bio.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/blktrace_api.h>
  29. #include <trace/block.h>
  30. #include <scsi/sg.h> /* for struct sg_iovec */
  31. DEFINE_TRACE(block_split);
  32. /*
  33. * Test patch to inline a certain number of bi_io_vec's inside the bio
  34. * itself, to shrink a bio data allocation from two mempool calls to one
  35. */
  36. #define BIO_INLINE_VECS 4
  37. static mempool_t *bio_split_pool __read_mostly;
  38. /*
  39. * if you change this list, also change bvec_alloc or things will
  40. * break badly! cannot be bigger than what you can fit into an
  41. * unsigned short
  42. */
  43. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  44. struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  45. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  46. };
  47. #undef BV
  48. /*
  49. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  50. * IO code that does not need private memory pools.
  51. */
  52. struct bio_set *fs_bio_set;
  53. /*
  54. * Our slab pool management
  55. */
  56. struct bio_slab {
  57. struct kmem_cache *slab;
  58. unsigned int slab_ref;
  59. unsigned int slab_size;
  60. char name[8];
  61. };
  62. static DEFINE_MUTEX(bio_slab_lock);
  63. static struct bio_slab *bio_slabs;
  64. static unsigned int bio_slab_nr, bio_slab_max;
  65. static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  66. {
  67. unsigned int sz = sizeof(struct bio) + extra_size;
  68. struct kmem_cache *slab = NULL;
  69. struct bio_slab *bslab;
  70. unsigned int i, entry = -1;
  71. mutex_lock(&bio_slab_lock);
  72. i = 0;
  73. while (i < bio_slab_nr) {
  74. struct bio_slab *bslab = &bio_slabs[i];
  75. if (!bslab->slab && entry == -1)
  76. entry = i;
  77. else if (bslab->slab_size == sz) {
  78. slab = bslab->slab;
  79. bslab->slab_ref++;
  80. break;
  81. }
  82. i++;
  83. }
  84. if (slab)
  85. goto out_unlock;
  86. if (bio_slab_nr == bio_slab_max && entry == -1) {
  87. bio_slab_max <<= 1;
  88. bio_slabs = krealloc(bio_slabs,
  89. bio_slab_max * sizeof(struct bio_slab),
  90. GFP_KERNEL);
  91. if (!bio_slabs)
  92. goto out_unlock;
  93. }
  94. if (entry == -1)
  95. entry = bio_slab_nr++;
  96. bslab = &bio_slabs[entry];
  97. snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  98. slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
  99. if (!slab)
  100. goto out_unlock;
  101. printk("bio: create slab <%s> at %d\n", bslab->name, entry);
  102. bslab->slab = slab;
  103. bslab->slab_ref = 1;
  104. bslab->slab_size = sz;
  105. out_unlock:
  106. mutex_unlock(&bio_slab_lock);
  107. return slab;
  108. }
  109. static void bio_put_slab(struct bio_set *bs)
  110. {
  111. struct bio_slab *bslab = NULL;
  112. unsigned int i;
  113. mutex_lock(&bio_slab_lock);
  114. for (i = 0; i < bio_slab_nr; i++) {
  115. if (bs->bio_slab == bio_slabs[i].slab) {
  116. bslab = &bio_slabs[i];
  117. break;
  118. }
  119. }
  120. if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  121. goto out;
  122. WARN_ON(!bslab->slab_ref);
  123. if (--bslab->slab_ref)
  124. goto out;
  125. kmem_cache_destroy(bslab->slab);
  126. bslab->slab = NULL;
  127. out:
  128. mutex_unlock(&bio_slab_lock);
  129. }
  130. unsigned int bvec_nr_vecs(unsigned short idx)
  131. {
  132. return bvec_slabs[idx].nr_vecs;
  133. }
  134. void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
  135. {
  136. BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
  137. if (idx == BIOVEC_MAX_IDX)
  138. mempool_free(bv, bs->bvec_pool);
  139. else {
  140. struct biovec_slab *bvs = bvec_slabs + idx;
  141. kmem_cache_free(bvs->slab, bv);
  142. }
  143. }
  144. struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
  145. struct bio_set *bs)
  146. {
  147. struct bio_vec *bvl;
  148. /*
  149. * If 'bs' is given, lookup the pool and do the mempool alloc.
  150. * If not, this is a bio_kmalloc() allocation and just do a
  151. * kzalloc() for the exact number of vecs right away.
  152. */
  153. if (!bs)
  154. bvl = kmalloc(nr * sizeof(struct bio_vec), gfp_mask);
  155. /*
  156. * see comment near bvec_array define!
  157. */
  158. switch (nr) {
  159. case 1:
  160. *idx = 0;
  161. break;
  162. case 2 ... 4:
  163. *idx = 1;
  164. break;
  165. case 5 ... 16:
  166. *idx = 2;
  167. break;
  168. case 17 ... 64:
  169. *idx = 3;
  170. break;
  171. case 65 ... 128:
  172. *idx = 4;
  173. break;
  174. case 129 ... BIO_MAX_PAGES:
  175. *idx = 5;
  176. break;
  177. default:
  178. return NULL;
  179. }
  180. /*
  181. * idx now points to the pool we want to allocate from. only the
  182. * 1-vec entry pool is mempool backed.
  183. */
  184. if (*idx == BIOVEC_MAX_IDX) {
  185. fallback:
  186. bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
  187. } else {
  188. struct biovec_slab *bvs = bvec_slabs + *idx;
  189. gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
  190. /*
  191. * Make this allocation restricted and don't dump info on
  192. * allocation failures, since we'll fallback to the mempool
  193. * in case of failure.
