ctree.c 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. struct btrfs_path *btrfs_alloc_path(void)
  39. {
  40. struct btrfs_path *path;
  41. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  42. if (path)
  43. path->reada = 1;
  44. return path;
  45. }
  46. /*
  47. * set all locked nodes in the path to blocking locks. This should
  48. * be done before scheduling
  49. */
  50. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  51. {
  52. int i;
  53. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  54. if (p->nodes[i] && p->locks[i])
  55. btrfs_set_lock_blocking(p->nodes[i]);
  56. }
  57. }
  58. /*
  59. * reset all the locked nodes in the patch to spinning locks.
  60. *
  61. * held is used to keep lockdep happy, when lockdep is enabled
  62. * we set held to a blocking lock before we go around and
  63. * retake all the spinlocks in the path. You can safely use NULL
  64. * for held
  65. */
  66. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  67. struct extent_buffer *held)
  68. {
  69. int i;
  70. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  71. /* lockdep really cares that we take all of these spinlocks
  72. * in the right order. If any of the locks in the path are not
  73. * currently blocking, it is going to complain. So, make really
  74. * really sure by forcing the path to blocking before we clear
  75. * the path blocking.
  76. */
  77. if (held)
  78. btrfs_set_lock_blocking(held);
  79. btrfs_set_path_blocking(p);
  80. #endif
  81. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  82. if (p->nodes[i] && p->locks[i])
  83. btrfs_clear_lock_blocking(p->nodes[i]);
  84. }
  85. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  86. if (held)
  87. btrfs_clear_lock_blocking(held);
  88. #endif
  89. }
  90. /* this also releases the path */
  91. void btrfs_free_path(struct btrfs_path *p)
  92. {
  93. btrfs_release_path(NULL, p);
  94. kmem_cache_free(btrfs_path_cachep, p);
  95. }
  96. /*
  97. * path release drops references on the extent buffers in the path
  98. * and it drops any locks held by this path
  99. *
  100. * It is safe to call this on paths that no locks or extent buffers held.
  101. */
  102. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  103. {
  104. int i;
  105. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  106. p->slots[i] = 0;
  107. if (!p->nodes[i])
  108. continue;
  109. if (p->locks[i]) {
  110. btrfs_tree_unlock(p->nodes[i]);
  111. p->locks[i] = 0;
  112. }
  113. free_extent_buffer(p->nodes[i]);
  114. p->nodes[i] = NULL;
  115. }
  116. }
  117. /*
  118. * safely gets a reference on the root node of a tree. A lock
  119. * is not taken, so a concurrent writer may put a different node
  120. * at the root of the tree. See btrfs_lock_root_node for the
  121. * looping required.
  122. *
  123. * The extent buffer returned by this has a reference taken, so
  124. * it won't disappear. It may stop being the root of the tree
  125. * at any time because there are no locks held.
  126. */
  127. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  128. {
  129. struct extent_buffer *eb;
  130. spin_lock(&root->node_lock);
  131. eb = root->node;
  132. extent_buffer_get(eb);
  133. spin_unlock(&root->node_lock);
  134. return eb;
  135. }
  136. /* loop around taking references on and locking the root node of the
  137. * tree until you end up with a lock on the root. A locked buffer
  138. * is returned, with a reference held.
  139. */
  140. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  141. {
  142. struct extent_buffer *eb;
  143. while (1) {
  144. eb = btrfs_root_node(root);
  145. btrfs_tree_lock(eb);
  146. spin_lock(&root->node_lock);
  147. if (eb == root->node) {
  148. spin_unlock(&root->node_lock);
  149. break;
  150. }
  151. spin_unlock(&root->node_lock);
  152. btrfs_tree_unlock(eb);
  153. free_extent_buffer(eb);
  154. }
  155. return eb;
  156. }
  157. /* cowonly root (everything not a reference counted cow subvolume), just get
  158. * put onto a simple dirty list. transaction.c walks this to make sure they
  159. * get properly updated on disk.
  160. */
  161. static void add_root_to_dirty_list(struct btrfs_root *root)
  162. {
  163. if (root->track_dirty && list_empty(&root->dirty_list)) {
  164. list_add(&root->dirty_list,
  165. &root->fs_info->dirty_cowonly_roots);
  166. }
  167. }
  168. /*
  169. * used by snapshot creation to make a copy of a root for a tree with
  170. * a given objectid. The buffer with the new root node is returned in
  171. * cow_ret, and this func returns zero on success or a negative error code.
  172. */
  173. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  174. struct btrfs_root *root,
  175. struct extent_buffer *buf,
  176. struct extent_buffer **cow_ret, u64 new_root_objectid)
  177. {
  178. struct extent_buffer *cow;
  179. u32 nritems;
  180. int ret = 0;
  181. int level;
  182. struct btrfs_root *new_root;
  183. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  184. if (!new_root)
  185. return -ENOMEM;
  186. memcpy(new_root, root, sizeof(*new_root));
  187. new_root->root_key.objectid = new_root_objectid;
  188. WARN_ON(root->ref_cows && trans->transid !=
  189. root->fs_info->running_transaction->transid);
  190. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  191. level = btrfs_header_level(buf);
  192. nritems = btrfs_header_nritems(buf);
  193. cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
  194. new_root_objectid, trans->transid,
  195. level, buf->start, 0);
  196. if (IS_ERR(cow)) {
  197. kfree(new_root);
  198. return PTR_ERR(cow);
  199. }
  200. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  201. btrfs_set_header_bytenr(cow, cow->start);
  202. btrfs_set_header_generation(cow, trans->transid);
  203. btrfs_set_header_owner(cow, new_root_objectid);
  204. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  205. write_extent_buffer(cow, root->fs_info->fsid,
  206. (unsigned long)btrfs_header_fsid(cow),
  207. BTRFS_FSID_SIZE);
  208. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  209. ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
  210. kfree(new_root);
  211. if (ret)
  212. return ret;
  213. btrfs_mark_buffer_dirty(cow);
  214. *cow_ret = cow;
  215. return 0;
  216. }
  217. /*
  218. * does the dirty work in cow of a single block. The parent block (if
  219. * supplied) is updated to point to the new cow copy. The new buffer is marked
  220. * dirty and returned locked. If you modify the block it needs to be marked
  221. * dirty again.
  222. *
  223. * search_start -- an allocation hint for the new block
  224. *
  225. * empty_size -- a hint that you plan on doing more cow. This is the size in
  226. * bytes the allocator should try to find free next to the block it returns.
  227. * This is just a hint and may be ignored by the allocator.
  228. */
  229. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  230. struct btrfs_root *root,
  231. struct extent_buffer *buf,
  232. struct extent_buffer *parent, int parent_slot,
  233. struct extent_buffer **cow_ret,
  234. u64 search_start, u64 empty_size)
  235. {
  236. u64 parent_start;
  237. struct extent_buffer *cow;
  238. u32 nritems;
  239. int ret = 0;
  240. int level;
  241. int unlock_orig = 0;
  242. if (*cow_ret == buf)
  243. unlock_orig = 1;
  244. btrfs_assert_tree_locked(buf);
  245. if (parent)
  246. parent_start = parent->start;
  247. else
  248. parent_start = 0;
  249. WARN_ON(root->ref_cows && trans->transid !=
  250. root->fs_info->running_transaction->transid);
  251. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  252. level = btrfs_header_level(buf);
  253. nritems = btrfs_header_nritems(buf);
  254. cow = btrfs_alloc_free_block(trans, root, buf->len,
  255. parent_start, root->root_key.objectid,
  256. trans->transid, level,
  257. search_start, empty_size);
  258. if (IS_ERR(cow))
  259. return PTR_ERR(cow);
  260. /* cow is set to blocking by btrfs_init_new_buffer */
  261. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  262. btrfs_set_header_bytenr(cow, cow->start);
  263. btrfs_set_header_generation(cow, trans->transid);
  264. btrfs_set_header_owner(cow, root->root_key.objectid);
  265. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  266. write_extent_buffer(cow, root->fs_info->fsid,
  267. (unsigned long)btrfs_header_fsid(cow),
  268. BTRFS_FSID_SIZE);
  269. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  270. if (btrfs_header_generation(buf) != trans->transid) {
  271. u32 nr_extents;
  272. ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
  273. if (ret)
  274. return ret;
  275. ret = btrfs_cache_ref(trans, root, buf, nr_extents);
  276. WARN_ON(ret);
  277. } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
  278. /*
  279. * There are only two places that can drop reference to
  280. * tree blocks owned by living reloc trees, one is here,
  281. * the other place is btrfs_drop_subtree. In both places,
  282. * we check reference count while tree block is locked.
  283. * Furthermore, if reference count is one, it won't get
  284. * increased by someone else.
  285. */
  286. u32 refs;
  287. ret = btrfs_lookup_extent_ref(trans, root, buf->start,
  288. buf->len, &refs);
  289. BUG_ON(ret);
  290. if (refs == 1) {
  291. ret = btrfs_update_ref(trans, root, buf, cow,
  292. 0, nritems);
  293. clean_tree_block(trans, root, buf);
  294. } else {
  295. ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
  296. }
  297. BUG_ON(ret);
  298. } else {
  299. ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
  300. if (ret)
  301. return ret;
  302. clean_tree_block(trans, root, buf);
  303. }
  304. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  305. ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
  306. WARN_ON(ret);
  307. }
  308. if (buf == root->node) {
  309. WARN_ON(parent && parent != buf);
  310. spin_lock(&root->node_lock);
  311. root->node = cow;
  312. extent_buffer_get(cow);
  313. spin_unlock(&root->node_lock);
  314. if (buf != root->commit_root) {
  315. btrfs_free_extent(trans, root, buf->start,
  316. buf->len, buf->start,
  317. root->root_key.objectid,
  318. btrfs_header_generation(buf),
  319. level, 1);
  320. }
  321. free_extent_buffer(buf);
  322. add_root_to_dirty_list(root);
  323. } else {
  324. btrfs_set_node_blockptr(parent, parent_slot,
  325. cow->start);
  326. WARN_ON(trans->transid == 0);
  327. btrfs_set_node_ptr_generation(parent, parent_slot,
  328. trans->transid);
  329. btrfs_mark_buffer_dirty(parent);
  330. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  331. btrfs_free_extent(trans, root, buf->start, buf->len,
  332. parent_start, btrfs_header_owner(parent),
  333. btrfs_header_generation(parent), level, 1);
  334. }
  335. if (unlock_orig)
  336. btrfs_tree_unlock(buf);
  337. free_extent_buffer(buf);
  338. btrfs_mark_buffer_dirty(cow);
  339. *cow_ret = cow;
  340. return 0;
  341. }
  342. /*
  343. * cows a single block, see __btrfs_cow_block for the real work.
  344. * This version of it has extra checks so that a block isn't cow'd more than
  345. * once per transaction, as long as it hasn't been written yet
  346. */
  347. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  348. struct btrfs_root *root, struct extent_buffer *buf,
  349. struct extent_buffer *parent, int parent_slot,
  350. struct extent_buffer **cow_ret)
  351. {
  352. u64 search_start;
  353. int ret;
  354. if (trans->transaction != root->fs_info->running_transaction) {
  355. printk(KERN_CRIT "trans %llu running %llu\n",
  356. (unsigned long long)trans->transid,
  357. (unsigned long long)
  358. root->fs_info->running_transaction->transid);
  359. WARN_ON(1);
  360. }
  361. if (trans->transid != root->fs_info->generation) {
  362. printk(KERN_CRIT "trans %llu running %llu\n",
  363. (unsigned long long)trans->transid,
  364. (unsigned long long)root->fs_info->generation);
  365. WARN_ON(1);
  366. }
  367. if (btrfs_header_generation(buf) == trans->transid &&
  368. btrfs_header_owner(buf) == root->root_key.objectid &&
  369. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  370. *cow_ret = buf;
  371. return 0;
  372. }
  373. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  374. if (parent)
  375. btrfs_set_lock_blocking(parent);
  376. btrfs_set_lock_blocking(buf);
  377. ret = __btrfs_cow_block(trans, root, buf, parent,
  378. parent_slot, cow_ret, search_start, 0);
  379. return ret;
  380. }
  381. /*
  382. * helper function for defrag to decide if two blocks pointed to by a
  383. * node are actually close by
  384. */
  385. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  386. {
  387. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  388. return 1;
  389. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  390. return 1;
  391. return 0;
  392. }
  393. /*
  394. * compare two keys in a memcmp fashion
  395. */
  396. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  397. {
  398. struct btrfs_key k1;
  399. btrfs_disk_key_to_cpu(&k1, disk);
  400. if (k1.objectid > k2->objectid)
  401. return 1;
  402. if (k1.objectid < k2->objectid)
  403. return -1;
  404. if (k1.type > k2->type)
  405. return 1;
  406. if (k1.type < k2->type)
  407. return -1;
  408. if (k1.offset > k2->offset)
  409. return 1;
  410. if (k1.offset < k2->offset)
  411. return -1;
  412. return 0;
  413. }
  414. /*
  415. * same as comp_keys only with two btrfs_key's
  416. */
  417. static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  418. {
  419. if (k1->objectid > k2->objectid)
  420. return 1;
  421. if (k1->objectid < k2->objectid)
  422. return -1;
  423. if (k1->type > k2->type)
  424. return 1;
  425. if (k1->type < k2->type)
  426. return -1;
  427. if (k1->offset > k2->offset)
  428. return 1;
  429. if (k1->offset < k2->offset)
  430. return -1;
  431. return 0;
  432. }
  433. /*
  434. * this is used by the defrag code to go through all the
  435. * leaves pointed to by a node and reallocate them so that
  436. * disk order is close to key order
  437. */
  438. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  439. struct btrfs_root *root, struct extent_buffer *parent,
  440. int start_slot, int cache_only, u64 *last_ret,
  441. struct btrfs_key *progress)
  442. {
  443. struct extent_buffer *cur;
  444. u64 blocknr;
  445. u64 gen;
  446. u64 search_start = *last_ret;
  447. u64 last_block = 0;
  448. u64 other;
  449. u32 parent_nritems;
  450. int end_slot;
  451. int i;
  452. int err = 0;
  453. int parent_level;
  454. int uptodate;
  455. u32 blocksize;
  456. int progress_passed = 0;
  457. struct btrfs_disk_key disk_key;
  458. parent_level = btrfs_header_level(parent);
  459. if (cache_only && parent_level != 1)
  460. return 0;
  461. if (trans->transaction != root->fs_info->running_transaction)
  462. WARN_ON(1);
  463. if (trans->transid != root->fs_info->generation)
  464. WARN_ON(1);
  465. parent_nritems = btrfs_header_nritems(parent);
  466. blocksize = btrfs_level_size(root, parent_level - 1);
  467. end_slot = parent_nritems;
  468. if (parent_nritems == 1)
  469. return 0;
  470. btrfs_set_lock_blocking(parent);
  471. for (i = start_slot; i < end_slot; i++) {
  472. int close = 1;
  473. if (!parent->map_token) {
  474. map_extent_buffer(parent,
  475. btrfs_node_key_ptr_offset(i),
  476. sizeof(struct btrfs_key_ptr),
  477. &parent->map_token, &parent->kaddr,
  478. &parent->map_start, &parent->map_len,
  479. KM_USER1);
  480. }
  481. btrfs_node_key(parent, &disk_key, i);
  482. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  483. continue;
  484. progress_passed = 1;
  485. blocknr = btrfs_node_blockptr(parent, i);
  486. gen = btrfs_node_ptr_generation(parent, i);
  487. if (last_block == 0)
  488. last_block = blocknr;
  489. if (i > 0) {
  490. other = btrfs_node_blockptr(parent, i - 1);
  491. close = close_blocks(blocknr, other, blocksize);
  492. }
  493. if (!close && i < end_slot - 2) {
  494. other = btrfs_node_blockptr(parent, i + 1);
  495. close = close_blocks(blocknr, other, blocksize);
  496. }
  497. if (close) {
  498. last_block = blocknr;
  499. continue;
  500. }
  501. if (parent->map_token) {
  502. unmap_extent_buffer(parent, parent->map_token,
  503. KM_USER1);
  504. parent->map_token = NULL;
  505. }
  506. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  507. if (cur)
  508. uptodate = btrfs_buffer_uptodate(cur, gen);
  509. else
  510. uptodate = 0;
  511. if (!cur || !uptodate) {
  512. if (cache_only) {
  513. free_extent_buffer(cur);
  514. continue;
  515. }
  516. if (!cur) {
  517. cur = read_tree_block(root, blocknr,
  518. blocksize, gen);
  519. } else if (!uptodate) {
  520. btrfs_read_buffer(cur, gen);
  521. }
  522. }
  523. if (search_start == 0)
  524. search_start = last_block;
  525. btrfs_tree_lock(cur);
  526. btrfs_set_lock_blocking(cur);
  527. err = __btrfs_cow_block(trans, root, cur, parent, i,
  528. &cur, search_start,
  529. min(16 * blocksize,
  530. (end_slot - i) * blocksize));
  531. if (err) {
  532. btrfs_tree_unlock(cur);
  533. free_extent_buffer(cur);
  534. break;
  535. }
  536. search_start = cur->start;
  537. last_block = cur->start;
  538. *last_ret = search_start;
  539. btrfs_tree_unlock(cur);
  540. free_extent_buffer(cur);
  541. }
  542. if (parent->map_token) {
  543. unmap_extent_buffer(parent, parent->map_token,
  544. KM_USER1);
  545. parent->map_token = NULL;
  546. }
  547. return err;
  548. }
  549. /*
  550. * The leaf data grows from end-to-front in the node.
