1869. * and fail, we need some other form of interlock
  1870. * here.
  1871. */
  1872. found = 0;
  1873. for (i = 0; i < ninodes; i++) {
  1874. read_lock(&pag->pag_ici_lock);
  1875. ip = radix_tree_lookup(&pag->pag_ici_root,
  1876. XFS_INO_TO_AGINO(mp, (inum + i)));
  1877. /* Inode not in memory or we found it already,
  1878. * nothing to do
  1879. */
  1880. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  1881. read_unlock(&pag->pag_ici_lock);
  1882. continue;
  1883. }
  1884. if (xfs_inode_clean(ip)) {
  1885. read_unlock(&pag->pag_ici_lock);
  1886. continue;
  1887. }
  1888. /* If we can get the locks then add it to the
  1889. * list, otherwise by the time we get the bp lock
  1890. * below it will already be attached to the
  1891. * inode buffer.
  1892. */
  1893. /* This inode will already be locked - by us, lets
  1894. * keep it that way.
  1895. */
  1896. if (ip == free_ip) {
  1897. if (xfs_iflock_nowait(ip)) {
  1898. xfs_iflags_set(ip, XFS_ISTALE);
  1899. if (xfs_inode_clean(ip)) {
  1900. xfs_ifunlock(ip);
  1901. } else {
  1902. ip_found[found++] = ip;
  1903. }
  1904. }
  1905. read_unlock(&pag->pag_ici_lock);
  1906. continue;
  1907. }
  1908. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1909. if (xfs_iflock_nowait(ip)) {
  1910. xfs_iflags_set(ip, XFS_ISTALE);
  1911. if (xfs_inode_clean(ip)) {
  1912. xfs_ifunlock(ip);
  1913. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1914. } else {
  1915. ip_found[found++] = ip;
  1916. }
  1917. } else {
  1918. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1919. }
  1920. }
  1921. read_unlock(&pag->pag_ici_lock);
  1922. }
  1923. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1924. mp->m_bsize * blks_per_cluster,
  1925. XFS_BUF_LOCK);
  1926. pre_flushed = 0;
  1927. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  1928. while (lip) {
  1929. if (lip->li_type == XFS_LI_INODE) {
  1930. iip = (xfs_inode_log_item_t *)lip;
  1931. ASSERT(iip->ili_logged == 1);
  1932. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  1933. xfs_trans_ail_copy_lsn(mp->m_ail,
  1934. &iip->ili_flush_lsn,
  1935. &iip->ili_item.li_lsn);
  1936. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1937. pre_flushed++;
  1938. }
  1939. lip = lip->li_bio_list;
  1940. }
  1941. for (i = 0; i < found; i++) {
  1942. ip = ip_found[i];
  1943. iip = ip->i_itemp;
  1944. if (!iip) {
  1945. ip->i_update_core = 0;
  1946. xfs_ifunlock(ip);
  1947. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1948. continue;
  1949. }
  1950. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1951. iip->ili_format.ilf_fields = 0;
  1952. iip->ili_logged = 1;
  1953. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1954. &iip->ili_item.li_lsn);
  1955. xfs_buf_attach_iodone(bp,
  1956. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  1957. xfs_istale_done, (xfs_log_item_t *)iip);
  1958. if (ip != free_ip) {
  1959. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1960. }
  1961. }
  1962. if (found || pre_flushed)
  1963. xfs_trans_stale_inode_buf(tp, bp);
  1964. xfs_trans_binval(tp, bp);
  1965. }
  1966. kmem_free(ip_found);
  1967. xfs_put_perag(mp, pag);
  1968. }
  1969. /*
  1970. * This is called to return an inode to the inode free list.
  1971. * The inode should already be truncated to 0 length and have
  1972. * no pages associated with it. This routine also assumes that
  1973. * the inode is already a part of the transaction.
  1974. *
  1975. * The on-disk copy of the inode will have been added to the list
  1976. * of unlinked inodes in the AGI. We need to remove the inode from
  1977. * that list atomically with respect to freeing it here.
  1978. */
  1979. int
  1980. xfs_ifree(
  1981. xfs_trans_t *tp,
  1982. xfs_inode_t *ip,
  1983. xfs_bmap_free_t *flist)
  1984. {
  1985. int error;
  1986. int delete;
  1987. xfs_ino_t first_ino;
  1988. xfs_dinode_t *dip;
  1989. xfs_buf_t *ibp;
  1990. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1991. ASSERT(ip->i_transp == tp);
  1992. ASSERT(ip->i_d.di_nlink == 0);
  1993. ASSERT(ip->i_d.di_nextents == 0);
  1994. ASSERT(ip->i_d.di_anextents == 0);
  1995. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1996. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  1997. ASSERT(ip->i_d.di_nblocks == 0);
  1998. /*
  1999. * Pull the on-disk inode from the AGI unlinked list.
  2000. */
  2001. error = xfs_iunlink_remove(tp, ip);
  2002. if (error != 0) {
  2003. return error;
  2004. }
  2005. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2006. if (error != 0) {
  2007. return error;
  2008. }
  2009. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2010. ip->i_d.di_flags = 0;
  2011. ip->i_d.di_dmevmask = 0;
  2012. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2013. ip->i_df.if_ext_max =
  2014. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2015. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2016. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2017. /*
  2018. * Bump the generation count so no one will be confused
  2019. * by reincarnations of this inode.
  2020. */
  2021. ip->i_d.di_gen++;
  2022. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2023. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  2024. if (error)
  2025. return error;
  2026. /*
  2027. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  2028. * from picking up this inode when it is reclaimed (its incore state
  2029. * initialzed but not flushed to disk yet). The in-core di_mode is
  2030. * already cleared and a corresponding transaction logged.
  2031. * The hack here just synchronizes the in-core to on-disk
  2032. * di_mode value in advance before the actual inode sync to disk.
  2033. * This is OK because the inode is already unlinked and would never
  2034. * change its di_mode again for this inode generation.
  2035. * This is a temporary hack that would require a proper fix
  2036. * in the future.
  2037. */
  2038. dip->di_mode = 0;
  2039. if (delete) {
  2040. xfs_ifree_cluster(ip, tp, first_ino);
  2041. }
  2042. return 0;
  2043. }
  2044. /*
  2045. * Reallocate the space for if_broot based on the number of records
  2046. * being added or deleted as indicated in rec_diff. Move the records
  2047. * and pointers in if_broot to fit the new size. When shrinking this
  2048. * will eliminate holes between the records and pointers created by
  2049. * the caller. When growing this will create holes to be filled in
  2050. * by the caller.
  2051. *
  2052. * The caller must not request to add more records than would fit in
  2053. * the on-disk inode root. If the if_broot is currently NULL, then
  2054. * if we adding records one will be allocated. The caller must also
  2055. * not request that the number of records go below zero, although
  2056. * it can go to zero.
  2057. *
  2058. * ip -- the inode whose if_broot area is changing
  2059. * ext_diff -- the change in the number of records, positive or negative,
  2060. * requested for the if_broot array.
  2061. */
  2062. void
  2063. xfs_iroot_realloc(
  2064. xfs_inode_t *ip,
  2065. int rec_diff,
  2066. int whichfork)
  2067. {
  2068. struct xfs_mount *mp = ip->i_mount;
  2069. int cur_max;
  2070. xfs_ifork_t *ifp;
  2071. struct xfs_btree_block *new_broot;
  2072. int new_max;
  2073. size_t new_size;
  2074. char *np;
  2075. char *op;
  2076. /*
  2077. * Handle the degenerate case quietly.
  2078. */
  2079. if (rec_diff == 0) {
  2080. return;
  2081. }
  2082. ifp = XFS_IFORK_PTR(ip, whichfork);
  2083. if (rec_diff > 0) {
  2084. /*
  2085. * If there wasn't any memory allocated before, just
  2086. * allocate it now and get out.
  2087. */
  2088. if (ifp->if_broot_bytes == 0) {
  2089. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2090. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
  2091. ifp->if_broot_bytes = (int)new_size;
  2092. return;
  2093. }
  2094. /*
  2095. * If there is already an existing if_broot, then we need
  2096. * to realloc() it and shift the pointers to their new
  2097. * location. The records don't change location because
  2098. * they are kept butted up against the btree block header.
  2099. */
  2100. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2101. new_max = cur_max + rec_diff;
  2102. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2103. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  2104. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2105. KM_SLEEP);
  2106. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2107. ifp->if_broot_bytes);
  2108. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2109. (int)new_size);
  2110. ifp->if_broot_bytes = (int)new_size;
  2111. ASSERT(ifp->if_broot_bytes <=
  2112. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2113. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2114. return;
  2115. }
  2116. /*
  2117. * rec_diff is less than 0. In this case, we are shrinking the
  2118. * if_broot buffer. It must already exist. If we go to zero
  2119. * records, just get rid of the root and clear the status bit.
  2120. */
  2121. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2122. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2123. new_max = cur_max + rec_diff;
  2124. ASSERT(new_max >= 0);
  2125. if (new_max > 0)
  2126. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2127. else
  2128. new_size = 0;
  2129. if (new_size > 0) {
  2130. new_broot = kmem_alloc(new_size, KM_SLEEP);
  2131. /*
  2132. * First copy over the btree block header.