  194. */
  195. __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  196. /*
  197. * Try a slab allocation. If this fails and __GFP_WAIT
  198. * is set, retry with the 1-entry mempool
  199. */
  200. bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  201. if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
  202. *idx = BIOVEC_MAX_IDX;
  203. goto fallback;
  204. }
  205. }
  206. return bvl;
  207. }
  208. void bio_free(struct bio *bio, struct bio_set *bs)
  209. {
  210. void *p;
  211. if (bio_has_allocated_vec(bio))
  212. bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
  213. if (bio_integrity(bio))
  214. bio_integrity_free(bio);
  215. /*
  216. * If we have front padding, adjust the bio pointer before freeing
  217. */
  218. p = bio;
  219. if (bs->front_pad)
  220. p -= bs->front_pad;
  221. mempool_free(p, bs->bio_pool);
  222. }
  223. /*
  224. * default destructor for a bio allocated with bio_alloc_bioset()
  225. */
  226. static void bio_fs_destructor(struct bio *bio)
  227. {
  228. bio_free(bio, fs_bio_set);
  229. }
  230. static void bio_kmalloc_destructor(struct bio *bio)
  231. {
  232. if (bio_has_allocated_vec(bio))
  233. kfree(bio->bi_io_vec);
  234. kfree(bio);
  235. }
  236. void bio_init(struct bio *bio)
  237. {
  238. memset(bio, 0, sizeof(*bio));
  239. bio->bi_flags = 1 << BIO_UPTODATE;
  240. bio->bi_comp_cpu = -1;
  241. atomic_set(&bio->bi_cnt, 1);
  242. }
  243. /**
  244. * bio_alloc_bioset - allocate a bio for I/O
  245. * @gfp_mask: the GFP_ mask given to the slab allocator
  246. * @nr_iovecs: number of iovecs to pre-allocate
  247. * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
  248. *
  249. * Description:
  250. * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
  251. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  252. * for a &struct bio to become free. If a %NULL @bs is passed in, we will
  253. * fall back to just using @kmalloc to allocate the required memory.
  254. *
  255. * Note that the caller must set ->bi_destructor on succesful return
  256. * of a bio, to do the appropriate freeing of the bio once the reference
  257. * count drops to zero.
  258. **/
  259. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  260. {
  261. struct bio_vec *bvl = NULL;
  262. struct bio *bio = NULL;
  263. unsigned long idx = 0;
  264. void *p = NULL;
  265. if (bs) {
  266. p = mempool_alloc(bs->bio_pool, gfp_mask);
  267. if (!p)
  268. goto err;
  269. bio = p + bs->front_pad;
  270. } else {
  271. bio = kmalloc(sizeof(*bio), gfp_mask);
  272. if (!bio)
  273. goto err;
  274. }
  275. bio_init(bio);
  276. if (unlikely(!nr_iovecs))
  277. goto out_set;
  278. if (nr_iovecs <= BIO_INLINE_VECS) {
  279. bvl = bio->bi_inline_vecs;
  280. nr_iovecs = BIO_INLINE_VECS;
  281. } else {
  282. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  283. if (unlikely(!bvl))
  284. goto err_free;
  285. nr_iovecs = bvec_nr_vecs(idx);
  286. }
  287. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  288. bio->bi_max_vecs = nr_iovecs;
  289. out_set:
  290. bio->bi_io_vec = bvl;
  291. return bio;
  292. err_free:
  293. if (bs)
  294. mempool_free(p, bs->bio_pool);
  295. else
  296. kfree(bio);
  297. err:
  298. return NULL;
  299. }
  300. struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
  301. {
  302. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  303. if (bio)
  304. bio->bi_destructor = bio_fs_destructor;
  305. return bio;
  306. }
  307. /*
  308. * Like bio_alloc(), but doesn't use a mempool backing. This means that
  309. * it CAN fail, but while bio_alloc() can only be used for allocations
  310. * that have a short (finite) life span, bio_kmalloc() should be used
  311. * for more permanent bio allocations (like allocating some bio's for
  312. * initalization or setup purposes).
  313. */
  314. struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
  315. {
  316. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, NULL);
  317. if (bio)
  318. bio->bi_destructor = bio_kmalloc_destructor;
  319. return bio;
  320. }
  321. void zero_fill_bio(struct bio *bio)
  322. {
  323. unsigned long flags;
  324. struct bio_vec *bv;
  325. int i;
  326. bio_for_each_segment(bv, bio, i) {
  327. char *data = bvec_kmap_irq(bv, &flags);
  328. memset(data, 0, bv->bv_len);
  329. flush_dcache_page(bv->bv_page);
  330. bvec_kunmap_irq(data, &flags);
  331. }
  332. }
  333. EXPORT_SYMBOL(zero_fill_bio);
  334. /**
  335. * bio_put - release a reference to a bio
  336. * @bio: bio to release reference to
  337. *
  338. * Description:
  339. * Put a reference to a &struct bio, either one you have gotten with
  340. * bio_alloc or bio_get. The last put of a bio will free it.
  341. **/
  342. void bio_put(struct bio *bio)
  343. {
  344. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  345. /*
  346. * last put frees it
  347. */
  348. if (atomic_dec_and_test(&bio->bi_cnt)) {
  349. bio->bi_next = NULL;
  350. bio->bi_destructor(bio);
  351. }
  352. }
  353. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  354. {
  355. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  356. blk_recount_segments(q, bio);
  357. return bio->bi_phys_segments;
  358. }
  359. /**
  360. * __bio_clone - clone a bio
  361. * @bio: destination bio
  362. * @bio_src: bio to clone
  363. *
  364. * Clone a &bio. Caller will own the returned bio, but not
  365. * the actual data it points to. Reference count of returned
  366. * bio will be one.