  551. * this returns the address of the start of the last item,
  552. * which is the stop of the leaf data stack
  553. */
  554. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  555. struct extent_buffer *leaf)
  556. {
  557. u32 nr = btrfs_header_nritems(leaf);
  558. if (nr == 0)
  559. return BTRFS_LEAF_DATA_SIZE(root);
  560. return btrfs_item_offset_nr(leaf, nr - 1);
  561. }
  562. /*
  563. * extra debugging checks to make sure all the items in a key are
  564. * well formed and in the proper order
  565. */
  566. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  567. int level)
  568. {
  569. struct extent_buffer *parent = NULL;
  570. struct extent_buffer *node = path->nodes[level];
  571. struct btrfs_disk_key parent_key;
  572. struct btrfs_disk_key node_key;
  573. int parent_slot;
  574. int slot;
  575. struct btrfs_key cpukey;
  576. u32 nritems = btrfs_header_nritems(node);
  577. if (path->nodes[level + 1])
  578. parent = path->nodes[level + 1];
  579. slot = path->slots[level];
  580. BUG_ON(nritems == 0);
  581. if (parent) {
  582. parent_slot = path->slots[level + 1];
  583. btrfs_node_key(parent, &parent_key, parent_slot);
  584. btrfs_node_key(node, &node_key, 0);
  585. BUG_ON(memcmp(&parent_key, &node_key,
  586. sizeof(struct btrfs_disk_key)));
  587. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  588. btrfs_header_bytenr(node));
  589. }
  590. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  591. if (slot != 0) {
  592. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  593. btrfs_node_key(node, &node_key, slot);
  594. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  595. }
  596. if (slot < nritems - 1) {
  597. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  598. btrfs_node_key(node, &node_key, slot);
  599. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  600. }
  601. return 0;
  602. }
  603. /*
  604. * extra checking to make sure all the items in a leaf are
  605. * well formed and in the proper order
  606. */
  607. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  608. int level)
  609. {
  610. struct extent_buffer *leaf = path->nodes[level];
  611. struct extent_buffer *parent = NULL;
  612. int parent_slot;
  613. struct btrfs_key cpukey;
  614. struct btrfs_disk_key parent_key;
  615. struct btrfs_disk_key leaf_key;
  616. int slot = path->slots[0];
  617. u32 nritems = btrfs_header_nritems(leaf);
  618. if (path->nodes[level + 1])
  619. parent = path->nodes[level + 1];
  620. if (nritems == 0)
  621. return 0;
  622. if (parent) {
  623. parent_slot = path->slots[level + 1];
  624. btrfs_node_key(parent, &parent_key, parent_slot);
  625. btrfs_item_key(leaf, &leaf_key, 0);
  626. BUG_ON(memcmp(&parent_key, &leaf_key,
  627. sizeof(struct btrfs_disk_key)));
  628. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  629. btrfs_header_bytenr(leaf));
  630. }
  631. if (slot != 0 && slot < nritems - 1) {
  632. btrfs_item_key(leaf, &leaf_key, slot);
  633. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  634. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  635. btrfs_print_leaf(root, leaf);
  636. printk(KERN_CRIT "slot %d offset bad key\n", slot);
  637. BUG_ON(1);
  638. }
  639. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  640. btrfs_item_end_nr(leaf, slot)) {
  641. btrfs_print_leaf(root, leaf);
  642. printk(KERN_CRIT "slot %d offset bad\n", slot);
  643. BUG_ON(1);
  644. }
  645. }
  646. if (slot < nritems - 1) {
  647. btrfs_item_key(leaf, &leaf_key, slot);
  648. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  649. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  650. if (btrfs_item_offset_nr(leaf, slot) !=
  651. btrfs_item_end_nr(leaf, slot + 1)) {
  652. btrfs_print_leaf(root, leaf);
  653. printk(KERN_CRIT "slot %d offset bad\n", slot);
  654. BUG_ON(1);
  655. }
  656. }
  657. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  658. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  659. return 0;
  660. }
  661. static noinline int check_block(struct btrfs_root *root,
  662. struct btrfs_path *path, int level)
  663. {
  664. return 0;
  665. if (level == 0)
  666. return check_leaf(root, path, level);
  667. return check_node(root, path, level);
  668. }
  669. /*
  670. * search for key in the extent_buffer. The items start at offset p,
  671. * and they are item_size apart. There are 'max' items in p.
  672. *
  673. * the slot in the array is returned via slot, and it points to
  674. * the place where you would insert key if it is not found in
  675. * the array.
  676. *
  677. * slot may point to max if the key is bigger than all of the keys
  678. */
  679. static noinline int generic_bin_search(struct extent_buffer *eb,
  680. unsigned long p,
  681. int item_size, struct btrfs_key *key,
  682. int max, int *slot)
  683. {
  684. int low = 0;
  685. int high = max;
  686. int mid;
  687. int ret;
  688. struct btrfs_disk_key *tmp = NULL;
  689. struct btrfs_disk_key unaligned;
  690. unsigned long offset;
  691. char *map_token = NULL;
  692. char *kaddr = NULL;
  693. unsigned long map_start = 0;
  694. unsigned long map_len = 0;
  695. int err;
  696. while (low < high) {
  697. mid = (low + high) / 2;
  698. offset = p + mid * item_size;
  699. if (!map_token || offset < map_start ||
  700. (offset + sizeof(struct btrfs_disk_key)) >
  701. map_start + map_len) {
  702. if (map_token) {
  703. unmap_extent_buffer(eb, map_token, KM_USER0);
  704. map_token = NULL;
  705. }
  706. err = map_private_extent_buffer(eb, offset,
  707. sizeof(struct btrfs_disk_key),
  708. &map_token, &kaddr,
  709. &map_start, &map_len, KM_USER0);
  710. if (!err) {
  711. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  712. map_start);
  713. } else {
  714. read_extent_buffer(eb, &unaligned,
  715. offset, sizeof(unaligned));
  716. tmp = &unaligned;
  717. }
  718. } else {
  719. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  720. map_start);
  721. }
  722. ret = comp_keys(tmp, key);
  723. if (ret < 0)
  724. low = mid + 1;
  725. else if (ret > 0)
  726. high = mid;
  727. else {
  728. *slot = mid;
  729. if (map_token)
  730. unmap_extent_buffer(eb, map_token, KM_USER0);
  731. return 0;
  732. }
  733. }
  734. *slot = low;
  735. if (map_token)
  736. unmap_extent_buffer(eb, map_token, KM_USER0);
  737. return 1;
  738. }
  739. /*
  740. * simple bin_search frontend that does the right thing for
  741. * leaves vs nodes
  742. */
  743. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  744. int level, int *slot)
  745. {
  746. if (level == 0) {
  747. return generic_bin_search(eb,
  748. offsetof(struct btrfs_leaf, items),
  749. sizeof(struct btrfs_item),
  750. key, btrfs_header_nritems(eb),
  751. slot);
  752. } else {
  753. return generic_bin_search(eb,
  754. offsetof(struct btrfs_node, ptrs),
  755. sizeof(struct btrfs_key_ptr),
  756. key, btrfs_header_nritems(eb),
  757. slot);
  758. }
  759. return -1;
  760. }
  761. /* given a node and slot number, this reads the blocks it points to. The
  762. * extent buffer is returned with a reference taken (but unlocked).
  763. * NULL is returned on error.
  764. */
  765. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  766. struct extent_buffer *parent, int slot)
  767. {
  768. int level = btrfs_header_level(parent);
  769. if (slot < 0)
  770. return NULL;
  771. if (slot >= btrfs_header_nritems(parent))
  772. return NULL;
  773. BUG_ON(level == 0);
  774. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  775. btrfs_level_size(root, level - 1),
  776. btrfs_node_ptr_generation(parent, slot));
  777. }
  778. /*
  779. * node level balancing, used to make sure nodes are in proper order for
  780. * item deletion. We balance from the top down, so we have to make sure
  781. * that a deletion won't leave an node completely empty later on.
  782. */
  783. static noinline int balance_level(struct btrfs_trans_handle *trans,
  784. struct btrfs_root *root,
  785. struct btrfs_path *path, int level)
  786. {
  787. struct extent_buffer *right = NULL;
  788. struct extent_buffer *mid;
  789. struct extent_buffer *left = NULL;
  790. struct extent_buffer *parent = NULL;
  791. int ret = 0;
  792. int wret;
  793. int pslot;
  794. int orig_slot = path->slots[level];
  795. int err_on_enospc = 0;
  796. u64 orig_ptr;
  797. if (level == 0)
  798. return 0;
  799. mid = path->nodes[level];
  800. WARN_ON(!path->locks[level]);
  801. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  802. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  803. if (level < BTRFS_MAX_LEVEL - 1)
  804. parent = path->nodes[level + 1];
  805. pslot = path->slots[level + 1];
  806. /*
  807. * deal with the case where there is only one pointer in the root
  808. * by promoting the node below to a root
  809. */
  810. if (!parent) {
  811. struct extent_buffer *child;
  812. if (btrfs_header_nritems(mid) != 1)
  813. return 0;
  814. /* promote the child to a root */
  815. child = read_node_slot(root, mid, 0);
  816. BUG_ON(!child);
  817. btrfs_tree_lock(child);
  818. btrfs_set_lock_blocking(child);
  819. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  820. BUG_ON(ret);
  821. spin_lock(&root->node_lock);
  822. root->node = child;
  823. spin_unlock(&root->node_lock);
  824. ret = btrfs_update_extent_ref(trans, root, child->start,
  825. child->len,
  826. mid->start, child->start,
  827. root->root_key.objectid,
  828. trans->transid, level - 1);
  829. BUG_ON(ret);
  830. add_root_to_dirty_list(root);
  831. btrfs_tree_unlock(child);
  832. path->locks[level] = 0;
  833. path->nodes[level] = NULL;
  834. clean_tree_block(trans, root, mid);
  835. btrfs_tree_unlock(mid);
  836. /* once for the path */
  837. free_extent_buffer(mid);
  838. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  839. mid->start, root->root_key.objectid,
  840. btrfs_header_generation(mid),
  841. level, 1);
  842. /* once for the root ptr */
  843. free_extent_buffer(mid);
  844. return ret;
  845. }
  846. if (btrfs_header_nritems(mid) >
  847. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  848. return 0;
  849. if (trans->transaction->delayed_refs.flushing &&
  850. btrfs_header_nritems(mid) > 2)
  851. return 0;
  852. if (btrfs_header_nritems(mid) < 2)
  853. err_on_enospc = 1;
  854. left = read_node_slot(root, parent, pslot - 1);
  855. if (left) {
  856. btrfs_tree_lock(left);
  857. btrfs_set_lock_blocking(left);
  858. wret = btrfs_cow_block(trans, root, left,
  859. parent, pslot - 1, &left);
  860. if (wret) {
  861. ret = wret;
  862. goto enospc;
  863. }
  864. }
  865. right = read_node_slot(root, parent, pslot + 1);
  866. if (right) {
  867. btrfs_tree_lock(right);
  868. btrfs_set_lock_blocking(right);
  869. wret = btrfs_cow_block(trans, root, right,
  870. parent, pslot + 1, &right);
  871. if (wret) {
  872. ret = wret;
  873. goto enospc;
  874. }
  875. }
  876. /* first, try to make some room in the middle buffer */
  877. if (left) {
  878. orig_slot += btrfs_header_nritems(left);
  879. wret = push_node_left(trans, root, left, mid, 1);
  880. if (wret < 0)
  881. ret = wret;
  882. if (btrfs_header_nritems(mid) < 2)
  883. err_on_enospc = 1;
  884. }
  885. /*
  886. * then try to empty the right most buffer into the middle
  887. */
  888. if (right) {
  889. wret = push_node_left(trans, root, mid, right, 1);
  890. if (wret < 0 && wret != -ENOSPC)
  891. ret = wret;
  892. if (btrfs_header_nritems(right) == 0) {
  893. u64 bytenr = right->start;
  894. u64 generation = btrfs_header_generation(parent);
  895. u32 blocksize = right->len;
  896. clean_tree_block(trans, root, right);
  897. btrfs_tree_unlock(right);
  898. free_extent_buffer(right);
  899. right = NULL;
  900. wret = del_ptr(trans, root, path, level + 1, pslot +
  901. 1);
  902. if (wret)
  903. ret = wret;
  904. wret = btrfs_free_extent(trans, root, bytenr,
  905. blocksize, parent->start,
  906. btrfs_header_owner(parent),
  907. generation, level, 1);
  908. if (wret)
  909. ret = wret;
  910. } else {
  911. struct btrfs_disk_key right_key;
  912. btrfs_node_key(right, &right_key, 0);
  913. btrfs_set_node_key(parent, &right_key, pslot + 1);
  914. btrfs_mark_buffer_dirty(parent);
  915. }
  916. }
  917. if (btrfs_header_nritems(mid) == 1) {
  918. /*
  919. * we're not allowed to leave a node with one item in the
  920. * tree during a delete. A deletion from lower in the tree
  921. * could try to delete the only pointer in this node.
  922. * So, pull some keys from the left.
  923. * There has to be a left pointer at this point because
  924. * otherwise we would have pulled some pointers from the
  925. * right
  926. */
  927. BUG_ON(!left);
  928. wret = balance_node_right(trans, root, mid, left);
  929. if (wret < 0) {
  930. ret = wret;
  931. goto enospc;
  932. }
  933. if (wret == 1) {
  934. wret = push_node_left(trans, root, left, mid, 1);
  935. if (wret < 0)
  936. ret = wret;
  937. }
  938. BUG_ON(wret == 1);
  939. }
  940. if (btrfs_header_nritems(mid) == 0) {
  941. /* we've managed to empty the middle node, drop it */
  942. u64 root_gen = btrfs_header_generation(parent);
  943. u64 bytenr = mid->start;
  944. u32 blocksize = mid->len;
  945. clean_tree_block(trans, root, mid);
  946. btrfs_tree_unlock(mid);
  947. free_extent_buffer(mid);
  948. mid = NULL;
  949. wret = del_ptr(trans, root, path, level + 1, pslot);
  950. if (wret)
  951. ret = wret;
  952. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  953. parent->start,
  954. btrfs_header_owner(parent),
  955. root_gen, level, 1);
  956. if (wret)
  957. ret = wret;
  958. } else {
  959. /* update the parent key to reflect our changes */
  960. struct btrfs_disk_key mid_key;
  961. btrfs_node_key(mid, &mid_key, 0);
  962. btrfs_set_node_key(parent, &mid_key, pslot);
  963. btrfs_mark_buffer_dirty(parent);
  964. }
  965. /* update the path */
  966. if (left) {
  967. if (btrfs_header_nritems(left) > orig_slot) {
  968. extent_buffer_get(left);
  969. /* left was locked after cow */
  970. path->nodes[level] = left;
  971. path->slots[level + 1] -= 1;
  972. path->slots[level] = orig_slot;
  973. if (mid) {
  974. btrfs_tree_unlock(mid);
  975. free_extent_buffer(mid);
  976. }
  977. } else {
  978. orig_slot -= btrfs_header_nritems(left);
  979. path->slots[level] = orig_slot;
  980. }
  981. }
  982. /* double check we haven't messed things up */
  983. check_block(root, path, level);
  984. if (orig_ptr !=
  985. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  986. BUG();
  987. enospc:
  988. if (right) {
  989. btrfs_tree_unlock(right);
  990. free_extent_buffer(right);
  991. }
  992. if (left) {
  993. if (path->nodes[level] != left)
  994. btrfs_tree_unlock(left);
  995. free_extent_buffer(left);
  996. }
  997. return ret;
  998. }
  999. /* Node balancing for insertion. Here we only split or push nodes around
  1000. * when they are completely full. This is also done top down, so we
  1001. * have to be pessimistic.
