disk-io.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include "compat.h"
  29. #include "crc32c.h"
  30. #include "ctree.h"
  31. #include "disk-io.h"
  32. #include "transaction.h"
  33. #include "btrfs_inode.h"
  34. #include "volumes.h"
  35. #include "print-tree.h"
  36. #include "async-thread.h"
  37. #include "locking.h"
  38. #include "ref-cache.h"
  39. #include "tree-log.h"
  40. #include "free-space-cache.h"
  41. static struct extent_io_ops btree_extent_io_ops;
  42. static void end_workqueue_fn(struct btrfs_work *work);
  43. /*
  44. * end_io_wq structs are used to do processing in task context when an IO is
  45. * complete. This is used during reads to verify checksums, and it is used
  46. * by writes to insert metadata for new file extents after IO is complete.
  47. */
  48. struct end_io_wq {
  49. struct bio *bio;
  50. bio_end_io_t *end_io;
  51. void *private;
  52. struct btrfs_fs_info *info;
  53. int error;
  54. int metadata;
  55. struct list_head list;
  56. struct btrfs_work work;
  57. };
  58. /*
  59. * async submit bios are used to offload expensive checksumming
  60. * onto the worker threads. They checksum file and metadata bios
  61. * just before they are sent down the IO stack.
  62. */
  63. struct async_submit_bio {
  64. struct inode *inode;
  65. struct bio *bio;
  66. struct list_head list;
  67. extent_submit_bio_hook_t *submit_bio_start;
  68. extent_submit_bio_hook_t *submit_bio_done;
  69. int rw;
  70. int mirror_num;
  71. unsigned long bio_flags;
  72. struct btrfs_work work;
  73. };
  74. /* These are used to set the lockdep class on the extent buffer locks.
  75. * The class is set by the readpage_end_io_hook after the buffer has
  76. * passed csum validation but before the pages are unlocked.
  77. *
  78. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  79. * allocated blocks.
  80. *
  81. * The class is based on the level in the tree block, which allows lockdep
  82. * to know that lower nodes nest inside the locks of higher nodes.
  83. *
  84. * We also add a check to make sure the highest level of the tree is
  85. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  86. * code needs update as well.
  87. */
  88. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  89. # if BTRFS_MAX_LEVEL != 8
  90. # error
  91. # endif
  92. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  93. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  94. /* leaf */
  95. "btrfs-extent-00",
  96. "btrfs-extent-01",
  97. "btrfs-extent-02",
  98. "btrfs-extent-03",
  99. "btrfs-extent-04",
  100. "btrfs-extent-05",
  101. "btrfs-extent-06",
  102. "btrfs-extent-07",
  103. /* highest possible level */
  104. "btrfs-extent-08",
  105. };
  106. #endif
  107. /*
  108. * extents on the btree inode are pretty simple, there's one extent
  109. * that covers the entire device
  110. */
  111. static struct extent_map *btree_get_extent(struct inode *inode,
  112. struct page *page, size_t page_offset, u64 start, u64 len,
  113. int create)
  114. {
  115. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  116. struct extent_map *em;
  117. int ret;
  118. spin_lock(&em_tree->lock);
  119. em = lookup_extent_mapping(em_tree, start, len);
  120. if (em) {
  121. em->bdev =
  122. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  123. spin_unlock(&em_tree->lock);
  124. goto out;
  125. }
  126. spin_unlock(&em_tree->lock);
  127. em = alloc_extent_map(GFP_NOFS);
  128. if (!em) {
  129. em = ERR_PTR(-ENOMEM);
  130. goto out;
  131. }
  132. em->start = 0;
  133. em->len = (u64)-1;
  134. em->block_len = (u64)-1;
  135. em->block_start = 0;
  136. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  137. spin_lock(&em_tree->lock);
  138. ret = add_extent_mapping(em_tree, em);
  139. if (ret == -EEXIST) {
  140. u64 failed_start = em->start;
  141. u64 failed_len = em->len;
  142. free_extent_map(em);
  143. em = lookup_extent_mapping(em_tree, start, len);
  144. if (em) {
  145. ret = 0;
  146. } else {
  147. em = lookup_extent_mapping(em_tree, failed_start,
  148. failed_len);
  149. ret = -EIO;
  150. }
  151. } else if (ret) {
  152. free_extent_map(em);
  153. em = NULL;
  154. }
  155. spin_unlock(&em_tree->lock);
  156. if (ret)
  157. em = ERR_PTR(ret);
  158. out:
  159. return em;
  160. }
  161. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  162. {
  163. return btrfs_crc32c(seed, data, len);
  164. }
  165. void btrfs_csum_final(u32 crc, char *result)
  166. {
  167. *(__le32 *)result = ~cpu_to_le32(crc);
  168. }
  169. /*
  170. * compute the csum for a btree block, and either verify it or write it
  171. * into the csum field of the block.
  172. */
  173. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  174. int verify)
  175. {
  176. u16 csum_size =
  177. btrfs_super_csum_size(&root->fs_info->super_copy);
  178. char *result = NULL;
  179. unsigned long len;
  180. unsigned long cur_len;
  181. unsigned long offset = BTRFS_CSUM_SIZE;
  182. char *map_token = NULL;
  183. char *kaddr;
  184. unsigned long map_start;
  185. unsigned long map_len;
  186. int err;
  187. u32 crc = ~(u32)0;
  188. unsigned long inline_result;
  189. len = buf->len - offset;
  190. while (len > 0) {
  191. err = map_private_extent_buffer(buf, offset, 32,
  192. &map_token, &kaddr,
  193. &map_start, &map_len, KM_USER0);
  194. if (err)
  195. return 1;
  196. cur_len = min(len, map_len - (offset - map_start));
  197. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  198. crc, cur_len);
  199. len -= cur_len;
  200. offset += cur_len;
  201. unmap_extent_buffer(buf, map_token, KM_USER0);
  202. }
  203. if (csum_size > sizeof(inline_result)) {
  204. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  205. if (!result)
  206. return 1;
  207. } else {
  208. result = (char *)&inline_result;
  209. }
  210. btrfs_csum_final(crc, result);
  211. if (verify) {
  212. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  213. u32 val;
  214. u32 found = 0;
  215. memcpy(&found, result, csum_size);
  216. read_extent_buffer(buf, &val, 0, csum_size);
  217. printk(KERN_INFO "btrfs: %s checksum verify failed "
  218. "on %llu wanted %X found %X level %d\n",
  219. root->fs_info->sb->s_id,
  220. buf->start, val, found, btrfs_header_level(buf));
  221. if (result != (char *)&inline_result)
  222. kfree(result);
  223. return 1;
  224. }
  225. } else {
  226. write_extent_buffer(buf, result, 0, csum_size);
  227. }
  228. if (result != (char *)&inline_result)
  229. kfree(result);
  230. return 0;
  231. }
  232. /*
  233. * we can't consider a given block up to date unless the transid of the
  234. * block matches the transid in the parent node's pointer. This is how we
  235. * detect blocks that either didn't get written at all or got written
  236. * in the wrong place.
  237. */
  238. static int verify_parent_transid(struct extent_io_tree *io_tree,
  239. struct extent_buffer *eb, u64 parent_transid)
  240. {
  241. int ret;
  242. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  243. return 0;
  244. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  245. if (extent_buffer_uptodate(io_tree, eb) &&
  246. btrfs_header_generation(eb) == parent_transid) {
  247. ret = 0;
  248. goto out;
  249. }
  250. printk("parent transid verify failed on %llu wanted %llu found %llu\n",
  251. (unsigned long long)eb->start,
  252. (unsigned long long)parent_transid,
  253. (unsigned long long)btrfs_header_generation(eb));
  254. ret = 1;
  255. clear_extent_buffer_uptodate(io_tree, eb);
  256. out:
  257. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  258. GFP_NOFS);
  259. return ret;
  260. }
  261. /*
  262. * helper to read a given tree block, doing retries as required when
  263. * the checksums don't match and we have alternate mirrors to try.