  367. */
  368. void __bio_clone(struct bio *bio, struct bio *bio_src)
  369. {
  370. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  371. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  372. /*
  373. * most users will be overriding ->bi_bdev with a new target,
  374. * so we don't set nor calculate new physical/hw segment counts here
  375. */
  376. bio->bi_sector = bio_src->bi_sector;
  377. bio->bi_bdev = bio_src->bi_bdev;
  378. bio->bi_flags |= 1 << BIO_CLONED;
  379. bio->bi_rw = bio_src->bi_rw;
  380. bio->bi_vcnt = bio_src->bi_vcnt;
  381. bio->bi_size = bio_src->bi_size;
  382. bio->bi_idx = bio_src->bi_idx;
  383. }
  384. /**
  385. * bio_clone - clone a bio
  386. * @bio: bio to clone
  387. * @gfp_mask: allocation priority
  388. *
  389. * Like __bio_clone, only also allocates the returned bio
  390. */
  391. struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
  392. {
  393. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  394. if (!b)
  395. return NULL;
  396. b->bi_destructor = bio_fs_destructor;
  397. __bio_clone(b, bio);
  398. if (bio_integrity(bio)) {
  399. int ret;
  400. ret = bio_integrity_clone(b, bio, gfp_mask);
  401. if (ret < 0) {
  402. bio_put(b);
  403. return NULL;
  404. }
  405. }
  406. return b;
  407. }
  408. /**
  409. * bio_get_nr_vecs - return approx number of vecs
  410. * @bdev: I/O target
  411. *
  412. * Return the approximate number of pages we can send to this target.
  413. * There's no guarantee that you will be able to fit this number of pages
  414. * into a bio, it does not account for dynamic restrictions that vary
  415. * on offset.
  416. */
  417. int bio_get_nr_vecs(struct block_device *bdev)
  418. {
  419. struct request_queue *q = bdev_get_queue(bdev);
  420. int nr_pages;
  421. nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  422. if (nr_pages > q->max_phys_segments)
  423. nr_pages = q->max_phys_segments;
  424. if (nr_pages > q->max_hw_segments)
  425. nr_pages = q->max_hw_segments;
  426. return nr_pages;
  427. }
  428. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  429. *page, unsigned int len, unsigned int offset,
  430. unsigned short max_sectors)
  431. {
  432. int retried_segments = 0;
  433. struct bio_vec *bvec;
  434. /*
  435. * cloned bio must not modify vec list
  436. */
  437. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  438. return 0;
  439. if (((bio->bi_size + len) >> 9) > max_sectors)
  440. return 0;
  441. /*
  442. * For filesystems with a blocksize smaller than the pagesize
  443. * we will often be called with the same page as last time and
  444. * a consecutive offset. Optimize this special case.
  445. */
  446. if (bio->bi_vcnt > 0) {
  447. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  448. if (page == prev->bv_page &&
  449. offset == prev->bv_offset + prev->bv_len) {
  450. prev->bv_len += len;
  451. if (q->merge_bvec_fn) {
  452. struct bvec_merge_data bvm = {
  453. .bi_bdev = bio->bi_bdev,
  454. .bi_sector = bio->bi_sector,
  455. .bi_size = bio->bi_size,
  456. .bi_rw = bio->bi_rw,
  457. };
  458. if (q->merge_bvec_fn(q, &bvm, prev) < len) {
  459. prev->bv_len -= len;
  460. return 0;
  461. }
  462. }
  463. goto done;
  464. }
  465. }
  466. if (bio->bi_vcnt >= bio->bi_max_vecs)
  467. return 0;
  468. /*
  469. * we might lose a segment or two here, but rather that than
  470. * make this too complex.
  471. */
  472. while (bio->bi_phys_segments >= q->max_phys_segments
  473. || bio->bi_phys_segments >= q->max_hw_segments) {
  474. if (retried_segments)
  475. return 0;
  476. retried_segments = 1;
  477. blk_recount_segments(q, bio);
  478. }
  479. /*
  480. * setup the new entry, we might clear it again later if we
  481. * cannot add the page
  482. */
  483. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  484. bvec->bv_page = page;
  485. bvec->bv_len = len;
  486. bvec->bv_offset = offset;
  487. /*
  488. * if queue has other restrictions (eg varying max sector size
  489. * depending on offset), it can specify a merge_bvec_fn in the
  490. * queue to get further control
  491. */
  492. if (q->merge_bvec_fn) {
  493. struct bvec_merge_data bvm = {
  494. .bi_bdev = bio->bi_bdev,
  495. .bi_sector = bio->bi_sector,
  496. .bi_size = bio->bi_size,
  497. .bi_rw = bio->bi_rw,
  498. };
  499. /*
  500. * merge_bvec_fn() returns number of bytes it can accept
  501. * at this offset
  502. */
  503. if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
  504. bvec->bv_page = NULL;
  505. bvec->bv_len = 0;
  506. bvec->bv_offset = 0;
  507. return 0;
  508. }
  509. }
  510. /* If we may be able to merge these biovecs, force a recount */
  511. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  512. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  513. bio->bi_vcnt++;
  514. bio->bi_phys_segments++;
  515. done:
  516. bio->bi_size += len;
  517. return len;
  518. }
  519. /**
  520. * bio_add_pc_page - attempt to add page to bio
  521. * @q: the target queue
  522. * @bio: destination bio
  523. * @page: page to add
  524. * @len: vec entry length
  525. * @offset: vec entry offset
  526. *
  527. * Attempt to add a page to the bio_vec maplist. This can fail for a
  528. * number of reasons, such as the bio being full or target block
  529. * device limitations. The target block device must allow bio's
  530. * smaller than PAGE_SIZE, so it is always possible to add a single
  531. * page to an empty bio. This should only be used by REQ_PC bios.
  532. */
  533. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  534. unsigned int len, unsigned int offset)
  535. {
  536. return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
  537. }
  538. /**
  539. * bio_add_page - attempt to add page to bio
  540. * @bio: destination bio
  541. * @page: page to add
  542. * @len: vec entry length
  543. * @offset: vec entry offset
  544. *
  545. * Attempt to add a page to the bio_vec maplist. This can fail for a
  546. * number of reasons, such as the bio being full or target block
  547. * device limitations. The target block device must allow bio's
  548. * smaller than PAGE_SIZE, so it is always possible to add a single
  549. * page to an empty bio.
