direct-io.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235
  1. /*
  2. * fs/direct-io.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * O_DIRECT
  7. *
  8. * 04Jul2002 Andrew Morton
  9. * Initial version
  10. * 11Sep2002 janetinc@us.ibm.com
  11. * added readv/writev support.
  12. * 29Oct2002 Andrew Morton
  13. * rewrote bio_add_page() support.
  14. * 30Oct2002 pbadari@us.ibm.com
  15. * added support for non-aligned IO.
  16. * 06Nov2002 pbadari@us.ibm.com
  17. * added asynchronous IO support.
  18. * 21Jul2003 nathans@sgi.com
  19. * added IO completion notifier.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/types.h>
  24. #include <linux/fs.h>
  25. #include <linux/mm.h>
  26. #include <linux/slab.h>
  27. #include <linux/highmem.h>
  28. #include <linux/pagemap.h>
  29. #include <linux/task_io_accounting_ops.h>
  30. #include <linux/bio.h>
  31. #include <linux/wait.h>
  32. #include <linux/err.h>
  33. #include <linux/blkdev.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/rwsem.h>
  36. #include <linux/uio.h>
  37. #include <asm/atomic.h>
  38. /*
  39. * How many user pages to map in one call to get_user_pages(). This determines
  40. * the size of a structure on the stack.
  41. */
  42. #define DIO_PAGES 64
  43. /*
  44. * This code generally works in units of "dio_blocks". A dio_block is
  45. * somewhere between the hard sector size and the filesystem block size. it
  46. * is determined on a per-invocation basis. When talking to the filesystem
  47. * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  48. * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
  49. * to bio_block quantities by shifting left by blkfactor.
  50. *
  51. * If blkfactor is zero then the user's request was aligned to the filesystem's
  52. * blocksize.
  53. *
  54. * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
  55. * This determines whether we need to do the fancy locking which prevents
  56. * direct-IO from being able to read uninitialised disk blocks. If its zero
  57. * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
  58. * not held for the entire direct write (taken briefly, initially, during a
  59. * direct read though, but its never held for the duration of a direct-IO).
  60. */
  61. struct dio {
  62. /* BIO submission state */
  63. struct bio *bio; /* bio under assembly */
  64. struct inode *inode;
  65. int rw;
  66. loff_t i_size; /* i_size when submitted */
  67. int lock_type; /* doesn't change */
  68. unsigned blkbits; /* doesn't change */
  69. unsigned blkfactor; /* When we're using an alignment which
  70. is finer than the filesystem's soft
  71. blocksize, this specifies how much
  72. finer. blkfactor=2 means 1/4-block
  73. alignment. Does not change */
  74. unsigned start_zero_done; /* flag: sub-blocksize zeroing has
  75. been performed at the start of a
  76. write */
  77. int pages_in_io; /* approximate total IO pages */
  78. size_t size; /* total request size (doesn't change)*/
  79. sector_t block_in_file; /* Current offset into the underlying
  80. file in dio_block units. */
  81. unsigned blocks_available; /* At block_in_file. changes */
  82. sector_t final_block_in_request;/* doesn't change */
  83. unsigned first_block_in_page; /* doesn't change, Used only once */
  84. int boundary; /* prev block is at a boundary */
  85. int reap_counter; /* rate limit reaping */
  86. get_block_t *get_block; /* block mapping function */
  87. dio_iodone_t *end_io; /* IO completion function */
  88. sector_t final_block_in_bio; /* current final block in bio + 1 */
  89. sector_t next_block_for_io; /* next block to be put under IO,
  90. in dio_blocks units */
  91. struct buffer_head map_bh; /* last get_block() result */
  92. /*
  93. * Deferred addition of a page to the dio. These variables are
  94. * private to dio_send_cur_page(), submit_page_section() and
  95. * dio_bio_add_page().
  96. */
  97. struct page *cur_page; /* The page */
  98. unsigned cur_page_offset; /* Offset into it, in bytes */
  99. unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
  100. sector_t cur_page_block; /* Where it starts */
  101. /*
  102. * Page fetching state. These variables belong to dio_refill_pages().
  103. */
  104. int curr_page; /* changes */
  105. int total_pages; /* doesn't change */
  106. unsigned long curr_user_address;/* changes */
  107. /*
  108. * Page queue. These variables belong to dio_refill_pages() and
  109. * dio_get_page().
  110. */
  111. struct page *pages[DIO_PAGES]; /* page buffer */
  112. unsigned head; /* next page to process */
  113. unsigned tail; /* last valid page + 1 */
  114. int page_errors; /* errno from get_user_pages() */
  115. /* BIO completion state */
  116. spinlock_t bio_lock; /* protects BIO fields below */
  117. unsigned long refcount; /* direct_io_worker() and bios */
  118. struct bio *bio_list; /* singly linked via bi_private */
  119. struct task_struct *waiter; /* waiting task (NULL if none) */
  120. /* AIO related stuff */
  121. struct kiocb *iocb; /* kiocb */
  122. int is_async; /* is IO async ? */
  123. int io_error; /* IO error in completion path */
  124. ssize_t result; /* IO result */
  125. };
  126. /*
  127. * How many pages are in the queue?