  264. */
  265. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  266. struct extent_buffer *eb,
  267. u64 start, u64 parent_transid)
  268. {
  269. struct extent_io_tree *io_tree;
  270. int ret;
  271. int num_copies = 0;
  272. int mirror_num = 0;
  273. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  274. while (1) {
  275. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  276. btree_get_extent, mirror_num);
  277. if (!ret &&
  278. !verify_parent_transid(io_tree, eb, parent_transid))
  279. return ret;
  280. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  281. eb->start, eb->len);
  282. if (num_copies == 1)
  283. return ret;
  284. mirror_num++;
  285. if (mirror_num > num_copies)
  286. return ret;
  287. }
  288. return -EIO;
  289. }
  290. /*
  291. * checksum a dirty tree block before IO. This has extra checks to make sure
  292. * we only fill in the checksum field in the first page of a multi-page block
  293. */
  294. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  295. {
  296. struct extent_io_tree *tree;
  297. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  298. u64 found_start;
  299. int found_level;
  300. unsigned long len;
  301. struct extent_buffer *eb;
  302. int ret;
  303. tree = &BTRFS_I(page->mapping->host)->io_tree;
  304. if (page->private == EXTENT_PAGE_PRIVATE)
  305. goto out;
  306. if (!page->private)
  307. goto out;
  308. len = page->private >> 2;
  309. WARN_ON(len == 0);
  310. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  311. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  312. btrfs_header_generation(eb));
  313. BUG_ON(ret);
  314. found_start = btrfs_header_bytenr(eb);
  315. if (found_start != start) {
  316. WARN_ON(1);
  317. goto err;
  318. }
  319. if (eb->first_page != page) {
  320. WARN_ON(1);
  321. goto err;
  322. }
  323. if (!PageUptodate(page)) {
  324. WARN_ON(1);
  325. goto err;
  326. }
  327. found_level = btrfs_header_level(eb);
  328. csum_tree_block(root, eb, 0);
  329. err:
  330. free_extent_buffer(eb);
  331. out:
  332. return 0;
  333. }
  334. static int check_tree_block_fsid(struct btrfs_root *root,
  335. struct extent_buffer *eb)
  336. {
  337. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  338. u8 fsid[BTRFS_UUID_SIZE];
  339. int ret = 1;
  340. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  341. BTRFS_FSID_SIZE);
  342. while (fs_devices) {
  343. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  344. ret = 0;
  345. break;
  346. }
  347. fs_devices = fs_devices->seed;
  348. }
  349. return ret;
  350. }
  351. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  352. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  353. {
  354. lockdep_set_class_and_name(&eb->lock,
  355. &btrfs_eb_class[level],
  356. btrfs_eb_name[level]);
  357. }
  358. #endif
  359. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  360. struct extent_state *state)
  361. {
  362. struct extent_io_tree *tree;
  363. u64 found_start;
  364. int found_level;
  365. unsigned long len;
  366. struct extent_buffer *eb;
  367. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  368. int ret = 0;
  369. tree = &BTRFS_I(page->mapping->host)->io_tree;
  370. if (page->private == EXTENT_PAGE_PRIVATE)
  371. goto out;
  372. if (!page->private)
  373. goto out;
  374. len = page->private >> 2;
  375. WARN_ON(len == 0);
  376. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  377. found_start = btrfs_header_bytenr(eb);
  378. if (found_start != start) {
  379. printk(KERN_INFO "btrfs bad tree block start %llu %llu\n",
  380. (unsigned long long)found_start,
  381. (unsigned long long)eb->start);
  382. ret = -EIO;
  383. goto err;
  384. }
  385. if (eb->first_page != page) {
  386. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  387. eb->first_page->index, page->index);
  388. WARN_ON(1);
  389. ret = -EIO;
  390. goto err;
  391. }
  392. if (check_tree_block_fsid(root, eb)) {
  393. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  394. (unsigned long long)eb->start);
  395. ret = -EIO;
  396. goto err;
  397. }
  398. found_level = btrfs_header_level(eb);
  399. btrfs_set_buffer_lockdep_class(eb, found_level);
  400. ret = csum_tree_block(root, eb, 1);
  401. if (ret)
  402. ret = -EIO;
  403. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  404. end = eb->start + end - 1;
  405. err:
  406. free_extent_buffer(eb);
  407. out:
  408. return ret;
  409. }
  410. static void end_workqueue_bio(struct bio *bio, int err)
  411. {
  412. struct end_io_wq *end_io_wq = bio->bi_private;
  413. struct btrfs_fs_info *fs_info;
  414. fs_info = end_io_wq->info;
  415. end_io_wq->error = err;
  416. end_io_wq->work.func = end_workqueue_fn;
  417. end_io_wq->work.flags = 0;
  418. if (bio->bi_rw & (1 << BIO_RW)) {
  419. if (end_io_wq->metadata)
  420. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  421. &end_io_wq->work);
  422. else
  423. btrfs_queue_worker(&fs_info->endio_write_workers,
  424. &end_io_wq->work);
  425. } else {
  426. if (end_io_wq->metadata)
  427. btrfs_queue_worker(&fs_info->endio_meta_workers,
  428. &end_io_wq->work);
  429. else
  430. btrfs_queue_worker(&fs_info->endio_workers,
  431. &end_io_wq->work);
  432. }
  433. }
  434. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  435. int metadata)
  436. {
  437. struct end_io_wq *end_io_wq;
  438. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  439. if (!end_io_wq)
  440. return -ENOMEM;
  441. end_io_wq->private = bio->bi_private;
  442. end_io_wq->end_io = bio->bi_end_io;
  443. end_io_wq->info = info;
  444. end_io_wq->error = 0;
  445. end_io_wq->bio = bio;
  446. end_io_wq->metadata = metadata;
  447. bio->bi_private = end_io_wq;
  448. bio->bi_end_io = end_workqueue_bio;
  449. return 0;
  450. }
  451. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  452. {
  453. unsigned long limit = min_t(unsigned long,
  454. info->workers.max_workers,
  455. info->fs_devices->open_devices);
  456. return 256 * limit;
  457. }
  458. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  459. {
  460. return atomic_read(&info->nr_async_bios) >
  461. btrfs_async_submit_limit(info);
  462. }
  463. static void run_one_async_start(struct btrfs_work *work)
  464. {
  465. struct btrfs_fs_info *fs_info;
  466. struct async_submit_bio *async;
  467. async = container_of(work, struct async_submit_bio, work);
  468. fs_info = BTRFS_I(async->inode)->root->fs_info;
  469. async->submit_bio_start(async->inode, async->rw, async->bio,
  470. async->mirror_num, async->bio_flags);
  471. }
  472. static void run_one_async_done(struct btrfs_work *work)
  473. {
  474. struct btrfs_fs_info *fs_info;
  475. struct async_submit_bio *async;
  476. int limit;
  477. async = container_of(work, struct async_submit_bio, work);
  478. fs_info = BTRFS_I(async->inode)->root->fs_info;
  479. limit = btrfs_async_submit_limit(fs_info);
  480. limit = limit * 2 / 3;
  481. atomic_dec(&fs_info->nr_async_submits);
  482. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  483. waitqueue_active(&fs_info->async_submit_wait))
  484. wake_up(&fs_info->async_submit_wait);
  485. async->submit_bio_done(async->inode, async->rw, async->bio,
  486. async->mirror_num, async->bio_flags);
  487. }
  488. static void run_one_async_free(struct btrfs_work *work)
  489. {
  490. struct async_submit_bio *async;
  491. async = container_of(work, struct async_submit_bio, work);
  492. kfree(async);
  493. }
  494. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  495. int rw, struct bio *bio, int mirror_num,
  496. unsigned long bio_flags,
  497. extent_submit_bio_hook_t *submit_bio_start,
  498. extent_submit_bio_hook_t *submit_bio_done)
  499. {
  500. struct async_submit_bio *async;
  501. async = kmalloc(sizeof(*async), GFP_NOFS);
  502. if (!async)
  503. return -ENOMEM;
  504. async->inode = inode;
  505. async->rw = rw;
  506. async->bio = bio;
  507. async->mirror_num = mirror_num;
  508. async->submit_bio_start = submit_bio_start;
  509. async->submit_bio_done = submit_bio_done;
  510. async->work.func = run_one_async_start;
  511. async->work.ordered_func = run_one_async_done;
  512. async->work.ordered_free = run_one_async_free;
  513. async->work.flags = 0;
  514. async->bio_flags = bio_flags;
  515. atomic_inc(&fs_info->nr_async_submits);
  516. btrfs_queue_worker(&fs_info->workers, &async->work);
  517. #if 0
  518. int limit = btrfs_async_submit_limit(fs_info);
  519. if (atomic_read(&fs_info->nr_async_submits) > limit) {
  520. wait_event_timeout(fs_info->async_submit_wait,
  521. (atomic_read(&fs_info->nr_async_submits) < limit),
  522. HZ/10);
  523. wait_event_timeout(fs_info->async_submit_wait,
  524. (atomic_read(&fs_info->nr_async_bios) < limit),
  525. HZ/10);
  526. }
  527. #endif
  528. while (atomic_read(&fs_info->async_submit_draining) &&
  529. atomic_read(&fs_info->nr_async_submits)) {
  530. wait_event(fs_info->async_submit_wait,
  531. (atomic_read(&fs_info->nr_async_submits) == 0));
  532. }
  533. return 0;
  534. }
  535. static int btree_csum_one_bio(struct bio *bio)
  536. {
  537. struct bio_vec *bvec = bio->bi_io_vec;
  538. int bio_index = 0;
  539. struct btrfs_root *root;
  540. WARN_ON(bio->bi_vcnt <= 0);
  541. while (bio_index < bio->bi_vcnt) {
  542. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  543. csum_dirty_buffer(root, bvec->bv_page);
  544. bio_index++;
  545. bvec++;
  546. }
  547. return 0;
  548. }
  549. static int __btree_submit_bio_start(struct inode *inode, int rw,
  550. struct bio *bio, int mirror_num,
  551. unsigned long bio_flags)
  552. {
  553. /*
  554. * when we're called for a write, we're already in the async
  555. * submission context. Just jump into btrfs_map_bio
  556. */
  557. btree_csum_one_bio(bio);
  558. return 0;
  559. }
  560. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  561. int mirror_num, unsigned long bio_flags)
  562. {
  563. /*
  564. * when we're called for a write, we're already in the async
  565. * submission context. Just jump into btrfs_map_bio
  566. */
  567. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  568. }
  569. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  570. int mirror_num, unsigned long bio_flags)
  571. {
  572. int ret;
  573. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  574. bio, 1);
  575. BUG_ON(ret);
  576. if (!(rw & (1 << BIO_RW))) {
  577. /*
  578. * called for a read, do the setup so that checksum validation
  579. * can happen in the async kernel threads
  580. */
  581. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  582. mirror_num, 0);
  583. }
  584. /*
  585. * kthread helpers are used to submit writes so that checksumming
  586. * can happen in parallel across all CPUs
  587. */
  588. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  589. inode, rw, bio, mirror_num, 0,
  590. __btree_submit_bio_start,
  591. __btree_submit_bio_done);
  592. }
  593. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  594. {
  595. struct extent_io_tree *tree;
  596. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  597. struct extent_buffer *eb;
  598. int was_dirty;
  599. tree = &BTRFS_I(page->mapping->host)->io_tree;
  600. if (!(current->flags & PF_MEMALLOC)) {
  601. return extent_write_full_page(tree, page,