  2133. */
  2134. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  2135. } else {
  2136. new_broot = NULL;
  2137. ifp->if_flags &= ~XFS_IFBROOT;
  2138. }
  2139. /*
  2140. * Only copy the records and pointers if there are any.
  2141. */
  2142. if (new_max > 0) {
  2143. /*
  2144. * First copy the records.
  2145. */
  2146. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2147. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2148. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2149. /*
  2150. * Then copy the pointers.
  2151. */
  2152. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2153. ifp->if_broot_bytes);
  2154. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2155. (int)new_size);
  2156. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2157. }
  2158. kmem_free(ifp->if_broot);
  2159. ifp->if_broot = new_broot;
  2160. ifp->if_broot_bytes = (int)new_size;
  2161. ASSERT(ifp->if_broot_bytes <=
  2162. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2163. return;
  2164. }
  2165. /*
  2166. * This is called when the amount of space needed for if_data
  2167. * is increased or decreased. The change in size is indicated by
  2168. * the number of bytes that need to be added or deleted in the
  2169. * byte_diff parameter.
  2170. *
  2171. * If the amount of space needed has decreased below the size of the
  2172. * inline buffer, then switch to using the inline buffer. Otherwise,
  2173. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2174. * to what is needed.
  2175. *
  2176. * ip -- the inode whose if_data area is changing
  2177. * byte_diff -- the change in the number of bytes, positive or negative,
  2178. * requested for the if_data array.
  2179. */
  2180. void
  2181. xfs_idata_realloc(
  2182. xfs_inode_t *ip,
  2183. int byte_diff,
  2184. int whichfork)
  2185. {
  2186. xfs_ifork_t *ifp;
  2187. int new_size;
  2188. int real_size;
  2189. if (byte_diff == 0) {
  2190. return;
  2191. }
  2192. ifp = XFS_IFORK_PTR(ip, whichfork);
  2193. new_size = (int)ifp->if_bytes + byte_diff;
  2194. ASSERT(new_size >= 0);
  2195. if (new_size == 0) {
  2196. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2197. kmem_free(ifp->if_u1.if_data);
  2198. }
  2199. ifp->if_u1.if_data = NULL;
  2200. real_size = 0;
  2201. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2202. /*
  2203. * If the valid extents/data can fit in if_inline_ext/data,
  2204. * copy them from the malloc'd vector and free it.
  2205. */
  2206. if (ifp->if_u1.if_data == NULL) {
  2207. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2208. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2209. ASSERT(ifp->if_real_bytes != 0);
  2210. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2211. new_size);
  2212. kmem_free(ifp->if_u1.if_data);
  2213. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2214. }
  2215. real_size = 0;
  2216. } else {
  2217. /*
  2218. * Stuck with malloc/realloc.
  2219. * For inline data, the underlying buffer must be
  2220. * a multiple of 4 bytes in size so that it can be
  2221. * logged and stay on word boundaries. We enforce
  2222. * that here.
  2223. */
  2224. real_size = roundup(new_size, 4);
  2225. if (ifp->if_u1.if_data == NULL) {
  2226. ASSERT(ifp->if_real_bytes == 0);
  2227. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2228. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2229. /*
  2230. * Only do the realloc if the underlying size
  2231. * is really changing.
  2232. */
  2233. if (ifp->if_real_bytes != real_size) {
  2234. ifp->if_u1.if_data =
  2235. kmem_realloc(ifp->if_u1.if_data,
  2236. real_size,
  2237. ifp->if_real_bytes,
  2238. KM_SLEEP);
  2239. }
  2240. } else {
  2241. ASSERT(ifp->if_real_bytes == 0);
  2242. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2243. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2244. ifp->if_bytes);
  2245. }
  2246. }
  2247. ifp->if_real_bytes = real_size;
  2248. ifp->if_bytes = new_size;
  2249. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2250. }
  2251. void
  2252. xfs_idestroy_fork(
  2253. xfs_inode_t *ip,
  2254. int whichfork)
  2255. {
  2256. xfs_ifork_t *ifp;
  2257. ifp = XFS_IFORK_PTR(ip, whichfork);
  2258. if (ifp->if_broot != NULL) {
  2259. kmem_free(ifp->if_broot);
  2260. ifp->if_broot = NULL;
  2261. }
  2262. /*
  2263. * If the format is local, then we can't have an extents
  2264. * array so just look for an inline data array. If we're
  2265. * not local then we may or may not have an extents list,
  2266. * so check and free it up if we do.
  2267. */
  2268. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2269. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2270. (ifp->if_u1.if_data != NULL)) {
  2271. ASSERT(ifp->if_real_bytes != 0);
  2272. kmem_free(ifp->if_u1.if_data);
  2273. ifp->if_u1.if_data = NULL;
  2274. ifp->if_real_bytes = 0;
  2275. }
  2276. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2277. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2278. ((ifp->if_u1.if_extents != NULL) &&
  2279. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2280. ASSERT(ifp->if_real_bytes != 0);
  2281. xfs_iext_destroy(ifp);
  2282. }
  2283. ASSERT(ifp->if_u1.if_extents == NULL ||
  2284. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2285. ASSERT(ifp->if_real_bytes == 0);
  2286. if (whichfork == XFS_ATTR_FORK) {
  2287. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2288. ip->i_afp = NULL;
  2289. }
  2290. }
  2291. /*
  2292. * Increment the pin count of the given buffer.
  2293. * This value is protected by ipinlock spinlock in the mount structure.
  2294. */
  2295. void
  2296. xfs_ipin(
  2297. xfs_inode_t *ip)
  2298. {
  2299. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2300. atomic_inc(&ip->i_pincount);
  2301. }
  2302. /*
  2303. * Decrement the pin count of the given inode, and wake up
  2304. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2305. * inode must have been previously pinned with a call to xfs_ipin().
  2306. */
  2307. void
  2308. xfs_iunpin(
  2309. xfs_inode_t *ip)
  2310. {
  2311. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2312. if (atomic_dec_and_test(&ip->i_pincount))
  2313. wake_up(&ip->i_ipin_wait);
  2314. }
  2315. /*
  2316. * This is called to unpin an inode. It can be directed to wait or to return
  2317. * immediately without waiting for the inode to be unpinned. The caller must
  2318. * have the inode locked in at least shared mode so that the buffer cannot be
  2319. * subsequently pinned once someone is waiting for it to be unpinned.
  2320. */
  2321. STATIC void
  2322. __xfs_iunpin_wait(
  2323. xfs_inode_t *ip,
  2324. int wait)
  2325. {
  2326. xfs_inode_log_item_t *iip = ip->i_itemp;
  2327. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2328. if (atomic_read(&ip->i_pincount) == 0)
  2329. return;
  2330. /* Give the log a push to start the unpinning I/O */
  2331. xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
  2332. iip->ili_last_lsn : 0, XFS_LOG_FORCE);
  2333. if (wait)
  2334. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2335. }
  2336. static inline void
  2337. xfs_iunpin_wait(
  2338. xfs_inode_t *ip)
  2339. {
  2340. __xfs_iunpin_wait(ip, 1);
  2341. }
  2342. static inline void
  2343. xfs_iunpin_nowait(
  2344. xfs_inode_t *ip)
  2345. {
  2346. __xfs_iunpin_wait(ip, 0);
  2347. }
  2348. /*
  2349. * xfs_iextents_copy()
  2350. *
  2351. * This is called to copy the REAL extents (as opposed to the delayed
  2352. * allocation extents) from the inode into the given buffer. It
  2353. * returns the number of bytes copied into the buffer.
  2354. *
  2355. * If there are no delayed allocation extents, then we can just
  2356. * memcpy() the extents into the buffer. Otherwise, we need to
  2357. * examine each extent in turn and skip those which are delayed.
  2358. */
  2359. int
  2360. xfs_iextents_copy(
  2361. xfs_inode_t *ip,
  2362. xfs_bmbt_rec_t *dp,
  2363. int whichfork)
  2364. {
  2365. int copied;
  2366. int i;
  2367. xfs_ifork_t *ifp;
  2368. int nrecs;
  2369. xfs_fsblock_t start_block;
  2370. ifp = XFS_IFORK_PTR(ip, whichfork);
  2371. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2372. ASSERT(ifp->if_bytes > 0);
  2373. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2374. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2375. ASSERT(nrecs > 0);
  2376. /*
  2377. * There are some delayed allocation extents in the
  2378. * inode, so copy the extents one at a time and skip
  2379. * the delayed ones. There must be at least one
  2380. * non-delayed extent.
  2381. */
  2382. copied = 0;
  2383. for (i = 0; i < nrecs; i++) {
  2384. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2385. start_block = xfs_bmbt_get_startblock(ep);
  2386. if (isnullstartblock(start_block)) {
  2387. /*
  2388. * It's a delayed allocation extent, so skip it.
  2389. */
  2390. continue;
  2391. }
  2392. /* Translate to on disk format */
  2393. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2394. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2395. dp++;
  2396. copied++;
  2397. }
  2398. ASSERT(copied != 0);
  2399. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2400. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2401. }
  2402. /*
  2403. * Each of the following cases stores data into the same region
  2404. * of the on-disk inode, so only one of them can be valid at
  2405. * any given time. While it is possible to have conflicting formats
  2406. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2407. * in EXTENTS format, this can only happen when the fork has
  2408. * changed formats after being modified but before being flushed.