  128. */
  129. static inline unsigned dio_pages_present(struct dio *dio)
  130. {
  131. return dio->tail - dio->head;
  132. }
  133. /*
  134. * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
  135. */
  136. static int dio_refill_pages(struct dio *dio)
  137. {
  138. int ret;
  139. int nr_pages;
  140. nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
  141. ret = get_user_pages_fast(
  142. dio->curr_user_address, /* Where from? */
  143. nr_pages, /* How many pages? */
  144. dio->rw == READ, /* Write to memory? */
  145. &dio->pages[0]); /* Put results here */
  146. if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
  147. struct page *page = ZERO_PAGE(0);
  148. /*
  149. * A memory fault, but the filesystem has some outstanding
  150. * mapped blocks. We need to use those blocks up to avoid
  151. * leaking stale data in the file.
  152. */
  153. if (dio->page_errors == 0)
  154. dio->page_errors = ret;
  155. page_cache_get(page);
  156. dio->pages[0] = page;
  157. dio->head = 0;
  158. dio->tail = 1;
  159. ret = 0;
  160. goto out;
  161. }
  162. if (ret >= 0) {
  163. dio->curr_user_address += ret * PAGE_SIZE;
  164. dio->curr_page += ret;
  165. dio->head = 0;
  166. dio->tail = ret;
  167. ret = 0;
  168. }
  169. out:
  170. return ret;
  171. }
  172. /*
  173. * Get another userspace page. Returns an ERR_PTR on error. Pages are
  174. * buffered inside the dio so that we can call get_user_pages() against a
  175. * decent number of pages, less frequently. To provide nicer use of the
  176. * L1 cache.
  177. */
  178. static struct page *dio_get_page(struct dio *dio)
  179. {
  180. if (dio_pages_present(dio) == 0) {
  181. int ret;
  182. ret = dio_refill_pages(dio);
  183. if (ret)
  184. return ERR_PTR(ret);
  185. BUG_ON(dio_pages_present(dio) == 0);
  186. }
  187. return dio->pages[dio->head++];
  188. }
  189. /**
  190. * dio_complete() - called when all DIO BIO I/O has been completed
  191. * @offset: the byte offset in the file of the completed operation
  192. *
  193. * This releases locks as dictated by the locking type, lets interested parties
  194. * know that a DIO operation has completed, and calculates the resulting return
  195. * code for the operation.
  196. *
  197. * It lets the filesystem know if it registered an interest earlier via
  198. * get_block. Pass the private field of the map buffer_head so that
  199. * filesystems can use it to hold additional state between get_block calls and
  200. * dio_complete.
  201. */
  202. static int dio_complete(struct dio *dio, loff_t offset, int ret)
  203. {
  204. ssize_t transferred = 0;
  205. /*
  206. * AIO submission can race with bio completion to get here while
  207. * expecting to have the last io completed by bio completion.
  208. * In that case -EIOCBQUEUED is in fact not an error we want
  209. * to preserve through this call.
  210. */
  211. if (ret == -EIOCBQUEUED)
  212. ret = 0;
  213. if (dio->result) {
  214. transferred = dio->result;
  215. /* Check for short read case */
  216. if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
  217. transferred = dio->i_size - offset;
  218. }
  219. if (dio->end_io && dio->result)
  220. dio->end_io(dio->iocb, offset, transferred,
  221. dio->map_bh.b_private);
  222. if (dio->lock_type == DIO_LOCKING)
  223. /* lockdep: non-owner release */
  224. up_read_non_owner(&dio->inode->i_alloc_sem);
  225. if (ret == 0)
  226. ret = dio->page_errors;
  227. if (ret == 0)
  228. ret = dio->io_error;
  229. if (ret == 0)
  230. ret = transferred;
  231. return ret;
  232. }
  233. static int dio_bio_complete(struct dio *dio, struct bio *bio);
  234. /*
  235. * Asynchronous IO callback.
  236. */
  237. static void dio_bio_end_aio(struct bio *bio, int error)
  238. {
  239. struct dio *dio = bio->bi_private;
  240. unsigned long remaining;
  241. unsigned long flags;
  242. /* cleanup the bio */
  243. dio_bio_complete(dio, bio);
  244. spin_lock_irqsave(&dio->bio_lock, flags);
  245. remaining = --dio->refcount;
  246. if (remaining == 1 && dio->waiter)
  247. wake_up_process(dio->waiter);
  248. spin_unlock_irqrestore(&dio->bio_lock, flags);
  249. if (remaining == 0) {
  250. int ret = dio_complete(dio, dio->iocb->ki_pos, 0);
  251. aio_complete(dio->iocb, ret, 0);
  252. kfree(dio);
  253. }
  254. }
  255. /*
  256. * The BIO completion handler simply queues the BIO up for the process-context
  257. * handler.
  258. *
  259. * During I/O bi_private points at the dio. After I/O, bi_private is used to
  260. * implement a singly-linked list of completed BIOs, at dio->bio_list.
  261. */
  262. static void dio_bio_end_io(struct bio *bio, int error)
  263. {
  264. struct dio *dio = bio->bi_private;
  265. unsigned long flags;
  266. spin_lock_irqsave(&dio->bio_lock, flags);
  267. bio->bi_private = dio->bio_list;
  268. dio->bio_list = bio;
  269. if (--dio->refcount == 1 && dio->waiter)
  270. wake_up_process(dio->waiter);
  271. spin_unlock_irqrestore(&dio->bio_lock, flags);
  272. }
  273. static int
  274. dio_bio_alloc(struct dio *dio, struct block_device *bdev,
  275. sector_t first_sector, int nr_vecs)
  276. {
  277. struct bio *bio;
  278. bio = bio_alloc(GFP_KERNEL, nr_vecs);
  279. if (bio == NULL)
  280. return -ENOMEM;
  281. bio->bi_bdev = bdev;
  282. bio->bi_sector = first_sector;
  283. if (dio->is_async)
  284. bio->bi_end_io = dio_bio_end_aio;
  285. else
  286. bio->bi_end_io = dio_bio_end_io;
  287. dio->bio = bio;
  288. return 0;
  289. }
  290. /*
  291. * In the AIO read case we speculatively dirty the pages before starting IO.