  550. */
  551. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  552. unsigned int offset)
  553. {
  554. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  555. return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
  556. }
  557. struct bio_map_data {
  558. struct bio_vec *iovecs;
  559. struct sg_iovec *sgvecs;
  560. int nr_sgvecs;
  561. int is_our_pages;
  562. };
  563. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  564. struct sg_iovec *iov, int iov_count,
  565. int is_our_pages)
  566. {
  567. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  568. memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  569. bmd->nr_sgvecs = iov_count;
  570. bmd->is_our_pages = is_our_pages;
  571. bio->bi_private = bmd;
  572. }
  573. static void bio_free_map_data(struct bio_map_data *bmd)
  574. {
  575. kfree(bmd->iovecs);
  576. kfree(bmd->sgvecs);
  577. kfree(bmd);
  578. }
  579. static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
  580. gfp_t gfp_mask)
  581. {
  582. struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
  583. if (!bmd)
  584. return NULL;
  585. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
  586. if (!bmd->iovecs) {
  587. kfree(bmd);
  588. return NULL;
  589. }
  590. bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
  591. if (bmd->sgvecs)
  592. return bmd;
  593. kfree(bmd->iovecs);
  594. kfree(bmd);
  595. return NULL;
  596. }
  597. static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
  598. struct sg_iovec *iov, int iov_count, int uncopy,
  599. int do_free_page)
  600. {
  601. int ret = 0, i;
  602. struct bio_vec *bvec;
  603. int iov_idx = 0;
  604. unsigned int iov_off = 0;
  605. int read = bio_data_dir(bio) == READ;
  606. __bio_for_each_segment(bvec, bio, i, 0) {
  607. char *bv_addr = page_address(bvec->bv_page);
  608. unsigned int bv_len = iovecs[i].bv_len;
  609. while (bv_len && iov_idx < iov_count) {
  610. unsigned int bytes;
  611. char *iov_addr;
  612. bytes = min_t(unsigned int,
  613. iov[iov_idx].iov_len - iov_off, bv_len);
  614. iov_addr = iov[iov_idx].iov_base + iov_off;
  615. if (!ret) {
  616. if (!read && !uncopy)
  617. ret = copy_from_user(bv_addr, iov_addr,
  618. bytes);
  619. if (read && uncopy)
  620. ret = copy_to_user(iov_addr, bv_addr,
  621. bytes);
  622. if (ret)
  623. ret = -EFAULT;
  624. }
  625. bv_len -= bytes;
  626. bv_addr += bytes;
  627. iov_addr += bytes;
  628. iov_off += bytes;
  629. if (iov[iov_idx].iov_len == iov_off) {
  630. iov_idx++;
  631. iov_off = 0;
  632. }
  633. }
  634. if (do_free_page)
  635. __free_page(bvec->bv_page);
  636. }
  637. return ret;
  638. }
  639. /**
  640. * bio_uncopy_user - finish previously mapped bio
  641. * @bio: bio being terminated
  642. *
  643. * Free pages allocated from bio_copy_user() and write back data
  644. * to user space in case of a read.
  645. */
  646. int bio_uncopy_user(struct bio *bio)
  647. {
  648. struct bio_map_data *bmd = bio->bi_private;
  649. int ret = 0;
  650. if (!bio_flagged(bio, BIO_NULL_MAPPED))
  651. ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
  652. bmd->nr_sgvecs, 1, bmd->is_our_pages);
  653. bio_free_map_data(bmd);
  654. bio_put(bio);
  655. return ret;
  656. }
  657. /**
  658. * bio_copy_user_iov - copy user data to bio
  659. * @q: destination block queue
  660. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  661. * @iov: the iovec.
  662. * @iov_count: number of elements in the iovec
  663. * @write_to_vm: bool indicating writing to pages or not
  664. * @gfp_mask: memory allocation flags
  665. *
  666. * Prepares and returns a bio for indirect user io, bouncing data
  667. * to/from kernel pages as necessary. Must be paired with
  668. * call bio_uncopy_user() on io completion.
  669. */
  670. struct bio *bio_copy_user_iov(struct request_queue *q,
  671. struct rq_map_data *map_data,
  672. struct sg_iovec *iov, int iov_count,
  673. int write_to_vm, gfp_t gfp_mask)
  674. {
  675. struct bio_map_data *bmd;
  676. struct bio_vec *bvec;
  677. struct page *page;
  678. struct bio *bio;
  679. int i, ret;
  680. int nr_pages = 0;
  681. unsigned int len = 0;
  682. unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
  683. for (i = 0; i < iov_count; i++) {
  684. unsigned long uaddr;
  685. unsigned long end;
  686. unsigned long start;
  687. uaddr = (unsigned long)iov[i].iov_base;
  688. end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  689. start = uaddr >> PAGE_SHIFT;
  690. nr_pages += end - start;
  691. len += iov[i].iov_len;
  692. }
  693. bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  694. if (!bmd)
  695. return ERR_PTR(-ENOMEM);
  696. ret = -ENOMEM;
  697. bio = bio_alloc(gfp_mask, nr_pages);
  698. if (!bio)
  699. goto out_bmd;
  700. bio->bi_rw |= (!write_to_vm << BIO_RW);
  701. ret = 0;
  702. if (map_data) {
  703. nr_pages = 1 << map_data->page_order;
  704. i = map_data->offset / PAGE_SIZE;
  705. }
  706. while (len) {
  707. unsigned int bytes = PAGE_SIZE;
  708. bytes -= offset;
  709. if (bytes > len)
  710. bytes = len;
  711. if (map_data) {
  712. if (i == map_data->nr_entries * nr_pages) {
  713. ret = -ENOMEM;
  714. break;
  715. }
  716. page = map_data->pages[i / nr_pages];
  717. page += (i % nr_pages);
  718. i++;
  719. } else {
  720. page = alloc_page(q->bounce_gfp | gfp_mask);
  721. if (!page) {
  722. ret = -ENOMEM;
  723. break;
  724. }
  725. }
  726. if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
  727. break;
  728. len -= bytes;
  729. offset = 0;
  730. }
  731. if (ret)
  732. goto cleanup;
  733. /*
  734. * success
  735. */
  736. if (!write_to_vm && (!map_data || !map_data->null_mapped)) {
  737. ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
  738. if (ret)
  739. goto cleanup;
  740. }
  741. bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  742. return bio;
  743. cleanup:
  744. if (!map_data)
  745. bio_for_each_segment(bvec, bio, i)
  746. __free_page(bvec->bv_page);
  747. bio_put(bio);
  748. out_bmd:
  749. bio_free_map_data(bmd);
  750. return ERR_PTR(ret);
  751. }
  752. /**
  753. * bio_copy_user - copy user data to bio
  754. * @q: destination block queue
  755. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  756. * @uaddr: start of user address
  757. * @len: length in bytes
  758. * @write_to_vm: bool indicating writing to pages or not
  759. * @gfp_mask: memory allocation flags
  760. *
  761. * Prepares and returns a bio for indirect user io, bouncing data
  762. * to/from kernel pages as necessary. Must be paired with
  763. * call bio_uncopy_user() on io completion.