  602. btree_get_extent, wbc);
  603. }
  604. redirty_page_for_writepage(wbc, page);
  605. eb = btrfs_find_tree_block(root, page_offset(page),
  606. PAGE_CACHE_SIZE);
  607. WARN_ON(!eb);
  608. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  609. if (!was_dirty) {
  610. spin_lock(&root->fs_info->delalloc_lock);
  611. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  612. spin_unlock(&root->fs_info->delalloc_lock);
  613. }
  614. free_extent_buffer(eb);
  615. unlock_page(page);
  616. return 0;
  617. }
  618. static int btree_writepages(struct address_space *mapping,
  619. struct writeback_control *wbc)
  620. {
  621. struct extent_io_tree *tree;
  622. tree = &BTRFS_I(mapping->host)->io_tree;
  623. if (wbc->sync_mode == WB_SYNC_NONE) {
  624. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  625. u64 num_dirty;
  626. unsigned long thresh = 32 * 1024 * 1024;
  627. if (wbc->for_kupdate)
  628. return 0;
  629. /* this is a bit racy, but that's ok */
  630. num_dirty = root->fs_info->dirty_metadata_bytes;
  631. if (num_dirty < thresh)
  632. return 0;
  633. }
  634. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  635. }
  636. static int btree_readpage(struct file *file, struct page *page)
  637. {
  638. struct extent_io_tree *tree;
  639. tree = &BTRFS_I(page->mapping->host)->io_tree;
  640. return extent_read_full_page(tree, page, btree_get_extent);
  641. }
  642. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  643. {
  644. struct extent_io_tree *tree;
  645. struct extent_map_tree *map;
  646. int ret;
  647. if (PageWriteback(page) || PageDirty(page))
  648. return 0;
  649. tree = &BTRFS_I(page->mapping->host)->io_tree;
  650. map = &BTRFS_I(page->mapping->host)->extent_tree;
  651. ret = try_release_extent_state(map, tree, page, gfp_flags);
  652. if (!ret)
  653. return 0;
  654. ret = try_release_extent_buffer(tree, page);
  655. if (ret == 1) {
  656. ClearPagePrivate(page);
  657. set_page_private(page, 0);
  658. page_cache_release(page);
  659. }
  660. return ret;
  661. }
  662. static void btree_invalidatepage(struct page *page, unsigned long offset)
  663. {
  664. struct extent_io_tree *tree;
  665. tree = &BTRFS_I(page->mapping->host)->io_tree;
  666. extent_invalidatepage(tree, page, offset);
  667. btree_releasepage(page, GFP_NOFS);
  668. if (PagePrivate(page)) {
  669. printk(KERN_WARNING "btrfs warning page private not zero "
  670. "on page %llu\n", (unsigned long long)page_offset(page));
  671. ClearPagePrivate(page);
  672. set_page_private(page, 0);
  673. page_cache_release(page);
  674. }
  675. }
  676. #if 0
  677. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  678. {
  679. struct buffer_head *bh;
  680. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  681. struct buffer_head *head;
  682. if (!page_has_buffers(page)) {
  683. create_empty_buffers(page, root->fs_info->sb->s_blocksize,
  684. (1 << BH_Dirty)|(1 << BH_Uptodate));
  685. }
  686. head = page_buffers(page);
  687. bh = head;
  688. do {
  689. if (buffer_dirty(bh))
  690. csum_tree_block(root, bh, 0);
  691. bh = bh->b_this_page;
  692. } while (bh != head);
  693. return block_write_full_page(page, btree_get_block, wbc);
  694. }
  695. #endif
  696. static struct address_space_operations btree_aops = {
  697. .readpage = btree_readpage,
  698. .writepage = btree_writepage,
  699. .writepages = btree_writepages,
  700. .releasepage = btree_releasepage,
  701. .invalidatepage = btree_invalidatepage,
  702. .sync_page = block_sync_page,
  703. };
  704. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  705. u64 parent_transid)
  706. {
  707. struct extent_buffer *buf = NULL;
  708. struct inode *btree_inode = root->fs_info->btree_inode;
  709. int ret = 0;
  710. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  711. if (!buf)
  712. return 0;
  713. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  714. buf, 0, 0, btree_get_extent, 0);
  715. free_extent_buffer(buf);
  716. return ret;
  717. }
  718. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  719. u64 bytenr, u32 blocksize)
  720. {
  721. struct inode *btree_inode = root->fs_info->btree_inode;
  722. struct extent_buffer *eb;
  723. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  724. bytenr, blocksize, GFP_NOFS);
  725. return eb;
  726. }
  727. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  728. u64 bytenr, u32 blocksize)
  729. {
  730. struct inode *btree_inode = root->fs_info->btree_inode;
  731. struct extent_buffer *eb;
  732. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  733. bytenr, blocksize, NULL, GFP_NOFS);
  734. return eb;
  735. }
  736. int btrfs_write_tree_block(struct extent_buffer *buf)
  737. {
  738. return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
  739. buf->start + buf->len - 1, WB_SYNC_ALL);
  740. }
  741. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  742. {
  743. return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
  744. buf->start, buf->start + buf->len - 1);
  745. }
  746. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  747. u32 blocksize, u64 parent_transid)
  748. {
  749. struct extent_buffer *buf = NULL;
  750. struct inode *btree_inode = root->fs_info->btree_inode;
  751. struct extent_io_tree *io_tree;
  752. int ret;
  753. io_tree = &BTRFS_I(btree_inode)->io_tree;
  754. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  755. if (!buf)
  756. return NULL;
  757. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  758. if (ret == 0)
  759. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  760. else
  761. WARN_ON(1);
  762. return buf;
  763. }
  764. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  765. struct extent_buffer *buf)
  766. {
  767. struct inode *btree_inode = root->fs_info->btree_inode;
  768. if (btrfs_header_generation(buf) ==
  769. root->fs_info->running_transaction->transid) {
  770. btrfs_assert_tree_locked(buf);
  771. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  772. spin_lock(&root->fs_info->delalloc_lock);
  773. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  774. root->fs_info->dirty_metadata_bytes -= buf->len;
  775. else
  776. WARN_ON(1);
  777. spin_unlock(&root->fs_info->delalloc_lock);
  778. }
  779. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  780. btrfs_set_lock_blocking(buf);
  781. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  782. buf);
  783. }
  784. return 0;
  785. }
  786. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  787. u32 stripesize, struct btrfs_root *root,
  788. struct btrfs_fs_info *fs_info,
  789. u64 objectid)
  790. {
  791. root->node = NULL;
  792. root->commit_root = NULL;
  793. root->ref_tree = NULL;
  794. root->sectorsize = sectorsize;
  795. root->nodesize = nodesize;
  796. root->leafsize = leafsize;
  797. root->stripesize = stripesize;
  798. root->ref_cows = 0;
  799. root->track_dirty = 0;
  800. root->fs_info = fs_info;
  801. root->objectid = objectid;
  802. root->last_trans = 0;
  803. root->highest_inode = 0;
  804. root->last_inode_alloc = 0;
  805. root->name = NULL;
  806. root->in_sysfs = 0;
  807. INIT_LIST_HEAD(&root->dirty_list);
  808. INIT_LIST_HEAD(&root->orphan_list);
  809. INIT_LIST_HEAD(&root->dead_list);
  810. spin_lock_init(&root->node_lock);
  811. spin_lock_init(&root->list_lock);
  812. mutex_init(&root->objectid_mutex);
  813. mutex_init(&root->log_mutex);
  814. init_waitqueue_head(&root->log_writer_wait);
  815. init_waitqueue_head(&root->log_commit_wait[0]);
  816. init_waitqueue_head(&root->log_commit_wait[1]);
  817. atomic_set(&root->log_commit[0], 0);
  818. atomic_set(&root->log_commit[1], 0);
  819. atomic_set(&root->log_writers, 0);
  820. root->log_batch = 0;
  821. root->log_transid = 0;
  822. extent_io_tree_init(&root->dirty_log_pages,
  823. fs_info->btree_inode->i_mapping, GFP_NOFS);
  824. btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
  825. root->ref_tree = &root->ref_tree_struct;
  826. memset(&root->root_key, 0, sizeof(root->root_key));
  827. memset(&root->root_item, 0, sizeof(root->root_item));
  828. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  829. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  830. root->defrag_trans_start = fs_info->generation;
  831. init_completion(&root->kobj_unregister);
  832. root->defrag_running = 0;
  833. root->defrag_level = 0;
  834. root->root_key.objectid = objectid;
  835. root->anon_super.s_root = NULL;
  836. root->anon_super.s_dev = 0;
  837. INIT_LIST_HEAD(&root->anon_super.s_list);
  838. INIT_LIST_HEAD(&root->anon_super.s_instances);
  839. init_rwsem(&root->anon_super.s_umount);
  840. return 0;
  841. }
  842. static int find_and_setup_root(struct btrfs_root *tree_root,
  843. struct btrfs_fs_info *fs_info,
  844. u64 objectid,
  845. struct btrfs_root *root)
  846. {
  847. int ret;
  848. u32 blocksize;
  849. u64 generation;
  850. __setup_root(tree_root->nodesize, tree_root->leafsize,
  851. tree_root->sectorsize, tree_root->stripesize,
  852. root, fs_info, objectid);
  853. ret = btrfs_find_last_root(tree_root, objectid,
  854. &root->root_item, &root->root_key);
  855. BUG_ON(ret);
  856. generation = btrfs_root_generation(&root->root_item);
  857. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  858. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  859. blocksize, generation);
  860. BUG_ON(!root->node);
  861. return 0;
  862. }
  863. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  864. struct btrfs_fs_info *fs_info)
  865. {
  866. struct extent_buffer *eb;
  867. struct btrfs_root *log_root_tree = fs_info->log_root_tree;
  868. u64 start = 0;
  869. u64 end = 0;
  870. int ret;
  871. if (!log_root_tree)
  872. return 0;
  873. while (1) {
  874. ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
  875. 0, &start, &end, EXTENT_DIRTY);
  876. if (ret)
  877. break;
  878. clear_extent_dirty(&log_root_tree->dirty_log_pages,
  879. start, end, GFP_NOFS);
  880. }
  881. eb = fs_info->log_root_tree->node;
  882. WARN_ON(btrfs_header_level(eb) != 0);
  883. WARN_ON(btrfs_header_nritems(eb) != 0);
  884. ret = btrfs_free_reserved_extent(fs_info->tree_root,
  885. eb->start, eb->len);
  886. BUG_ON(ret);
  887. free_extent_buffer(eb);
  888. kfree(fs_info->log_root_tree);
  889. fs_info->log_root_tree = NULL;
  890. return 0;
  891. }
  892. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  893. struct btrfs_fs_info *fs_info)
  894. {
  895. struct btrfs_root *root;
  896. struct btrfs_root *tree_root = fs_info->tree_root;
  897. struct extent_buffer *leaf;
  898. root = kzalloc(sizeof(*root), GFP_NOFS);
  899. if (!root)
  900. return ERR_PTR(-ENOMEM);
  901. __setup_root(tree_root->nodesize, tree_root->leafsize,
  902. tree_root->sectorsize, tree_root->stripesize,
  903. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  904. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  905. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  906. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  907. /*
  908. * log trees do not get reference counted because they go away
  909. * before a real commit is actually done. They do store pointers
  910. * to file data extents, and those reference counts still get
  911. * updated (along with back refs to the log tree).