  292. * During IO completion, any of these pages which happen to have been written
  293. * back will be redirtied by bio_check_pages_dirty().
  294. *
  295. * bios hold a dio reference between submit_bio and ->end_io.
  296. */
  297. static void dio_bio_submit(struct dio *dio)
  298. {
  299. struct bio *bio = dio->bio;
  300. unsigned long flags;
  301. bio->bi_private = dio;
  302. spin_lock_irqsave(&dio->bio_lock, flags);
  303. dio->refcount++;
  304. spin_unlock_irqrestore(&dio->bio_lock, flags);
  305. if (dio->is_async && dio->rw == READ)
  306. bio_set_pages_dirty(bio);
  307. submit_bio(dio->rw, bio);
  308. dio->bio = NULL;
  309. dio->boundary = 0;
  310. }
  311. /*
  312. * Release any resources in case of a failure
  313. */
  314. static void dio_cleanup(struct dio *dio)
  315. {
  316. while (dio_pages_present(dio))
  317. page_cache_release(dio_get_page(dio));
  318. }
  319. /*
  320. * Wait for the next BIO to complete. Remove it and return it. NULL is
  321. * returned once all BIOs have been completed. This must only be called once
  322. * all bios have been issued so that dio->refcount can only decrease. This
  323. * requires that that the caller hold a reference on the dio.
  324. */
  325. static struct bio *dio_await_one(struct dio *dio)
  326. {
  327. unsigned long flags;
  328. struct bio *bio = NULL;
  329. spin_lock_irqsave(&dio->bio_lock, flags);
  330. /*
  331. * Wait as long as the list is empty and there are bios in flight. bio
  332. * completion drops the count, maybe adds to the list, and wakes while
  333. * holding the bio_lock so we don't need set_current_state()'s barrier
  334. * and can call it after testing our condition.
  335. */
  336. while (dio->refcount > 1 && dio->bio_list == NULL) {
  337. __set_current_state(TASK_UNINTERRUPTIBLE);
  338. dio->waiter = current;
  339. spin_unlock_irqrestore(&dio->bio_lock, flags);
  340. io_schedule();
  341. /* wake up sets us TASK_RUNNING */
  342. spin_lock_irqsave(&dio->bio_lock, flags);
  343. dio->waiter = NULL;
  344. }
  345. if (dio->bio_list) {
  346. bio = dio->bio_list;
  347. dio->bio_list = bio->bi_private;
  348. }
  349. spin_unlock_irqrestore(&dio->bio_lock, flags);
  350. return bio;
  351. }
  352. /*
  353. * Process one completed BIO. No locks are held.
  354. */
  355. static int dio_bio_complete(struct dio *dio, struct bio *bio)
  356. {
  357. const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  358. struct bio_vec *bvec = bio->bi_io_vec;
  359. int page_no;
  360. if (!uptodate)
  361. dio->io_error = -EIO;
  362. if (dio->is_async && dio->rw == READ) {
  363. bio_check_pages_dirty(bio); /* transfers ownership */
  364. } else {
  365. for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
  366. struct page *page = bvec[page_no].bv_page;
  367. if (dio->rw == READ && !PageCompound(page))
  368. set_page_dirty_lock(page);
  369. page_cache_release(page);
  370. }
  371. bio_put(bio);
  372. }
  373. return uptodate ? 0 : -EIO;
  374. }
  375. /*
  376. * Wait on and process all in-flight BIOs. This must only be called once
  377. * all bios have been issued so that the refcount can only decrease.
  378. * This just waits for all bios to make it through dio_bio_complete. IO
  379. * errors are propagated through dio->io_error and should be propagated via
  380. * dio_complete().
  381. */
  382. static void dio_await_completion(struct dio *dio)
  383. {
  384. struct bio *bio;
  385. do {
  386. bio = dio_await_one(dio);
  387. if (bio)
  388. dio_bio_complete(dio, bio);
  389. } while (bio);
  390. }
  391. /*
  392. * A really large O_DIRECT read or write can generate a lot of BIOs. So
  393. * to keep the memory consumption sane we periodically reap any completed BIOs
  394. * during the BIO generation phase.
  395. *
  396. * This also helps to limit the peak amount of pinned userspace memory.
  397. */
  398. static int dio_bio_reap(struct dio *dio)
  399. {
  400. int ret = 0;
  401. if (dio->reap_counter++ >= 64) {
  402. while (dio->bio_list) {
  403. unsigned long flags;
  404. struct bio *bio;
  405. int ret2;
  406. spin_lock_irqsave(&dio->bio_lock, flags);
  407. bio = dio->bio_list;
  408. dio->bio_list = bio->bi_private;
  409. spin_unlock_irqrestore(&dio->bio_lock, flags);
  410. ret2 = dio_bio_complete(dio, bio);
  411. if (ret == 0)
  412. ret = ret2;
  413. }
  414. dio->reap_counter = 0;
  415. }
  416. return ret;
  417. }
  418. /*
  419. * Call into the fs to map some more disk blocks. We record the current number
  420. * of available blocks at dio->blocks_available. These are in units of the
  421. * fs blocksize, (1 << inode->i_blkbits).