  2409. * In these cases, the format always takes precedence, because the
  2410. * format indicates the current state of the fork.
  2411. */
  2412. /*ARGSUSED*/
  2413. STATIC void
  2414. xfs_iflush_fork(
  2415. xfs_inode_t *ip,
  2416. xfs_dinode_t *dip,
  2417. xfs_inode_log_item_t *iip,
  2418. int whichfork,
  2419. xfs_buf_t *bp)
  2420. {
  2421. char *cp;
  2422. xfs_ifork_t *ifp;
  2423. xfs_mount_t *mp;
  2424. #ifdef XFS_TRANS_DEBUG
  2425. int first;
  2426. #endif
  2427. static const short brootflag[2] =
  2428. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2429. static const short dataflag[2] =
  2430. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2431. static const short extflag[2] =
  2432. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2433. if (!iip)
  2434. return;
  2435. ifp = XFS_IFORK_PTR(ip, whichfork);
  2436. /*
  2437. * This can happen if we gave up in iformat in an error path,
  2438. * for the attribute fork.
  2439. */
  2440. if (!ifp) {
  2441. ASSERT(whichfork == XFS_ATTR_FORK);
  2442. return;
  2443. }
  2444. cp = XFS_DFORK_PTR(dip, whichfork);
  2445. mp = ip->i_mount;
  2446. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2447. case XFS_DINODE_FMT_LOCAL:
  2448. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2449. (ifp->if_bytes > 0)) {
  2450. ASSERT(ifp->if_u1.if_data != NULL);
  2451. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2452. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2453. }
  2454. break;
  2455. case XFS_DINODE_FMT_EXTENTS:
  2456. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2457. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2458. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2459. (ifp->if_bytes == 0));
  2460. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2461. (ifp->if_bytes > 0));
  2462. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2463. (ifp->if_bytes > 0)) {
  2464. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2465. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2466. whichfork);
  2467. }
  2468. break;
  2469. case XFS_DINODE_FMT_BTREE:
  2470. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2471. (ifp->if_broot_bytes > 0)) {
  2472. ASSERT(ifp->if_broot != NULL);
  2473. ASSERT(ifp->if_broot_bytes <=
  2474. (XFS_IFORK_SIZE(ip, whichfork) +
  2475. XFS_BROOT_SIZE_ADJ));
  2476. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2477. (xfs_bmdr_block_t *)cp,
  2478. XFS_DFORK_SIZE(dip, mp, whichfork));
  2479. }
  2480. break;
  2481. case XFS_DINODE_FMT_DEV:
  2482. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2483. ASSERT(whichfork == XFS_DATA_FORK);
  2484. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2485. }
  2486. break;
  2487. case XFS_DINODE_FMT_UUID:
  2488. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2489. ASSERT(whichfork == XFS_DATA_FORK);
  2490. memcpy(XFS_DFORK_DPTR(dip),
  2491. &ip->i_df.if_u2.if_uuid,
  2492. sizeof(uuid_t));
  2493. }
  2494. break;
  2495. default:
  2496. ASSERT(0);
  2497. break;
  2498. }
  2499. }
  2500. STATIC int
  2501. xfs_iflush_cluster(
  2502. xfs_inode_t *ip,
  2503. xfs_buf_t *bp)
  2504. {
  2505. xfs_mount_t *mp = ip->i_mount;
  2506. xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
  2507. unsigned long first_index, mask;
  2508. unsigned long inodes_per_cluster;
  2509. int ilist_size;
  2510. xfs_inode_t **ilist;
  2511. xfs_inode_t *iq;
  2512. int nr_found;
  2513. int clcount = 0;
  2514. int bufwasdelwri;
  2515. int i;
  2516. ASSERT(pag->pagi_inodeok);
  2517. ASSERT(pag->pag_ici_init);
  2518. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2519. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2520. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2521. if (!ilist)
  2522. return 0;
  2523. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2524. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2525. read_lock(&pag->pag_ici_lock);
  2526. /* really need a gang lookup range call here */
  2527. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2528. first_index, inodes_per_cluster);
  2529. if (nr_found == 0)
  2530. goto out_free;
  2531. for (i = 0; i < nr_found; i++) {
  2532. iq = ilist[i];
  2533. if (iq == ip)
  2534. continue;
  2535. /* if the inode lies outside this cluster, we're done. */
  2536. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2537. break;
  2538. /*
  2539. * Do an un-protected check to see if the inode is dirty and
  2540. * is a candidate for flushing. These checks will be repeated
  2541. * later after the appropriate locks are acquired.
  2542. */
  2543. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2544. continue;
  2545. /*
  2546. * Try to get locks. If any are unavailable or it is pinned,
  2547. * then this inode cannot be flushed and is skipped.
  2548. */
  2549. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2550. continue;
  2551. if (!xfs_iflock_nowait(iq)) {
  2552. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2553. continue;
  2554. }
  2555. if (xfs_ipincount(iq)) {
  2556. xfs_ifunlock(iq);
  2557. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2558. continue;
  2559. }
  2560. /*
  2561. * arriving here means that this inode can be flushed. First
  2562. * re-check that it's dirty before flushing.
  2563. */
  2564. if (!xfs_inode_clean(iq)) {
  2565. int error;
  2566. error = xfs_iflush_int(iq, bp);
  2567. if (error) {
  2568. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2569. goto cluster_corrupt_out;
  2570. }
  2571. clcount++;
  2572. } else {
  2573. xfs_ifunlock(iq);
  2574. }
  2575. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2576. }
  2577. if (clcount) {
  2578. XFS_STATS_INC(xs_icluster_flushcnt);
  2579. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2580. }
  2581. out_free:
  2582. read_unlock(&pag->pag_ici_lock);
  2583. kmem_free(ilist);
  2584. return 0;
  2585. cluster_corrupt_out:
  2586. /*
  2587. * Corruption detected in the clustering loop. Invalidate the
  2588. * inode buffer and shut down the filesystem.
  2589. */
  2590. read_unlock(&pag->pag_ici_lock);
  2591. /*
  2592. * Clean up the buffer. If it was B_DELWRI, just release it --
  2593. * brelse can handle it with no problems. If not, shut down the
  2594. * filesystem before releasing the buffer.
  2595. */
  2596. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2597. if (bufwasdelwri)
  2598. xfs_buf_relse(bp);
  2599. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2600. if (!bufwasdelwri) {
  2601. /*
  2602. * Just like incore_relse: if we have b_iodone functions,
  2603. * mark the buffer as an error and call them. Otherwise
  2604. * mark it as stale and brelse.
  2605. */
  2606. if (XFS_BUF_IODONE_FUNC(bp)) {
  2607. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2608. XFS_BUF_UNDONE(bp);
  2609. XFS_BUF_STALE(bp);
  2610. XFS_BUF_ERROR(bp,EIO);
  2611. xfs_biodone(bp);
  2612. } else {
  2613. XFS_BUF_STALE(bp);
  2614. xfs_buf_relse(bp);
  2615. }
  2616. }
  2617. /*
  2618. * Unlocks the flush lock
  2619. */
  2620. xfs_iflush_abort(iq);
  2621. kmem_free(ilist);
  2622. return XFS_ERROR(EFSCORRUPTED);
  2623. }
  2624. /*
  2625. * xfs_iflush() will write a modified inode's changes out to the
  2626. * inode's on disk home. The caller must have the inode lock held
  2627. * in at least shared mode and the inode flush completion must be
  2628. * active as well. The inode lock will still be held upon return from
  2629. * the call and the caller is free to unlock it.
  2630. * The inode flush will be completed when the inode reaches the disk.
  2631. * The flags indicate how the inode's buffer should be written out.
  2632. */
  2633. int
  2634. xfs_iflush(
  2635. xfs_inode_t *ip,
  2636. uint flags)
  2637. {
  2638. xfs_inode_log_item_t *iip;
  2639. xfs_buf_t *bp;
  2640. xfs_dinode_t *dip;
  2641. xfs_mount_t *mp;
  2642. int error;
  2643. int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
  2644. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2645. XFS_STATS_INC(xs_iflush_count);
  2646. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2647. ASSERT(!completion_done(&ip->i_flush));
  2648. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2649. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2650. iip = ip->i_itemp;
  2651. mp = ip->i_mount;
  2652. /*
  2653. * If the inode isn't dirty, then just release the inode
  2654. * flush lock and do nothing.
  2655. */
  2656. if (xfs_inode_clean(ip)) {
  2657. xfs_ifunlock(ip);
  2658. return 0;
  2659. }
  2660. /*
  2661. * We can't flush the inode until it is unpinned, so wait for it if we
  2662. * are allowed to block. We know noone new can pin it, because we are
  2663. * holding the inode lock shared and you need to hold it exclusively to
  2664. * pin the inode.
  2665. *
  2666. * If we are not allowed to block, force the log out asynchronously so
  2667. * that when we come back the inode will be unpinned. If other inodes
  2668. * in the same cluster are dirty, they will probably write the inode
  2669. * out for us if they occur after the log force completes.