  912. */
  913. root->ref_cows = 0;
  914. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  915. 0, BTRFS_TREE_LOG_OBJECTID,
  916. trans->transid, 0, 0, 0);
  917. if (IS_ERR(leaf)) {
  918. kfree(root);
  919. return ERR_CAST(leaf);
  920. }
  921. root->node = leaf;
  922. btrfs_set_header_nritems(root->node, 0);
  923. btrfs_set_header_level(root->node, 0);
  924. btrfs_set_header_bytenr(root->node, root->node->start);
  925. btrfs_set_header_generation(root->node, trans->transid);
  926. btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
  927. write_extent_buffer(root->node, root->fs_info->fsid,
  928. (unsigned long)btrfs_header_fsid(root->node),
  929. BTRFS_FSID_SIZE);
  930. btrfs_mark_buffer_dirty(root->node);
  931. btrfs_tree_unlock(root->node);
  932. return root;
  933. }
  934. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  935. struct btrfs_fs_info *fs_info)
  936. {
  937. struct btrfs_root *log_root;
  938. log_root = alloc_log_tree(trans, fs_info);
  939. if (IS_ERR(log_root))
  940. return PTR_ERR(log_root);
  941. WARN_ON(fs_info->log_root_tree);
  942. fs_info->log_root_tree = log_root;
  943. return 0;
  944. }
  945. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  946. struct btrfs_root *root)
  947. {
  948. struct btrfs_root *log_root;
  949. struct btrfs_inode_item *inode_item;
  950. log_root = alloc_log_tree(trans, root->fs_info);
  951. if (IS_ERR(log_root))
  952. return PTR_ERR(log_root);
  953. log_root->last_trans = trans->transid;
  954. log_root->root_key.offset = root->root_key.objectid;
  955. inode_item = &log_root->root_item.inode;
  956. inode_item->generation = cpu_to_le64(1);
  957. inode_item->size = cpu_to_le64(3);
  958. inode_item->nlink = cpu_to_le32(1);
  959. inode_item->nbytes = cpu_to_le64(root->leafsize);
  960. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  961. btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start);
  962. btrfs_set_root_generation(&log_root->root_item, trans->transid);
  963. WARN_ON(root->log_root);
  964. root->log_root = log_root;
  965. root->log_transid = 0;
  966. return 0;
  967. }
  968. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  969. struct btrfs_key *location)
  970. {
  971. struct btrfs_root *root;
  972. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  973. struct btrfs_path *path;
  974. struct extent_buffer *l;
  975. u64 highest_inode;
  976. u64 generation;
  977. u32 blocksize;
  978. int ret = 0;
  979. root = kzalloc(sizeof(*root), GFP_NOFS);
  980. if (!root)
  981. return ERR_PTR(-ENOMEM);
  982. if (location->offset == (u64)-1) {
  983. ret = find_and_setup_root(tree_root, fs_info,
  984. location->objectid, root);
  985. if (ret) {
  986. kfree(root);
  987. return ERR_PTR(ret);
  988. }
  989. goto insert;
  990. }
  991. __setup_root(tree_root->nodesize, tree_root->leafsize,
  992. tree_root->sectorsize, tree_root->stripesize,
  993. root, fs_info, location->objectid);
  994. path = btrfs_alloc_path();
  995. BUG_ON(!path);
  996. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  997. if (ret != 0) {
  998. if (ret > 0)
  999. ret = -ENOENT;
  1000. goto out;
  1001. }
  1002. l = path->nodes[0];
  1003. read_extent_buffer(l, &root->root_item,
  1004. btrfs_item_ptr_offset(l, path->slots[0]),
  1005. sizeof(root->root_item));
  1006. memcpy(&root->root_key, location, sizeof(*location));
  1007. ret = 0;
  1008. out:
  1009. btrfs_release_path(root, path);
  1010. btrfs_free_path(path);
  1011. if (ret) {
  1012. kfree(root);
  1013. return ERR_PTR(ret);
  1014. }
  1015. generation = btrfs_root_generation(&root->root_item);
  1016. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1017. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1018. blocksize, generation);
  1019. BUG_ON(!root->node);
  1020. insert:
  1021. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1022. root->ref_cows = 1;
  1023. ret = btrfs_find_highest_inode(root, &highest_inode);
  1024. if (ret == 0) {
  1025. root->highest_inode = highest_inode;
  1026. root->last_inode_alloc = highest_inode;
  1027. }
  1028. }
  1029. return root;
  1030. }
  1031. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1032. u64 root_objectid)
  1033. {
  1034. struct btrfs_root *root;
  1035. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  1036. return fs_info->tree_root;
  1037. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1038. return fs_info->extent_root;
  1039. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1040. (unsigned long)root_objectid);
  1041. return root;
  1042. }
  1043. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1044. struct btrfs_key *location)
  1045. {
  1046. struct btrfs_root *root;
  1047. int ret;
  1048. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1049. return fs_info->tree_root;
  1050. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1051. return fs_info->extent_root;
  1052. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1053. return fs_info->chunk_root;
  1054. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1055. return fs_info->dev_root;
  1056. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1057. return fs_info->csum_root;
  1058. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1059. (unsigned long)location->objectid);
  1060. if (root)
  1061. return root;
  1062. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1063. if (IS_ERR(root))
  1064. return root;
  1065. set_anon_super(&root->anon_super, NULL);
  1066. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1067. (unsigned long)root->root_key.objectid,
  1068. root);
  1069. if (ret) {
  1070. free_extent_buffer(root->node);
  1071. kfree(root);
  1072. return ERR_PTR(ret);
  1073. }
  1074. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  1075. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1076. root->root_key.objectid, root);
  1077. BUG_ON(ret);
  1078. btrfs_orphan_cleanup(root);
  1079. }
  1080. return root;
  1081. }
  1082. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1083. struct btrfs_key *location,
  1084. const char *name, int namelen)
  1085. {
  1086. struct btrfs_root *root;
  1087. int ret;
  1088. root = btrfs_read_fs_root_no_name(fs_info, location);
  1089. if (!root)
  1090. return NULL;
  1091. if (root->in_sysfs)
  1092. return root;
  1093. ret = btrfs_set_root_name(root, name, namelen);
  1094. if (ret) {
  1095. free_extent_buffer(root->node);
  1096. kfree(root);
  1097. return ERR_PTR(ret);
  1098. }
  1099. #if 0
  1100. ret = btrfs_sysfs_add_root(root);
  1101. if (ret) {
  1102. free_extent_buffer(root->node);
  1103. kfree(root->name);
  1104. kfree(root);
  1105. return ERR_PTR(ret);
  1106. }
  1107. #endif
  1108. root->in_sysfs = 1;
  1109. return root;
  1110. }
  1111. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1112. {
  1113. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1114. int ret = 0;
  1115. struct btrfs_device *device;
  1116. struct backing_dev_info *bdi;
  1117. #if 0
  1118. if ((bdi_bits & (1 << BDI_write_congested)) &&
  1119. btrfs_congested_async(info, 0))
  1120. return 1;
  1121. #endif
  1122. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1123. if (!device->bdev)
  1124. continue;
  1125. bdi = blk_get_backing_dev_info(device->bdev);
  1126. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1127. ret = 1;
  1128. break;
  1129. }
  1130. }
  1131. return ret;
  1132. }
  1133. /*
  1134. * this unplugs every device on the box, and it is only used when page
  1135. * is null
  1136. */
  1137. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1138. {
  1139. struct btrfs_device *device;
  1140. struct btrfs_fs_info *info;
  1141. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1142. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1143. if (!device->bdev)
  1144. continue;
  1145. bdi = blk_get_backing_dev_info(device->bdev);
  1146. if (bdi->unplug_io_fn)
  1147. bdi->unplug_io_fn(bdi, page);
  1148. }
  1149. }
  1150. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1151. {
  1152. struct inode *inode;
  1153. struct extent_map_tree *em_tree;
  1154. struct extent_map *em;
  1155. struct address_space *mapping;
  1156. u64 offset;
  1157. /* the generic O_DIRECT read code does this */
  1158. if (1 || !page) {
  1159. __unplug_io_fn(bdi, page);
  1160. return;
  1161. }
  1162. /*
  1163. * page->mapping may change at any time. Get a consistent copy
  1164. * and use that for everything below
  1165. */
  1166. smp_mb();
  1167. mapping = page->mapping;
  1168. if (!mapping)
  1169. return;
  1170. inode = mapping->host;
  1171. /*