  422. *
  423. * The fs is allowed to map lots of blocks at once. If it wants to do that,
  424. * it uses the passed inode-relative block number as the file offset, as usual.
  425. *
  426. * get_block() is passed the number of i_blkbits-sized blocks which direct_io
  427. * has remaining to do. The fs should not map more than this number of blocks.
  428. *
  429. * If the fs has mapped a lot of blocks, it should populate bh->b_size to
  430. * indicate how much contiguous disk space has been made available at
  431. * bh->b_blocknr.
  432. *
  433. * If *any* of the mapped blocks are new, then the fs must set buffer_new().
  434. * This isn't very efficient...
  435. *
  436. * In the case of filesystem holes: the fs may return an arbitrarily-large
  437. * hole by returning an appropriate value in b_size and by clearing
  438. * buffer_mapped(). However the direct-io code will only process holes one
  439. * block at a time - it will repeatedly call get_block() as it walks the hole.
  440. */
  441. static int get_more_blocks(struct dio *dio)
  442. {
  443. int ret;
  444. struct buffer_head *map_bh = &dio->map_bh;
  445. sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
  446. unsigned long fs_count; /* Number of filesystem-sized blocks */
  447. unsigned long dio_count;/* Number of dio_block-sized blocks */
  448. unsigned long blkmask;
  449. int create;
  450. /*
  451. * If there was a memory error and we've overwritten all the
  452. * mapped blocks then we can now return that memory error
  453. */
  454. ret = dio->page_errors;
  455. if (ret == 0) {
  456. BUG_ON(dio->block_in_file >= dio->final_block_in_request);
  457. fs_startblk = dio->block_in_file >> dio->blkfactor;
  458. dio_count = dio->final_block_in_request - dio->block_in_file;
  459. fs_count = dio_count >> dio->blkfactor;
  460. blkmask = (1 << dio->blkfactor) - 1;
  461. if (dio_count & blkmask)
  462. fs_count++;
  463. map_bh->b_state = 0;
  464. map_bh->b_size = fs_count << dio->inode->i_blkbits;
  465. create = dio->rw & WRITE;
  466. if (dio->lock_type == DIO_LOCKING) {
  467. if (dio->block_in_file < (i_size_read(dio->inode) >>
  468. dio->blkbits))
  469. create = 0;
  470. } else if (dio->lock_type == DIO_NO_LOCKING) {
  471. create = 0;
  472. }
  473. /*
  474. * For writes inside i_size we forbid block creations: only
  475. * overwrites are permitted. We fall back to buffered writes
  476. * at a higher level for inside-i_size block-instantiating
  477. * writes.
  478. */
  479. ret = (*dio->get_block)(dio->inode, fs_startblk,
  480. map_bh, create);
  481. }
  482. return ret;
  483. }
  484. /*
  485. * There is no bio. Make one now.
  486. */
  487. static int dio_new_bio(struct dio *dio, sector_t start_sector)
  488. {
  489. sector_t sector;
  490. int ret, nr_pages;
  491. ret = dio_bio_reap(dio);
  492. if (ret)
  493. goto out;
  494. sector = start_sector << (dio->blkbits - 9);
  495. nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
  496. BUG_ON(nr_pages <= 0);
  497. ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
  498. dio->boundary = 0;
  499. out:
  500. return ret;
  501. }
  502. /*
  503. * Attempt to put the current chunk of 'cur_page' into the current BIO. If
  504. * that was successful then update final_block_in_bio and take a ref against
  505. * the just-added page.
  506. *
  507. * Return zero on success. Non-zero means the caller needs to start a new BIO.
  508. */
  509. static int dio_bio_add_page(struct dio *dio)
  510. {
  511. int ret;
  512. ret = bio_add_page(dio->bio, dio->cur_page,
  513. dio->cur_page_len, dio->cur_page_offset);
  514. if (ret == dio->cur_page_len) {
  515. /*
  516. * Decrement count only, if we are done with this page
  517. */
  518. if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
  519. dio->pages_in_io--;
  520. page_cache_get(dio->cur_page);
  521. dio->final_block_in_bio = dio->cur_page_block +
  522. (dio->cur_page_len >> dio->blkbits);
  523. ret = 0;
  524. } else {
  525. ret = 1;
  526. }
  527. return ret;
  528. }
  529. /*
  530. * Put cur_page under IO. The section of cur_page which is described by
  531. * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
  532. * starts on-disk at cur_page_block.
  533. *
  534. * We take a ref against the page here (on behalf of its presence in the bio).
  535. *
  536. * The caller of this function is responsible for removing cur_page from the
  537. * dio, and for dropping the refcount which came from that presence.
  538. */
  539. static int dio_send_cur_page(struct dio *dio)
  540. {
  541. int ret = 0;
  542. if (dio->bio) {
  543. /*
  544. * See whether this new request is contiguous with the old
  545. */
  546. if (dio->final_block_in_bio != dio->cur_page_block)
  547. dio_bio_submit(dio);
  548. /*
  549. * Submit now if the underlying fs is about to perform a
  550. * metadata read
  551. */
  552. if (dio->boundary)
  553. dio_bio_submit(dio);
  554. }
  555. if (dio->bio == NULL) {
  556. ret = dio_new_bio(dio, dio->cur_page_block);
  557. if (ret)
  558. goto out;
  559. }
  560. if (dio_bio_add_page(dio) != 0) {
  561. dio_bio_submit(dio);
  562. ret = dio_new_bio(dio, dio->cur_page_block);
  563. if (ret == 0) {
  564. ret = dio_bio_add_page(dio);
  565. BUG_ON(ret != 0);
  566. }
  567. }
  568. out:
  569. return ret;
  570. }
  571. /*
  572. * An autonomous function to put a chunk of a page under deferred IO.