  2670. */
  2671. if (noblock && xfs_ipincount(ip)) {
  2672. xfs_iunpin_nowait(ip);
  2673. xfs_ifunlock(ip);
  2674. return EAGAIN;
  2675. }
  2676. xfs_iunpin_wait(ip);
  2677. /*
  2678. * This may have been unpinned because the filesystem is shutting
  2679. * down forcibly. If that's the case we must not write this inode
  2680. * to disk, because the log record didn't make it to disk!
  2681. */
  2682. if (XFS_FORCED_SHUTDOWN(mp)) {
  2683. ip->i_update_core = 0;
  2684. if (iip)
  2685. iip->ili_format.ilf_fields = 0;
  2686. xfs_ifunlock(ip);
  2687. return XFS_ERROR(EIO);
  2688. }
  2689. /*
  2690. * Decide how buffer will be flushed out. This is done before
  2691. * the call to xfs_iflush_int because this field is zeroed by it.
  2692. */
  2693. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2694. /*
  2695. * Flush out the inode buffer according to the directions
  2696. * of the caller. In the cases where the caller has given
  2697. * us a choice choose the non-delwri case. This is because
  2698. * the inode is in the AIL and we need to get it out soon.
  2699. */
  2700. switch (flags) {
  2701. case XFS_IFLUSH_SYNC:
  2702. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2703. flags = 0;
  2704. break;
  2705. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2706. case XFS_IFLUSH_ASYNC:
  2707. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2708. flags = INT_ASYNC;
  2709. break;
  2710. case XFS_IFLUSH_DELWRI:
  2711. flags = INT_DELWRI;
  2712. break;
  2713. default:
  2714. ASSERT(0);
  2715. flags = 0;
  2716. break;
  2717. }
  2718. } else {
  2719. switch (flags) {
  2720. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2721. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2722. case XFS_IFLUSH_DELWRI:
  2723. flags = INT_DELWRI;
  2724. break;
  2725. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2726. case XFS_IFLUSH_ASYNC:
  2727. flags = INT_ASYNC;
  2728. break;
  2729. case XFS_IFLUSH_SYNC:
  2730. flags = 0;
  2731. break;
  2732. default:
  2733. ASSERT(0);
  2734. flags = 0;
  2735. break;
  2736. }
  2737. }
  2738. /*
  2739. * Get the buffer containing the on-disk inode.
  2740. */
  2741. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2742. noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
  2743. if (error || !bp) {
  2744. xfs_ifunlock(ip);
  2745. return error;
  2746. }
  2747. /*
  2748. * First flush out the inode that xfs_iflush was called with.
  2749. */
  2750. error = xfs_iflush_int(ip, bp);
  2751. if (error)
  2752. goto corrupt_out;
  2753. /*
  2754. * If the buffer is pinned then push on the log now so we won't
  2755. * get stuck waiting in the write for too long.
  2756. */
  2757. if (XFS_BUF_ISPINNED(bp))
  2758. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2759. /*
  2760. * inode clustering:
  2761. * see if other inodes can be gathered into this write
  2762. */
  2763. error = xfs_iflush_cluster(ip, bp);
  2764. if (error)
  2765. goto cluster_corrupt_out;
  2766. if (flags & INT_DELWRI) {
  2767. xfs_bdwrite(mp, bp);
  2768. } else if (flags & INT_ASYNC) {
  2769. error = xfs_bawrite(mp, bp);
  2770. } else {
  2771. error = xfs_bwrite(mp, bp);
  2772. }
  2773. return error;
  2774. corrupt_out:
  2775. xfs_buf_relse(bp);
  2776. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2777. cluster_corrupt_out:
  2778. /*
  2779. * Unlocks the flush lock
  2780. */
  2781. xfs_iflush_abort(ip);
  2782. return XFS_ERROR(EFSCORRUPTED);
  2783. }
  2784. STATIC int
  2785. xfs_iflush_int(
  2786. xfs_inode_t *ip,
  2787. xfs_buf_t *bp)
  2788. {
  2789. xfs_inode_log_item_t *iip;
  2790. xfs_dinode_t *dip;
  2791. xfs_mount_t *mp;
  2792. #ifdef XFS_TRANS_DEBUG
  2793. int first;
  2794. #endif
  2795. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2796. ASSERT(!completion_done(&ip->i_flush));
  2797. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2798. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2799. iip = ip->i_itemp;
  2800. mp = ip->i_mount;
  2801. /*
  2802. * If the inode isn't dirty, then just release the inode
  2803. * flush lock and do nothing.
  2804. */
  2805. if (xfs_inode_clean(ip)) {
  2806. xfs_ifunlock(ip);
  2807. return 0;
  2808. }
  2809. /* set *dip = inode's place in the buffer */
  2810. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2811. /*
  2812. * Clear i_update_core before copying out the data.
  2813. * This is for coordination with our timestamp updates
  2814. * that don't hold the inode lock. They will always
  2815. * update the timestamps BEFORE setting i_update_core,
  2816. * so if we clear i_update_core after they set it we
  2817. * are guaranteed to see their updates to the timestamps.
  2818. * I believe that this depends on strongly ordered memory
  2819. * semantics, but we have that. We use the SYNCHRONIZE
  2820. * macro to make sure that the compiler does not reorder
  2821. * the i_update_core access below the data copy below.
  2822. */
  2823. ip->i_update_core = 0;
  2824. SYNCHRONIZE();
  2825. /*
  2826. * Make sure to get the latest atime from the Linux inode.
  2827. */
  2828. xfs_synchronize_atime(ip);
  2829. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
  2830. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2831. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2832. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2833. ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2834. goto corrupt_out;
  2835. }
  2836. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2837. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2838. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2839. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2840. ip->i_ino, ip, ip->i_d.di_magic);
  2841. goto corrupt_out;
  2842. }
  2843. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  2844. if (XFS_TEST_ERROR(
  2845. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2846. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2847. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2848. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2849. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  2850. ip->i_ino, ip);
  2851. goto corrupt_out;
  2852. }
  2853. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  2854. if (XFS_TEST_ERROR(
  2855. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2856. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2857. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2858. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2859. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2860. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  2861. ip->i_ino, ip);
  2862. goto corrupt_out;
  2863. }
  2864. }
  2865. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2866. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2867. XFS_RANDOM_IFLUSH_5)) {
  2868. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2869. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  2870. ip->i_ino,
  2871. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2872. ip->i_d.di_nblocks,
  2873. ip);
  2874. goto corrupt_out;
  2875. }
  2876. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2877. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2878. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2879. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2880. ip->i_ino, ip->i_d.di_forkoff, ip);
  2881. goto corrupt_out;
  2882. }
  2883. /*
  2884. * bump the flush iteration count, used to detect flushes which
  2885. * postdate a log record during recovery.
  2886. */
  2887. ip->i_d.di_flushiter++;
  2888. /*
  2889. * Copy the dirty parts of the inode into the on-disk
  2890. * inode. We always copy out the core of the inode,
  2891. * because if the inode is dirty at all the core must
  2892. * be.
  2893. */
  2894. xfs_dinode_to_disk(dip, &ip->i_d);
  2895. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2896. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2897. ip->i_d.di_flushiter = 0;
  2898. /*
  2899. * If this is really an old format inode and the superblock version
  2900. * has not been updated to support only new format inodes, then
  2901. * convert back to the old inode format. If the superblock version
  2902. * has been updated, then make the conversion permanent.
  2903. */
  2904. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2905. if (ip->i_d.di_version == 1) {
  2906. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2907. /*
  2908. * Convert it back.
  2909. */
  2910. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2911. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2912. } else {
  2913. /*
  2914. * The superblock version has already been bumped,
  2915. * so just make the conversion to the new inode
  2916. * format permanent.
  2917. */
  2918. ip->i_d.di_version = 2;
  2919. dip->di_version = 2;
  2920. ip->i_d.di_onlink = 0;
  2921. dip->di_onlink = 0;
  2922. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2923. memset(&(dip->di_pad[0]), 0,
  2924. sizeof(dip->di_pad));
  2925. ASSERT(ip->i_d.di_projid == 0);
  2926. }
  2927. }
  2928. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2929. if (XFS_IFORK_Q(ip))
  2930. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2931. xfs_inobp_check(mp, bp);
  2932. /*
  2933. * We've recorded everything logged in the inode, so we'd
  2934. * like to clear the ilf_fields bits so we don't log and
  2935. * flush things unnecessarily. However, we can't stop
  2936. * logging all this information until the data we've copied
  2937. * into the disk buffer is written to disk. If we did we might
  2938. * overwrite the copy of the inode in the log with all the
  2939. * data after re-logging only part of it, and in the face of
  2940. * a crash we wouldn't have all the data we need to recover.
  2941. *
  2942. * What we do is move the bits to the ili_last_fields field.
  2943. * When logging the inode, these bits are moved back to the
  2944. * ilf_fields field. In the xfs_iflush_done() routine we
  2945. * clear ili_last_fields, since we know that the information
  2946. * those bits represent is permanently on disk. As long as
  2947. * the flush completes before the inode is logged again, then
  2948. * both ilf_fields and ili_last_fields will be cleared.
  2949. *
  2950. * We can play with the ilf_fields bits here, because the inode
  2951. * lock must be held exclusively in order to set bits there
  2952. * and the flush lock protects the ili_last_fields bits.