  1002. */
  1003. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1004. struct btrfs_root *root,
  1005. struct btrfs_path *path, int level)
  1006. {
  1007. struct extent_buffer *right = NULL;
  1008. struct extent_buffer *mid;
  1009. struct extent_buffer *left = NULL;
  1010. struct extent_buffer *parent = NULL;
  1011. int ret = 0;
  1012. int wret;
  1013. int pslot;
  1014. int orig_slot = path->slots[level];
  1015. u64 orig_ptr;
  1016. if (level == 0)
  1017. return 1;
  1018. mid = path->nodes[level];
  1019. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1020. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1021. if (level < BTRFS_MAX_LEVEL - 1)
  1022. parent = path->nodes[level + 1];
  1023. pslot = path->slots[level + 1];
  1024. if (!parent)
  1025. return 1;
  1026. left = read_node_slot(root, parent, pslot - 1);
  1027. /* first, try to make some room in the middle buffer */
  1028. if (left) {
  1029. u32 left_nr;
  1030. btrfs_tree_lock(left);
  1031. btrfs_set_lock_blocking(left);
  1032. left_nr = btrfs_header_nritems(left);
  1033. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1034. wret = 1;
  1035. } else {
  1036. ret = btrfs_cow_block(trans, root, left, parent,
  1037. pslot - 1, &left);
  1038. if (ret)
  1039. wret = 1;
  1040. else {
  1041. wret = push_node_left(trans, root,
  1042. left, mid, 0);
  1043. }
  1044. }
  1045. if (wret < 0)
  1046. ret = wret;
  1047. if (wret == 0) {
  1048. struct btrfs_disk_key disk_key;
  1049. orig_slot += left_nr;
  1050. btrfs_node_key(mid, &disk_key, 0);
  1051. btrfs_set_node_key(parent, &disk_key, pslot);
  1052. btrfs_mark_buffer_dirty(parent);
  1053. if (btrfs_header_nritems(left) > orig_slot) {
  1054. path->nodes[level] = left;
  1055. path->slots[level + 1] -= 1;
  1056. path->slots[level] = orig_slot;
  1057. btrfs_tree_unlock(mid);
  1058. free_extent_buffer(mid);
  1059. } else {
  1060. orig_slot -=
  1061. btrfs_header_nritems(left);
  1062. path->slots[level] = orig_slot;
  1063. btrfs_tree_unlock(left);
  1064. free_extent_buffer(left);
  1065. }
  1066. return 0;
  1067. }
  1068. btrfs_tree_unlock(left);
  1069. free_extent_buffer(left);
  1070. }
  1071. right = read_node_slot(root, parent, pslot + 1);
  1072. /*
  1073. * then try to empty the right most buffer into the middle
  1074. */
  1075. if (right) {
  1076. u32 right_nr;
  1077. btrfs_tree_lock(right);
  1078. btrfs_set_lock_blocking(right);
  1079. right_nr = btrfs_header_nritems(right);
  1080. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1081. wret = 1;
  1082. } else {
  1083. ret = btrfs_cow_block(trans, root, right,
  1084. parent, pslot + 1,
  1085. &right);
  1086. if (ret)
  1087. wret = 1;
  1088. else {
  1089. wret = balance_node_right(trans, root,
  1090. right, mid);
  1091. }
  1092. }
  1093. if (wret < 0)
  1094. ret = wret;
  1095. if (wret == 0) {
  1096. struct btrfs_disk_key disk_key;
  1097. btrfs_node_key(right, &disk_key, 0);
  1098. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1099. btrfs_mark_buffer_dirty(parent);
  1100. if (btrfs_header_nritems(mid) <= orig_slot) {
  1101. path->nodes[level] = right;
  1102. path->slots[level + 1] += 1;
  1103. path->slots[level] = orig_slot -
  1104. btrfs_header_nritems(mid);
  1105. btrfs_tree_unlock(mid);
  1106. free_extent_buffer(mid);
  1107. } else {
  1108. btrfs_tree_unlock(right);
  1109. free_extent_buffer(right);
  1110. }
  1111. return 0;
  1112. }
  1113. btrfs_tree_unlock(right);
  1114. free_extent_buffer(right);
  1115. }
  1116. return 1;
  1117. }
  1118. /*
  1119. * readahead one full node of leaves, finding things that are close
  1120. * to the block in 'slot', and triggering ra on them.
  1121. */
  1122. static void reada_for_search(struct btrfs_root *root,
  1123. struct btrfs_path *path,
  1124. int level, int slot, u64 objectid)
  1125. {
  1126. struct extent_buffer *node;
  1127. struct btrfs_disk_key disk_key;
  1128. u32 nritems;
  1129. u64 search;
  1130. u64 target;
  1131. u64 nread = 0;
  1132. int direction = path->reada;
  1133. struct extent_buffer *eb;
  1134. u32 nr;
  1135. u32 blocksize;
  1136. u32 nscan = 0;
  1137. if (level != 1)
  1138. return;
  1139. if (!path->nodes[level])
  1140. return;
  1141. node = path->nodes[level];
  1142. search = btrfs_node_blockptr(node, slot);
  1143. blocksize = btrfs_level_size(root, level - 1);
  1144. eb = btrfs_find_tree_block(root, search, blocksize);
  1145. if (eb) {
  1146. free_extent_buffer(eb);
  1147. return;
  1148. }
  1149. target = search;
  1150. nritems = btrfs_header_nritems(node);
  1151. nr = slot;
  1152. while (1) {
  1153. if (direction < 0) {
  1154. if (nr == 0)
  1155. break;
  1156. nr--;
  1157. } else if (direction > 0) {
  1158. nr++;
  1159. if (nr >= nritems)
  1160. break;
  1161. }
  1162. if (path->reada < 0 && objectid) {
  1163. btrfs_node_key(node, &disk_key, nr);
  1164. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1165. break;
  1166. }
  1167. search = btrfs_node_blockptr(node, nr);
  1168. if ((search <= target && target - search <= 65536) ||
  1169. (search > target && search - target <= 65536)) {
  1170. readahead_tree_block(root, search, blocksize,
  1171. btrfs_node_ptr_generation(node, nr));
  1172. nread += blocksize;
  1173. }
  1174. nscan++;
  1175. if ((nread > 65536 || nscan > 32))
  1176. break;
  1177. }
  1178. }
  1179. /*
  1180. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1181. * cache
  1182. */
  1183. static noinline int reada_for_balance(struct btrfs_root *root,
  1184. struct btrfs_path *path, int level)
  1185. {
  1186. int slot;
  1187. int nritems;
  1188. struct extent_buffer *parent;
  1189. struct extent_buffer *eb;
  1190. u64 gen;
  1191. u64 block1 = 0;
  1192. u64 block2 = 0;
  1193. int ret = 0;
  1194. int blocksize;
  1195. parent = path->nodes[level - 1];
  1196. if (!parent)
  1197. return 0;
  1198. nritems = btrfs_header_nritems(parent);
  1199. slot = path->slots[level];
  1200. blocksize = btrfs_level_size(root, level);
  1201. if (slot > 0) {
  1202. block1 = btrfs_node_blockptr(parent, slot - 1);
  1203. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1204. eb = btrfs_find_tree_block(root, block1, blocksize);
  1205. if (eb && btrfs_buffer_uptodate(eb, gen))
  1206. block1 = 0;
  1207. free_extent_buffer(eb);
  1208. }
  1209. if (slot < nritems) {
  1210. block2 = btrfs_node_blockptr(parent, slot + 1);
  1211. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1212. eb = btrfs_find_tree_block(root, block2, blocksize);
  1213. if (eb && btrfs_buffer_uptodate(eb, gen))
  1214. block2 = 0;
  1215. free_extent_buffer(eb);
  1216. }
  1217. if (block1 || block2) {
  1218. ret = -EAGAIN;
  1219. btrfs_release_path(root, path);
  1220. if (block1)
  1221. readahead_tree_block(root, block1, blocksize, 0);
  1222. if (block2)
  1223. readahead_tree_block(root, block2, blocksize, 0);
  1224. if (block1) {
  1225. eb = read_tree_block(root, block1, blocksize, 0);
  1226. free_extent_buffer(eb);
  1227. }
  1228. if (block1) {
  1229. eb = read_tree_block(root, block2, blocksize, 0);
  1230. free_extent_buffer(eb);
  1231. }
  1232. }
  1233. return ret;
  1234. }
  1235. /*
  1236. * when we walk down the tree, it is usually safe to unlock the higher layers
  1237. * in the tree. The exceptions are when our path goes through slot 0, because
  1238. * operations on the tree might require changing key pointers higher up in the
  1239. * tree.
  1240. *
  1241. * callers might also have set path->keep_locks, which tells this code to keep
  1242. * the lock if the path points to the last slot in the block. This is part of
  1243. * walking through the tree, and selecting the next slot in the higher block.
  1244. *
  1245. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1246. * if lowest_unlock is 1, level 0 won't be unlocked
  1247. */
  1248. static noinline void unlock_up(struct btrfs_path *path, int level,
  1249. int lowest_unlock)
  1250. {
  1251. int i;
  1252. int skip_level = level;
  1253. int no_skips = 0;
  1254. struct extent_buffer *t;
  1255. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1256. if (!path->nodes[i])
  1257. break;
  1258. if (!path->locks[i])
  1259. break;
  1260. if (!no_skips && path->slots[i] == 0) {
  1261. skip_level = i + 1;
  1262. continue;
  1263. }
  1264. if (!no_skips && path->keep_locks) {
  1265. u32 nritems;
  1266. t = path->nodes[i];
  1267. nritems = btrfs_header_nritems(t);
  1268. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1269. skip_level = i + 1;
  1270. continue;
  1271. }
  1272. }
  1273. if (skip_level < i && i >= lowest_unlock)
  1274. no_skips = 1;
  1275. t = path->nodes[i];
  1276. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1277. btrfs_tree_unlock(t);
  1278. path->locks[i] = 0;
  1279. }
  1280. }
  1281. }
  1282. /*
  1283. * This releases any locks held in the path starting at level and
  1284. * going all the way up to the root.
  1285. *
  1286. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1287. * corner cases, such as COW of the block at slot zero in the node. This
  1288. * ignores those rules, and it should only be called when there are no
  1289. * more updates to be done higher up in the tree.
  1290. */
  1291. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1292. {
  1293. int i;
  1294. if (path->keep_locks || path->lowest_level)
  1295. return;
  1296. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1297. if (!path->nodes[i])
  1298. continue;
  1299. if (!path->locks[i])
  1300. continue;
  1301. btrfs_tree_unlock(path->nodes[i]);
  1302. path->locks[i] = 0;
  1303. }
  1304. }
  1305. /*
  1306. * helper function for btrfs_search_slot. The goal is to find a block
  1307. * in cache without setting the path to blocking. If we find the block
  1308. * we return zero and the path is unchanged.
  1309. *
  1310. * If we can't find the block, we set the path blocking and do some
  1311. * reada. -EAGAIN is returned and the search must be repeated.
  1312. */
  1313. static int
  1314. read_block_for_search(struct btrfs_trans_handle *trans,
  1315. struct btrfs_root *root, struct btrfs_path *p,
  1316. struct extent_buffer **eb_ret, int level, int slot,
  1317. struct btrfs_key *key)
  1318. {
  1319. u64 blocknr;
  1320. u64 gen;
  1321. u32 blocksize;
  1322. struct extent_buffer *b = *eb_ret;
  1323. struct extent_buffer *tmp;
  1324. blocknr = btrfs_node_blockptr(b, slot);
  1325. gen = btrfs_node_ptr_generation(b, slot);
  1326. blocksize = btrfs_level_size(root, level - 1);
  1327. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1328. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1329. *eb_ret = tmp;
  1330. return 0;
  1331. }
  1332. /*
  1333. * reduce lock contention at high levels
  1334. * of the btree by dropping locks before
  1335. * we read.
  1336. */
  1337. btrfs_release_path(NULL, p);
  1338. if (tmp)
  1339. free_extent_buffer(tmp);
  1340. if (p->reada)
  1341. reada_for_search(root, p, level, slot, key->objectid);
  1342. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1343. if (tmp)
  1344. free_extent_buffer(tmp);
  1345. return -EAGAIN;
  1346. }
  1347. /*
  1348. * helper function for btrfs_search_slot. This does all of the checks
  1349. * for node-level blocks and does any balancing required based on
  1350. * the ins_len.
  1351. *
  1352. * If no extra work was required, zero is returned. If we had to
  1353. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1354. * start over
  1355. */
  1356. static int
  1357. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1358. struct btrfs_root *root, struct btrfs_path *p,
  1359. struct extent_buffer *b, int level, int ins_len)
  1360. {
  1361. int ret;
  1362. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1363. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1364. int sret;
  1365. sret = reada_for_balance(root, p, level);
  1366. if (sret)
  1367. goto again;
  1368. btrfs_set_path_blocking(p);
  1369. sret = split_node(trans, root, p, level);
  1370. btrfs_clear_path_blocking(p, NULL);
  1371. BUG_ON(sret > 0);
  1372. if (sret) {
  1373. ret = sret;
  1374. goto done;
  1375. }
  1376. b = p->nodes[level];
  1377. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1378. BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
  1379. int sret;
  1380. sret = reada_for_balance(root, p, level);
  1381. if (sret)
  1382. goto again;
  1383. btrfs_set_path_blocking(p);
  1384. sret = balance_level(trans, root, p, level);
  1385. btrfs_clear_path_blocking(p, NULL);
  1386. if (sret) {
  1387. ret = sret;
  1388. goto done;
  1389. }
  1390. b = p->nodes[level];
  1391. if (!b) {
  1392. btrfs_release_path(NULL, p);
  1393. goto again;
  1394. }
  1395. BUG_ON(btrfs_header_nritems(b) == 1);
  1396. }
  1397. return 0;
  1398. again:
  1399. ret = -EAGAIN;
  1400. done:
  1401. return ret;
  1402. }
  1403. /*
  1404. * look for key in the tree. path is filled in with nodes along the way
  1405. * if key is found, we return zero and you can find the item in the leaf
  1406. * level of the path (level 0)
  1407. *
  1408. * If the key isn't found, the path points to the slot where it should
  1409. * be inserted, and 1 is returned. If there are other errors during the
  1410. * search a negative error number is returned.
  1411. *
  1412. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1413. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1414. * possible)
  1415. */
  1416. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1417. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1418. ins_len, int cow)
  1419. {
  1420. struct extent_buffer *b;
  1421. int slot;
  1422. int ret;
  1423. int level;
  1424. int lowest_unlock = 1;
  1425. u8 lowest_level = 0;
  1426. lowest_level = p->lowest_level;
  1427. WARN_ON(lowest_level && ins_len > 0);
  1428. WARN_ON(p->nodes[0] != NULL);
  1429. if (ins_len < 0)
  1430. lowest_unlock = 2;
  1431. again:
  1432. if (p->skip_locking)
  1433. b = btrfs_root_node(root);
  1434. else
  1435. b = btrfs_lock_root_node(root);
  1436. while (b) {
  1437. level = btrfs_header_level(b);
  1438. /*
  1439. * setup the path here so we can release it under lock
  1440. * contention with the cow code
  1441. */
  1442. p->nodes[level] = b;
  1443. if (!p->skip_locking)
  1444. p->locks[level] = 1;
  1445. if (cow) {
  1446. int wret;
  1447. /*
  1448. * if we don't really need to cow this block
  1449. * then we don't want to set the path blocking,
  1450. * so we test it here
  1451. */
  1452. if (btrfs_header_generation(b) == trans->transid &&
  1453. btrfs_header_owner(b) == root->root_key.objectid &&
  1454. !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
  1455. goto cow_done;
  1456. }
  1457. btrfs_set_path_blocking(p);
  1458. wret = btrfs_cow_block(trans, root, b,
  1459. p->nodes[level + 1],
  1460. p->slots[level + 1], &b);
  1461. if (wret) {
  1462. free_extent_buffer(b);
  1463. ret = wret;
  1464. goto done;
  1465. }
  1466. }
  1467. cow_done:
  1468. BUG_ON(!cow && ins_len);
  1469. if (level != btrfs_header_level(b))
  1470. WARN_ON(1);
  1471. level = btrfs_header_level(b);
  1472. p->nodes[level] = b;
  1473. if (!p->skip_locking)
  1474. p->locks[level] = 1;
  1475. btrfs_clear_path_blocking(p, NULL);
  1476. /*
  1477. * we have a lock on b and as long as we aren't changing
  1478. * the tree, there is no way to for the items in b to change.
  1479. * It is safe to drop the lock on our parent before we
  1480. * go through the expensive btree search on b.
  1481. *
  1482. * If cow is true, then we might be changing slot zero,
  1483. * which may require changing the parent. So, we can't
  1484. * drop the lock until after we know which slot we're
  1485. * operating on.