  1172. * don't do the expensive searching for a small number of
  1173. * devices
  1174. */
  1175. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1176. __unplug_io_fn(bdi, page);
  1177. return;
  1178. }
  1179. offset = page_offset(page);
  1180. em_tree = &BTRFS_I(inode)->extent_tree;
  1181. spin_lock(&em_tree->lock);
  1182. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1183. spin_unlock(&em_tree->lock);
  1184. if (!em) {
  1185. __unplug_io_fn(bdi, page);
  1186. return;
  1187. }
  1188. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1189. free_extent_map(em);
  1190. __unplug_io_fn(bdi, page);
  1191. return;
  1192. }
  1193. offset = offset - em->start;
  1194. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1195. em->block_start + offset, page);
  1196. free_extent_map(em);
  1197. }
  1198. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1199. {
  1200. bdi_init(bdi);
  1201. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1202. bdi->state = 0;
  1203. bdi->capabilities = default_backing_dev_info.capabilities;
  1204. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1205. bdi->unplug_io_data = info;
  1206. bdi->congested_fn = btrfs_congested_fn;
  1207. bdi->congested_data = info;
  1208. return 0;
  1209. }
  1210. static int bio_ready_for_csum(struct bio *bio)
  1211. {
  1212. u64 length = 0;
  1213. u64 buf_len = 0;
  1214. u64 start = 0;
  1215. struct page *page;
  1216. struct extent_io_tree *io_tree = NULL;
  1217. struct btrfs_fs_info *info = NULL;
  1218. struct bio_vec *bvec;
  1219. int i;
  1220. int ret;
  1221. bio_for_each_segment(bvec, bio, i) {
  1222. page = bvec->bv_page;
  1223. if (page->private == EXTENT_PAGE_PRIVATE) {
  1224. length += bvec->bv_len;
  1225. continue;
  1226. }
  1227. if (!page->private) {
  1228. length += bvec->bv_len;
  1229. continue;
  1230. }
  1231. length = bvec->bv_len;
  1232. buf_len = page->private >> 2;
  1233. start = page_offset(page) + bvec->bv_offset;
  1234. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1235. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1236. }
  1237. /* are we fully contained in this bio? */
  1238. if (buf_len <= length)
  1239. return 1;
  1240. ret = extent_range_uptodate(io_tree, start + length,
  1241. start + buf_len - 1);
  1242. return ret;
  1243. }
  1244. /*
  1245. * called by the kthread helper functions to finally call the bio end_io
  1246. * functions. This is where read checksum verification actually happens
  1247. */
  1248. static void end_workqueue_fn(struct btrfs_work *work)
  1249. {
  1250. struct bio *bio;
  1251. struct end_io_wq *end_io_wq;
  1252. struct btrfs_fs_info *fs_info;
  1253. int error;
  1254. end_io_wq = container_of(work, struct end_io_wq, work);
  1255. bio = end_io_wq->bio;
  1256. fs_info = end_io_wq->info;
  1257. /* metadata bio reads are special because the whole tree block must
  1258. * be checksummed at once. This makes sure the entire block is in
  1259. * ram and up to date before trying to verify things. For
  1260. * blocksize <= pagesize, it is basically a noop
  1261. */
  1262. if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
  1263. !bio_ready_for_csum(bio)) {
  1264. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1265. &end_io_wq->work);
  1266. return;
  1267. }
  1268. error = end_io_wq->error;
  1269. bio->bi_private = end_io_wq->private;
  1270. bio->bi_end_io = end_io_wq->end_io;
  1271. kfree(end_io_wq);
  1272. bio_endio(bio, error);
  1273. }
  1274. static int cleaner_kthread(void *arg)
  1275. {
  1276. struct btrfs_root *root = arg;
  1277. do {
  1278. smp_mb();
  1279. if (root->fs_info->closing)
  1280. break;
  1281. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1282. mutex_lock(&root->fs_info->cleaner_mutex);
  1283. btrfs_clean_old_snapshots(root);
  1284. mutex_unlock(&root->fs_info->cleaner_mutex);
  1285. if (freezing(current)) {
  1286. refrigerator();
  1287. } else {
  1288. smp_mb();
  1289. if (root->fs_info->closing)
  1290. break;
  1291. set_current_state(TASK_INTERRUPTIBLE);
  1292. schedule();
  1293. __set_current_state(TASK_RUNNING);
  1294. }
  1295. } while (!kthread_should_stop());
  1296. return 0;
  1297. }
  1298. static int transaction_kthread(void *arg)
  1299. {
  1300. struct btrfs_root *root = arg;
  1301. struct btrfs_trans_handle *trans;
  1302. struct btrfs_transaction *cur;
  1303. unsigned long now;
  1304. unsigned long delay;
  1305. int ret;
  1306. do {
  1307. smp_mb();
  1308. if (root->fs_info->closing)
  1309. break;
  1310. delay = HZ * 30;
  1311. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1312. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1313. mutex_lock(&root->fs_info->trans_mutex);
  1314. cur = root->fs_info->running_transaction;
  1315. if (!cur) {
  1316. mutex_unlock(&root->fs_info->trans_mutex);
  1317. goto sleep;
  1318. }
  1319. now = get_seconds();
  1320. if (now < cur->start_time || now - cur->start_time < 30) {
  1321. mutex_unlock(&root->fs_info->trans_mutex);
  1322. delay = HZ * 5;
  1323. goto sleep;
  1324. }
  1325. mutex_unlock(&root->fs_info->trans_mutex);
  1326. trans = btrfs_start_transaction(root, 1);
  1327. ret = btrfs_commit_transaction(trans, root);
  1328. sleep:
  1329. wake_up_process(root->fs_info->cleaner_kthread);
  1330. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1331. if (freezing(current)) {
  1332. refrigerator();
  1333. } else {
  1334. if (root->fs_info->closing)
  1335. break;
  1336. set_current_state(TASK_INTERRUPTIBLE);
  1337. schedule_timeout(delay);
  1338. __set_current_state(TASK_RUNNING);
  1339. }
  1340. } while (!kthread_should_stop());
  1341. return 0;
  1342. }
  1343. struct btrfs_root *open_ctree(struct super_block *sb,
  1344. struct btrfs_fs_devices *fs_devices,
  1345. char *options)
  1346. {
  1347. u32 sectorsize;
  1348. u32 nodesize;
  1349. u32 leafsize;
  1350. u32 blocksize;
  1351. u32 stripesize;
  1352. u64 generation;
  1353. u64 features;
  1354. struct btrfs_key location;
  1355. struct buffer_head *bh;
  1356. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1357. GFP_NOFS);
  1358. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1359. GFP_NOFS);
  1360. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1361. GFP_NOFS);
  1362. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1363. GFP_NOFS);
  1364. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1365. GFP_NOFS);
  1366. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1367. GFP_NOFS);
  1368. struct btrfs_root *log_tree_root;
  1369. int ret;
  1370. int err = -EINVAL;
  1371. struct btrfs_super_block *disk_super;
  1372. if (!extent_root || !tree_root || !fs_info ||
  1373. !chunk_root || !dev_root || !csum_root) {
  1374. err = -ENOMEM;
  1375. goto fail;
  1376. }
  1377. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1378. INIT_LIST_HEAD(&fs_info->trans_list);
  1379. INIT_LIST_HEAD(&fs_info->dead_roots);
  1380. INIT_LIST_HEAD(&fs_info->hashers);
  1381. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1382. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1383. spin_lock_init(&fs_info->delalloc_lock);
  1384. spin_lock_init(&fs_info->new_trans_lock);
  1385. spin_lock_init(&fs_info->ref_cache_lock);
  1386. init_completion(&fs_info->kobj_unregister);
  1387. fs_info->tree_root = tree_root;
  1388. fs_info->extent_root = extent_root;
  1389. fs_info->csum_root = csum_root;
  1390. fs_info->chunk_root = chunk_root;
  1391. fs_info->dev_root = dev_root;
  1392. fs_info->fs_devices = fs_devices;
  1393. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1394. INIT_LIST_HEAD(&fs_info->space_info);
  1395. btrfs_mapping_init(&fs_info->mapping_tree);
  1396. atomic_set(&fs_info->nr_async_submits, 0);
  1397. atomic_set(&fs_info->async_delalloc_pages, 0);
  1398. atomic_set(&fs_info->async_submit_draining, 0);
  1399. atomic_set(&fs_info->nr_async_bios, 0);
  1400. atomic_set(&fs_info->throttles, 0);
  1401. atomic_set(&fs_info->throttle_gen, 0);
  1402. fs_info->sb = sb;
  1403. fs_info->max_extent = (u64)-1;
  1404. fs_info->max_inline = 8192 * 1024;
  1405. setup_bdi(fs_info, &fs_info->bdi);
  1406. fs_info->btree_inode = new_inode(sb);
  1407. fs_info->btree_inode->i_ino = 1;
  1408. fs_info->btree_inode->i_nlink = 1;
  1409. fs_info->thread_pool_size = min_t(unsigned long,
  1410. num_online_cpus() + 2, 8);
  1411. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1412. spin_lock_init(&fs_info->ordered_extent_lock);
  1413. sb->s_blocksize = 4096;
  1414. sb->s_blocksize_bits = blksize_bits(4096);
  1415. /*
  1416. * we set the i_size on the btree inode to the max possible int.