  2953. * Set ili_logged so the flush done
  2954. * routine can tell whether or not to look in the AIL.
  2955. * Also, store the current LSN of the inode so that we can tell
  2956. * whether the item has moved in the AIL from xfs_iflush_done().
  2957. * In order to read the lsn we need the AIL lock, because
  2958. * it is a 64 bit value that cannot be read atomically.
  2959. */
  2960. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2961. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2962. iip->ili_format.ilf_fields = 0;
  2963. iip->ili_logged = 1;
  2964. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2965. &iip->ili_item.li_lsn);
  2966. /*
  2967. * Attach the function xfs_iflush_done to the inode's
  2968. * buffer. This will remove the inode from the AIL
  2969. * and unlock the inode's flush lock when the inode is
  2970. * completely written to disk.
  2971. */
  2972. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2973. xfs_iflush_done, (xfs_log_item_t *)iip);
  2974. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  2975. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  2976. } else {
  2977. /*
  2978. * We're flushing an inode which is not in the AIL and has
  2979. * not been logged but has i_update_core set. For this
  2980. * case we can use a B_DELWRI flush and immediately drop
  2981. * the inode flush lock because we can avoid the whole
  2982. * AIL state thing. It's OK to drop the flush lock now,
  2983. * because we've already locked the buffer and to do anything
  2984. * you really need both.
  2985. */
  2986. if (iip != NULL) {
  2987. ASSERT(iip->ili_logged == 0);
  2988. ASSERT(iip->ili_last_fields == 0);
  2989. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2990. }
  2991. xfs_ifunlock(ip);
  2992. }
  2993. return 0;
  2994. corrupt_out:
  2995. return XFS_ERROR(EFSCORRUPTED);
  2996. }
  2997. #ifdef XFS_ILOCK_TRACE
  2998. void
  2999. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3000. {
  3001. ktrace_enter(ip->i_lock_trace,
  3002. (void *)ip,
  3003. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3004. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3005. (void *)ra, /* caller of ilock */
  3006. (void *)(unsigned long)current_cpu(),
  3007. (void *)(unsigned long)current_pid(),
  3008. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3009. }
  3010. #endif
  3011. /*
  3012. * Return a pointer to the extent record at file index idx.
  3013. */
  3014. xfs_bmbt_rec_host_t *
  3015. xfs_iext_get_ext(
  3016. xfs_ifork_t *ifp, /* inode fork pointer */
  3017. xfs_extnum_t idx) /* index of target extent */
  3018. {
  3019. ASSERT(idx >= 0);
  3020. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3021. return ifp->if_u1.if_ext_irec->er_extbuf;
  3022. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3023. xfs_ext_irec_t *erp; /* irec pointer */
  3024. int erp_idx = 0; /* irec index */
  3025. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3026. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3027. return &erp->er_extbuf[page_idx];
  3028. } else if (ifp->if_bytes) {
  3029. return &ifp->if_u1.if_extents[idx];
  3030. } else {
  3031. return NULL;
  3032. }
  3033. }
  3034. /*
  3035. * Insert new item(s) into the extent records for incore inode
  3036. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3037. */
  3038. void
  3039. xfs_iext_insert(
  3040. xfs_ifork_t *ifp, /* inode fork pointer */
  3041. xfs_extnum_t idx, /* starting index of new items */
  3042. xfs_extnum_t count, /* number of inserted items */
  3043. xfs_bmbt_irec_t *new) /* items to insert */
  3044. {
  3045. xfs_extnum_t i; /* extent record index */
  3046. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3047. xfs_iext_add(ifp, idx, count);
  3048. for (i = idx; i < idx + count; i++, new++)
  3049. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3050. }
  3051. /*
  3052. * This is called when the amount of space required for incore file
  3053. * extents needs to be increased. The ext_diff parameter stores the
  3054. * number of new extents being added and the idx parameter contains
  3055. * the extent index where the new extents will be added. If the new
  3056. * extents are being appended, then we just need to (re)allocate and
  3057. * initialize the space. Otherwise, if the new extents are being
  3058. * inserted into the middle of the existing entries, a bit more work
  3059. * is required to make room for the new extents to be inserted. The
  3060. * caller is responsible for filling in the new extent entries upon
  3061. * return.
  3062. */
  3063. void
  3064. xfs_iext_add(
  3065. xfs_ifork_t *ifp, /* inode fork pointer */
  3066. xfs_extnum_t idx, /* index to begin adding exts */
  3067. int ext_diff) /* number of extents to add */
  3068. {
  3069. int byte_diff; /* new bytes being added */
  3070. int new_size; /* size of extents after adding */
  3071. xfs_extnum_t nextents; /* number of extents in file */
  3072. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3073. ASSERT((idx >= 0) && (idx <= nextents));
  3074. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3075. new_size = ifp->if_bytes + byte_diff;
  3076. /*
  3077. * If the new number of extents (nextents + ext_diff)
  3078. * fits inside the inode, then continue to use the inline
  3079. * extent buffer.
  3080. */
  3081. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3082. if (idx < nextents) {
  3083. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3084. &ifp->if_u2.if_inline_ext[idx],
  3085. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3086. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3087. }
  3088. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3089. ifp->if_real_bytes = 0;
  3090. ifp->if_lastex = nextents + ext_diff;
  3091. }
  3092. /*
  3093. * Otherwise use a linear (direct) extent list.
  3094. * If the extents are currently inside the inode,
  3095. * xfs_iext_realloc_direct will switch us from
  3096. * inline to direct extent allocation mode.
  3097. */
  3098. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3099. xfs_iext_realloc_direct(ifp, new_size);
  3100. if (idx < nextents) {
  3101. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3102. &ifp->if_u1.if_extents[idx],
  3103. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3104. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3105. }
  3106. }
  3107. /* Indirection array */
  3108. else {
  3109. xfs_ext_irec_t *erp;
  3110. int erp_idx = 0;
  3111. int page_idx = idx;
  3112. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3113. if (ifp->if_flags & XFS_IFEXTIREC) {
  3114. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3115. } else {
  3116. xfs_iext_irec_init(ifp);
  3117. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3118. erp = ifp->if_u1.if_ext_irec;
  3119. }
  3120. /* Extents fit in target extent page */
  3121. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3122. if (page_idx < erp->er_extcount) {
  3123. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3124. &erp->er_extbuf[page_idx],
  3125. (erp->er_extcount - page_idx) *
  3126. sizeof(xfs_bmbt_rec_t));
  3127. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3128. }
  3129. erp->er_extcount += ext_diff;
  3130. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3131. }
  3132. /* Insert a new extent page */
  3133. else if (erp) {
  3134. xfs_iext_add_indirect_multi(ifp,
  3135. erp_idx, page_idx, ext_diff);
  3136. }
  3137. /*
  3138. * If extent(s) are being appended to the last page in
  3139. * the indirection array and the new extent(s) don't fit
  3140. * in the page, then erp is NULL and erp_idx is set to
  3141. * the next index needed in the indirection array.
  3142. */
  3143. else {
  3144. int count = ext_diff;
  3145. while (count) {
  3146. erp = xfs_iext_irec_new(ifp, erp_idx);
  3147. erp->er_extcount = count;
  3148. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3149. if (count) {
  3150. erp_idx++;
  3151. }
  3152. }
  3153. }
  3154. }
  3155. ifp->if_bytes = new_size;
  3156. }
  3157. /*
  3158. * This is called when incore extents are being added to the indirection
  3159. * array and the new extents do not fit in the target extent list. The
  3160. * erp_idx parameter contains the irec index for the target extent list
  3161. * in the indirection array, and the idx parameter contains the extent
  3162. * index within the list. The number of extents being added is stored
  3163. * in the count parameter.
  3164. *
  3165. * |-------| |-------|
  3166. * | | | | idx - number of extents before idx
  3167. * | idx | | count |
  3168. * | | | | count - number of extents being inserted at idx
  3169. * |-------| |-------|
  3170. * | count | | nex2 | nex2 - number of extents after idx + count
  3171. * |-------| |-------|
  3172. */
  3173. void
  3174. xfs_iext_add_indirect_multi(
  3175. xfs_ifork_t *ifp, /* inode fork pointer */
  3176. int erp_idx, /* target extent irec index */
  3177. xfs_extnum_t idx, /* index within target list */
  3178. int count) /* new extents being added */
  3179. {
  3180. int byte_diff; /* new bytes being added */
  3181. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3182. xfs_extnum_t ext_diff; /* number of extents to add */
  3183. xfs_extnum_t ext_cnt; /* new extents still needed */
  3184. xfs_extnum_t nex2; /* extents after idx + count */
  3185. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3186. int nlists; /* number of irec's (lists) */
  3187. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3188. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3189. nex2 = erp->er_extcount - idx;
  3190. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3191. /*
  3192. * Save second part of target extent list
  3193. * (all extents past */
  3194. if (nex2) {
  3195. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3196. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3197. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3198. erp->er_extcount -= nex2;
  3199. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3200. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3201. }
  3202. /*
  3203. * Add the new extents to the end of the target
  3204. * list, then allocate new irec record(s) and
  3205. * extent buffer(s) as needed to store the rest
  3206. * of the new extents.