  764. */
  765. struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  766. unsigned long uaddr, unsigned int len,
  767. int write_to_vm, gfp_t gfp_mask)
  768. {
  769. struct sg_iovec iov;
  770. iov.iov_base = (void __user *)uaddr;
  771. iov.iov_len = len;
  772. return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  773. }
  774. static struct bio *__bio_map_user_iov(struct request_queue *q,
  775. struct block_device *bdev,
  776. struct sg_iovec *iov, int iov_count,
  777. int write_to_vm, gfp_t gfp_mask)
  778. {
  779. int i, j;
  780. int nr_pages = 0;
  781. struct page **pages;
  782. struct bio *bio;
  783. int cur_page = 0;
  784. int ret, offset;
  785. for (i = 0; i < iov_count; i++) {
  786. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  787. unsigned long len = iov[i].iov_len;
  788. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  789. unsigned long start = uaddr >> PAGE_SHIFT;
  790. nr_pages += end - start;
  791. /*
  792. * buffer must be aligned to at least hardsector size for now
  793. */
  794. if (uaddr & queue_dma_alignment(q))
  795. return ERR_PTR(-EINVAL);
  796. }
  797. if (!nr_pages)
  798. return ERR_PTR(-EINVAL);
  799. bio = bio_alloc(gfp_mask, nr_pages);
  800. if (!bio)
  801. return ERR_PTR(-ENOMEM);
  802. ret = -ENOMEM;
  803. pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  804. if (!pages)
  805. goto out;
  806. for (i = 0; i < iov_count; i++) {
  807. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  808. unsigned long len = iov[i].iov_len;
  809. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  810. unsigned long start = uaddr >> PAGE_SHIFT;
  811. const int local_nr_pages = end - start;
  812. const int page_limit = cur_page + local_nr_pages;
  813. ret = get_user_pages_fast(uaddr, local_nr_pages,
  814. write_to_vm, &pages[cur_page]);
  815. if (ret < local_nr_pages) {
  816. ret = -EFAULT;
  817. goto out_unmap;
  818. }
  819. offset = uaddr & ~PAGE_MASK;
  820. for (j = cur_page; j < page_limit; j++) {
  821. unsigned int bytes = PAGE_SIZE - offset;
  822. if (len <= 0)
  823. break;
  824. if (bytes > len)
  825. bytes = len;
  826. /*
  827. * sorry...
  828. */
  829. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  830. bytes)
  831. break;
  832. len -= bytes;
  833. offset = 0;
  834. }
  835. cur_page = j;
  836. /*
  837. * release the pages we didn't map into the bio, if any
  838. */
  839. while (j < page_limit)
  840. page_cache_release(pages[j++]);
  841. }
  842. kfree(pages);
  843. /*
  844. * set data direction, and check if mapped pages need bouncing
  845. */
  846. if (!write_to_vm)
  847. bio->bi_rw |= (1 << BIO_RW);
  848. bio->bi_bdev = bdev;
  849. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  850. return bio;
  851. out_unmap:
  852. for (i = 0; i < nr_pages; i++) {
  853. if(!pages[i])
  854. break;
  855. page_cache_release(pages[i]);
  856. }
  857. out:
  858. kfree(pages);
  859. bio_put(bio);
  860. return ERR_PTR(ret);
  861. }
  862. /**
  863. * bio_map_user - map user address into bio
  864. * @q: the struct request_queue for the bio
  865. * @bdev: destination block device
  866. * @uaddr: start of user address
  867. * @len: length in bytes
  868. * @write_to_vm: bool indicating writing to pages or not
  869. * @gfp_mask: memory allocation flags
  870. *
  871. * Map the user space address into a bio suitable for io to a block
  872. * device. Returns an error pointer in case of error.
  873. */
  874. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  875. unsigned long uaddr, unsigned int len, int write_to_vm,
  876. gfp_t gfp_mask)
  877. {
  878. struct sg_iovec iov;
  879. iov.iov_base = (void __user *)uaddr;
  880. iov.iov_len = len;
  881. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
  882. }
  883. /**
  884. * bio_map_user_iov - map user sg_iovec table into bio
  885. * @q: the struct request_queue for the bio
  886. * @bdev: destination block device
  887. * @iov: the iovec.
  888. * @iov_count: number of elements in the iovec
  889. * @write_to_vm: bool indicating writing to pages or not
  890. * @gfp_mask: memory allocation flags
  891. *
  892. * Map the user space address into a bio suitable for io to a block
  893. * device. Returns an error pointer in case of error.
  894. */
  895. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  896. struct sg_iovec *iov, int iov_count,
  897. int write_to_vm, gfp_t gfp_mask)
  898. {
  899. struct bio *bio;
  900. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
  901. gfp_mask);
  902. if (IS_ERR(bio))
  903. return bio;
  904. /*
  905. * subtle -- if __bio_map_user() ended up bouncing a bio,
  906. * it would normally disappear when its bi_end_io is run.