  1417. * the real end of the address space is determined by all of
  1418. * the devices in the system
  1419. */
  1420. fs_info->btree_inode->i_size = OFFSET_MAX;
  1421. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1422. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1423. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1424. fs_info->btree_inode->i_mapping,
  1425. GFP_NOFS);
  1426. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1427. GFP_NOFS);
  1428. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1429. spin_lock_init(&fs_info->block_group_cache_lock);
  1430. fs_info->block_group_cache_tree.rb_node = NULL;
  1431. extent_io_tree_init(&fs_info->pinned_extents,
  1432. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1433. fs_info->do_barriers = 1;
  1434. INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
  1435. btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
  1436. btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
  1437. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1438. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1439. sizeof(struct btrfs_key));
  1440. insert_inode_hash(fs_info->btree_inode);
  1441. mutex_init(&fs_info->trans_mutex);
  1442. mutex_init(&fs_info->ordered_operations_mutex);
  1443. mutex_init(&fs_info->tree_log_mutex);
  1444. mutex_init(&fs_info->drop_mutex);
  1445. mutex_init(&fs_info->chunk_mutex);
  1446. mutex_init(&fs_info->transaction_kthread_mutex);
  1447. mutex_init(&fs_info->cleaner_mutex);
  1448. mutex_init(&fs_info->volume_mutex);
  1449. mutex_init(&fs_info->tree_reloc_mutex);
  1450. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1451. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1452. init_waitqueue_head(&fs_info->transaction_throttle);
  1453. init_waitqueue_head(&fs_info->transaction_wait);
  1454. init_waitqueue_head(&fs_info->async_submit_wait);
  1455. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1456. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1457. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1458. if (!bh)
  1459. goto fail_iput;
  1460. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1461. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1462. sizeof(fs_info->super_for_commit));
  1463. brelse(bh);
  1464. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1465. disk_super = &fs_info->super_copy;
  1466. if (!btrfs_super_root(disk_super))
  1467. goto fail_iput;
  1468. ret = btrfs_parse_options(tree_root, options);
  1469. if (ret) {
  1470. err = ret;
  1471. goto fail_iput;
  1472. }
  1473. features = btrfs_super_incompat_flags(disk_super) &
  1474. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1475. if (features) {
  1476. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1477. "unsupported optional features (%Lx).\n",
  1478. features);
  1479. err = -EINVAL;
  1480. goto fail_iput;
  1481. }
  1482. features = btrfs_super_compat_ro_flags(disk_super) &
  1483. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1484. if (!(sb->s_flags & MS_RDONLY) && features) {
  1485. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1486. "unsupported option features (%Lx).\n",
  1487. features);
  1488. err = -EINVAL;
  1489. goto fail_iput;
  1490. }
  1491. /*
  1492. * we need to start all the end_io workers up front because the
  1493. * queue work function gets called at interrupt time, and so it
  1494. * cannot dynamically grow.
  1495. */
  1496. btrfs_init_workers(&fs_info->workers, "worker",
  1497. fs_info->thread_pool_size);
  1498. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1499. fs_info->thread_pool_size);
  1500. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1501. min_t(u64, fs_devices->num_devices,
  1502. fs_info->thread_pool_size));
  1503. /* a higher idle thresh on the submit workers makes it much more
  1504. * likely that bios will be send down in a sane order to the
  1505. * devices
  1506. */
  1507. fs_info->submit_workers.idle_thresh = 64;
  1508. fs_info->workers.idle_thresh = 16;
  1509. fs_info->workers.ordered = 1;
  1510. fs_info->delalloc_workers.idle_thresh = 2;
  1511. fs_info->delalloc_workers.ordered = 1;
  1512. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
  1513. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1514. fs_info->thread_pool_size);
  1515. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1516. fs_info->thread_pool_size);
  1517. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1518. "endio-meta-write", fs_info->thread_pool_size);
  1519. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1520. fs_info->thread_pool_size);
  1521. /*
  1522. * endios are largely parallel and should have a very
  1523. * low idle thresh
  1524. */
  1525. fs_info->endio_workers.idle_thresh = 4;
  1526. fs_info->endio_meta_workers.idle_thresh = 4;
  1527. fs_info->endio_write_workers.idle_thresh = 64;
  1528. fs_info->endio_meta_write_workers.idle_thresh = 64;
  1529. btrfs_start_workers(&fs_info->workers, 1);
  1530. btrfs_start_workers(&fs_info->submit_workers, 1);
  1531. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1532. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1533. btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1534. btrfs_start_workers(&fs_info->endio_meta_workers,
  1535. fs_info->thread_pool_size);
  1536. btrfs_start_workers(&fs_info->endio_meta_write_workers,
  1537. fs_info->thread_pool_size);
  1538. btrfs_start_workers(&fs_info->endio_write_workers,
  1539. fs_info->thread_pool_size);
  1540. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1541. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1542. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1543. nodesize = btrfs_super_nodesize(disk_super);
  1544. leafsize = btrfs_super_leafsize(disk_super);
  1545. sectorsize = btrfs_super_sectorsize(disk_super);
  1546. stripesize = btrfs_super_stripesize(disk_super);
  1547. tree_root->nodesize = nodesize;
  1548. tree_root->leafsize = leafsize;
  1549. tree_root->sectorsize = sectorsize;
  1550. tree_root->stripesize = stripesize;
  1551. sb->s_blocksize = sectorsize;
  1552. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1553. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1554. sizeof(disk_super->magic))) {
  1555. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1556. goto fail_sb_buffer;
  1557. }
  1558. mutex_lock(&fs_info->chunk_mutex);
  1559. ret = btrfs_read_sys_array(tree_root);
  1560. mutex_unlock(&fs_info->chunk_mutex);
  1561. if (ret) {
  1562. printk(KERN_WARNING "btrfs: failed to read the system "
  1563. "array on %s\n", sb->s_id);
  1564. goto fail_sys_array;
  1565. }
  1566. blocksize = btrfs_level_size(tree_root,
  1567. btrfs_super_chunk_root_level(disk_super));
  1568. generation = btrfs_super_chunk_root_generation(disk_super);
  1569. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1570. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1571. chunk_root->node = read_tree_block(chunk_root,
  1572. btrfs_super_chunk_root(disk_super),
  1573. blocksize, generation);
  1574. BUG_ON(!chunk_root->node);
  1575. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1576. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1577. BTRFS_UUID_SIZE);
  1578. mutex_lock(&fs_info->chunk_mutex);
  1579. ret = btrfs_read_chunk_tree(chunk_root);
  1580. mutex_unlock(&fs_info->chunk_mutex);
  1581. if (ret) {
  1582. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1583. sb->s_id);
  1584. goto fail_chunk_root;
  1585. }
  1586. btrfs_close_extra_devices(fs_devices);
  1587. blocksize = btrfs_level_size(tree_root,
  1588. btrfs_super_root_level(disk_super));
  1589. generation = btrfs_super_generation(disk_super);
  1590. tree_root->node = read_tree_block(tree_root,
  1591. btrfs_super_root(disk_super),
  1592. blocksize, generation);
  1593. if (!tree_root->node)
  1594. goto fail_chunk_root;
  1595. ret = find_and_setup_root(tree_root, fs_info,
  1596. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1597. if (ret)
  1598. goto fail_tree_root;
  1599. extent_root->track_dirty = 1;
  1600. ret = find_and_setup_root(tree_root, fs_info,
  1601. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1602. dev_root->track_dirty = 1;
  1603. if (ret)
  1604. goto fail_extent_root;
  1605. ret = find_and_setup_root(tree_root, fs_info,
  1606. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1607. if (ret)
  1608. goto fail_extent_root;
  1609. csum_root->track_dirty = 1;
  1610. btrfs_read_block_groups(extent_root);
  1611. fs_info->generation = generation;
  1612. fs_info->last_trans_committed = generation;
  1613. fs_info->data_alloc_profile = (u64)-1;
  1614. fs_info->metadata_alloc_profile = (u64)-1;
  1615. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1616. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1617. "btrfs-cleaner");
  1618. if (IS_ERR(fs_info->cleaner_kthread))
  1619. goto fail_csum_root;
  1620. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1621. tree_root,
  1622. "btrfs-transaction");
  1623. if (IS_ERR(fs_info->transaction_kthread))
  1624. goto fail_cleaner;