  573. *
  574. * The caller doesn't actually know (or care) whether this piece of page is in
  575. * a BIO, or is under IO or whatever. We just take care of all possible
  576. * situations here. The separation between the logic of do_direct_IO() and
  577. * that of submit_page_section() is important for clarity. Please don't break.
  578. *
  579. * The chunk of page starts on-disk at blocknr.
  580. *
  581. * We perform deferred IO, by recording the last-submitted page inside our
  582. * private part of the dio structure. If possible, we just expand the IO
  583. * across that page here.
  584. *
  585. * If that doesn't work out then we put the old page into the bio and add this
  586. * page to the dio instead.
  587. */
  588. static int
  589. submit_page_section(struct dio *dio, struct page *page,
  590. unsigned offset, unsigned len, sector_t blocknr)
  591. {
  592. int ret = 0;
  593. if (dio->rw & WRITE) {
  594. /*
  595. * Read accounting is performed in submit_bio()
  596. */
  597. task_io_account_write(len);
  598. }
  599. /*
  600. * Can we just grow the current page's presence in the dio?
  601. */
  602. if ( (dio->cur_page == page) &&
  603. (dio->cur_page_offset + dio->cur_page_len == offset) &&
  604. (dio->cur_page_block +
  605. (dio->cur_page_len >> dio->blkbits) == blocknr)) {
  606. dio->cur_page_len += len;
  607. /*
  608. * If dio->boundary then we want to schedule the IO now to
  609. * avoid metadata seeks.
  610. */
  611. if (dio->boundary) {
  612. ret = dio_send_cur_page(dio);
  613. page_cache_release(dio->cur_page);
  614. dio->cur_page = NULL;
  615. }
  616. goto out;
  617. }
  618. /*
  619. * If there's a deferred page already there then send it.
  620. */
  621. if (dio->cur_page) {
  622. ret = dio_send_cur_page(dio);
  623. page_cache_release(dio->cur_page);
  624. dio->cur_page = NULL;
  625. if (ret)
  626. goto out;
  627. }
  628. page_cache_get(page); /* It is in dio */
  629. dio->cur_page = page;
  630. dio->cur_page_offset = offset;
  631. dio->cur_page_len = len;
  632. dio->cur_page_block = blocknr;
  633. out:
  634. return ret;
  635. }
  636. /*
  637. * Clean any dirty buffers in the blockdev mapping which alias newly-created
  638. * file blocks. Only called for S_ISREG files - blockdevs do not set
  639. * buffer_new
  640. */
  641. static void clean_blockdev_aliases(struct dio *dio)
  642. {
  643. unsigned i;
  644. unsigned nblocks;
  645. nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
  646. for (i = 0; i < nblocks; i++) {
  647. unmap_underlying_metadata(dio->map_bh.b_bdev,
  648. dio->map_bh.b_blocknr + i);
  649. }
  650. }
  651. /*
  652. * If we are not writing the entire block and get_block() allocated
  653. * the block for us, we need to fill-in the unused portion of the
  654. * block with zeros. This happens only if user-buffer, fileoffset or
  655. * io length is not filesystem block-size multiple.
  656. *
  657. * `end' is zero if we're doing the start of the IO, 1 at the end of the
  658. * IO.
  659. */
  660. static void dio_zero_block(struct dio *dio, int end)
  661. {
  662. unsigned dio_blocks_per_fs_block;
  663. unsigned this_chunk_blocks; /* In dio_blocks */
  664. unsigned this_chunk_bytes;
  665. struct page *page;
  666. dio->start_zero_done = 1;
  667. if (!dio->blkfactor || !buffer_new(&dio->map_bh))
  668. return;
  669. dio_blocks_per_fs_block = 1 << dio->blkfactor;
  670. this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
  671. if (!this_chunk_blocks)
  672. return;
  673. /*
  674. * We need to zero out part of an fs block. It is either at the
  675. * beginning or the end of the fs block.
  676. */
  677. if (end)
  678. this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
  679. this_chunk_bytes = this_chunk_blocks << dio->blkbits;
  680. page = ZERO_PAGE(0);
  681. if (submit_page_section(dio, page, 0, this_chunk_bytes,
  682. dio->next_block_for_io))
  683. return;
  684. dio->next_block_for_io += this_chunk_blocks;
  685. }
  686. /*
  687. * Walk the user pages, and the file, mapping blocks to disk and generating
  688. * a sequence of (page,offset,len,block) mappings. These mappings are injected
  689. * into submit_page_section(), which takes care of the next stage of submission
  690. *
  691. * Direct IO against a blockdev is different from a file. Because we can
  692. * happily perform page-sized but 512-byte aligned IOs. It is important that
  693. * blockdev IO be able to have fine alignment and large sizes.
  694. *
  695. * So what we do is to permit the ->get_block function to populate bh.b_size
  696. * with the size of IO which is permitted at this offset and this i_blkbits.