  3207. */
  3208. ext_cnt = count;
  3209. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3210. if (ext_diff) {
  3211. erp->er_extcount += ext_diff;
  3212. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3213. ext_cnt -= ext_diff;
  3214. }
  3215. while (ext_cnt) {
  3216. erp_idx++;
  3217. erp = xfs_iext_irec_new(ifp, erp_idx);
  3218. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3219. erp->er_extcount = ext_diff;
  3220. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3221. ext_cnt -= ext_diff;
  3222. }
  3223. /* Add nex2 extents back to indirection array */
  3224. if (nex2) {
  3225. xfs_extnum_t ext_avail;
  3226. int i;
  3227. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3228. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3229. i = 0;
  3230. /*
  3231. * If nex2 extents fit in the current page, append
  3232. * nex2_ep after the new extents.
  3233. */
  3234. if (nex2 <= ext_avail) {
  3235. i = erp->er_extcount;
  3236. }
  3237. /*
  3238. * Otherwise, check if space is available in the
  3239. * next page.
  3240. */
  3241. else if ((erp_idx < nlists - 1) &&
  3242. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3243. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3244. erp_idx++;
  3245. erp++;
  3246. /* Create a hole for nex2 extents */
  3247. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3248. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3249. }
  3250. /*
  3251. * Final choice, create a new extent page for
  3252. * nex2 extents.
  3253. */
  3254. else {
  3255. erp_idx++;
  3256. erp = xfs_iext_irec_new(ifp, erp_idx);
  3257. }
  3258. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3259. kmem_free(nex2_ep);
  3260. erp->er_extcount += nex2;
  3261. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3262. }
  3263. }
  3264. /*
  3265. * This is called when the amount of space required for incore file
  3266. * extents needs to be decreased. The ext_diff parameter stores the
  3267. * number of extents to be removed and the idx parameter contains
  3268. * the extent index where the extents will be removed from.
  3269. *
  3270. * If the amount of space needed has decreased below the linear
  3271. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3272. * extent array. Otherwise, use kmem_realloc() to adjust the
  3273. * size to what is needed.
  3274. */
  3275. void
  3276. xfs_iext_remove(
  3277. xfs_ifork_t *ifp, /* inode fork pointer */
  3278. xfs_extnum_t idx, /* index to begin removing exts */
  3279. int ext_diff) /* number of extents to remove */
  3280. {
  3281. xfs_extnum_t nextents; /* number of extents in file */
  3282. int new_size; /* size of extents after removal */
  3283. ASSERT(ext_diff > 0);
  3284. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3285. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3286. if (new_size == 0) {
  3287. xfs_iext_destroy(ifp);
  3288. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3289. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3290. } else if (ifp->if_real_bytes) {
  3291. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3292. } else {
  3293. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3294. }
  3295. ifp->if_bytes = new_size;
  3296. }
  3297. /*
  3298. * This removes ext_diff extents from the inline buffer, beginning
  3299. * at extent index idx.
  3300. */
  3301. void
  3302. xfs_iext_remove_inline(
  3303. xfs_ifork_t *ifp, /* inode fork pointer */
  3304. xfs_extnum_t idx, /* index to begin removing exts */
  3305. int ext_diff) /* number of extents to remove */
  3306. {
  3307. int nextents; /* number of extents in file */
  3308. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3309. ASSERT(idx < XFS_INLINE_EXTS);
  3310. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3311. ASSERT(((nextents - ext_diff) > 0) &&
  3312. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3313. if (idx + ext_diff < nextents) {
  3314. memmove(&ifp->if_u2.if_inline_ext[idx],
  3315. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3316. (nextents - (idx + ext_diff)) *
  3317. sizeof(xfs_bmbt_rec_t));
  3318. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3319. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3320. } else {
  3321. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3322. ext_diff * sizeof(xfs_bmbt_rec_t));
  3323. }
  3324. }
  3325. /*
  3326. * This removes ext_diff extents from a linear (direct) extent list,
  3327. * beginning at extent index idx. If the extents are being removed
  3328. * from the end of the list (ie. truncate) then we just need to re-
  3329. * allocate the list to remove the extra space. Otherwise, if the
  3330. * extents are being removed from the middle of the existing extent
  3331. * entries, then we first need to move the extent records beginning
  3332. * at idx + ext_diff up in the list to overwrite the records being
  3333. * removed, then remove the extra space via kmem_realloc.
  3334. */
  3335. void
  3336. xfs_iext_remove_direct(
  3337. xfs_ifork_t *ifp, /* inode fork pointer */
  3338. xfs_extnum_t idx, /* index to begin removing exts */
  3339. int ext_diff) /* number of extents to remove */
  3340. {
  3341. xfs_extnum_t nextents; /* number of extents in file */
  3342. int new_size; /* size of extents after removal */
  3343. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3344. new_size = ifp->if_bytes -
  3345. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3346. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3347. if (new_size == 0) {
  3348. xfs_iext_destroy(ifp);
  3349. return;
  3350. }
  3351. /* Move extents up in the list (if needed) */
  3352. if (idx + ext_diff < nextents) {
  3353. memmove(&ifp->if_u1.if_extents[idx],
  3354. &ifp->if_u1.if_extents[idx + ext_diff],
  3355. (nextents - (idx + ext_diff)) *
  3356. sizeof(xfs_bmbt_rec_t));
  3357. }
  3358. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3359. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3360. /*
  3361. * Reallocate the direct extent list. If the extents
  3362. * will fit inside the inode then xfs_iext_realloc_direct
  3363. * will switch from direct to inline extent allocation
  3364. * mode for us.
  3365. */
  3366. xfs_iext_realloc_direct(ifp, new_size);
  3367. ifp->if_bytes = new_size;
  3368. }
  3369. /*
  3370. * This is called when incore extents are being removed from the
  3371. * indirection array and the extents being removed span multiple extent
  3372. * buffers. The idx parameter contains the file extent index where we
  3373. * want to begin removing extents, and the count parameter contains
  3374. * how many extents need to be removed.
  3375. *
  3376. * |-------| |-------|
  3377. * | nex1 | | | nex1 - number of extents before idx
  3378. * |-------| | count |
  3379. * | | | | count - number of extents being removed at idx
  3380. * | count | |-------|
  3381. * | | | nex2 | nex2 - number of extents after idx + count
  3382. * |-------| |-------|
  3383. */
  3384. void
  3385. xfs_iext_remove_indirect(
  3386. xfs_ifork_t *ifp, /* inode fork pointer */
  3387. xfs_extnum_t idx, /* index to begin removing extents */
  3388. int count) /* number of extents to remove */
  3389. {
  3390. xfs_ext_irec_t *erp; /* indirection array pointer */
  3391. int erp_idx = 0; /* indirection array index */
  3392. xfs_extnum_t ext_cnt; /* extents left to remove */
  3393. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3394. xfs_extnum_t nex1; /* number of extents before idx */
  3395. xfs_extnum_t nex2; /* extents after idx + count */
  3396. int nlists; /* entries in indirection array */
  3397. int page_idx = idx; /* index in target extent list */
  3398. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3399. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3400. ASSERT(erp != NULL);
  3401. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3402. nex1 = page_idx;
  3403. ext_cnt = count;
  3404. while (ext_cnt) {
  3405. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3406. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3407. /*
  3408. * Check for deletion of entire list;
  3409. * xfs_iext_irec_remove() updates extent offsets.
  3410. */
  3411. if (ext_diff == erp->er_extcount) {
  3412. xfs_iext_irec_remove(ifp, erp_idx);
  3413. ext_cnt -= ext_diff;
  3414. nex1 = 0;
  3415. if (ext_cnt) {
  3416. ASSERT(erp_idx < ifp->if_real_bytes /
  3417. XFS_IEXT_BUFSZ);
  3418. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3419. nex1 = 0;
  3420. continue;
  3421. } else {
  3422. break;
  3423. }
  3424. }
  3425. /* Move extents up (if needed) */
  3426. if (nex2) {
  3427. memmove(&erp->er_extbuf[nex1],
  3428. &erp->er_extbuf[nex1 + ext_diff],
  3429. nex2 * sizeof(xfs_bmbt_rec_t));
  3430. }
  3431. /* Zero out rest of page */
  3432. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3433. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3434. /* Update remaining counters */
  3435. erp->er_extcount -= ext_diff;
  3436. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3437. ext_cnt -= ext_diff;
  3438. nex1 = 0;
  3439. erp_idx++;
  3440. erp++;
  3441. }
  3442. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3443. xfs_iext_irec_compact(ifp);
  3444. }
  3445. /*
  3446. * Create, destroy, or resize a linear (direct) block of extents.