  1486. */
  1487. if (!cow)
  1488. btrfs_unlock_up_safe(p, level + 1);
  1489. ret = check_block(root, p, level);
  1490. if (ret) {
  1491. ret = -1;
  1492. goto done;
  1493. }
  1494. ret = bin_search(b, key, level, &slot);
  1495. if (level != 0) {
  1496. if (ret && slot > 0)
  1497. slot -= 1;
  1498. p->slots[level] = slot;
  1499. ret = setup_nodes_for_search(trans, root, p, b, level,
  1500. ins_len);
  1501. if (ret == -EAGAIN)
  1502. goto again;
  1503. else if (ret)
  1504. goto done;
  1505. b = p->nodes[level];
  1506. slot = p->slots[level];
  1507. unlock_up(p, level, lowest_unlock);
  1508. /* this is only true while dropping a snapshot */
  1509. if (level == lowest_level) {
  1510. ret = 0;
  1511. goto done;
  1512. }
  1513. ret = read_block_for_search(trans, root, p,
  1514. &b, level, slot, key);
  1515. if (ret == -EAGAIN)
  1516. goto again;
  1517. if (!p->skip_locking) {
  1518. int lret;
  1519. btrfs_clear_path_blocking(p, NULL);
  1520. lret = btrfs_try_spin_lock(b);
  1521. if (!lret) {
  1522. btrfs_set_path_blocking(p);
  1523. btrfs_tree_lock(b);
  1524. btrfs_clear_path_blocking(p, b);
  1525. }
  1526. }
  1527. } else {
  1528. p->slots[level] = slot;
  1529. if (ins_len > 0 &&
  1530. btrfs_leaf_free_space(root, b) < ins_len) {
  1531. int sret;
  1532. btrfs_set_path_blocking(p);
  1533. sret = split_leaf(trans, root, key,
  1534. p, ins_len, ret == 0);
  1535. btrfs_clear_path_blocking(p, NULL);
  1536. BUG_ON(sret > 0);
  1537. if (sret) {
  1538. ret = sret;
  1539. goto done;
  1540. }
  1541. }
  1542. if (!p->search_for_split)
  1543. unlock_up(p, level, lowest_unlock);
  1544. goto done;
  1545. }
  1546. }
  1547. ret = 1;
  1548. done:
  1549. /*
  1550. * we don't really know what they plan on doing with the path
  1551. * from here on, so for now just mark it as blocking
  1552. */
  1553. if (!p->leave_spinning)
  1554. btrfs_set_path_blocking(p);
  1555. return ret;
  1556. }
  1557. int btrfs_merge_path(struct btrfs_trans_handle *trans,
  1558. struct btrfs_root *root,
  1559. struct btrfs_key *node_keys,
  1560. u64 *nodes, int lowest_level)
  1561. {
  1562. struct extent_buffer *eb;
  1563. struct extent_buffer *parent;
  1564. struct btrfs_key key;
  1565. u64 bytenr;
  1566. u64 generation;
  1567. u32 blocksize;
  1568. int level;
  1569. int slot;
  1570. int key_match;
  1571. int ret;
  1572. eb = btrfs_lock_root_node(root);
  1573. ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb);
  1574. BUG_ON(ret);
  1575. btrfs_set_lock_blocking(eb);
  1576. parent = eb;
  1577. while (1) {
  1578. level = btrfs_header_level(parent);
  1579. if (level == 0 || level <= lowest_level)
  1580. break;
  1581. ret = bin_search(parent, &node_keys[lowest_level], level,
  1582. &slot);
  1583. if (ret && slot > 0)
  1584. slot--;
  1585. bytenr = btrfs_node_blockptr(parent, slot);
  1586. if (nodes[level - 1] == bytenr)
  1587. break;
  1588. blocksize = btrfs_level_size(root, level - 1);
  1589. generation = btrfs_node_ptr_generation(parent, slot);
  1590. btrfs_node_key_to_cpu(eb, &key, slot);
  1591. key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
  1592. if (generation == trans->transid) {
  1593. eb = read_tree_block(root, bytenr, blocksize,
  1594. generation);
  1595. btrfs_tree_lock(eb);
  1596. btrfs_set_lock_blocking(eb);
  1597. }
  1598. /*
  1599. * if node keys match and node pointer hasn't been modified
  1600. * in the running transaction, we can merge the path. for
  1601. * blocks owened by reloc trees, the node pointer check is
  1602. * skipped, this is because these blocks are fully controlled
  1603. * by the space balance code, no one else can modify them.
  1604. */
  1605. if (!nodes[level - 1] || !key_match ||
  1606. (generation == trans->transid &&
  1607. btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
  1608. if (level == 1 || level == lowest_level + 1) {
  1609. if (generation == trans->transid) {
  1610. btrfs_tree_unlock(eb);
  1611. free_extent_buffer(eb);
  1612. }
  1613. break;
  1614. }
  1615. if (generation != trans->transid) {
  1616. eb = read_tree_block(root, bytenr, blocksize,
  1617. generation);
  1618. btrfs_tree_lock(eb);
  1619. btrfs_set_lock_blocking(eb);
  1620. }
  1621. ret = btrfs_cow_block(trans, root, eb, parent, slot,
  1622. &eb);
  1623. BUG_ON(ret);
  1624. if (root->root_key.objectid ==
  1625. BTRFS_TREE_RELOC_OBJECTID) {
  1626. if (!nodes[level - 1]) {
  1627. nodes[level - 1] = eb->start;
  1628. memcpy(&node_keys[level - 1], &key,
  1629. sizeof(node_keys[0]));
  1630. } else {
  1631. WARN_ON(1);
  1632. }
  1633. }
  1634. btrfs_tree_unlock(parent);
  1635. free_extent_buffer(parent);
  1636. parent = eb;
  1637. continue;
  1638. }
  1639. btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
  1640. btrfs_set_node_ptr_generation(parent, slot, trans->transid);
  1641. btrfs_mark_buffer_dirty(parent);
  1642. ret = btrfs_inc_extent_ref(trans, root,
  1643. nodes[level - 1],
  1644. blocksize, parent->start,
  1645. btrfs_header_owner(parent),
  1646. btrfs_header_generation(parent),
  1647. level - 1);
  1648. BUG_ON(ret);
  1649. /*
  1650. * If the block was created in the running transaction,
  1651. * it's possible this is the last reference to it, so we
  1652. * should drop the subtree.
  1653. */
  1654. if (generation == trans->transid) {
  1655. ret = btrfs_drop_subtree(trans, root, eb, parent);
  1656. BUG_ON(ret);
  1657. btrfs_tree_unlock(eb);
  1658. free_extent_buffer(eb);
  1659. } else {
  1660. ret = btrfs_free_extent(trans, root, bytenr,
  1661. blocksize, parent->start,
  1662. btrfs_header_owner(parent),
  1663. btrfs_header_generation(parent),
  1664. level - 1, 1);
  1665. BUG_ON(ret);
  1666. }
  1667. break;
  1668. }
  1669. btrfs_tree_unlock(parent);
  1670. free_extent_buffer(parent);
  1671. return 0;
  1672. }
  1673. /*
  1674. * adjust the pointers going up the tree, starting at level
  1675. * making sure the right key of each node is points to 'key'.
  1676. * This is used after shifting pointers to the left, so it stops
  1677. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1678. * higher levels
  1679. *
  1680. * If this fails to write a tree block, it returns -1, but continues
  1681. * fixing up the blocks in ram so the tree is consistent.
  1682. */
  1683. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1684. struct btrfs_root *root, struct btrfs_path *path,
  1685. struct btrfs_disk_key *key, int level)
  1686. {
  1687. int i;
  1688. int ret = 0;
  1689. struct extent_buffer *t;
  1690. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1691. int tslot = path->slots[i];
  1692. if (!path->nodes[i])
  1693. break;
  1694. t = path->nodes[i];
  1695. btrfs_set_node_key(t, key, tslot);
  1696. btrfs_mark_buffer_dirty(path->nodes[i]);
  1697. if (tslot != 0)
  1698. break;
  1699. }
  1700. return ret;
  1701. }
  1702. /*
  1703. * update item key.
  1704. *
  1705. * This function isn't completely safe. It's the caller's responsibility
  1706. * that the new key won't break the order
  1707. */
  1708. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1709. struct btrfs_root *root, struct btrfs_path *path,
  1710. struct btrfs_key *new_key)
  1711. {
  1712. struct btrfs_disk_key disk_key;
  1713. struct extent_buffer *eb;
  1714. int slot;
  1715. eb = path->nodes[0];
  1716. slot = path->slots[0];
  1717. if (slot > 0) {
  1718. btrfs_item_key(eb, &disk_key, slot - 1);
  1719. if (comp_keys(&disk_key, new_key) >= 0)
  1720. return -1;
  1721. }
  1722. if (slot < btrfs_header_nritems(eb) - 1) {
  1723. btrfs_item_key(eb, &disk_key, slot + 1);
  1724. if (comp_keys(&disk_key, new_key) <= 0)
  1725. return -1;
  1726. }
  1727. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1728. btrfs_set_item_key(eb, &disk_key, slot);
  1729. btrfs_mark_buffer_dirty(eb);
  1730. if (slot == 0)
  1731. fixup_low_keys(trans, root, path, &disk_key, 1);
  1732. return 0;
  1733. }
  1734. /*
  1735. * try to push data from one node into the next node left in the
  1736. * tree.
  1737. *
  1738. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1739. * error, and > 0 if there was no room in the left hand block.
  1740. */
  1741. static int push_node_left(struct btrfs_trans_handle *trans,
  1742. struct btrfs_root *root, struct extent_buffer *dst,
  1743. struct extent_buffer *src, int empty)
  1744. {
  1745. int push_items = 0;
  1746. int src_nritems;
  1747. int dst_nritems;
  1748. int ret = 0;
  1749. src_nritems = btrfs_header_nritems(src);
  1750. dst_nritems = btrfs_header_nritems(dst);
  1751. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1752. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1753. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1754. if (!empty && src_nritems <= 8)
  1755. return 1;
  1756. if (push_items <= 0)
  1757. return 1;
  1758. if (empty) {
  1759. push_items = min(src_nritems, push_items);
  1760. if (push_items < src_nritems) {
  1761. /* leave at least 8 pointers in the node if
  1762. * we aren't going to empty it
  1763. */
  1764. if (src_nritems - push_items < 8) {
  1765. if (push_items <= 8)
  1766. return 1;
  1767. push_items -= 8;
  1768. }
  1769. }
  1770. } else
  1771. push_items = min(src_nritems - 8, push_items);
  1772. copy_extent_buffer(dst, src,
  1773. btrfs_node_key_ptr_offset(dst_nritems),
  1774. btrfs_node_key_ptr_offset(0),
  1775. push_items * sizeof(struct btrfs_key_ptr));
  1776. if (push_items < src_nritems) {
  1777. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1778. btrfs_node_key_ptr_offset(push_items),
  1779. (src_nritems - push_items) *
  1780. sizeof(struct btrfs_key_ptr));
  1781. }
  1782. btrfs_set_header_nritems(src, src_nritems - push_items);
  1783. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1784. btrfs_mark_buffer_dirty(src);
  1785. btrfs_mark_buffer_dirty(dst);
  1786. ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
  1787. BUG_ON(ret);
  1788. return ret;
  1789. }
  1790. /*
  1791. * try to push data from one node into the next node right in the
  1792. * tree.
  1793. *
  1794. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1795. * error, and > 0 if there was no room in the right hand block.
  1796. *
  1797. * this will only push up to 1/2 the contents of the left node over
  1798. */
  1799. static int balance_node_right(struct btrfs_trans_handle *trans,
  1800. struct btrfs_root *root,
  1801. struct extent_buffer *dst,
  1802. struct extent_buffer *src)
  1803. {
  1804. int push_items = 0;
  1805. int max_push;
  1806. int src_nritems;
  1807. int dst_nritems;
  1808. int ret = 0;
  1809. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1810. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1811. src_nritems = btrfs_header_nritems(src);
  1812. dst_nritems = btrfs_header_nritems(dst);
  1813. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1814. if (push_items <= 0)
  1815. return 1;
  1816. if (src_nritems < 4)
  1817. return 1;
  1818. max_push = src_nritems / 2 + 1;
  1819. /* don't try to empty the node */
  1820. if (max_push >= src_nritems)
  1821. return 1;
  1822. if (max_push < push_items)
  1823. push_items = max_push;
  1824. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1825. btrfs_node_key_ptr_offset(0),
  1826. (dst_nritems) *
  1827. sizeof(struct btrfs_key_ptr));
  1828. copy_extent_buffer(dst, src,
  1829. btrfs_node_key_ptr_offset(0),
  1830. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1831. push_items * sizeof(struct btrfs_key_ptr));
  1832. btrfs_set_header_nritems(src, src_nritems - push_items);
  1833. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1834. btrfs_mark_buffer_dirty(src);
  1835. btrfs_mark_buffer_dirty(dst);
  1836. ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
  1837. BUG_ON(ret);
  1838. return ret;
  1839. }
  1840. /*
  1841. * helper function to insert a new root level in the tree.
  1842. * A new node is allocated, and a single item is inserted to
  1843. * point to the existing root
  1844. *
  1845. * returns zero on success or < 0 on failure.
  1846. */
  1847. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1848. struct btrfs_root *root,
  1849. struct btrfs_path *path, int level)
  1850. {
  1851. u64 lower_gen;
  1852. struct extent_buffer *lower;
  1853. struct extent_buffer *c;
  1854. struct extent_buffer *old;
  1855. struct btrfs_disk_key lower_key;
  1856. int ret;
  1857. BUG_ON(path->nodes[level]);
  1858. BUG_ON(path->nodes[level-1] != root->node);
  1859. lower = path->nodes[level-1];
  1860. if (level == 1)
  1861. btrfs_item_key(lower, &lower_key, 0);
  1862. else
  1863. btrfs_node_key(lower, &lower_key, 0);
  1864. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1865. root->root_key.objectid, trans->transid,
  1866. level, root->node->start, 0);
  1867. if (IS_ERR(c))
  1868. return PTR_ERR(c);
  1869. memset_extent_buffer(c, 0, 0, root->nodesize);
  1870. btrfs_set_header_nritems(c, 1);
  1871. btrfs_set_header_level(c, level);
  1872. btrfs_set_header_bytenr(c, c->start);
  1873. btrfs_set_header_generation(c, trans->transid);
  1874. btrfs_set_header_owner(c, root->root_key.objectid);
  1875. write_extent_buffer(c, root->fs_info->fsid,
  1876. (unsigned long)btrfs_header_fsid(c),
  1877. BTRFS_FSID_SIZE);
  1878. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1879. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1880. BTRFS_UUID_SIZE);
  1881. btrfs_set_node_key(c, &lower_key, 0);
  1882. btrfs_set_node_blockptr(c, 0, lower->start);
  1883. lower_gen = btrfs_header_generation(lower);
  1884. WARN_ON(lower_gen != trans->transid);
  1885. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1886. btrfs_mark_buffer_dirty(c);
  1887. spin_lock(&root->node_lock);
  1888. old = root->node;
  1889. root->node = c;
  1890. spin_unlock(&root->node_lock);
  1891. ret = btrfs_update_extent_ref(trans, root, lower->start,
  1892. lower->len, lower->start, c->start,
  1893. root->root_key.objectid,
  1894. trans->transid, level - 1);
  1895. BUG_ON(ret);
  1896. /* the super has an extra ref to root->node */
  1897. free_extent_buffer(old);
  1898. add_root_to_dirty_list(root);
  1899. extent_buffer_get(c);
  1900. path->nodes[level] = c;
  1901. path->locks[level] = 1;
  1902. path->slots[level] = 0;
  1903. return 0;
  1904. }
  1905. /*
  1906. * worker function to insert a single pointer in a node.
  1907. * the node should have enough room for the pointer already
  1908. *
  1909. * slot and level indicate where you want the key to go, and
  1910. * blocknr is the block the key points to.
  1911. *
  1912. * returns zero on success and < 0 on any error
  1913. */
  1914. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1915. *root, struct btrfs_path *path, struct btrfs_disk_key
  1916. *key, u64 bytenr, int slot, int level)
  1917. {
  1918. struct extent_buffer *lower;
  1919. int nritems;
  1920. BUG_ON(!path->nodes[level]);
  1921. lower = path->nodes[level];
  1922. nritems = btrfs_header_nritems(lower);
  1923. BUG_ON(slot > nritems);
  1924. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1925. BUG();
  1926. if (slot != nritems) {
  1927. memmove_extent_buffer(lower,
  1928. btrfs_node_key_ptr_offset(slot + 1),
  1929. btrfs_node_key_ptr_offset(slot),
  1930. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1931. }
  1932. btrfs_set_node_key(lower, key, slot);
  1933. btrfs_set_node_blockptr(lower, slot, bytenr);
  1934. WARN_ON(trans->transid == 0);
  1935. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1936. btrfs_set_header_nritems(lower, nritems + 1);
  1937. btrfs_mark_buffer_dirty(lower);
  1938. return 0;
  1939. }
  1940. /*
  1941. * split the node at the specified level in path in two.