  697. *
  698. * For best results, the blockdev should be set up with 512-byte i_blkbits and
  699. * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
  700. * fine alignment but still allows this function to work in PAGE_SIZE units.
  701. */
  702. static int do_direct_IO(struct dio *dio)
  703. {
  704. const unsigned blkbits = dio->blkbits;
  705. const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
  706. struct page *page;
  707. unsigned block_in_page;
  708. struct buffer_head *map_bh = &dio->map_bh;
  709. int ret = 0;
  710. /* The I/O can start at any block offset within the first page */
  711. block_in_page = dio->first_block_in_page;
  712. while (dio->block_in_file < dio->final_block_in_request) {
  713. page = dio_get_page(dio);
  714. if (IS_ERR(page)) {
  715. ret = PTR_ERR(page);
  716. goto out;
  717. }
  718. while (block_in_page < blocks_per_page) {
  719. unsigned offset_in_page = block_in_page << blkbits;
  720. unsigned this_chunk_bytes; /* # of bytes mapped */
  721. unsigned this_chunk_blocks; /* # of blocks */
  722. unsigned u;
  723. if (dio->blocks_available == 0) {
  724. /*
  725. * Need to go and map some more disk
  726. */
  727. unsigned long blkmask;
  728. unsigned long dio_remainder;
  729. ret = get_more_blocks(dio);
  730. if (ret) {
  731. page_cache_release(page);
  732. goto out;
  733. }
  734. if (!buffer_mapped(map_bh))
  735. goto do_holes;
  736. dio->blocks_available =
  737. map_bh->b_size >> dio->blkbits;
  738. dio->next_block_for_io =
  739. map_bh->b_blocknr << dio->blkfactor;
  740. if (buffer_new(map_bh))
  741. clean_blockdev_aliases(dio);
  742. if (!dio->blkfactor)
  743. goto do_holes;
  744. blkmask = (1 << dio->blkfactor) - 1;
  745. dio_remainder = (dio->block_in_file & blkmask);
  746. /*
  747. * If we are at the start of IO and that IO
  748. * starts partway into a fs-block,
  749. * dio_remainder will be non-zero. If the IO
  750. * is a read then we can simply advance the IO
  751. * cursor to the first block which is to be
  752. * read. But if the IO is a write and the
  753. * block was newly allocated we cannot do that;
  754. * the start of the fs block must be zeroed out
  755. * on-disk
  756. */
  757. if (!buffer_new(map_bh))
  758. dio->next_block_for_io += dio_remainder;
  759. dio->blocks_available -= dio_remainder;
  760. }
  761. do_holes:
  762. /* Handle holes */
  763. if (!buffer_mapped(map_bh)) {
  764. loff_t i_size_aligned;
  765. /* AKPM: eargh, -ENOTBLK is a hack */
  766. if (dio->rw & WRITE) {
  767. page_cache_release(page);
  768. return -ENOTBLK;
  769. }
  770. /*
  771. * Be sure to account for a partial block as the
  772. * last block in the file
  773. */
  774. i_size_aligned = ALIGN(i_size_read(dio->inode),
  775. 1 << blkbits);
  776. if (dio->block_in_file >=
  777. i_size_aligned >> blkbits) {
  778. /* We hit eof */
  779. page_cache_release(page);
  780. goto out;
  781. }
  782. zero_user(page, block_in_page << blkbits,
  783. 1 << blkbits);
  784. dio->block_in_file++;
  785. block_in_page++;
  786. goto next_block;
  787. }
  788. /*
  789. * If we're performing IO which has an alignment which
  790. * is finer than the underlying fs, go check to see if
  791. * we must zero out the start of this block.
  792. */
  793. if (unlikely(dio->blkfactor && !dio->start_zero_done))
  794. dio_zero_block(dio, 0);
  795. /*
  796. * Work out, in this_chunk_blocks, how much disk we
  797. * can add to this page
  798. */
  799. this_chunk_blocks = dio->blocks_available;
  800. u = (PAGE_SIZE - offset_in_page) >> blkbits;
  801. if (this_chunk_blocks > u)
  802. this_chunk_blocks = u;
  803. u = dio->final_block_in_request - dio->block_in_file;
  804. if (this_chunk_blocks > u)
  805. this_chunk_blocks = u;
  806. this_chunk_bytes = this_chunk_blocks << blkbits;
  807. BUG_ON(this_chunk_bytes == 0);
  808. dio->boundary = buffer_boundary(map_bh);
  809. ret = submit_page_section(dio, page, offset_in_page,
  810. this_chunk_bytes, dio->next_block_for_io);
  811. if (ret) {
  812. page_cache_release(page);
  813. goto out;
  814. }
  815. dio->next_block_for_io += this_chunk_blocks;
  816. dio->block_in_file += this_chunk_blocks;
  817. block_in_page += this_chunk_blocks;
  818. dio->blocks_available -= this_chunk_blocks;
  819. next_block:
  820. BUG_ON(dio->block_in_file > dio->final_block_in_request);
  821. if (dio->block_in_file == dio->final_block_in_request)
  822. break;
  823. }
  824. /* Drop the ref which was taken in get_user_pages() */
  825. page_cache_release(page);
  826. block_in_page = 0;
  827. }
  828. out:
  829. return ret;
  830. }
  831. /*
  832. * Releases both i_mutex and i_alloc_sem
  833. */
  834. static ssize_t
  835. direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
  836. const struct iovec *iov, loff_t offset, unsigned long nr_segs,
  837. unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
  838. struct dio *dio)
  839. {
  840. unsigned long user_addr;
  841. unsigned long flags;
  842. int seg;
  843. ssize_t ret = 0;
  844. ssize_t ret2;
  845. size_t bytes;
  846. dio->inode = inode;
  847. dio->rw = rw;
  848. dio->blkbits = blkbits;
  849. dio->blkfactor = inode->i_blkbits - blkbits;
  850. dio->block_in_file = offset >> blkbits;
  851. dio->get_block = get_block;
  852. dio->end_io = end_io;
  853. dio->final_block_in_bio = -1;
  854. dio->next_block_for_io = -1;
  855. dio->iocb = iocb;
  856. dio->i_size = i_size_read(inode);
  857. spin_lock_init(&dio->bio_lock);
  858. dio->refcount = 1;
  859. /*
  860. * In case of non-aligned buffers, we may need 2 more
  861. * pages since we need to zero out first and last block.