  3447. */
  3448. void
  3449. xfs_iext_realloc_direct(
  3450. xfs_ifork_t *ifp, /* inode fork pointer */
  3451. int new_size) /* new size of extents */
  3452. {
  3453. int rnew_size; /* real new size of extents */
  3454. rnew_size = new_size;
  3455. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3456. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3457. (new_size != ifp->if_real_bytes)));
  3458. /* Free extent records */
  3459. if (new_size == 0) {
  3460. xfs_iext_destroy(ifp);
  3461. }
  3462. /* Resize direct extent list and zero any new bytes */
  3463. else if (ifp->if_real_bytes) {
  3464. /* Check if extents will fit inside the inode */
  3465. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3466. xfs_iext_direct_to_inline(ifp, new_size /
  3467. (uint)sizeof(xfs_bmbt_rec_t));
  3468. ifp->if_bytes = new_size;
  3469. return;
  3470. }
  3471. if (!is_power_of_2(new_size)){
  3472. rnew_size = roundup_pow_of_two(new_size);
  3473. }
  3474. if (rnew_size != ifp->if_real_bytes) {
  3475. ifp->if_u1.if_extents =
  3476. kmem_realloc(ifp->if_u1.if_extents,
  3477. rnew_size,
  3478. ifp->if_real_bytes, KM_NOFS);
  3479. }
  3480. if (rnew_size > ifp->if_real_bytes) {
  3481. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3482. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3483. rnew_size - ifp->if_real_bytes);
  3484. }
  3485. }
  3486. /*
  3487. * Switch from the inline extent buffer to a direct
  3488. * extent list. Be sure to include the inline extent
  3489. * bytes in new_size.
  3490. */
  3491. else {
  3492. new_size += ifp->if_bytes;
  3493. if (!is_power_of_2(new_size)) {
  3494. rnew_size = roundup_pow_of_two(new_size);
  3495. }
  3496. xfs_iext_inline_to_direct(ifp, rnew_size);
  3497. }
  3498. ifp->if_real_bytes = rnew_size;
  3499. ifp->if_bytes = new_size;
  3500. }
  3501. /*
  3502. * Switch from linear (direct) extent records to inline buffer.
  3503. */
  3504. void
  3505. xfs_iext_direct_to_inline(
  3506. xfs_ifork_t *ifp, /* inode fork pointer */
  3507. xfs_extnum_t nextents) /* number of extents in file */
  3508. {
  3509. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3510. ASSERT(nextents <= XFS_INLINE_EXTS);
  3511. /*
  3512. * The inline buffer was zeroed when we switched
  3513. * from inline to direct extent allocation mode,
  3514. * so we don't need to clear it here.
  3515. */
  3516. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3517. nextents * sizeof(xfs_bmbt_rec_t));
  3518. kmem_free(ifp->if_u1.if_extents);
  3519. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3520. ifp->if_real_bytes = 0;
  3521. }
  3522. /*
  3523. * Switch from inline buffer to linear (direct) extent records.
  3524. * new_size should already be rounded up to the next power of 2
  3525. * by the caller (when appropriate), so use new_size as it is.
  3526. * However, since new_size may be rounded up, we can't update
  3527. * if_bytes here. It is the caller's responsibility to update
  3528. * if_bytes upon return.
  3529. */
  3530. void
  3531. xfs_iext_inline_to_direct(
  3532. xfs_ifork_t *ifp, /* inode fork pointer */
  3533. int new_size) /* number of extents in file */
  3534. {
  3535. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3536. memset(ifp->if_u1.if_extents, 0, new_size);
  3537. if (ifp->if_bytes) {
  3538. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3539. ifp->if_bytes);
  3540. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3541. sizeof(xfs_bmbt_rec_t));
  3542. }
  3543. ifp->if_real_bytes = new_size;
  3544. }
  3545. /*
  3546. * Resize an extent indirection array to new_size bytes.
  3547. */
  3548. void
  3549. xfs_iext_realloc_indirect(
  3550. xfs_ifork_t *ifp, /* inode fork pointer */
  3551. int new_size) /* new indirection array size */
  3552. {
  3553. int nlists; /* number of irec's (ex lists) */
  3554. int size; /* current indirection array size */
  3555. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3556. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3557. size = nlists * sizeof(xfs_ext_irec_t);
  3558. ASSERT(ifp->if_real_bytes);
  3559. ASSERT((new_size >= 0) && (new_size != size));
  3560. if (new_size == 0) {
  3561. xfs_iext_destroy(ifp);
  3562. } else {
  3563. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3564. kmem_realloc(ifp->if_u1.if_ext_irec,
  3565. new_size, size, KM_NOFS);
  3566. }
  3567. }
  3568. /*
  3569. * Switch from indirection array to linear (direct) extent allocations.
  3570. */
  3571. void
  3572. xfs_iext_indirect_to_direct(
  3573. xfs_ifork_t *ifp) /* inode fork pointer */
  3574. {
  3575. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3576. xfs_extnum_t nextents; /* number of extents in file */
  3577. int size; /* size of file extents */
  3578. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3579. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3580. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3581. size = nextents * sizeof(xfs_bmbt_rec_t);
  3582. xfs_iext_irec_compact_pages(ifp);
  3583. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3584. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3585. kmem_free(ifp->if_u1.if_ext_irec);
  3586. ifp->if_flags &= ~XFS_IFEXTIREC;
  3587. ifp->if_u1.if_extents = ep;
  3588. ifp->if_bytes = size;
  3589. if (nextents < XFS_LINEAR_EXTS) {
  3590. xfs_iext_realloc_direct(ifp, size);
  3591. }
  3592. }
  3593. /*
  3594. * Free incore file extents.
  3595. */
  3596. void
  3597. xfs_iext_destroy(
  3598. xfs_ifork_t *ifp) /* inode fork pointer */
  3599. {
  3600. if (ifp->if_flags & XFS_IFEXTIREC) {
  3601. int erp_idx;
  3602. int nlists;
  3603. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3604. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3605. xfs_iext_irec_remove(ifp, erp_idx);
  3606. }
  3607. ifp->if_flags &= ~XFS_IFEXTIREC;
  3608. } else if (ifp->if_real_bytes) {
  3609. kmem_free(ifp->if_u1.if_extents);
  3610. } else if (ifp->if_bytes) {
  3611. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3612. sizeof(xfs_bmbt_rec_t));
  3613. }
  3614. ifp->if_u1.if_extents = NULL;
  3615. ifp->if_real_bytes = 0;
  3616. ifp->if_bytes = 0;
  3617. }
  3618. /*
  3619. * Return a pointer to the extent record for file system block bno.
  3620. */
  3621. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3622. xfs_iext_bno_to_ext(
  3623. xfs_ifork_t *ifp, /* inode fork pointer */
  3624. xfs_fileoff_t bno, /* block number to search for */
  3625. xfs_extnum_t *idxp) /* index of target extent */
  3626. {
  3627. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3628. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3629. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3630. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3631. int high; /* upper boundary in search */
  3632. xfs_extnum_t idx = 0; /* index of target extent */
  3633. int low; /* lower boundary in search */
  3634. xfs_extnum_t nextents; /* number of file extents */
  3635. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3636. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3637. if (nextents == 0) {
  3638. *idxp = 0;
  3639. return NULL;
  3640. }
  3641. low = 0;
  3642. if (ifp->if_flags & XFS_IFEXTIREC) {
  3643. /* Find target extent list */
  3644. int erp_idx = 0;
  3645. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3646. base = erp->er_extbuf;
  3647. high = erp->er_extcount - 1;
  3648. } else {
  3649. base = ifp->if_u1.if_extents;
  3650. high = nextents - 1;
  3651. }
  3652. /* Binary search extent records */
  3653. while (low <= high) {
  3654. idx = (low + high) >> 1;
  3655. ep = base + idx;
  3656. startoff = xfs_bmbt_get_startoff(ep);
  3657. blockcount = xfs_bmbt_get_blockcount(ep);
  3658. if (bno < startoff) {
  3659. high = idx - 1;
  3660. } else if (bno >= startoff + blockcount) {
  3661. low = idx + 1;
  3662. } else {
  3663. /* Convert back to file-based extent index */
  3664. if (ifp->if_flags & XFS_IFEXTIREC) {
  3665. idx += erp->er_extoff;
  3666. }
  3667. *idxp = idx;
  3668. return ep;
  3669. }
  3670. }
  3671. /* Convert back to file-based extent index */
  3672. if (ifp->if_flags & XFS_IFEXTIREC) {
  3673. idx += erp->er_extoff;
  3674. }
  3675. if (bno >= startoff + blockcount) {
  3676. if (++idx == nextents) {
  3677. ep = NULL;
  3678. } else {
  3679. ep = xfs_iext_get_ext(ifp, idx);
  3680. }
  3681. }
  3682. *idxp = idx;
  3683. return ep;
  3684. }
  3685. /*
  3686. * Return a pointer to the indirection array entry containing the
  3687. * extent record for filesystem block bno. Store the index of the
  3688. * target irec in *erp_idxp.
  3689. */
  3690. xfs_ext_irec_t * /* pointer to found extent record */
  3691. xfs_iext_bno_to_irec(
  3692. xfs_ifork_t *ifp, /* inode fork pointer */
  3693. xfs_fileoff_t bno, /* block number to search for */
  3694. int *erp_idxp) /* irec index of target ext list */
  3695. {
  3696. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3697. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3698. int erp_idx; /* indirection array index */
  3699. int nlists; /* number of extent irec's (lists) */
  3700. int high; /* binary search upper limit */
  3701. int low; /* binary search lower limit */
  3702. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3703. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3704. erp_idx = 0;
  3705. low = 0;
  3706. high = nlists - 1;
  3707. while (low <= high) {
  3708. erp_idx = (low + high) >> 1;
  3709. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3710. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3711. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3712. high = erp_idx - 1;
  3713. } else if (erp_next && bno >=
  3714. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3715. low = erp_idx + 1;
  3716. } else {
  3717. break;
  3718. }
  3719. }
  3720. *erp_idxp = erp_idx;
  3721. return erp;
  3722. }
  3723. /*
  3724. * Return a pointer to the indirection array entry containing the
  3725. * extent record at file extent index *idxp. Store the index of the
  3726. * target irec in *erp_idxp and store the page index of the target
  3727. * extent record in *idxp.