  907. * however, we need it for the unmap, so grab an extra
  908. * reference to it
  909. */
  910. bio_get(bio);
  911. return bio;
  912. }
  913. static void __bio_unmap_user(struct bio *bio)
  914. {
  915. struct bio_vec *bvec;
  916. int i;
  917. /*
  918. * make sure we dirty pages we wrote to
  919. */
  920. __bio_for_each_segment(bvec, bio, i, 0) {
  921. if (bio_data_dir(bio) == READ)
  922. set_page_dirty_lock(bvec->bv_page);
  923. page_cache_release(bvec->bv_page);
  924. }
  925. bio_put(bio);
  926. }
  927. /**
  928. * bio_unmap_user - unmap a bio
  929. * @bio: the bio being unmapped
  930. *
  931. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  932. * a process context.
  933. *
  934. * bio_unmap_user() may sleep.
  935. */
  936. void bio_unmap_user(struct bio *bio)
  937. {
  938. __bio_unmap_user(bio);
  939. bio_put(bio);
  940. }
  941. static void bio_map_kern_endio(struct bio *bio, int err)
  942. {
  943. bio_put(bio);
  944. }
  945. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  946. unsigned int len, gfp_t gfp_mask)
  947. {
  948. unsigned long kaddr = (unsigned long)data;
  949. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  950. unsigned long start = kaddr >> PAGE_SHIFT;
  951. const int nr_pages = end - start;
  952. int offset, i;
  953. struct bio *bio;
  954. bio = bio_alloc(gfp_mask, nr_pages);
  955. if (!bio)
  956. return ERR_PTR(-ENOMEM);
  957. offset = offset_in_page(kaddr);
  958. for (i = 0; i < nr_pages; i++) {
  959. unsigned int bytes = PAGE_SIZE - offset;
  960. if (len <= 0)
  961. break;
  962. if (bytes > len)
  963. bytes = len;
  964. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  965. offset) < bytes)
  966. break;
  967. data += bytes;
  968. len -= bytes;
  969. offset = 0;
  970. }
  971. bio->bi_end_io = bio_map_kern_endio;
  972. return bio;
  973. }
  974. /**
  975. * bio_map_kern - map kernel address into bio
  976. * @q: the struct request_queue for the bio
  977. * @data: pointer to buffer to map
  978. * @len: length in bytes
  979. * @gfp_mask: allocation flags for bio allocation
  980. *
  981. * Map the kernel address into a bio suitable for io to a block
  982. * device. Returns an error pointer in case of error.
  983. */
  984. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  985. gfp_t gfp_mask)
  986. {
  987. struct bio *bio;
  988. bio = __bio_map_kern(q, data, len, gfp_mask);
  989. if (IS_ERR(bio))
  990. return bio;
  991. if (bio->bi_size == len)
  992. return bio;
  993. /*
  994. * Don't support partial mappings.
  995. */
  996. bio_put(bio);
  997. return ERR_PTR(-EINVAL);
  998. }
  999. static void bio_copy_kern_endio(struct bio *bio, int err)
  1000. {
  1001. struct bio_vec *bvec;
  1002. const int read = bio_data_dir(bio) == READ;
  1003. struct bio_map_data *bmd = bio->bi_private;
  1004. int i;
  1005. char *p = bmd->sgvecs[0].iov_base;
  1006. __bio_for_each_segment(bvec, bio, i, 0) {
  1007. char *addr = page_address(bvec->bv_page);
  1008. int len = bmd->iovecs[i].bv_len;
  1009. if (read && !err)
  1010. memcpy(p, addr, len);
  1011. __free_page(bvec->bv_page);
  1012. p += len;
  1013. }
  1014. bio_free_map_data(bmd);
  1015. bio_put(bio);
  1016. }
  1017. /**
  1018. * bio_copy_kern - copy kernel address into bio
  1019. * @q: the struct request_queue for the bio
  1020. * @data: pointer to buffer to copy
  1021. * @len: length in bytes
  1022. * @gfp_mask: allocation flags for bio and page allocation
  1023. * @reading: data direction is READ
  1024. *
  1025. * copy the kernel address into a bio suitable for io to a block
  1026. * device. Returns an error pointer in case of error.
  1027. */
  1028. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  1029. gfp_t gfp_mask, int reading)
  1030. {
  1031. struct bio *bio;
  1032. struct bio_vec *bvec;
  1033. int i;
  1034. bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
  1035. if (IS_ERR(bio))
  1036. return bio;
  1037. if (!reading) {
  1038. void *p = data;
  1039. bio_for_each_segment(bvec, bio, i) {
  1040. char *addr = page_address(bvec->bv_page);
  1041. memcpy(addr, p, bvec->bv_len);
  1042. p += bvec->bv_len;
  1043. }
  1044. }
  1045. bio->bi_end_io = bio_copy_kern_endio;
  1046. return bio;
  1047. }
  1048. /*
  1049. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  1050. * for performing direct-IO in BIOs.
  1051. *
  1052. * The problem is that we cannot run set_page_dirty() from interrupt context
  1053. * because the required locks are not interrupt-safe. So what we can do is to
  1054. * mark the pages dirty _before_ performing IO. And in interrupt context,
  1055. * check that the pages are still dirty. If so, fine. If not, redirty them
  1056. * in process context.
  1057. *
  1058. * We special-case compound pages here: normally this means reads into hugetlb
  1059. * pages. The logic in here doesn't really work right for compound pages
  1060. * because the VM does not uniformly chase down the head page in all cases.
  1061. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  1062. * handle them at all. So we skip compound pages here at an early stage.
  1063. *
  1064. * Note that this code is very hard to test under normal circumstances because
  1065. * direct-io pins the pages with get_user_pages(). This makes
  1066. * is_page_cache_freeable return false, and the VM will not clean the pages.
  1067. * But other code (eg, pdflush) could clean the pages if they are mapped
  1068. * pagecache.
  1069. *
  1070. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  1071. * deferred bio dirtying paths.