  862. */
  863. if (unlikely(dio->blkfactor))
  864. dio->pages_in_io = 2;
  865. for (seg = 0; seg < nr_segs; seg++) {
  866. user_addr = (unsigned long)iov[seg].iov_base;
  867. dio->pages_in_io +=
  868. ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
  869. - user_addr/PAGE_SIZE);
  870. }
  871. for (seg = 0; seg < nr_segs; seg++) {
  872. user_addr = (unsigned long)iov[seg].iov_base;
  873. dio->size += bytes = iov[seg].iov_len;
  874. /* Index into the first page of the first block */
  875. dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
  876. dio->final_block_in_request = dio->block_in_file +
  877. (bytes >> blkbits);
  878. /* Page fetching state */
  879. dio->head = 0;
  880. dio->tail = 0;
  881. dio->curr_page = 0;
  882. dio->total_pages = 0;
  883. if (user_addr & (PAGE_SIZE-1)) {
  884. dio->total_pages++;
  885. bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
  886. }
  887. dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
  888. dio->curr_user_address = user_addr;
  889. ret = do_direct_IO(dio);
  890. dio->result += iov[seg].iov_len -
  891. ((dio->final_block_in_request - dio->block_in_file) <<
  892. blkbits);
  893. if (ret) {
  894. dio_cleanup(dio);
  895. break;
  896. }
  897. } /* end iovec loop */
  898. if (ret == -ENOTBLK && (rw & WRITE)) {
  899. /*
  900. * The remaining part of the request will be
  901. * be handled by buffered I/O when we return
  902. */
  903. ret = 0;
  904. }
  905. /*
  906. * There may be some unwritten disk at the end of a part-written
  907. * fs-block-sized block. Go zero that now.
  908. */
  909. dio_zero_block(dio, 1);
  910. if (dio->cur_page) {
  911. ret2 = dio_send_cur_page(dio);
  912. if (ret == 0)
  913. ret = ret2;
  914. page_cache_release(dio->cur_page);
  915. dio->cur_page = NULL;
  916. }
  917. if (dio->bio)
  918. dio_bio_submit(dio);
  919. /* All IO is now issued, send it on its way */
  920. blk_run_address_space(inode->i_mapping);
  921. /*
  922. * It is possible that, we return short IO due to end of file.
  923. * In that case, we need to release all the pages we got hold on.
  924. */
  925. dio_cleanup(dio);
  926. /*
  927. * All block lookups have been performed. For READ requests
  928. * we can let i_mutex go now that its achieved its purpose
  929. * of protecting us from looking up uninitialized blocks.
  930. */
  931. if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
  932. mutex_unlock(&dio->inode->i_mutex);
  933. /*
  934. * The only time we want to leave bios in flight is when a successful
  935. * partial aio read or full aio write have been setup. In that case
  936. * bio completion will call aio_complete. The only time it's safe to
  937. * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
  938. * This had *better* be the only place that raises -EIOCBQUEUED.
  939. */
  940. BUG_ON(ret == -EIOCBQUEUED);
  941. if (dio->is_async && ret == 0 && dio->result &&
  942. ((rw & READ) || (dio->result == dio->size)))
  943. ret = -EIOCBQUEUED;
  944. if (ret != -EIOCBQUEUED)
  945. dio_await_completion(dio);
  946. /*
  947. * Sync will always be dropping the final ref and completing the
  948. * operation. AIO can if it was a broken operation described above or
  949. * in fact if all the bios race to complete before we get here. In
  950. * that case dio_complete() translates the EIOCBQUEUED into the proper
  951. * return code that the caller will hand to aio_complete().
  952. *
  953. * This is managed by the bio_lock instead of being an atomic_t so that
  954. * completion paths can drop their ref and use the remaining count to
  955. * decide to wake the submission path atomically.
  956. */
  957. spin_lock_irqsave(&dio->bio_lock, flags);
  958. ret2 = --dio->refcount;
  959. spin_unlock_irqrestore(&dio->bio_lock, flags);
  960. if (ret2 == 0) {
  961. ret = dio_complete(dio, offset, ret);
  962. kfree(dio);
  963. } else
  964. BUG_ON(ret != -EIOCBQUEUED);
  965. return ret;
  966. }
  967. /*
  968. * This is a library function for use by filesystem drivers.
  969. * The locking rules are governed by the dio_lock_type parameter.
  970. *
  971. * DIO_NO_LOCKING (no locking, for raw block device access)
  972. * For writes, i_mutex is not held on entry; it is never taken.