  1942. * The path is corrected to point to the appropriate node after the split
  1943. *
  1944. * Before splitting this tries to make some room in the node by pushing
  1945. * left and right, if either one works, it returns right away.
  1946. *
  1947. * returns 0 on success and < 0 on failure
  1948. */
  1949. static noinline int split_node(struct btrfs_trans_handle *trans,
  1950. struct btrfs_root *root,
  1951. struct btrfs_path *path, int level)
  1952. {
  1953. struct extent_buffer *c;
  1954. struct extent_buffer *split;
  1955. struct btrfs_disk_key disk_key;
  1956. int mid;
  1957. int ret;
  1958. int wret;
  1959. u32 c_nritems;
  1960. c = path->nodes[level];
  1961. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1962. if (c == root->node) {
  1963. /* trying to split the root, lets make a new one */
  1964. ret = insert_new_root(trans, root, path, level + 1);
  1965. if (ret)
  1966. return ret;
  1967. } else if (!trans->transaction->delayed_refs.flushing) {
  1968. ret = push_nodes_for_insert(trans, root, path, level);
  1969. c = path->nodes[level];
  1970. if (!ret && btrfs_header_nritems(c) <
  1971. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1972. return 0;
  1973. if (ret < 0)
  1974. return ret;
  1975. }
  1976. c_nritems = btrfs_header_nritems(c);
  1977. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1978. path->nodes[level + 1]->start,
  1979. root->root_key.objectid,
  1980. trans->transid, level, c->start, 0);
  1981. if (IS_ERR(split))
  1982. return PTR_ERR(split);
  1983. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1984. btrfs_set_header_level(split, btrfs_header_level(c));
  1985. btrfs_set_header_bytenr(split, split->start);
  1986. btrfs_set_header_generation(split, trans->transid);
  1987. btrfs_set_header_owner(split, root->root_key.objectid);
  1988. btrfs_set_header_flags(split, 0);
  1989. write_extent_buffer(split, root->fs_info->fsid,
  1990. (unsigned long)btrfs_header_fsid(split),
  1991. BTRFS_FSID_SIZE);
  1992. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1993. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1994. BTRFS_UUID_SIZE);
  1995. mid = (c_nritems + 1) / 2;
  1996. copy_extent_buffer(split, c,
  1997. btrfs_node_key_ptr_offset(0),
  1998. btrfs_node_key_ptr_offset(mid),
  1999. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  2000. btrfs_set_header_nritems(split, c_nritems - mid);
  2001. btrfs_set_header_nritems(c, mid);
  2002. ret = 0;
  2003. btrfs_mark_buffer_dirty(c);
  2004. btrfs_mark_buffer_dirty(split);
  2005. btrfs_node_key(split, &disk_key, 0);
  2006. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  2007. path->slots[level + 1] + 1,
  2008. level + 1);
  2009. if (wret)
  2010. ret = wret;
  2011. ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
  2012. BUG_ON(ret);
  2013. if (path->slots[level] >= mid) {
  2014. path->slots[level] -= mid;
  2015. btrfs_tree_unlock(c);
  2016. free_extent_buffer(c);
  2017. path->nodes[level] = split;
  2018. path->slots[level + 1] += 1;
  2019. } else {
  2020. btrfs_tree_unlock(split);
  2021. free_extent_buffer(split);
  2022. }
  2023. return ret;
  2024. }
  2025. /*
  2026. * how many bytes are required to store the items in a leaf. start
  2027. * and nr indicate which items in the leaf to check. This totals up the
  2028. * space used both by the item structs and the item data
  2029. */
  2030. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2031. {
  2032. int data_len;
  2033. int nritems = btrfs_header_nritems(l);
  2034. int end = min(nritems, start + nr) - 1;
  2035. if (!nr)
  2036. return 0;
  2037. data_len = btrfs_item_end_nr(l, start);
  2038. data_len = data_len - btrfs_item_offset_nr(l, end);
  2039. data_len += sizeof(struct btrfs_item) * nr;
  2040. WARN_ON(data_len < 0);
  2041. return data_len;
  2042. }
  2043. /*
  2044. * The space between the end of the leaf items and
  2045. * the start of the leaf data. IOW, how much room
  2046. * the leaf has left for both items and data
  2047. */
  2048. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2049. struct extent_buffer *leaf)
  2050. {
  2051. int nritems = btrfs_header_nritems(leaf);
  2052. int ret;
  2053. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2054. if (ret < 0) {
  2055. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2056. "used %d nritems %d\n",
  2057. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2058. leaf_space_used(leaf, 0, nritems), nritems);
  2059. }
  2060. return ret;
  2061. }
  2062. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2063. struct btrfs_root *root,
  2064. struct btrfs_path *path,
  2065. int data_size, int empty,
  2066. struct extent_buffer *right,
  2067. int free_space, u32 left_nritems)
  2068. {
  2069. struct extent_buffer *left = path->nodes[0];
  2070. struct extent_buffer *upper = path->nodes[1];
  2071. struct btrfs_disk_key disk_key;
  2072. int slot;
  2073. u32 i;
  2074. int push_space = 0;
  2075. int push_items = 0;
  2076. struct btrfs_item *item;
  2077. u32 nr;
  2078. u32 right_nritems;
  2079. u32 data_end;
  2080. u32 this_item_size;
  2081. int ret;
  2082. if (empty)
  2083. nr = 0;
  2084. else
  2085. nr = 1;
  2086. if (path->slots[0] >= left_nritems)
  2087. push_space += data_size;
  2088. slot = path->slots[1];
  2089. i = left_nritems - 1;
  2090. while (i >= nr) {
  2091. item = btrfs_item_nr(left, i);
  2092. if (!empty && push_items > 0) {
  2093. if (path->slots[0] > i)
  2094. break;
  2095. if (path->slots[0] == i) {
  2096. int space = btrfs_leaf_free_space(root, left);
  2097. if (space + push_space * 2 > free_space)
  2098. break;
  2099. }
  2100. }
  2101. if (path->slots[0] == i)
  2102. push_space += data_size;
  2103. if (!left->map_token) {
  2104. map_extent_buffer(left, (unsigned long)item,
  2105. sizeof(struct btrfs_item),
  2106. &left->map_token, &left->kaddr,
  2107. &left->map_start, &left->map_len,
  2108. KM_USER1);
  2109. }
  2110. this_item_size = btrfs_item_size(left, item);
  2111. if (this_item_size + sizeof(*item) + push_space > free_space)
  2112. break;
  2113. push_items++;
  2114. push_space += this_item_size + sizeof(*item);
  2115. if (i == 0)
  2116. break;
  2117. i--;
  2118. }
  2119. if (left->map_token) {
  2120. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2121. left->map_token = NULL;
  2122. }
  2123. if (push_items == 0)
  2124. goto out_unlock;
  2125. if (!empty && push_items == left_nritems)
  2126. WARN_ON(1);
  2127. /* push left to right */
  2128. right_nritems = btrfs_header_nritems(right);
  2129. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2130. push_space -= leaf_data_end(root, left);
  2131. /* make room in the right data area */
  2132. data_end = leaf_data_end(root, right);
  2133. memmove_extent_buffer(right,
  2134. btrfs_leaf_data(right) + data_end - push_space,
  2135. btrfs_leaf_data(right) + data_end,
  2136. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2137. /* copy from the left data area */
  2138. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2139. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2140. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2141. push_space);
  2142. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2143. btrfs_item_nr_offset(0),
  2144. right_nritems * sizeof(struct btrfs_item));
  2145. /* copy the items from left to right */
  2146. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2147. btrfs_item_nr_offset(left_nritems - push_items),
  2148. push_items * sizeof(struct btrfs_item));
  2149. /* update the item pointers */
  2150. right_nritems += push_items;
  2151. btrfs_set_header_nritems(right, right_nritems);
  2152. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2153. for (i = 0; i < right_nritems; i++) {
  2154. item = btrfs_item_nr(right, i);
  2155. if (!right->map_token) {
  2156. map_extent_buffer(right, (unsigned long)item,
  2157. sizeof(struct btrfs_item),
  2158. &right->map_token, &right->kaddr,
  2159. &right->map_start, &right->map_len,
  2160. KM_USER1);
  2161. }
  2162. push_space -= btrfs_item_size(right, item);
  2163. btrfs_set_item_offset(right, item, push_space);
  2164. }
  2165. if (right->map_token) {
  2166. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2167. right->map_token = NULL;
  2168. }
  2169. left_nritems -= push_items;
  2170. btrfs_set_header_nritems(left, left_nritems);
  2171. if (left_nritems)
  2172. btrfs_mark_buffer_dirty(left);
  2173. btrfs_mark_buffer_dirty(right);
  2174. ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
  2175. BUG_ON(ret);
  2176. btrfs_item_key(right, &disk_key, 0);
  2177. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2178. btrfs_mark_buffer_dirty(upper);
  2179. /* then fixup the leaf pointer in the path */
  2180. if (path->slots[0] >= left_nritems) {
  2181. path->slots[0] -= left_nritems;
  2182. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2183. clean_tree_block(trans, root, path->nodes[0]);
  2184. btrfs_tree_unlock(path->nodes[0]);
  2185. free_extent_buffer(path->nodes[0]);
  2186. path->nodes[0] = right;
  2187. path->slots[1] += 1;
  2188. } else {
  2189. btrfs_tree_unlock(right);
  2190. free_extent_buffer(right);
  2191. }
  2192. return 0;
  2193. out_unlock:
  2194. btrfs_tree_unlock(right);
  2195. free_extent_buffer(right);
  2196. return 1;
  2197. }
  2198. /*
  2199. * push some data in the path leaf to the right, trying to free up at
  2200. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2201. *
  2202. * returns 1 if the push failed because the other node didn't have enough
  2203. * room, 0 if everything worked out and < 0 if there were major errors.
  2204. */
  2205. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2206. *root, struct btrfs_path *path, int data_size,
  2207. int empty)
  2208. {
  2209. struct extent_buffer *left = path->nodes[0];
  2210. struct extent_buffer *right;
  2211. struct extent_buffer *upper;
  2212. int slot;
  2213. int free_space;
  2214. u32 left_nritems;
  2215. int ret;
  2216. if (!path->nodes[1])
  2217. return 1;
  2218. slot = path->slots[1];
  2219. upper = path->nodes[1];
  2220. if (slot >= btrfs_header_nritems(upper) - 1)
  2221. return 1;
  2222. btrfs_assert_tree_locked(path->nodes[1]);
  2223. right = read_node_slot(root, upper, slot + 1);
  2224. btrfs_tree_lock(right);
  2225. btrfs_set_lock_blocking(right);
  2226. free_space = btrfs_leaf_free_space(root, right);
  2227. if (free_space < data_size)
  2228. goto out_unlock;
  2229. /* cow and double check */
  2230. ret = btrfs_cow_block(trans, root, right, upper,
  2231. slot + 1, &right);
  2232. if (ret)
  2233. goto out_unlock;
  2234. free_space = btrfs_leaf_free_space(root, right);
  2235. if (free_space < data_size)
  2236. goto out_unlock;
  2237. left_nritems = btrfs_header_nritems(left);
  2238. if (left_nritems == 0)
  2239. goto out_unlock;
  2240. return __push_leaf_right(trans, root, path, data_size, empty,
  2241. right, free_space, left_nritems);
  2242. out_unlock:
  2243. btrfs_tree_unlock(right);
  2244. free_extent_buffer(right);
  2245. return 1;
  2246. }
  2247. /*
  2248. * push some data in the path leaf to the left, trying to free up at
  2249. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2250. */
  2251. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2252. struct btrfs_root *root,
  2253. struct btrfs_path *path, int data_size,
  2254. int empty, struct extent_buffer *left,
  2255. int free_space, int right_nritems)
  2256. {
  2257. struct btrfs_disk_key disk_key;
  2258. struct extent_buffer *right = path->nodes[0];
  2259. int slot;
  2260. int i;
  2261. int push_space = 0;
  2262. int push_items = 0;
  2263. struct btrfs_item *item;
  2264. u32 old_left_nritems;
  2265. u32 nr;
  2266. int ret = 0;
  2267. int wret;
  2268. u32 this_item_size;
  2269. u32 old_left_item_size;
  2270. slot = path->slots[1];
  2271. if (empty)
  2272. nr = right_nritems;
  2273. else
  2274. nr = right_nritems - 1;
  2275. for (i = 0; i < nr; i++) {
  2276. item = btrfs_item_nr(right, i);
  2277. if (!right->map_token) {
  2278. map_extent_buffer(right, (unsigned long)item,
  2279. sizeof(struct btrfs_item),
  2280. &right->map_token, &right->kaddr,
  2281. &right->map_start, &right->map_len,
  2282. KM_USER1);
  2283. }
  2284. if (!empty && push_items > 0) {
  2285. if (path->slots[0] < i)
  2286. break;
  2287. if (path->slots[0] == i) {
  2288. int space = btrfs_leaf_free_space(root, right);
  2289. if (space + push_space * 2 > free_space)
  2290. break;
  2291. }
  2292. }
  2293. if (path->slots[0] == i)
  2294. push_space += data_size;
  2295. this_item_size = btrfs_item_size(right, item);
  2296. if (this_item_size + sizeof(*item) + push_space > free_space)
  2297. break;
  2298. push_items++;
  2299. push_space += this_item_size + sizeof(*item);
  2300. }
  2301. if (right->map_token) {
  2302. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2303. right->map_token = NULL;
  2304. }
  2305. if (push_items == 0) {
  2306. ret = 1;
  2307. goto out;
  2308. }
  2309. if (!empty && push_items == btrfs_header_nritems(right))
  2310. WARN_ON(1);
  2311. /* push data from right to left */
  2312. copy_extent_buffer(left, right,
  2313. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2314. btrfs_item_nr_offset(0),
  2315. push_items * sizeof(struct btrfs_item));
  2316. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2317. btrfs_item_offset_nr(right, push_items - 1);
  2318. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2319. leaf_data_end(root, left) - push_space,
  2320. btrfs_leaf_data(right) +
  2321. btrfs_item_offset_nr(right, push_items - 1),
  2322. push_space);
  2323. old_left_nritems = btrfs_header_nritems(left);
  2324. BUG_ON(old_left_nritems <= 0);
  2325. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2326. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2327. u32 ioff;
  2328. item = btrfs_item_nr(left, i);
  2329. if (!left->map_token) {
  2330. map_extent_buffer(left, (unsigned long)item,
  2331. sizeof(struct btrfs_item),
  2332. &left->map_token, &left->kaddr,
  2333. &left->map_start, &left->map_len,
  2334. KM_USER1);
  2335. }
  2336. ioff = btrfs_item_offset(left, item);
  2337. btrfs_set_item_offset(left, item,
  2338. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2339. }
  2340. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2341. if (left->map_token) {
  2342. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2343. left->map_token = NULL;
  2344. }
  2345. /* fixup right node */
  2346. if (push_items > right_nritems) {
  2347. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2348. right_nritems);
  2349. WARN_ON(1);
  2350. }
  2351. if (push_items < right_nritems) {
  2352. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2353. leaf_data_end(root, right);
  2354. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2355. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2356. btrfs_leaf_data(right) +
  2357. leaf_data_end(root, right), push_space);
  2358. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2359. btrfs_item_nr_offset(push_items),
  2360. (btrfs_header_nritems(right) - push_items) *
  2361. sizeof(struct btrfs_item));
  2362. }
  2363. right_nritems -= push_items;
  2364. btrfs_set_header_nritems(right, right_nritems);
  2365. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2366. for (i = 0; i < right_nritems; i++) {
  2367. item = btrfs_item_nr(right, i);
  2368. if (!right->map_token) {
  2369. map_extent_buffer(right, (unsigned long)item,
  2370. sizeof(struct btrfs_item),
  2371. &right->map_token, &right->kaddr,
  2372. &right->map_start, &right->map_len,
  2373. KM_USER1);
  2374. }
  2375. push_space = push_space - btrfs_item_size(right, item);
  2376. btrfs_set_item_offset(right, item, push_space);
  2377. }
  2378. if (right->map_token) {
  2379. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2380. right->map_token = NULL;
  2381. }
  2382. btrfs_mark_buffer_dirty(left);
  2383. if (right_nritems)
  2384. btrfs_mark_buffer_dirty(right);
  2385. ret = btrfs_update_ref(trans, root, right, left,
  2386. old_left_nritems, push_items);
  2387. BUG_ON(ret);
  2388. btrfs_item_key(right, &disk_key, 0);
  2389. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2390. if (wret)
  2391. ret = wret;
  2392. /* then fixup the leaf pointer in the path */
  2393. if (path->slots[0] < push_items) {
  2394. path->slots[0] += old_left_nritems;
  2395. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2396. clean_tree_block(trans, root, path->nodes[0]);
  2397. btrfs_tree_unlock(path->nodes[0]);
  2398. free_extent_buffer(path->nodes[0]);
  2399. path->nodes[0] = left;
  2400. path->slots[1] -= 1;
  2401. } else {
  2402. btrfs_tree_unlock(left);
  2403. free_extent_buffer(left);
  2404. path->slots[0] -= push_items;
  2405. }
  2406. BUG_ON(path->slots[0] < 0);
  2407. return ret;
  2408. out:
  2409. btrfs_tree_unlock(left);
  2410. free_extent_buffer(left);
  2411. return ret;
  2412. }
  2413. /*
  2414. * push some data in the path leaf to the left, trying to free up at
  2415. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2416. */
  2417. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2418. *root, struct btrfs_path *path, int data_size,
  2419. int empty)
  2420. {
  2421. struct extent_buffer *right = path->nodes[0];
  2422. struct extent_buffer *left;
  2423. int slot;
  2424. int free_space;
  2425. u32 right_nritems;
  2426. int ret = 0;
  2427. slot = path->slots[1];
  2428. if (slot == 0)
  2429. return 1;
  2430. if (!path->nodes[1])
  2431. return 1;
  2432. right_nritems = btrfs_header_nritems(right);
  2433. if (right_nritems == 0)
  2434. return 1;
  2435. btrfs_assert_tree_locked(path->nodes[1]);
  2436. left = read_node_slot(root, path->nodes[1], slot - 1);
  2437. btrfs_tree_lock(left);
  2438. btrfs_set_lock_blocking(left);
  2439. free_space = btrfs_leaf_free_space(root, left);
  2440. if (free_space < data_size) {
  2441. ret = 1;
  2442. goto out;
  2443. }
  2444. /* cow and double check */
  2445. ret = btrfs_cow_block(trans, root, left,
  2446. path->nodes[1], slot - 1, &left);
  2447. if (ret) {
  2448. /* we hit -ENOSPC, but it isn't fatal here */
  2449. ret = 1;
  2450. goto out;
  2451. }
  2452. free_space = btrfs_leaf_free_space(root, left);
  2453. if (free_space < data_size) {
  2454. ret = 1;
  2455. goto out;
  2456. }
  2457. return __push_leaf_left(trans, root, path, data_size,
  2458. empty, left, free_space, right_nritems);
  2459. out:
  2460. btrfs_tree_unlock(left);
  2461. free_extent_buffer(left);
  2462. return ret;
  2463. }
  2464. /*
  2465. * split the path's leaf in two, making sure there is at least data_size
  2466. * available for the resulting leaf level of the path.