  1072. */
  1073. /*
  1074. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  1075. */
  1076. void bio_set_pages_dirty(struct bio *bio)
  1077. {
  1078. struct bio_vec *bvec = bio->bi_io_vec;
  1079. int i;
  1080. for (i = 0; i < bio->bi_vcnt; i++) {
  1081. struct page *page = bvec[i].bv_page;
  1082. if (page && !PageCompound(page))
  1083. set_page_dirty_lock(page);
  1084. }
  1085. }
  1086. static void bio_release_pages(struct bio *bio)
  1087. {
  1088. struct bio_vec *bvec = bio->bi_io_vec;
  1089. int i;
  1090. for (i = 0; i < bio->bi_vcnt; i++) {
  1091. struct page *page = bvec[i].bv_page;
  1092. if (page)
  1093. put_page(page);
  1094. }
  1095. }
  1096. /*
  1097. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  1098. * If they are, then fine. If, however, some pages are clean then they must
  1099. * have been written out during the direct-IO read. So we take another ref on
  1100. * the BIO and the offending pages and re-dirty the pages in process context.
  1101. *
  1102. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  1103. * here on. It will run one page_cache_release() against each page and will
  1104. * run one bio_put() against the BIO.
  1105. */
  1106. static void bio_dirty_fn(struct work_struct *work);
  1107. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  1108. static DEFINE_SPINLOCK(bio_dirty_lock);
  1109. static struct bio *bio_dirty_list;
  1110. /*
  1111. * This runs in process context
  1112. */
  1113. static void bio_dirty_fn(struct work_struct *work)
  1114. {
  1115. unsigned long flags;
  1116. struct bio *bio;
  1117. spin_lock_irqsave(&bio_dirty_lock, flags);
  1118. bio = bio_dirty_list;
  1119. bio_dirty_list = NULL;
  1120. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1121. while (bio) {
  1122. struct bio *next = bio->bi_private;
  1123. bio_set_pages_dirty(bio);
  1124. bio_release_pages(bio);
  1125. bio_put(bio);
  1126. bio = next;
  1127. }
  1128. }
  1129. void bio_check_pages_dirty(struct bio *bio)
  1130. {
  1131. struct bio_vec *bvec = bio->bi_io_vec;
  1132. int nr_clean_pages = 0;
  1133. int i;
  1134. for (i = 0; i < bio->bi_vcnt; i++) {
  1135. struct page *page = bvec[i].bv_page;
  1136. if (PageDirty(page) || PageCompound(page)) {
  1137. page_cache_release(page);
  1138. bvec[i].bv_page = NULL;
  1139. } else {
  1140. nr_clean_pages++;
  1141. }
  1142. }
  1143. if (nr_clean_pages) {
  1144. unsigned long flags;
  1145. spin_lock_irqsave(&bio_dirty_lock, flags);
  1146. bio->bi_private = bio_dirty_list;
  1147. bio_dirty_list = bio;
  1148. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1149. schedule_work(&bio_dirty_work);
  1150. } else {
  1151. bio_put(bio);
  1152. }
  1153. }
  1154. /**
  1155. * bio_endio - end I/O on a bio
  1156. * @bio: bio
  1157. * @error: error, if any
  1158. *
  1159. * Description:
  1160. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  1161. * preferred way to end I/O on a bio, it takes care of clearing
  1162. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  1163. * established -Exxxx (-EIO, for instance) error values in case
  1164. * something went wrong. Noone should call bi_end_io() directly on a
  1165. * bio unless they own it and thus know that it has an end_io
  1166. * function.
  1167. **/
  1168. void bio_endio(struct bio *bio, int error)
  1169. {
  1170. if (error)
  1171. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1172. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1173. error = -EIO;
  1174. if (bio->bi_end_io)
  1175. bio->bi_end_io(bio, error);
  1176. }
  1177. void bio_pair_release(struct bio_pair *bp)
  1178. {
  1179. if (atomic_dec_and_test(&bp->cnt)) {
  1180. struct bio *master = bp->bio1.bi_private;
  1181. bio_endio(master, bp->error);
  1182. mempool_free(bp, bp->bio2.bi_private);
  1183. }
  1184. }
  1185. static void bio_pair_end_1(struct bio *bi, int err)
  1186. {
  1187. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  1188. if (err)
  1189. bp->error = err;
  1190. bio_pair_release(bp);
  1191. }
  1192. static void bio_pair_end_2(struct bio *bi, int err)
  1193. {
  1194. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  1195. if (err)
  1196. bp->error = err;
  1197. bio_pair_release(bp);
  1198. }
  1199. /*
  1200. * split a bio - only worry about a bio with a single page in its iovec
  1201. */
  1202. struct bio_pair *bio_split(struct bio *bi, int first_sectors)
  1203. {
  1204. struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
  1205. if (!bp)
  1206. return bp;
  1207. trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
  1208. bi->bi_sector + first_sectors);
  1209. BUG_ON(bi->bi_vcnt != 1);
  1210. BUG_ON(bi->bi_idx != 0);
  1211. atomic_set(&bp->cnt, 3);
  1212. bp->error = 0;
  1213. bp->bio1 = *bi;
  1214. bp->bio2 = *bi;
  1215. bp->bio2.bi_sector += first_sectors;
  1216. bp->bio2.bi_size -= first_sectors << 9;
  1217. bp->bio1.bi_size = first_sectors << 9;
  1218. bp->bv1 = bi->bi_io_vec[0];
  1219. bp->bv2 = bi->bi_io_vec[0];
  1220. bp->bv2.bv_offset += first_sectors << 9;
  1221. bp->bv2.bv_len -= first_sectors << 9;
  1222. bp->bv1.bv_len = first_sectors << 9;
  1223. bp->bio1.bi_io_vec = &bp->bv1;
  1224. bp->bio2.bi_io_vec = &bp->bv2;
  1225. bp->bio1.bi_max_vecs = 1;
  1226. bp->bio2.bi_max_vecs = 1;
  1227. bp->bio1.bi_end_io = bio_pair_end_1;
  1228. bp->bio2.bi_end_io = bio_pair_end_2;
  1229. bp->bio1.bi_private = bi;
  1230. bp->bio2.bi_private = bio_split_pool;
  1231. if (bio_integrity(bi))
  1232. bio_integrity_split(bi, bp, first_sectors);
  1233. return bp;
  1234. }
  1235. /**
  1236. * bio_sector_offset - Find hardware sector offset in bio
  1237. * @bio: bio to inspect
  1238. * @index: bio_vec index
  1239. * @offset: offset in bv_page
  1240. *
  1241. * Return the number of hardware sectors between beginning of bio
  1242. * and an end point indicated by a bio_vec index and an offset
  1243. * within that vector's page.