  973. *
  974. * DIO_LOCKING (simple locking for regular files)
  975. * For writes we are called under i_mutex and return with i_mutex held, even
  976. * though it is internally dropped.
  977. * For reads, i_mutex is not held on entry, but it is taken and dropped before
  978. * returning.
  979. *
  980. * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
  981. * uninitialised data, allowing parallel direct readers and writers)
  982. * For writes we are called without i_mutex, return without it, never touch it.
  983. * For reads we are called under i_mutex and return with i_mutex held, even
  984. * though it may be internally dropped.
  985. *
  986. * Additional i_alloc_sem locking requirements described inline below.
  987. */
  988. ssize_t
  989. __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
  990. struct block_device *bdev, const struct iovec *iov, loff_t offset,
  991. unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
  992. int dio_lock_type)
  993. {
  994. int seg;
  995. size_t size;
  996. unsigned long addr;
  997. unsigned blkbits = inode->i_blkbits;
  998. unsigned bdev_blkbits = 0;
  999. unsigned blocksize_mask = (1 << blkbits) - 1;
  1000. ssize_t retval = -EINVAL;
  1001. loff_t end = offset;
  1002. struct dio *dio;
  1003. int release_i_mutex = 0;
  1004. int acquire_i_mutex = 0;
  1005. if (rw & WRITE)
  1006. rw = WRITE_ODIRECT;
  1007. if (bdev)
  1008. bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
  1009. if (offset & blocksize_mask) {
  1010. if (bdev)
  1011. blkbits = bdev_blkbits;
  1012. blocksize_mask = (1 << blkbits) - 1;
  1013. if (offset & blocksize_mask)
  1014. goto out;
  1015. }
  1016. /* Check the memory alignment. Blocks cannot straddle pages */
  1017. for (seg = 0; seg < nr_segs; seg++) {
  1018. addr = (unsigned long)iov[seg].iov_base;
  1019. size = iov[seg].iov_len;
  1020. end += size;
  1021. if ((addr & blocksize_mask) || (size & blocksize_mask)) {
  1022. if (bdev)
  1023. blkbits = bdev_blkbits;
  1024. blocksize_mask = (1 << blkbits) - 1;
  1025. if ((addr & blocksize_mask) || (size & blocksize_mask))
  1026. goto out;
  1027. }
  1028. }
  1029. dio = kzalloc(sizeof(*dio), GFP_KERNEL);
  1030. retval = -ENOMEM;
  1031. if (!dio)
  1032. goto out;
  1033. /*
  1034. * For block device access DIO_NO_LOCKING is used,
  1035. * neither readers nor writers do any locking at all
  1036. * For regular files using DIO_LOCKING,
  1037. * readers need to grab i_mutex and i_alloc_sem
  1038. * writers need to grab i_alloc_sem only (i_mutex is already held)
  1039. * For regular files using DIO_OWN_LOCKING,
  1040. * neither readers nor writers take any locks here
  1041. */
  1042. dio->lock_type = dio_lock_type;
  1043. if (dio_lock_type != DIO_NO_LOCKING) {
  1044. /* watch out for a 0 len io from a tricksy fs */
  1045. if (rw == READ && end > offset) {
  1046. struct address_space *mapping;
  1047. mapping = iocb->ki_filp->f_mapping;
  1048. if (dio_lock_type != DIO_OWN_LOCKING) {
  1049. mutex_lock(&inode->i_mutex);
  1050. release_i_mutex = 1;
  1051. }
  1052. retval = filemap_write_and_wait_range(mapping, offset,
  1053. end - 1);
  1054. if (retval) {
  1055. kfree(dio);
  1056. goto out;
  1057. }
  1058. if (dio_lock_type == DIO_OWN_LOCKING) {
  1059. mutex_unlock(&inode->i_mutex);
  1060. acquire_i_mutex = 1;
  1061. }
  1062. }
  1063. if (dio_lock_type == DIO_LOCKING)
  1064. /* lockdep: not the owner will release it */
  1065. down_read_non_owner(&inode->i_alloc_sem);
  1066. }
  1067. /*
  1068. * For file extending writes updating i_size before data
  1069. * writeouts complete can expose uninitialized blocks. So
  1070. * even for AIO, we need to wait for i/o to complete before
  1071. * returning in this case.
  1072. */
  1073. dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
  1074. (end > i_size_read(inode)));
  1075. retval = direct_io_worker(rw, iocb, inode, iov, offset,
  1076. nr_segs, blkbits, get_block, end_io, dio);
  1077. /*
  1078. * In case of error extending write may have instantiated a few
  1079. * blocks outside i_size. Trim these off again for DIO_LOCKING.
  1080. * NOTE: DIO_NO_LOCK/DIO_OWN_LOCK callers have to handle this by
  1081. * it's own meaner.
  1082. */
  1083. if (unlikely(retval < 0 && (rw & WRITE))) {
  1084. loff_t isize = i_size_read(inode);
  1085. if (end > isize && dio_lock_type == DIO_LOCKING)
  1086. vmtruncate(inode, isize);
  1087. }
  1088. if (rw == READ && dio_lock_type == DIO_LOCKING)
  1089. release_i_mutex = 0;
  1090. out:
  1091. if (release_i_mutex)
  1092. mutex_unlock(&inode->i_mutex);
  1093. else if (acquire_i_mutex)
  1094. mutex_lock(&inode->i_mutex);
  1095. return retval;
  1096. }
  1097. EXPORT_SYMBOL(__blockdev_direct_IO);