  2467. *
  2468. * returns 0 if all went well and < 0 on failure.
  2469. */
  2470. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2471. struct btrfs_root *root,
  2472. struct btrfs_path *path,
  2473. struct extent_buffer *l,
  2474. struct extent_buffer *right,
  2475. int slot, int mid, int nritems)
  2476. {
  2477. int data_copy_size;
  2478. int rt_data_off;
  2479. int i;
  2480. int ret = 0;
  2481. int wret;
  2482. struct btrfs_disk_key disk_key;
  2483. nritems = nritems - mid;
  2484. btrfs_set_header_nritems(right, nritems);
  2485. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2486. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2487. btrfs_item_nr_offset(mid),
  2488. nritems * sizeof(struct btrfs_item));
  2489. copy_extent_buffer(right, l,
  2490. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2491. data_copy_size, btrfs_leaf_data(l) +
  2492. leaf_data_end(root, l), data_copy_size);
  2493. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2494. btrfs_item_end_nr(l, mid);
  2495. for (i = 0; i < nritems; i++) {
  2496. struct btrfs_item *item = btrfs_item_nr(right, i);
  2497. u32 ioff;
  2498. if (!right->map_token) {
  2499. map_extent_buffer(right, (unsigned long)item,
  2500. sizeof(struct btrfs_item),
  2501. &right->map_token, &right->kaddr,
  2502. &right->map_start, &right->map_len,
  2503. KM_USER1);
  2504. }
  2505. ioff = btrfs_item_offset(right, item);
  2506. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2507. }
  2508. if (right->map_token) {
  2509. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2510. right->map_token = NULL;
  2511. }
  2512. btrfs_set_header_nritems(l, mid);
  2513. ret = 0;
  2514. btrfs_item_key(right, &disk_key, 0);
  2515. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2516. path->slots[1] + 1, 1);
  2517. if (wret)
  2518. ret = wret;
  2519. btrfs_mark_buffer_dirty(right);
  2520. btrfs_mark_buffer_dirty(l);
  2521. BUG_ON(path->slots[0] != slot);
  2522. ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
  2523. BUG_ON(ret);
  2524. if (mid <= slot) {
  2525. btrfs_tree_unlock(path->nodes[0]);
  2526. free_extent_buffer(path->nodes[0]);
  2527. path->nodes[0] = right;
  2528. path->slots[0] -= mid;
  2529. path->slots[1] += 1;
  2530. } else {
  2531. btrfs_tree_unlock(right);
  2532. free_extent_buffer(right);
  2533. }
  2534. BUG_ON(path->slots[0] < 0);
  2535. return ret;
  2536. }
  2537. /*
  2538. * split the path's leaf in two, making sure there is at least data_size
  2539. * available for the resulting leaf level of the path.
  2540. *
  2541. * returns 0 if all went well and < 0 on failure.
  2542. */
  2543. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2544. struct btrfs_root *root,
  2545. struct btrfs_key *ins_key,
  2546. struct btrfs_path *path, int data_size,
  2547. int extend)
  2548. {
  2549. struct extent_buffer *l;
  2550. u32 nritems;
  2551. int mid;
  2552. int slot;
  2553. struct extent_buffer *right;
  2554. int ret = 0;
  2555. int wret;
  2556. int double_split;
  2557. int num_doubles = 0;
  2558. /* first try to make some room by pushing left and right */
  2559. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY &&
  2560. !trans->transaction->delayed_refs.flushing) {
  2561. wret = push_leaf_right(trans, root, path, data_size, 0);
  2562. if (wret < 0)
  2563. return wret;
  2564. if (wret) {
  2565. wret = push_leaf_left(trans, root, path, data_size, 0);
  2566. if (wret < 0)
  2567. return wret;
  2568. }
  2569. l = path->nodes[0];
  2570. /* did the pushes work? */
  2571. if (btrfs_leaf_free_space(root, l) >= data_size)
  2572. return 0;
  2573. }
  2574. if (!path->nodes[1]) {
  2575. ret = insert_new_root(trans, root, path, 1);
  2576. if (ret)
  2577. return ret;
  2578. }
  2579. again:
  2580. double_split = 0;
  2581. l = path->nodes[0];
  2582. slot = path->slots[0];
  2583. nritems = btrfs_header_nritems(l);
  2584. mid = (nritems + 1) / 2;
  2585. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  2586. path->nodes[1]->start,
  2587. root->root_key.objectid,
  2588. trans->transid, 0, l->start, 0);
  2589. if (IS_ERR(right)) {
  2590. BUG_ON(1);
  2591. return PTR_ERR(right);
  2592. }
  2593. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2594. btrfs_set_header_bytenr(right, right->start);
  2595. btrfs_set_header_generation(right, trans->transid);
  2596. btrfs_set_header_owner(right, root->root_key.objectid);
  2597. btrfs_set_header_level(right, 0);
  2598. write_extent_buffer(right, root->fs_info->fsid,
  2599. (unsigned long)btrfs_header_fsid(right),
  2600. BTRFS_FSID_SIZE);
  2601. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2602. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2603. BTRFS_UUID_SIZE);
  2604. if (mid <= slot) {
  2605. if (nritems == 1 ||
  2606. leaf_space_used(l, mid, nritems - mid) + data_size >
  2607. BTRFS_LEAF_DATA_SIZE(root)) {
  2608. if (slot >= nritems) {
  2609. struct btrfs_disk_key disk_key;
  2610. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2611. btrfs_set_header_nritems(right, 0);
  2612. wret = insert_ptr(trans, root, path,
  2613. &disk_key, right->start,
  2614. path->slots[1] + 1, 1);
  2615. if (wret)
  2616. ret = wret;
  2617. btrfs_tree_unlock(path->nodes[0]);
  2618. free_extent_buffer(path->nodes[0]);
  2619. path->nodes[0] = right;
  2620. path->slots[0] = 0;
  2621. path->slots[1] += 1;
  2622. btrfs_mark_buffer_dirty(right);
  2623. return ret;
  2624. }
  2625. mid = slot;
  2626. if (mid != nritems &&
  2627. leaf_space_used(l, mid, nritems - mid) +
  2628. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2629. double_split = 1;
  2630. }
  2631. }
  2632. } else {
  2633. if (leaf_space_used(l, 0, mid) + data_size >
  2634. BTRFS_LEAF_DATA_SIZE(root)) {
  2635. if (!extend && data_size && slot == 0) {
  2636. struct btrfs_disk_key disk_key;
  2637. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2638. btrfs_set_header_nritems(right, 0);
  2639. wret = insert_ptr(trans, root, path,
  2640. &disk_key,
  2641. right->start,
  2642. path->slots[1], 1);
  2643. if (wret)
  2644. ret = wret;
  2645. btrfs_tree_unlock(path->nodes[0]);
  2646. free_extent_buffer(path->nodes[0]);
  2647. path->nodes[0] = right;
  2648. path->slots[0] = 0;
  2649. if (path->slots[1] == 0) {
  2650. wret = fixup_low_keys(trans, root,
  2651. path, &disk_key, 1);
  2652. if (wret)
  2653. ret = wret;
  2654. }
  2655. btrfs_mark_buffer_dirty(right);
  2656. return ret;
  2657. } else if ((extend || !data_size) && slot == 0) {
  2658. mid = 1;
  2659. } else {
  2660. mid = slot;
  2661. if (mid != nritems &&
  2662. leaf_space_used(l, mid, nritems - mid) +
  2663. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2664. double_split = 1;
  2665. }
  2666. }
  2667. }
  2668. }
  2669. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2670. BUG_ON(ret);
  2671. if (double_split) {
  2672. BUG_ON(num_doubles != 0);
  2673. num_doubles++;
  2674. goto again;
  2675. }
  2676. return ret;
  2677. }
  2678. /*
  2679. * This function splits a single item into two items,
  2680. * giving 'new_key' to the new item and splitting the
  2681. * old one at split_offset (from the start of the item).
  2682. *
  2683. * The path may be released by this operation. After
  2684. * the split, the path is pointing to the old item. The
  2685. * new item is going to be in the same node as the old one.
  2686. *
  2687. * Note, the item being split must be smaller enough to live alone on
  2688. * a tree block with room for one extra struct btrfs_item
  2689. *
  2690. * This allows us to split the item in place, keeping a lock on the
  2691. * leaf the entire time.
  2692. */
  2693. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2694. struct btrfs_root *root,
  2695. struct btrfs_path *path,
  2696. struct btrfs_key *new_key,
  2697. unsigned long split_offset)
  2698. {
  2699. u32 item_size;
  2700. struct extent_buffer *leaf;
  2701. struct btrfs_key orig_key;
  2702. struct btrfs_item *item;
  2703. struct btrfs_item *new_item;
  2704. int ret = 0;
  2705. int slot;
  2706. u32 nritems;
  2707. u32 orig_offset;
  2708. struct btrfs_disk_key disk_key;
  2709. char *buf;
  2710. leaf = path->nodes[0];
  2711. btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
  2712. if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
  2713. goto split;
  2714. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2715. btrfs_release_path(root, path);
  2716. path->search_for_split = 1;
  2717. path->keep_locks = 1;
  2718. ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
  2719. path->search_for_split = 0;
  2720. /* if our item isn't there or got smaller, return now */
  2721. if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
  2722. path->slots[0])) {
  2723. path->keep_locks = 0;
  2724. return -EAGAIN;
  2725. }
  2726. btrfs_set_path_blocking(path);
  2727. ret = split_leaf(trans, root, &orig_key, path,
  2728. sizeof(struct btrfs_item), 1);
  2729. path->keep_locks = 0;
  2730. BUG_ON(ret);
  2731. btrfs_unlock_up_safe(path, 1);
  2732. leaf = path->nodes[0];
  2733. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2734. split:
  2735. /*
  2736. * make sure any changes to the path from split_leaf leave it
  2737. * in a blocking state
  2738. */
  2739. btrfs_set_path_blocking(path);
  2740. item = btrfs_item_nr(leaf, path->slots[0]);
  2741. orig_offset = btrfs_item_offset(leaf, item);
  2742. item_size = btrfs_item_size(leaf, item);
  2743. buf = kmalloc(item_size, GFP_NOFS);
  2744. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2745. path->slots[0]), item_size);
  2746. slot = path->slots[0] + 1;
  2747. leaf = path->nodes[0];
  2748. nritems = btrfs_header_nritems(leaf);
  2749. if (slot != nritems) {
  2750. /* shift the items */
  2751. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2752. btrfs_item_nr_offset(slot),
  2753. (nritems - slot) * sizeof(struct btrfs_item));
  2754. }
  2755. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2756. btrfs_set_item_key(leaf, &disk_key, slot);
  2757. new_item = btrfs_item_nr(leaf, slot);
  2758. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2759. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2760. btrfs_set_item_offset(leaf, item,
  2761. orig_offset + item_size - split_offset);
  2762. btrfs_set_item_size(leaf, item, split_offset);
  2763. btrfs_set_header_nritems(leaf, nritems + 1);
  2764. /* write the data for the start of the original item */
  2765. write_extent_buffer(leaf, buf,
  2766. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2767. split_offset);
  2768. /* write the data for the new item */
  2769. write_extent_buffer(leaf, buf + split_offset,
  2770. btrfs_item_ptr_offset(leaf, slot),
  2771. item_size - split_offset);
  2772. btrfs_mark_buffer_dirty(leaf);
  2773. ret = 0;
  2774. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2775. btrfs_print_leaf(root, leaf);
  2776. BUG();
  2777. }
  2778. kfree(buf);
  2779. return ret;
  2780. }
  2781. /*
  2782. * make the item pointed to by the path smaller. new_size indicates
  2783. * how small to make it, and from_end tells us if we just chop bytes
  2784. * off the end of the item or if we shift the item to chop bytes off
  2785. * the front.
  2786. */
  2787. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2788. struct btrfs_root *root,
  2789. struct btrfs_path *path,
  2790. u32 new_size, int from_end)
  2791. {
  2792. int ret = 0;
  2793. int slot;
  2794. int slot_orig;
  2795. struct extent_buffer *leaf;
  2796. struct btrfs_item *item;
  2797. u32 nritems;
  2798. unsigned int data_end;
  2799. unsigned int old_data_start;
  2800. unsigned int old_size;
  2801. unsigned int size_diff;
  2802. int i;
  2803. slot_orig = path->slots[0];
  2804. leaf = path->nodes[0];
  2805. slot = path->slots[0];
  2806. old_size = btrfs_item_size_nr(leaf, slot);
  2807. if (old_size == new_size)
  2808. return 0;
  2809. nritems = btrfs_header_nritems(leaf);
  2810. data_end = leaf_data_end(root, leaf);
  2811. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2812. size_diff = old_size - new_size;
  2813. BUG_ON(slot < 0);
  2814. BUG_ON(slot >= nritems);
  2815. /*
  2816. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2817. */
  2818. /* first correct the data pointers */
  2819. for (i = slot; i < nritems; i++) {
  2820. u32 ioff;
  2821. item = btrfs_item_nr(leaf, i);
  2822. if (!leaf->map_token) {
  2823. map_extent_buffer(leaf, (unsigned long)item,
  2824. sizeof(struct btrfs_item),
  2825. &leaf->map_token, &leaf->kaddr,
  2826. &leaf->map_start, &leaf->map_len,
  2827. KM_USER1);
  2828. }
  2829. ioff = btrfs_item_offset(leaf, item);
  2830. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2831. }
  2832. if (leaf->map_token) {
  2833. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2834. leaf->map_token = NULL;
  2835. }
  2836. /* shift the data */
  2837. if (from_end) {
  2838. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2839. data_end + size_diff, btrfs_leaf_data(leaf) +
  2840. data_end, old_data_start + new_size - data_end);
  2841. } else {
  2842. struct btrfs_disk_key disk_key;
  2843. u64 offset;
  2844. btrfs_item_key(leaf, &disk_key, slot);
  2845. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2846. unsigned long ptr;
  2847. struct btrfs_file_extent_item *fi;
  2848. fi = btrfs_item_ptr(leaf, slot,
  2849. struct btrfs_file_extent_item);
  2850. fi = (struct btrfs_file_extent_item *)(
  2851. (unsigned long)fi - size_diff);
  2852. if (btrfs_file_extent_type(leaf, fi) ==
  2853. BTRFS_FILE_EXTENT_INLINE) {
  2854. ptr = btrfs_item_ptr_offset(leaf, slot);
  2855. memmove_extent_buffer(leaf, ptr,
  2856. (unsigned long)fi,
  2857. offsetof(struct btrfs_file_extent_item,
  2858. disk_bytenr));
  2859. }
  2860. }
  2861. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2862. data_end + size_diff, btrfs_leaf_data(leaf) +
  2863. data_end, old_data_start - data_end);
  2864. offset = btrfs_disk_key_offset(&disk_key);
  2865. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2866. btrfs_set_item_key(leaf, &disk_key, slot);
  2867. if (slot == 0)
  2868. fixup_low_keys(trans, root, path, &disk_key, 1);
  2869. }
  2870. item = btrfs_item_nr(leaf, slot);
  2871. btrfs_set_item_size(leaf, item, new_size);
  2872. btrfs_mark_buffer_dirty(leaf);
  2873. ret = 0;
  2874. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2875. btrfs_print_leaf(root, leaf);
  2876. BUG();
  2877. }
  2878. return ret;
  2879. }
  2880. /*
  2881. * make the item pointed to by the path bigger, data_size is the new size.