  1625. if (btrfs_super_log_root(disk_super) != 0) {
  1626. u64 bytenr = btrfs_super_log_root(disk_super);
  1627. if (fs_devices->rw_devices == 0) {
  1628. printk(KERN_WARNING "Btrfs log replay required "
  1629. "on RO media\n");
  1630. err = -EIO;
  1631. goto fail_trans_kthread;
  1632. }
  1633. blocksize =
  1634. btrfs_level_size(tree_root,
  1635. btrfs_super_log_root_level(disk_super));
  1636. log_tree_root = kzalloc(sizeof(struct btrfs_root),
  1637. GFP_NOFS);
  1638. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1639. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1640. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1641. blocksize,
  1642. generation + 1);
  1643. ret = btrfs_recover_log_trees(log_tree_root);
  1644. BUG_ON(ret);
  1645. if (sb->s_flags & MS_RDONLY) {
  1646. ret = btrfs_commit_super(tree_root);
  1647. BUG_ON(ret);
  1648. }
  1649. }
  1650. if (!(sb->s_flags & MS_RDONLY)) {
  1651. ret = btrfs_cleanup_reloc_trees(tree_root);
  1652. BUG_ON(ret);
  1653. }
  1654. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1655. location.type = BTRFS_ROOT_ITEM_KEY;
  1656. location.offset = (u64)-1;
  1657. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1658. if (!fs_info->fs_root)
  1659. goto fail_trans_kthread;
  1660. return tree_root;
  1661. fail_trans_kthread:
  1662. kthread_stop(fs_info->transaction_kthread);
  1663. fail_cleaner:
  1664. kthread_stop(fs_info->cleaner_kthread);
  1665. /*
  1666. * make sure we're done with the btree inode before we stop our
  1667. * kthreads
  1668. */
  1669. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1670. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1671. fail_csum_root:
  1672. free_extent_buffer(csum_root->node);
  1673. fail_extent_root:
  1674. free_extent_buffer(extent_root->node);
  1675. fail_tree_root:
  1676. free_extent_buffer(tree_root->node);
  1677. fail_chunk_root:
  1678. free_extent_buffer(chunk_root->node);
  1679. fail_sys_array:
  1680. free_extent_buffer(dev_root->node);
  1681. fail_sb_buffer:
  1682. btrfs_stop_workers(&fs_info->fixup_workers);
  1683. btrfs_stop_workers(&fs_info->delalloc_workers);
  1684. btrfs_stop_workers(&fs_info->workers);
  1685. btrfs_stop_workers(&fs_info->endio_workers);
  1686. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1687. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1688. btrfs_stop_workers(&fs_info->endio_write_workers);
  1689. btrfs_stop_workers(&fs_info->submit_workers);
  1690. fail_iput:
  1691. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1692. iput(fs_info->btree_inode);
  1693. btrfs_close_devices(fs_info->fs_devices);
  1694. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1695. bdi_destroy(&fs_info->bdi);
  1696. fail:
  1697. kfree(extent_root);
  1698. kfree(tree_root);
  1699. kfree(fs_info);
  1700. kfree(chunk_root);
  1701. kfree(dev_root);
  1702. kfree(csum_root);
  1703. return ERR_PTR(err);
  1704. }
  1705. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1706. {
  1707. char b[BDEVNAME_SIZE];
  1708. if (uptodate) {
  1709. set_buffer_uptodate(bh);
  1710. } else {
  1711. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1712. printk(KERN_WARNING "lost page write due to "
  1713. "I/O error on %s\n",
  1714. bdevname(bh->b_bdev, b));
  1715. }
  1716. /* note, we dont' set_buffer_write_io_error because we have
  1717. * our own ways of dealing with the IO errors
  1718. */
  1719. clear_buffer_uptodate(bh);
  1720. }
  1721. unlock_buffer(bh);
  1722. put_bh(bh);
  1723. }
  1724. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1725. {
  1726. struct buffer_head *bh;
  1727. struct buffer_head *latest = NULL;
  1728. struct btrfs_super_block *super;
  1729. int i;
  1730. u64 transid = 0;
  1731. u64 bytenr;
  1732. /* we would like to check all the supers, but that would make
  1733. * a btrfs mount succeed after a mkfs from a different FS.
  1734. * So, we need to add a special mount option to scan for
  1735. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1736. */
  1737. for (i = 0; i < 1; i++) {
  1738. bytenr = btrfs_sb_offset(i);
  1739. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1740. break;
  1741. bh = __bread(bdev, bytenr / 4096, 4096);
  1742. if (!bh)
  1743. continue;
  1744. super = (struct btrfs_super_block *)bh->b_data;
  1745. if (btrfs_super_bytenr(super) != bytenr ||
  1746. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1747. sizeof(super->magic))) {
  1748. brelse(bh);
  1749. continue;
  1750. }
  1751. if (!latest || btrfs_super_generation(super) > transid) {
  1752. brelse(latest);
  1753. latest = bh;
  1754. transid = btrfs_super_generation(super);
  1755. } else {
  1756. brelse(bh);
  1757. }
  1758. }
  1759. return latest;
  1760. }
  1761. static int write_dev_supers(struct btrfs_device *device,
  1762. struct btrfs_super_block *sb,
  1763. int do_barriers, int wait, int max_mirrors)
  1764. {
  1765. struct buffer_head *bh;
  1766. int i;
  1767. int ret;
  1768. int errors = 0;
  1769. u32 crc;
  1770. u64 bytenr;
  1771. int last_barrier = 0;
  1772. if (max_mirrors == 0)
  1773. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1774. /* make sure only the last submit_bh does a barrier */
  1775. if (do_barriers) {
  1776. for (i = 0; i < max_mirrors; i++) {
  1777. bytenr = btrfs_sb_offset(i);
  1778. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1779. device->total_bytes)
  1780. break;
  1781. last_barrier = i;
  1782. }
  1783. }
  1784. for (i = 0; i < max_mirrors; i++) {
  1785. bytenr = btrfs_sb_offset(i);
  1786. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1787. break;
  1788. if (wait) {
  1789. bh = __find_get_block(device->bdev, bytenr / 4096,
  1790. BTRFS_SUPER_INFO_SIZE);
  1791. BUG_ON(!bh);
  1792. brelse(bh);
  1793. wait_on_buffer(bh);
  1794. if (buffer_uptodate(bh)) {
  1795. brelse(bh);
  1796. continue;
  1797. }
  1798. } else {
  1799. btrfs_set_super_bytenr(sb, bytenr);
  1800. crc = ~(u32)0;
  1801. crc = btrfs_csum_data(NULL, (char *)sb +
  1802. BTRFS_CSUM_SIZE, crc,
  1803. BTRFS_SUPER_INFO_SIZE -
  1804. BTRFS_CSUM_SIZE);
  1805. btrfs_csum_final(crc, sb->csum);
  1806. bh = __getblk(device->bdev, bytenr / 4096,
  1807. BTRFS_SUPER_INFO_SIZE);
  1808. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1809. set_buffer_uptodate(bh);
  1810. get_bh(bh);
  1811. lock_buffer(bh);
  1812. bh->b_end_io = btrfs_end_buffer_write_sync;
  1813. }
  1814. if (i == last_barrier && do_barriers && device->barriers) {
  1815. ret = submit_bh(WRITE_BARRIER, bh);
  1816. if (ret == -EOPNOTSUPP) {
  1817. printk("btrfs: disabling barriers on dev %s\n",
  1818. device->name);
  1819. set_buffer_uptodate(bh);
  1820. device->barriers = 0;
  1821. get_bh(bh);
  1822. lock_buffer(bh);
  1823. ret = submit_bh(WRITE, bh);
  1824. }
  1825. } else {
  1826. ret = submit_bh(WRITE, bh);
  1827. }
  1828. if (!ret && wait) {
  1829. wait_on_buffer(bh);
  1830. if (!buffer_uptodate(bh))
  1831. errors++;
  1832. } else if (ret) {
  1833. errors++;
  1834. }
  1835. if (wait)
  1836. brelse(bh);
  1837. }
  1838. return errors < i ? 0 : -1;
  1839. }
  1840. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1841. {
  1842. struct list_head *head = &root->fs_info->fs_devices->devices;
  1843. struct btrfs_device *dev;
  1844. struct btrfs_super_block *sb;
  1845. struct btrfs_dev_item *dev_item;
  1846. int ret;
  1847. int do_barriers;
  1848. int max_errors;
  1849. int total_errors = 0;
  1850. u64 flags;
  1851. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1852. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1853. sb = &root->fs_info->super_for_commit;
  1854. dev_item = &sb->dev_item;
  1855. list_for_each_entry(dev, head, dev_list) {
  1856. if (!dev->bdev) {
  1857. total_errors++;
  1858. continue;
  1859. }
  1860. if (!dev->in_fs_metadata || !dev->writeable)
  1861. continue;
  1862. btrfs_set_stack_device_generation(dev_item, 0);
  1863. btrfs_set_stack_device_type(dev_item, dev->type);
  1864. btrfs_set_stack_device_id(dev_item, dev->devid);
  1865. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1866. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1867. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1868. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1869. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1870. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1871. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  1872. flags = btrfs_super_flags(sb);
  1873. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1874. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  1875. if (ret)
  1876. total_errors++;
  1877. }
  1878. if (total_errors > max_errors) {
  1879. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1880. total_errors);
  1881. BUG();
  1882. }
  1883. total_errors = 0;
  1884. list_for_each_entry(dev, head, dev_list) {
  1885. if (!dev->bdev)
  1886. continue;
  1887. if (!dev->in_fs_metadata || !dev->writeable)
  1888. continue;
  1889. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  1890. if (ret)
  1891. total_errors++;