  3728. */
  3729. xfs_ext_irec_t *
  3730. xfs_iext_idx_to_irec(
  3731. xfs_ifork_t *ifp, /* inode fork pointer */
  3732. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3733. int *erp_idxp, /* pointer to target irec */
  3734. int realloc) /* new bytes were just added */
  3735. {
  3736. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3737. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3738. int erp_idx; /* indirection array index */
  3739. int nlists; /* number of irec's (ex lists) */
  3740. int high; /* binary search upper limit */
  3741. int low; /* binary search lower limit */
  3742. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3743. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3744. ASSERT(page_idx >= 0 && page_idx <=
  3745. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3746. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3747. erp_idx = 0;
  3748. low = 0;
  3749. high = nlists - 1;
  3750. /* Binary search extent irec's */
  3751. while (low <= high) {
  3752. erp_idx = (low + high) >> 1;
  3753. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3754. prev = erp_idx > 0 ? erp - 1 : NULL;
  3755. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3756. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3757. high = erp_idx - 1;
  3758. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3759. (page_idx == erp->er_extoff + erp->er_extcount &&
  3760. !realloc)) {
  3761. low = erp_idx + 1;
  3762. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3763. erp->er_extcount == XFS_LINEAR_EXTS) {
  3764. ASSERT(realloc);
  3765. page_idx = 0;
  3766. erp_idx++;
  3767. erp = erp_idx < nlists ? erp + 1 : NULL;
  3768. break;
  3769. } else {
  3770. page_idx -= erp->er_extoff;
  3771. break;
  3772. }
  3773. }
  3774. *idxp = page_idx;
  3775. *erp_idxp = erp_idx;
  3776. return(erp);
  3777. }
  3778. /*
  3779. * Allocate and initialize an indirection array once the space needed
  3780. * for incore extents increases above XFS_IEXT_BUFSZ.
  3781. */
  3782. void
  3783. xfs_iext_irec_init(
  3784. xfs_ifork_t *ifp) /* inode fork pointer */
  3785. {
  3786. xfs_ext_irec_t *erp; /* indirection array pointer */
  3787. xfs_extnum_t nextents; /* number of extents in file */
  3788. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3789. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3790. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3791. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3792. if (nextents == 0) {
  3793. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3794. } else if (!ifp->if_real_bytes) {
  3795. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3796. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3797. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3798. }
  3799. erp->er_extbuf = ifp->if_u1.if_extents;
  3800. erp->er_extcount = nextents;
  3801. erp->er_extoff = 0;
  3802. ifp->if_flags |= XFS_IFEXTIREC;
  3803. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3804. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3805. ifp->if_u1.if_ext_irec = erp;
  3806. return;
  3807. }
  3808. /*
  3809. * Allocate and initialize a new entry in the indirection array.
  3810. */
  3811. xfs_ext_irec_t *
  3812. xfs_iext_irec_new(
  3813. xfs_ifork_t *ifp, /* inode fork pointer */
  3814. int erp_idx) /* index for new irec */
  3815. {
  3816. xfs_ext_irec_t *erp; /* indirection array pointer */
  3817. int i; /* loop counter */
  3818. int nlists; /* number of irec's (ex lists) */
  3819. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3820. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3821. /* Resize indirection array */
  3822. xfs_iext_realloc_indirect(ifp, ++nlists *
  3823. sizeof(xfs_ext_irec_t));
  3824. /*
  3825. * Move records down in the array so the
  3826. * new page can use erp_idx.
  3827. */
  3828. erp = ifp->if_u1.if_ext_irec;
  3829. for (i = nlists - 1; i > erp_idx; i--) {
  3830. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3831. }
  3832. ASSERT(i == erp_idx);
  3833. /* Initialize new extent record */
  3834. erp = ifp->if_u1.if_ext_irec;
  3835. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3836. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3837. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3838. erp[erp_idx].er_extcount = 0;
  3839. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3840. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3841. return (&erp[erp_idx]);
  3842. }
  3843. /*
  3844. * Remove a record from the indirection array.
  3845. */
  3846. void
  3847. xfs_iext_irec_remove(
  3848. xfs_ifork_t *ifp, /* inode fork pointer */
  3849. int erp_idx) /* irec index to remove */
  3850. {
  3851. xfs_ext_irec_t *erp; /* indirection array pointer */
  3852. int i; /* loop counter */
  3853. int nlists; /* number of irec's (ex lists) */
  3854. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3855. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3856. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3857. if (erp->er_extbuf) {
  3858. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3859. -erp->er_extcount);
  3860. kmem_free(erp->er_extbuf);
  3861. }
  3862. /* Compact extent records */
  3863. erp = ifp->if_u1.if_ext_irec;
  3864. for (i = erp_idx; i < nlists - 1; i++) {
  3865. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3866. }
  3867. /*
  3868. * Manually free the last extent record from the indirection
  3869. * array. A call to xfs_iext_realloc_indirect() with a size
  3870. * of zero would result in a call to xfs_iext_destroy() which
  3871. * would in turn call this function again, creating a nasty
  3872. * infinite loop.
  3873. */
  3874. if (--nlists) {
  3875. xfs_iext_realloc_indirect(ifp,
  3876. nlists * sizeof(xfs_ext_irec_t));
  3877. } else {
  3878. kmem_free(ifp->if_u1.if_ext_irec);
  3879. }
  3880. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3881. }
  3882. /*
  3883. * This is called to clean up large amounts of unused memory allocated
  3884. * by the indirection array. Before compacting anything though, verify
  3885. * that the indirection array is still needed and switch back to the
  3886. * linear extent list (or even the inline buffer) if possible. The
  3887. * compaction policy is as follows:
  3888. *
  3889. * Full Compaction: Extents fit into a single page (or inline buffer)
  3890. * Partial Compaction: Extents occupy less than 50% of allocated space
  3891. * No Compaction: Extents occupy at least 50% of allocated space
  3892. */
  3893. void
  3894. xfs_iext_irec_compact(
  3895. xfs_ifork_t *ifp) /* inode fork pointer */
  3896. {
  3897. xfs_extnum_t nextents; /* number of extents in file */
  3898. int nlists; /* number of irec's (ex lists) */
  3899. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3900. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3901. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3902. if (nextents == 0) {
  3903. xfs_iext_destroy(ifp);
  3904. } else if (nextents <= XFS_INLINE_EXTS) {
  3905. xfs_iext_indirect_to_direct(ifp);
  3906. xfs_iext_direct_to_inline(ifp, nextents);
  3907. } else if (nextents <= XFS_LINEAR_EXTS) {
  3908. xfs_iext_indirect_to_direct(ifp);
  3909. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3910. xfs_iext_irec_compact_pages(ifp);
  3911. }
  3912. }
  3913. /*
  3914. * Combine extents from neighboring extent pages.
  3915. */
  3916. void
  3917. xfs_iext_irec_compact_pages(
  3918. xfs_ifork_t *ifp) /* inode fork pointer */
  3919. {
  3920. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3921. int erp_idx = 0; /* indirection array index */
  3922. int nlists; /* number of irec's (ex lists) */
  3923. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3924. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3925. while (erp_idx < nlists - 1) {
  3926. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3927. erp_next = erp + 1;
  3928. if (erp_next->er_extcount <=
  3929. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3930. memcpy(&erp->er_extbuf[erp->er_extcount],
  3931. erp_next->er_extbuf, erp_next->er_extcount *
  3932. sizeof(xfs_bmbt_rec_t));
  3933. erp->er_extcount += erp_next->er_extcount;
  3934. /*
  3935. * Free page before removing extent record
  3936. * so er_extoffs don't get modified in
  3937. * xfs_iext_irec_remove.
  3938. */
  3939. kmem_free(erp_next->er_extbuf);
  3940. erp_next->er_extbuf = NULL;
  3941. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3942. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3943. } else {
  3944. erp_idx++;
  3945. }
  3946. }
  3947. }
  3948. /*
  3949. * This is called to update the er_extoff field in the indirection
  3950. * array when extents have been added or removed from one of the
  3951. * extent lists. erp_idx contains the irec index to begin updating
  3952. * at and ext_diff contains the number of extents that were added
  3953. * or removed.
  3954. */
  3955. void
  3956. xfs_iext_irec_update_extoffs(
  3957. xfs_ifork_t *ifp, /* inode fork pointer */
  3958. int erp_idx, /* irec index to update */
  3959. int ext_diff) /* number of new extents */
  3960. {
  3961. int i; /* loop counter */
  3962. int nlists; /* number of irec's (ex lists */
  3963. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3964. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3965. for (i = erp_idx; i < nlists; i++) {
  3966. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3967. }
  3968. }