  2882. */
  2883. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2884. struct btrfs_root *root, struct btrfs_path *path,
  2885. u32 data_size)
  2886. {
  2887. int ret = 0;
  2888. int slot;
  2889. int slot_orig;
  2890. struct extent_buffer *leaf;
  2891. struct btrfs_item *item;
  2892. u32 nritems;
  2893. unsigned int data_end;
  2894. unsigned int old_data;
  2895. unsigned int old_size;
  2896. int i;
  2897. slot_orig = path->slots[0];
  2898. leaf = path->nodes[0];
  2899. nritems = btrfs_header_nritems(leaf);
  2900. data_end = leaf_data_end(root, leaf);
  2901. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2902. btrfs_print_leaf(root, leaf);
  2903. BUG();
  2904. }
  2905. slot = path->slots[0];
  2906. old_data = btrfs_item_end_nr(leaf, slot);
  2907. BUG_ON(slot < 0);
  2908. if (slot >= nritems) {
  2909. btrfs_print_leaf(root, leaf);
  2910. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2911. slot, nritems);
  2912. BUG_ON(1);
  2913. }
  2914. /*
  2915. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2916. */
  2917. /* first correct the data pointers */
  2918. for (i = slot; i < nritems; i++) {
  2919. u32 ioff;
  2920. item = btrfs_item_nr(leaf, i);
  2921. if (!leaf->map_token) {
  2922. map_extent_buffer(leaf, (unsigned long)item,
  2923. sizeof(struct btrfs_item),
  2924. &leaf->map_token, &leaf->kaddr,
  2925. &leaf->map_start, &leaf->map_len,
  2926. KM_USER1);
  2927. }
  2928. ioff = btrfs_item_offset(leaf, item);
  2929. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2930. }
  2931. if (leaf->map_token) {
  2932. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2933. leaf->map_token = NULL;
  2934. }
  2935. /* shift the data */
  2936. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2937. data_end - data_size, btrfs_leaf_data(leaf) +
  2938. data_end, old_data - data_end);
  2939. data_end = old_data;
  2940. old_size = btrfs_item_size_nr(leaf, slot);
  2941. item = btrfs_item_nr(leaf, slot);
  2942. btrfs_set_item_size(leaf, item, old_size + data_size);
  2943. btrfs_mark_buffer_dirty(leaf);
  2944. ret = 0;
  2945. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2946. btrfs_print_leaf(root, leaf);
  2947. BUG();
  2948. }
  2949. return ret;
  2950. }
  2951. /*
  2952. * Given a key and some data, insert items into the tree.
  2953. * This does all the path init required, making room in the tree if needed.
  2954. * Returns the number of keys that were inserted.
  2955. */
  2956. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2957. struct btrfs_root *root,
  2958. struct btrfs_path *path,
  2959. struct btrfs_key *cpu_key, u32 *data_size,
  2960. int nr)
  2961. {
  2962. struct extent_buffer *leaf;
  2963. struct btrfs_item *item;
  2964. int ret = 0;
  2965. int slot;
  2966. int i;
  2967. u32 nritems;
  2968. u32 total_data = 0;
  2969. u32 total_size = 0;
  2970. unsigned int data_end;
  2971. struct btrfs_disk_key disk_key;
  2972. struct btrfs_key found_key;
  2973. for (i = 0; i < nr; i++) {
  2974. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  2975. BTRFS_LEAF_DATA_SIZE(root)) {
  2976. break;
  2977. nr = i;
  2978. }
  2979. total_data += data_size[i];
  2980. total_size += data_size[i] + sizeof(struct btrfs_item);
  2981. }
  2982. BUG_ON(nr == 0);
  2983. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2984. if (ret == 0)
  2985. return -EEXIST;
  2986. if (ret < 0)
  2987. goto out;
  2988. leaf = path->nodes[0];
  2989. nritems = btrfs_header_nritems(leaf);
  2990. data_end = leaf_data_end(root, leaf);
  2991. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2992. for (i = nr; i >= 0; i--) {
  2993. total_data -= data_size[i];
  2994. total_size -= data_size[i] + sizeof(struct btrfs_item);
  2995. if (total_size < btrfs_leaf_free_space(root, leaf))
  2996. break;
  2997. }
  2998. nr = i;
  2999. }
  3000. slot = path->slots[0];
  3001. BUG_ON(slot < 0);
  3002. if (slot != nritems) {
  3003. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3004. item = btrfs_item_nr(leaf, slot);
  3005. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3006. /* figure out how many keys we can insert in here */
  3007. total_data = data_size[0];
  3008. for (i = 1; i < nr; i++) {
  3009. if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3010. break;
  3011. total_data += data_size[i];
  3012. }
  3013. nr = i;
  3014. if (old_data < data_end) {
  3015. btrfs_print_leaf(root, leaf);
  3016. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3017. slot, old_data, data_end);
  3018. BUG_ON(1);
  3019. }
  3020. /*
  3021. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3022. */
  3023. /* first correct the data pointers */
  3024. WARN_ON(leaf->map_token);
  3025. for (i = slot; i < nritems; i++) {
  3026. u32 ioff;
  3027. item = btrfs_item_nr(leaf, i);
  3028. if (!leaf->map_token) {
  3029. map_extent_buffer(leaf, (unsigned long)item,
  3030. sizeof(struct btrfs_item),
  3031. &leaf->map_token, &leaf->kaddr,
  3032. &leaf->map_start, &leaf->map_len,
  3033. KM_USER1);
  3034. }
  3035. ioff = btrfs_item_offset(leaf, item);
  3036. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3037. }
  3038. if (leaf->map_token) {
  3039. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3040. leaf->map_token = NULL;
  3041. }
  3042. /* shift the items */
  3043. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3044. btrfs_item_nr_offset(slot),
  3045. (nritems - slot) * sizeof(struct btrfs_item));
  3046. /* shift the data */
  3047. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3048. data_end - total_data, btrfs_leaf_data(leaf) +
  3049. data_end, old_data - data_end);
  3050. data_end = old_data;
  3051. } else {
  3052. /*
  3053. * this sucks but it has to be done, if we are inserting at
  3054. * the end of the leaf only insert 1 of the items, since we
  3055. * have no way of knowing whats on the next leaf and we'd have
  3056. * to drop our current locks to figure it out
  3057. */
  3058. nr = 1;
  3059. }
  3060. /* setup the item for the new data */
  3061. for (i = 0; i < nr; i++) {
  3062. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3063. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3064. item = btrfs_item_nr(leaf, slot + i);
  3065. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3066. data_end -= data_size[i];
  3067. btrfs_set_item_size(leaf, item, data_size[i]);
  3068. }
  3069. btrfs_set_header_nritems(leaf, nritems + nr);
  3070. btrfs_mark_buffer_dirty(leaf);
  3071. ret = 0;
  3072. if (slot == 0) {
  3073. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3074. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3075. }
  3076. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3077. btrfs_print_leaf(root, leaf);
  3078. BUG();
  3079. }
  3080. out:
  3081. if (!ret)
  3082. ret = nr;
  3083. return ret;
  3084. }
  3085. /*
  3086. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3087. * to save stack depth by doing the bulk of the work in a function
  3088. * that doesn't call btrfs_search_slot
  3089. */
  3090. static noinline_for_stack int
  3091. setup_items_for_insert(struct btrfs_trans_handle *trans,
  3092. struct btrfs_root *root, struct btrfs_path *path,
  3093. struct btrfs_key *cpu_key, u32 *data_size,
  3094. u32 total_data, u32 total_size, int nr)
  3095. {
  3096. struct btrfs_item *item;
  3097. int i;
  3098. u32 nritems;
  3099. unsigned int data_end;
  3100. struct btrfs_disk_key disk_key;
  3101. int ret;
  3102. struct extent_buffer *leaf;
  3103. int slot;
  3104. leaf = path->nodes[0];
  3105. slot = path->slots[0];
  3106. nritems = btrfs_header_nritems(leaf);
  3107. data_end = leaf_data_end(root, leaf);
  3108. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3109. btrfs_print_leaf(root, leaf);
  3110. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3111. total_size, btrfs_leaf_free_space(root, leaf));
  3112. BUG();
  3113. }
  3114. if (slot != nritems) {
  3115. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3116. if (old_data < data_end) {
  3117. btrfs_print_leaf(root, leaf);
  3118. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3119. slot, old_data, data_end);
  3120. BUG_ON(1);
  3121. }
  3122. /*
  3123. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3124. */
  3125. /* first correct the data pointers */
  3126. WARN_ON(leaf->map_token);
  3127. for (i = slot; i < nritems; i++) {
  3128. u32 ioff;
  3129. item = btrfs_item_nr(leaf, i);
  3130. if (!leaf->map_token) {
  3131. map_extent_buffer(leaf, (unsigned long)item,
  3132. sizeof(struct btrfs_item),
  3133. &leaf->map_token, &leaf->kaddr,
  3134. &leaf->map_start, &leaf->map_len,
  3135. KM_USER1);
  3136. }
  3137. ioff = btrfs_item_offset(leaf, item);
  3138. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3139. }
  3140. if (leaf->map_token) {
  3141. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3142. leaf->map_token = NULL;
  3143. }
  3144. /* shift the items */
  3145. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3146. btrfs_item_nr_offset(slot),
  3147. (nritems - slot) * sizeof(struct btrfs_item));
  3148. /* shift the data */
  3149. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3150. data_end - total_data, btrfs_leaf_data(leaf) +
  3151. data_end, old_data - data_end);
  3152. data_end = old_data;
  3153. }
  3154. /* setup the item for the new data */
  3155. for (i = 0; i < nr; i++) {
  3156. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3157. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3158. item = btrfs_item_nr(leaf, slot + i);
  3159. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3160. data_end -= data_size[i];
  3161. btrfs_set_item_size(leaf, item, data_size[i]);
  3162. }
  3163. btrfs_set_header_nritems(leaf, nritems + nr);
  3164. ret = 0;
  3165. if (slot == 0) {
  3166. struct btrfs_disk_key disk_key;
  3167. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3168. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3169. }
  3170. btrfs_unlock_up_safe(path, 1);
  3171. btrfs_mark_buffer_dirty(leaf);
  3172. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3173. btrfs_print_leaf(root, leaf);
  3174. BUG();
  3175. }
  3176. return ret;
  3177. }
  3178. /*
  3179. * Given a key and some data, insert items into the tree.
  3180. * This does all the path init required, making room in the tree if needed.
  3181. */
  3182. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3183. struct btrfs_root *root,
  3184. struct btrfs_path *path,
  3185. struct btrfs_key *cpu_key, u32 *data_size,
  3186. int nr)
  3187. {
  3188. struct extent_buffer *leaf;
  3189. int ret = 0;
  3190. int slot;
  3191. int i;
  3192. u32 total_size = 0;
  3193. u32 total_data = 0;
  3194. for (i = 0; i < nr; i++)
  3195. total_data += data_size[i];
  3196. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3197. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3198. if (ret == 0)
  3199. return -EEXIST;
  3200. if (ret < 0)
  3201. goto out;
  3202. leaf = path->nodes[0];
  3203. slot = path->slots[0];
  3204. BUG_ON(slot < 0);
  3205. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3206. total_data, total_size, nr);
  3207. out:
  3208. return ret;
  3209. }
  3210. /*
  3211. * Given a key and some data, insert an item into the tree.
  3212. * This does all the path init required, making room in the tree if needed.
  3213. */
  3214. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3215. *root, struct btrfs_key *cpu_key, void *data, u32
  3216. data_size)
  3217. {
  3218. int ret = 0;
  3219. struct btrfs_path *path;
  3220. struct extent_buffer *leaf;
  3221. unsigned long ptr;
  3222. path = btrfs_alloc_path();
  3223. BUG_ON(!path);
  3224. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3225. if (!ret) {
  3226. leaf = path->nodes[0];
  3227. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3228. write_extent_buffer(leaf, data, ptr, data_size);
  3229. btrfs_mark_buffer_dirty(leaf);
  3230. }
  3231. btrfs_free_path(path);
  3232. return ret;
  3233. }
  3234. /*
  3235. * delete the pointer from a given node.
  3236. *
  3237. * the tree should have been previously balanced so the deletion does not
  3238. * empty a node.
  3239. */
  3240. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3241. struct btrfs_path *path, int level, int slot)
  3242. {
  3243. struct extent_buffer *parent = path->nodes[level];
  3244. u32 nritems;
  3245. int ret = 0;
  3246. int wret;
  3247. nritems = btrfs_header_nritems(parent);
  3248. if (slot != nritems - 1) {
  3249. memmove_extent_buffer(parent,
  3250. btrfs_node_key_ptr_offset(slot),
  3251. btrfs_node_key_ptr_offset(slot + 1),
  3252. sizeof(struct btrfs_key_ptr) *
  3253. (nritems - slot - 1));
  3254. }
  3255. nritems--;
  3256. btrfs_set_header_nritems(parent, nritems);
  3257. if (nritems == 0 && parent == root->node) {
  3258. BUG_ON(btrfs_header_level(root->node) != 1);
  3259. /* just turn the root into a leaf and break */
  3260. btrfs_set_header_level(root->node, 0);
  3261. } else if (slot == 0) {
  3262. struct btrfs_disk_key disk_key;
  3263. btrfs_node_key(parent, &disk_key, 0);
  3264. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3265. if (wret)
  3266. ret = wret;
  3267. }
  3268. btrfs_mark_buffer_dirty(parent);
  3269. return ret;
  3270. }
  3271. /*
  3272. * a helper function to delete the leaf pointed to by path->slots[1] and
  3273. * path->nodes[1]. bytenr is the node block pointer, but since the callers
  3274. * already know it, it is faster to have them pass it down than to
  3275. * read it out of the node again.
  3276. *
  3277. * This deletes the pointer in path->nodes[1] and frees the leaf
  3278. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3279. *
  3280. * The path must have already been setup for deleting the leaf, including
  3281. * all the proper balancing. path->nodes[1] must be locked.