  1892. }
  1893. if (total_errors > max_errors) {
  1894. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1895. total_errors);
  1896. BUG();
  1897. }
  1898. return 0;
  1899. }
  1900. int write_ctree_super(struct btrfs_trans_handle *trans,
  1901. struct btrfs_root *root, int max_mirrors)
  1902. {
  1903. int ret;
  1904. ret = write_all_supers(root, max_mirrors);
  1905. return ret;
  1906. }
  1907. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1908. {
  1909. radix_tree_delete(&fs_info->fs_roots_radix,
  1910. (unsigned long)root->root_key.objectid);
  1911. if (root->anon_super.s_dev) {
  1912. down_write(&root->anon_super.s_umount);
  1913. kill_anon_super(&root->anon_super);
  1914. }
  1915. if (root->node)
  1916. free_extent_buffer(root->node);
  1917. if (root->commit_root)
  1918. free_extent_buffer(root->commit_root);
  1919. kfree(root->name);
  1920. kfree(root);
  1921. return 0;
  1922. }
  1923. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1924. {
  1925. int ret;
  1926. struct btrfs_root *gang[8];
  1927. int i;
  1928. while (1) {
  1929. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1930. (void **)gang, 0,
  1931. ARRAY_SIZE(gang));
  1932. if (!ret)
  1933. break;
  1934. for (i = 0; i < ret; i++)
  1935. btrfs_free_fs_root(fs_info, gang[i]);
  1936. }
  1937. return 0;
  1938. }
  1939. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  1940. {
  1941. u64 root_objectid = 0;
  1942. struct btrfs_root *gang[8];
  1943. int i;
  1944. int ret;
  1945. while (1) {
  1946. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1947. (void **)gang, root_objectid,
  1948. ARRAY_SIZE(gang));
  1949. if (!ret)
  1950. break;
  1951. for (i = 0; i < ret; i++) {
  1952. root_objectid = gang[i]->root_key.objectid;
  1953. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1954. root_objectid, gang[i]);
  1955. BUG_ON(ret);
  1956. btrfs_orphan_cleanup(gang[i]);
  1957. }
  1958. root_objectid++;
  1959. }
  1960. return 0;
  1961. }
  1962. int btrfs_commit_super(struct btrfs_root *root)
  1963. {
  1964. struct btrfs_trans_handle *trans;
  1965. int ret;
  1966. mutex_lock(&root->fs_info->cleaner_mutex);
  1967. btrfs_clean_old_snapshots(root);
  1968. mutex_unlock(&root->fs_info->cleaner_mutex);
  1969. trans = btrfs_start_transaction(root, 1);
  1970. ret = btrfs_commit_transaction(trans, root);
  1971. BUG_ON(ret);
  1972. /* run commit again to drop the original snapshot */
  1973. trans = btrfs_start_transaction(root, 1);
  1974. btrfs_commit_transaction(trans, root);
  1975. ret = btrfs_write_and_wait_transaction(NULL, root);
  1976. BUG_ON(ret);
  1977. ret = write_ctree_super(NULL, root, 0);
  1978. return ret;
  1979. }
  1980. int close_ctree(struct btrfs_root *root)
  1981. {
  1982. struct btrfs_fs_info *fs_info = root->fs_info;
  1983. int ret;
  1984. fs_info->closing = 1;
  1985. smp_mb();
  1986. kthread_stop(root->fs_info->transaction_kthread);
  1987. kthread_stop(root->fs_info->cleaner_kthread);
  1988. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  1989. ret = btrfs_commit_super(root);
  1990. if (ret)
  1991. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  1992. }
  1993. if (fs_info->delalloc_bytes) {
  1994. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  1995. fs_info->delalloc_bytes);
  1996. }
  1997. if (fs_info->total_ref_cache_size) {
  1998. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  1999. (unsigned long long)fs_info->total_ref_cache_size);
  2000. }
  2001. if (fs_info->extent_root->node)
  2002. free_extent_buffer(fs_info->extent_root->node);
  2003. if (fs_info->tree_root->node)
  2004. free_extent_buffer(fs_info->tree_root->node);
  2005. if (root->fs_info->chunk_root->node)
  2006. free_extent_buffer(root->fs_info->chunk_root->node);
  2007. if (root->fs_info->dev_root->node)
  2008. free_extent_buffer(root->fs_info->dev_root->node);
  2009. if (root->fs_info->csum_root->node)
  2010. free_extent_buffer(root->fs_info->csum_root->node);
  2011. btrfs_free_block_groups(root->fs_info);
  2012. del_fs_roots(fs_info);
  2013. iput(fs_info->btree_inode);
  2014. btrfs_stop_workers(&fs_info->fixup_workers);
  2015. btrfs_stop_workers(&fs_info->delalloc_workers);
  2016. btrfs_stop_workers(&fs_info->workers);
  2017. btrfs_stop_workers(&fs_info->endio_workers);
  2018. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2019. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2020. btrfs_stop_workers(&fs_info->endio_write_workers);
  2021. btrfs_stop_workers(&fs_info->submit_workers);
  2022. #if 0
  2023. while (!list_empty(&fs_info->hashers)) {
  2024. struct btrfs_hasher *hasher;
  2025. hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
  2026. hashers);
  2027. list_del(&hasher->hashers);
  2028. crypto_free_hash(&fs_info->hash_tfm);
  2029. kfree(hasher);
  2030. }
  2031. #endif
  2032. btrfs_close_devices(fs_info->fs_devices);
  2033. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2034. bdi_destroy(&fs_info->bdi);
  2035. kfree(fs_info->extent_root);
  2036. kfree(fs_info->tree_root);
  2037. kfree(fs_info->chunk_root);
  2038. kfree(fs_info->dev_root);
  2039. kfree(fs_info->csum_root);
  2040. return 0;
  2041. }
  2042. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2043. {
  2044. int ret;
  2045. struct inode *btree_inode = buf->first_page->mapping->host;
  2046. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  2047. if (!ret)
  2048. return ret;
  2049. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2050. parent_transid);
  2051. return !ret;
  2052. }
  2053. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2054. {
  2055. struct inode *btree_inode = buf->first_page->mapping->host;
  2056. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2057. buf);
  2058. }
  2059. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2060. {
  2061. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2062. u64 transid = btrfs_header_generation(buf);
  2063. struct inode *btree_inode = root->fs_info->btree_inode;
  2064. int was_dirty;
  2065. btrfs_assert_tree_locked(buf);
  2066. if (transid != root->fs_info->generation) {
  2067. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2068. "found %llu running %llu\n",
  2069. (unsigned long long)buf->start,
  2070. (unsigned long long)transid,
  2071. (unsigned long long)root->fs_info->generation);
  2072. WARN_ON(1);
  2073. }
  2074. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2075. buf);
  2076. if (!was_dirty) {
  2077. spin_lock(&root->fs_info->delalloc_lock);
  2078. root->fs_info->dirty_metadata_bytes += buf->len;
  2079. spin_unlock(&root->fs_info->delalloc_lock);
  2080. }
  2081. }
  2082. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2083. {
  2084. /*
  2085. * looks as though older kernels can get into trouble with
  2086. * this code, they end up stuck in balance_dirty_pages forever
  2087. */
  2088. struct extent_io_tree *tree;
  2089. u64 num_dirty;
  2090. u64 start = 0;
  2091. unsigned long thresh = 32 * 1024 * 1024;
  2092. tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  2093. if (current->flags & PF_MEMALLOC)
  2094. return;
  2095. num_dirty = count_range_bits(tree, &start, (u64)-1,
  2096. thresh, EXTENT_DIRTY);
  2097. if (num_dirty > thresh) {
  2098. balance_dirty_pages_ratelimited_nr(
  2099. root->fs_info->btree_inode->i_mapping, 1);
  2100. }
  2101. return;
  2102. }
  2103. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2104. {
  2105. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2106. int ret;
  2107. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2108. if (ret == 0)
  2109. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2110. return ret;
  2111. }
  2112. int btree_lock_page_hook(struct page *page)
  2113. {
  2114. struct inode *inode = page->mapping->host;
  2115. struct btrfs_root *root = BTRFS_I(inode)->root;
  2116. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2117. struct extent_buffer *eb;
  2118. unsigned long len;
  2119. u64 bytenr = page_offset(page);
  2120. if (page->private == EXTENT_PAGE_PRIVATE)
  2121. goto out;
  2122. len = page->private >> 2;
  2123. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2124. if (!eb)
  2125. goto out;
  2126. btrfs_tree_lock(eb);
  2127. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2128. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2129. spin_lock(&root->fs_info->delalloc_lock);
  2130. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2131. root->fs_info->dirty_metadata_bytes -= eb->len;
  2132. else
  2133. WARN_ON(1);
  2134. spin_unlock(&root->fs_info->delalloc_lock);
  2135. }
  2136. btrfs_tree_unlock(eb);
  2137. free_extent_buffer(eb);
  2138. out:
  2139. lock_page(page);
  2140. return 0;
  2141. }
  2142. static struct extent_io_ops btree_extent_io_ops = {
  2143. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2144. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2145. .submit_bio_hook = btree_submit_bio_hook,
  2146. /* note we're sharing with inode.c for the merge bio hook */
  2147. .merge_bio_hook = btrfs_merge_bio_hook,
  2148. };