  1244. */
  1245. sector_t bio_sector_offset(struct bio *bio, unsigned short index,
  1246. unsigned int offset)
  1247. {
  1248. unsigned int sector_sz = queue_hardsect_size(bio->bi_bdev->bd_disk->queue);
  1249. struct bio_vec *bv;
  1250. sector_t sectors;
  1251. int i;
  1252. sectors = 0;
  1253. if (index >= bio->bi_idx)
  1254. index = bio->bi_vcnt - 1;
  1255. __bio_for_each_segment(bv, bio, i, 0) {
  1256. if (i == index) {
  1257. if (offset > bv->bv_offset)
  1258. sectors += (offset - bv->bv_offset) / sector_sz;
  1259. break;
  1260. }
  1261. sectors += bv->bv_len / sector_sz;
  1262. }
  1263. return sectors;
  1264. }
  1265. EXPORT_SYMBOL(bio_sector_offset);
  1266. /*
  1267. * create memory pools for biovec's in a bio_set.
  1268. * use the global biovec slabs created for general use.
  1269. */
  1270. static int biovec_create_pools(struct bio_set *bs, int pool_entries)
  1271. {
  1272. struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
  1273. bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
  1274. if (!bs->bvec_pool)
  1275. return -ENOMEM;
  1276. return 0;
  1277. }
  1278. static void biovec_free_pools(struct bio_set *bs)
  1279. {
  1280. mempool_destroy(bs->bvec_pool);
  1281. }
  1282. void bioset_free(struct bio_set *bs)
  1283. {
  1284. if (bs->bio_pool)
  1285. mempool_destroy(bs->bio_pool);
  1286. biovec_free_pools(bs);
  1287. bio_put_slab(bs);
  1288. kfree(bs);
  1289. }
  1290. /**
  1291. * bioset_create - Create a bio_set
  1292. * @pool_size: Number of bio and bio_vecs to cache in the mempool
  1293. * @front_pad: Number of bytes to allocate in front of the returned bio
  1294. *
  1295. * Description:
  1296. * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
  1297. * to ask for a number of bytes to be allocated in front of the bio.
  1298. * Front pad allocation is useful for embedding the bio inside
  1299. * another structure, to avoid allocating extra data to go with the bio.
  1300. * Note that the bio must be embedded at the END of that structure always,
  1301. * or things will break badly.
  1302. */
  1303. struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
  1304. {
  1305. unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
  1306. struct bio_set *bs;
  1307. bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  1308. if (!bs)
  1309. return NULL;
  1310. bs->front_pad = front_pad;
  1311. bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
  1312. if (!bs->bio_slab) {
  1313. kfree(bs);
  1314. return NULL;
  1315. }
  1316. bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
  1317. if (!bs->bio_pool)
  1318. goto bad;
  1319. if (!biovec_create_pools(bs, pool_size))
  1320. return bs;
  1321. bad:
  1322. bioset_free(bs);
  1323. return NULL;
  1324. }
  1325. static void __init biovec_init_slabs(void)
  1326. {
  1327. int i;
  1328. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1329. int size;
  1330. struct biovec_slab *bvs = bvec_slabs + i;
  1331. #ifndef CONFIG_BLK_DEV_INTEGRITY
  1332. if (bvs->nr_vecs <= BIO_INLINE_VECS) {
  1333. bvs->slab = NULL;
  1334. continue;
  1335. }
  1336. #endif
  1337. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1338. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1339. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1340. }
  1341. }
  1342. static int __init init_bio(void)
  1343. {
  1344. bio_slab_max = 2;
  1345. bio_slab_nr = 0;
  1346. bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
  1347. if (!bio_slabs)
  1348. panic("bio: can't allocate bios\n");
  1349. biovec_init_slabs();
  1350. fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
  1351. if (!fs_bio_set)
  1352. panic("bio: can't allocate bios\n");
  1353. bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
  1354. sizeof(struct bio_pair));
  1355. if (!bio_split_pool)
  1356. panic("bio: can't create split pool\n");
  1357. return 0;
  1358. }
  1359. subsys_initcall(init_bio);
  1360. EXPORT_SYMBOL(bio_alloc);
  1361. EXPORT_SYMBOL(bio_kmalloc);
  1362. EXPORT_SYMBOL(bio_put);
  1363. EXPORT_SYMBOL(bio_free);
  1364. EXPORT_SYMBOL(bio_endio);
  1365. EXPORT_SYMBOL(bio_init);
  1366. EXPORT_SYMBOL(__bio_clone);
  1367. EXPORT_SYMBOL(bio_clone);
  1368. EXPORT_SYMBOL(bio_phys_segments);
  1369. EXPORT_SYMBOL(bio_add_page);
  1370. EXPORT_SYMBOL(bio_add_pc_page);
  1371. EXPORT_SYMBOL(bio_get_nr_vecs);
  1372. EXPORT_SYMBOL(bio_map_user);
  1373. EXPORT_SYMBOL(bio_unmap_user);
  1374. EXPORT_SYMBOL(bio_map_kern);
  1375. EXPORT_SYMBOL(bio_copy_kern);
  1376. EXPORT_SYMBOL(bio_pair_release);
  1377. EXPORT_SYMBOL(bio_split);
  1378. EXPORT_SYMBOL(bio_copy_user);
  1379. EXPORT_SYMBOL(bio_uncopy_user);
  1380. EXPORT_SYMBOL(bioset_create);
  1381. EXPORT_SYMBOL(bioset_free);
  1382. EXPORT_SYMBOL(bio_alloc_bioset);