  3282. */
  3283. noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3284. struct btrfs_root *root,
  3285. struct btrfs_path *path, u64 bytenr)
  3286. {
  3287. int ret;
  3288. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  3289. u64 parent_start = path->nodes[1]->start;
  3290. u64 parent_owner = btrfs_header_owner(path->nodes[1]);
  3291. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3292. if (ret)
  3293. return ret;
  3294. /*
  3295. * btrfs_free_extent is expensive, we want to make sure we
  3296. * aren't holding any locks when we call it
  3297. */
  3298. btrfs_unlock_up_safe(path, 0);
  3299. ret = btrfs_free_extent(trans, root, bytenr,
  3300. btrfs_level_size(root, 0),
  3301. parent_start, parent_owner,
  3302. root_gen, 0, 1);
  3303. return ret;
  3304. }
  3305. /*
  3306. * delete the item at the leaf level in path. If that empties
  3307. * the leaf, remove it from the tree
  3308. */
  3309. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3310. struct btrfs_path *path, int slot, int nr)
  3311. {
  3312. struct extent_buffer *leaf;
  3313. struct btrfs_item *item;
  3314. int last_off;
  3315. int dsize = 0;
  3316. int ret = 0;
  3317. int wret;
  3318. int i;
  3319. u32 nritems;
  3320. leaf = path->nodes[0];
  3321. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3322. for (i = 0; i < nr; i++)
  3323. dsize += btrfs_item_size_nr(leaf, slot + i);
  3324. nritems = btrfs_header_nritems(leaf);
  3325. if (slot + nr != nritems) {
  3326. int data_end = leaf_data_end(root, leaf);
  3327. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3328. data_end + dsize,
  3329. btrfs_leaf_data(leaf) + data_end,
  3330. last_off - data_end);
  3331. for (i = slot + nr; i < nritems; i++) {
  3332. u32 ioff;
  3333. item = btrfs_item_nr(leaf, i);
  3334. if (!leaf->map_token) {
  3335. map_extent_buffer(leaf, (unsigned long)item,
  3336. sizeof(struct btrfs_item),
  3337. &leaf->map_token, &leaf->kaddr,
  3338. &leaf->map_start, &leaf->map_len,
  3339. KM_USER1);
  3340. }
  3341. ioff = btrfs_item_offset(leaf, item);
  3342. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3343. }
  3344. if (leaf->map_token) {
  3345. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3346. leaf->map_token = NULL;
  3347. }
  3348. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3349. btrfs_item_nr_offset(slot + nr),
  3350. sizeof(struct btrfs_item) *
  3351. (nritems - slot - nr));
  3352. }
  3353. btrfs_set_header_nritems(leaf, nritems - nr);
  3354. nritems -= nr;
  3355. /* delete the leaf if we've emptied it */
  3356. if (nritems == 0) {
  3357. if (leaf == root->node) {
  3358. btrfs_set_header_level(leaf, 0);
  3359. } else {
  3360. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  3361. BUG_ON(ret);
  3362. }
  3363. } else {
  3364. int used = leaf_space_used(leaf, 0, nritems);
  3365. if (slot == 0) {
  3366. struct btrfs_disk_key disk_key;
  3367. btrfs_item_key(leaf, &disk_key, 0);
  3368. wret = fixup_low_keys(trans, root, path,
  3369. &disk_key, 1);
  3370. if (wret)
  3371. ret = wret;
  3372. }
  3373. /* delete the leaf if it is mostly empty */
  3374. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 &&
  3375. !trans->transaction->delayed_refs.flushing) {
  3376. /* push_leaf_left fixes the path.
  3377. * make sure the path still points to our leaf
  3378. * for possible call to del_ptr below
  3379. */
  3380. slot = path->slots[1];
  3381. extent_buffer_get(leaf);
  3382. btrfs_set_path_blocking(path);
  3383. wret = push_leaf_left(trans, root, path, 1, 1);
  3384. if (wret < 0 && wret != -ENOSPC)
  3385. ret = wret;
  3386. if (path->nodes[0] == leaf &&
  3387. btrfs_header_nritems(leaf)) {
  3388. wret = push_leaf_right(trans, root, path, 1, 1);
  3389. if (wret < 0 && wret != -ENOSPC)
  3390. ret = wret;
  3391. }
  3392. if (btrfs_header_nritems(leaf) == 0) {
  3393. path->slots[1] = slot;
  3394. ret = btrfs_del_leaf(trans, root, path,
  3395. leaf->start);
  3396. BUG_ON(ret);
  3397. free_extent_buffer(leaf);
  3398. } else {
  3399. /* if we're still in the path, make sure
  3400. * we're dirty. Otherwise, one of the
  3401. * push_leaf functions must have already
  3402. * dirtied this buffer
  3403. */
  3404. if (path->nodes[0] == leaf)
  3405. btrfs_mark_buffer_dirty(leaf);
  3406. free_extent_buffer(leaf);
  3407. }
  3408. } else {
  3409. btrfs_mark_buffer_dirty(leaf);
  3410. }
  3411. }
  3412. return ret;
  3413. }
  3414. /*
  3415. * search the tree again to find a leaf with lesser keys
  3416. * returns 0 if it found something or 1 if there are no lesser leaves.
  3417. * returns < 0 on io errors.
  3418. *
  3419. * This may release the path, and so you may lose any locks held at the
  3420. * time you call it.
  3421. */
  3422. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3423. {
  3424. struct btrfs_key key;
  3425. struct btrfs_disk_key found_key;
  3426. int ret;
  3427. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3428. if (key.offset > 0)
  3429. key.offset--;
  3430. else if (key.type > 0)
  3431. key.type--;
  3432. else if (key.objectid > 0)
  3433. key.objectid--;
  3434. else
  3435. return 1;
  3436. btrfs_release_path(root, path);
  3437. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3438. if (ret < 0)
  3439. return ret;
  3440. btrfs_item_key(path->nodes[0], &found_key, 0);
  3441. ret = comp_keys(&found_key, &key);
  3442. if (ret < 0)
  3443. return 0;
  3444. return 1;
  3445. }
  3446. /*
  3447. * A helper function to walk down the tree starting at min_key, and looking
  3448. * for nodes or leaves that are either in cache or have a minimum
  3449. * transaction id. This is used by the btree defrag code, and tree logging
  3450. *
  3451. * This does not cow, but it does stuff the starting key it finds back
  3452. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3453. * key and get a writable path.
  3454. *
  3455. * This does lock as it descends, and path->keep_locks should be set
  3456. * to 1 by the caller.
  3457. *
  3458. * This honors path->lowest_level to prevent descent past a given level
  3459. * of the tree.
  3460. *
  3461. * min_trans indicates the oldest transaction that you are interested
  3462. * in walking through. Any nodes or leaves older than min_trans are
  3463. * skipped over (without reading them).
  3464. *
  3465. * returns zero if something useful was found, < 0 on error and 1 if there
  3466. * was nothing in the tree that matched the search criteria.
  3467. */
  3468. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3469. struct btrfs_key *max_key,
  3470. struct btrfs_path *path, int cache_only,
  3471. u64 min_trans)
  3472. {
  3473. struct extent_buffer *cur;
  3474. struct btrfs_key found_key;
  3475. int slot;
  3476. int sret;
  3477. u32 nritems;
  3478. int level;
  3479. int ret = 1;
  3480. WARN_ON(!path->keep_locks);
  3481. again:
  3482. cur = btrfs_lock_root_node(root);
  3483. level = btrfs_header_level(cur);
  3484. WARN_ON(path->nodes[level]);
  3485. path->nodes[level] = cur;
  3486. path->locks[level] = 1;
  3487. if (btrfs_header_generation(cur) < min_trans) {
  3488. ret = 1;
  3489. goto out;
  3490. }
  3491. while (1) {
  3492. nritems = btrfs_header_nritems(cur);
  3493. level = btrfs_header_level(cur);
  3494. sret = bin_search(cur, min_key, level, &slot);
  3495. /* at the lowest level, we're done, setup the path and exit */
  3496. if (level == path->lowest_level) {
  3497. if (slot >= nritems)
  3498. goto find_next_key;
  3499. ret = 0;
  3500. path->slots[level] = slot;
  3501. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3502. goto out;
  3503. }
  3504. if (sret && slot > 0)
  3505. slot--;
  3506. /*
  3507. * check this node pointer against the cache_only and
  3508. * min_trans parameters. If it isn't in cache or is too
  3509. * old, skip to the next one.
  3510. */
  3511. while (slot < nritems) {
  3512. u64 blockptr;
  3513. u64 gen;
  3514. struct extent_buffer *tmp;
  3515. struct btrfs_disk_key disk_key;
  3516. blockptr = btrfs_node_blockptr(cur, slot);
  3517. gen = btrfs_node_ptr_generation(cur, slot);
  3518. if (gen < min_trans) {
  3519. slot++;
  3520. continue;
  3521. }
  3522. if (!cache_only)
  3523. break;
  3524. if (max_key) {
  3525. btrfs_node_key(cur, &disk_key, slot);
  3526. if (comp_keys(&disk_key, max_key) >= 0) {
  3527. ret = 1;
  3528. goto out;
  3529. }
  3530. }
  3531. tmp = btrfs_find_tree_block(root, blockptr,
  3532. btrfs_level_size(root, level - 1));
  3533. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3534. free_extent_buffer(tmp);
  3535. break;
  3536. }
  3537. if (tmp)
  3538. free_extent_buffer(tmp);
  3539. slot++;
  3540. }
  3541. find_next_key:
  3542. /*
  3543. * we didn't find a candidate key in this node, walk forward
  3544. * and find another one
  3545. */
  3546. if (slot >= nritems) {
  3547. path->slots[level] = slot;
  3548. btrfs_set_path_blocking(path);
  3549. sret = btrfs_find_next_key(root, path, min_key, level,
  3550. cache_only, min_trans);
  3551. if (sret == 0) {
  3552. btrfs_release_path(root, path);
  3553. goto again;
  3554. } else {
  3555. goto out;
  3556. }
  3557. }
  3558. /* save our key for returning back */
  3559. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3560. path->slots[level] = slot;
  3561. if (level == path->lowest_level) {
  3562. ret = 0;
  3563. unlock_up(path, level, 1);
  3564. goto out;
  3565. }
  3566. btrfs_set_path_blocking(path);
  3567. cur = read_node_slot(root, cur, slot);
  3568. btrfs_tree_lock(cur);
  3569. path->locks[level - 1] = 1;
  3570. path->nodes[level - 1] = cur;
  3571. unlock_up(path, level, 1);
  3572. btrfs_clear_path_blocking(path, NULL);
  3573. }
  3574. out:
  3575. if (ret == 0)
  3576. memcpy(min_key, &found_key, sizeof(found_key));
  3577. btrfs_set_path_blocking(path);
  3578. return ret;
  3579. }
  3580. /*
  3581. * this is similar to btrfs_next_leaf, but does not try to preserve
  3582. * and fixup the path. It looks for and returns the next key in the
  3583. * tree based on the current path and the cache_only and min_trans
  3584. * parameters.
  3585. *
  3586. * 0 is returned if another key is found, < 0 if there are any errors
  3587. * and 1 is returned if there are no higher keys in the tree
  3588. *
  3589. * path->keep_locks should be set to 1 on the search made before
  3590. * calling this function.
  3591. */
  3592. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3593. struct btrfs_key *key, int lowest_level,
  3594. int cache_only, u64 min_trans)
  3595. {
  3596. int level = lowest_level;
  3597. int slot;
  3598. struct extent_buffer *c;
  3599. WARN_ON(!path->keep_locks);
  3600. while (level < BTRFS_MAX_LEVEL) {
  3601. if (!path->nodes[level])
  3602. return 1;
  3603. slot = path->slots[level] + 1;
  3604. c = path->nodes[level];
  3605. next:
  3606. if (slot >= btrfs_header_nritems(c)) {
  3607. level++;
  3608. if (level == BTRFS_MAX_LEVEL)
  3609. return 1;
  3610. continue;
  3611. }
  3612. if (level == 0)
  3613. btrfs_item_key_to_cpu(c, key, slot);
  3614. else {
  3615. u64 blockptr = btrfs_node_blockptr(c, slot);
  3616. u64 gen = btrfs_node_ptr_generation(c, slot);
  3617. if (cache_only) {
  3618. struct extent_buffer *cur;
  3619. cur = btrfs_find_tree_block(root, blockptr,
  3620. btrfs_level_size(root, level - 1));
  3621. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3622. slot++;
  3623. if (cur)
  3624. free_extent_buffer(cur);
  3625. goto next;
  3626. }
  3627. free_extent_buffer(cur);
  3628. }
  3629. if (gen < min_trans) {
  3630. slot++;
  3631. goto next;
  3632. }
  3633. btrfs_node_key_to_cpu(c, key, slot);
  3634. }
  3635. return 0;
  3636. }
  3637. return 1;
  3638. }
  3639. /*
  3640. * search the tree again to find a leaf with greater keys
  3641. * returns 0 if it found something or 1 if there are no greater leaves.
  3642. * returns < 0 on io errors.
  3643. */
  3644. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3645. {
  3646. int slot;
  3647. int level;
  3648. struct extent_buffer *c;
  3649. struct extent_buffer *next;
  3650. struct btrfs_key key;
  3651. u32 nritems;
  3652. int ret;
  3653. int old_spinning = path->leave_spinning;
  3654. int force_blocking = 0;
  3655. nritems = btrfs_header_nritems(path->nodes[0]);
  3656. if (nritems == 0)
  3657. return 1;
  3658. /*
  3659. * we take the blocks in an order that upsets lockdep. Using
  3660. * blocking mode is the only way around it.
  3661. */
  3662. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  3663. force_blocking = 1;
  3664. #endif
  3665. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3666. again:
  3667. level = 1;
  3668. next = NULL;
  3669. btrfs_release_path(root, path);
  3670. path->keep_locks = 1;
  3671. if (!force_blocking)
  3672. path->leave_spinning = 1;
  3673. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3674. path->keep_locks = 0;
  3675. if (ret < 0)
  3676. return ret;
  3677. nritems = btrfs_header_nritems(path->nodes[0]);
  3678. /*
  3679. * by releasing the path above we dropped all our locks. A balance
  3680. * could have added more items next to the key that used to be
  3681. * at the very end of the block. So, check again here and
  3682. * advance the path if there are now more items available.
  3683. */
  3684. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3685. path->slots[0]++;
  3686. ret = 0;
  3687. goto done;
  3688. }
  3689. while (level < BTRFS_MAX_LEVEL) {
  3690. if (!path->nodes[level]) {
  3691. ret = 1;
  3692. goto done;
  3693. }
  3694. slot = path->slots[level] + 1;
  3695. c = path->nodes[level];
  3696. if (slot >= btrfs_header_nritems(c)) {
  3697. level++;
  3698. if (level == BTRFS_MAX_LEVEL) {
  3699. ret = 1;
  3700. goto done;
  3701. }
  3702. continue;
  3703. }
  3704. if (next) {
  3705. btrfs_tree_unlock(next);
  3706. free_extent_buffer(next);
  3707. }
  3708. next = c;
  3709. ret = read_block_for_search(NULL, root, path, &next, level,
  3710. slot, &key);
  3711. if (ret == -EAGAIN)
  3712. goto again;
  3713. if (!path->skip_locking) {
  3714. ret = btrfs_try_spin_lock(next);
  3715. if (!ret) {
  3716. btrfs_set_path_blocking(path);
  3717. btrfs_tree_lock(next);
  3718. if (!force_blocking)
  3719. btrfs_clear_path_blocking(path, next);
  3720. }
  3721. if (force_blocking)
  3722. btrfs_set_lock_blocking(next);
  3723. }
  3724. break;
  3725. }
  3726. path->slots[level] = slot;
  3727. while (1) {
  3728. level--;
  3729. c = path->nodes[level];
  3730. if (path->locks[level])
  3731. btrfs_tree_unlock(c);
  3732. free_extent_buffer(c);
  3733. path->nodes[level] = next;
  3734. path->slots[level] = 0;
  3735. if (!path->skip_locking)
  3736. path->locks[level] = 1;
  3737. if (!level)
  3738. break;
  3739. ret = read_block_for_search(NULL, root, path, &next, level,
  3740. 0, &key);
  3741. if (ret == -EAGAIN)
  3742. goto again;
  3743. if (!path->skip_locking) {
  3744. btrfs_assert_tree_locked(path->nodes[level]);
  3745. ret = btrfs_try_spin_lock(next);
  3746. if (!ret) {
  3747. btrfs_set_path_blocking(path);
  3748. btrfs_tree_lock(next);
  3749. if (!force_blocking)
  3750. btrfs_clear_path_blocking(path, next);
  3751. }
  3752. if (force_blocking)
  3753. btrfs_set_lock_blocking(next);
  3754. }
  3755. }
  3756. ret = 0;
  3757. done:
  3758. unlock_up(path, 0, 1);
  3759. path->leave_spinning = old_spinning;
  3760. if (!old_spinning)
  3761. btrfs_set_path_blocking(path);
  3762. return ret;
  3763. }
  3764. /*
  3765. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3766. * searching until it gets past min_objectid or finds an item of 'type'
  3767. *
  3768. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3769. */
  3770. int btrfs_previous_item(struct btrfs_root *root,
  3771. struct btrfs_path *path, u64 min_objectid,
  3772. int type)
  3773. {
  3774. struct btrfs_key found_key;
  3775. struct extent_buffer *leaf;
  3776. u32 nritems;
  3777. int ret;
  3778. while (1) {
  3779. if (path->slots[0] == 0) {
  3780. btrfs_set_path_blocking(path);
  3781. ret = btrfs_prev_leaf(root, path);
  3782. if (ret != 0)
  3783. return ret;
  3784. } else {
  3785. path->slots[0]--;
  3786. }
  3787. leaf = path->nodes[0];
  3788. nritems = btrfs_header_nritems(leaf);
  3789. if (nritems == 0)
  3790. return 1;
  3791. if (path->slots[0] == nritems)
  3792. path->slots[0]--;
  3793. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3794. if (found_key.type == type)
  3795. return 0;
  3796. if (found_key.objectid < min_objectid)
  3797. break;
  3798. if (found_key.objectid == min_objectid &&
  3799. found_key.type < type)
  3800. break;
  3801. }
  3802. return 1;
  3803. }