xpram.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418
  1. /*
  2. * Xpram.c -- the S/390 expanded memory RAM-disk
  3. *
  4. * significant parts of this code are based on
  5. * the sbull device driver presented in
  6. * A. Rubini: Linux Device Drivers
  7. *
  8. * Author of XPRAM specific coding: Reinhard Buendgen
  9. * buendgen@de.ibm.com
  10. * Rewrite for 2.5: Martin Schwidefsky <schwidefsky@de.ibm.com>
  11. *
  12. * External interfaces:
  13. * Interfaces to linux kernel
  14. * xpram_setup: read kernel parameters
  15. * Device specific file operations
  16. * xpram_iotcl
  17. * xpram_open
  18. *
  19. * "ad-hoc" partitioning:
  20. * the expanded memory can be partitioned among several devices
  21. * (with different minors). The partitioning set up can be
  22. * set by kernel or module parameters (int devs & int sizes[])
  23. *
  24. * Potential future improvements:
  25. * generic hard disk support to replace ad-hoc partitioning
  26. */
  27. #define KMSG_COMPONENT "xpram"
  28. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  29. #include <linux/module.h>
  30. #include <linux/moduleparam.h>
  31. #include <linux/ctype.h> /* isdigit, isxdigit */
  32. #include <linux/errno.h>
  33. #include <linux/init.h>
  34. #include <linux/slab.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/blkpg.h>
  37. #include <linux/hdreg.h> /* HDIO_GETGEO */
  38. #include <linux/sysdev.h>
  39. #include <linux/bio.h>
  40. #include <asm/uaccess.h>
  41. #define XPRAM_NAME "xpram"
  42. #define XPRAM_DEVS 1 /* one partition */
  43. #define XPRAM_MAX_DEVS 32 /* maximal number of devices (partitions) */
  44. typedef struct {
  45. unsigned int size; /* size of xpram segment in pages */
  46. unsigned int offset; /* start page of xpram segment */
  47. } xpram_device_t;
  48. static xpram_device_t xpram_devices[XPRAM_MAX_DEVS];
  49. static unsigned int xpram_sizes[XPRAM_MAX_DEVS];
  50. static struct gendisk *xpram_disks[XPRAM_MAX_DEVS];
  51. static struct request_queue *xpram_queues[XPRAM_MAX_DEVS];
  52. static unsigned int xpram_pages;
  53. static int xpram_devs;
  54. /*
  55. * Parameter parsing functions.
  56. */
  57. static int __initdata devs = XPRAM_DEVS;
  58. static char __initdata *sizes[XPRAM_MAX_DEVS];
  59. module_param(devs, int, 0);
  60. module_param_array(sizes, charp, NULL, 0);
  61. MODULE_PARM_DESC(devs, "number of devices (\"partitions\"), " \
  62. "the default is " __MODULE_STRING(XPRAM_DEVS) "\n");
  63. MODULE_PARM_DESC(sizes, "list of device (partition) sizes " \
  64. "the defaults are 0s \n" \
  65. "All devices with size 0 equally partition the "
  66. "remaining space on the expanded strorage not "
  67. "claimed by explicit sizes\n");
  68. MODULE_LICENSE("GPL");
  69. /*
  70. * Copy expanded memory page (4kB) into main memory
  71. * Arguments
  72. * page_addr: address of target page
  73. * xpage_index: index of expandeded memory page
  74. * Return value
  75. * 0: if operation succeeds
  76. * -EIO: if pgin failed
  77. * -ENXIO: if xpram has vanished
  78. */
  79. static int xpram_page_in (unsigned long page_addr, unsigned int xpage_index)
  80. {
  81. int cc = 2; /* return unused cc 2 if pgin traps */
  82. asm volatile(
  83. " .insn rre,0xb22e0000,%1,%2\n" /* pgin %1,%2 */
  84. "0: ipm %0\n"
  85. " srl %0,28\n"
  86. "1:\n"
  87. EX_TABLE(0b,1b)
  88. : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
  89. if (cc == 3)
  90. return -ENXIO;
  91. if (cc == 2)
  92. return -ENXIO;
  93. if (cc == 1)
  94. return -EIO;
  95. return 0;
  96. }
  97. /*
  98. * Copy a 4kB page of main memory to an expanded memory page
  99. * Arguments
  100. * page_addr: address of source page
  101. * xpage_index: index of expandeded memory page
  102. * Return value
  103. * 0: if operation succeeds
  104. * -EIO: if pgout failed
  105. * -ENXIO: if xpram has vanished
  106. */
  107. static long xpram_page_out (unsigned long page_addr, unsigned int xpage_index)
  108. {
  109. int cc = 2; /* return unused cc 2 if pgin traps */
  110. asm volatile(
  111. " .insn rre,0xb22f0000,%1,%2\n" /* pgout %1,%2 */
  112. "0: ipm %0\n"
  113. " srl %0,28\n"
  114. "1:\n"
  115. EX_TABLE(0b,1b)
  116. : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
  117. if (cc == 3)
  118. return -ENXIO;
  119. if (cc == 2)
  120. return -ENXIO;
  121. if (cc == 1)
  122. return -EIO;
  123. return 0;
  124. }
  125. /*
  126. * Check if xpram is available.
  127. */
  128. static int __init xpram_present(void)
  129. {
  130. unsigned long mem_page;
  131. int rc;
  132. mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
  133. if (!mem_page)
  134. return -ENOMEM;
  135. rc = xpram_page_in(mem_page, 0);
  136. free_page(mem_page);
  137. return rc ? -ENXIO : 0;
  138. }
  139. /*
  140. * Return index of the last available xpram page.
  141. */
  142. static unsigned long __init xpram_highest_page_index(void)
  143. {
  144. unsigned int page_index, add_bit;
  145. unsigned long mem_page;
  146. mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
  147. if (!mem_page)
  148. return 0;
  149. page_index = 0;
  150. add_bit = 1ULL << (sizeof(unsigned int)*8 - 1);
  151. while (add_bit > 0) {
  152. if (xpram_page_in(mem_page, page_index | add_bit) == 0)
  153. page_index |= add_bit;
  154. add_bit >>= 1;
  155. }
  156. free_page (mem_page);
  157. return page_index;
  158. }
  159. /*
  160. * Block device make request function.
  161. */
  162. static int xpram_make_request(struct request_queue *q, struct bio *bio)
  163. {
  164. xpram_device_t *xdev = bio->bi_bdev->bd_disk->private_data;
  165. struct bio_vec *bvec;
  166. unsigned int index;
  167. unsigned long page_addr;
  168. unsigned long bytes;
  169. int i;
  170. if ((bio->bi_sector & 7) != 0 || (bio->bi_size & 4095) != 0)
  171. /* Request is not page-aligned. */
  172. goto fail;
  173. if ((bio->bi_size >> 12) > xdev->size)
  174. /* Request size is no page-aligned. */
  175. goto fail;
  176. if ((bio->bi_sector >> 3) > 0xffffffffU - xdev->offset)
  177. goto fail;
  178. index = (bio->bi_sector >> 3) + xdev->offset;
  179. bio_for_each_segment(bvec, bio, i) {
  180. page_addr = (unsigned long)
  181. kmap(bvec->bv_page) + bvec->bv_offset;
  182. bytes = bvec->bv_len;
  183. if ((page_addr & 4095) != 0 || (bytes & 4095) != 0)
  184. /* More paranoia. */
  185. goto fail;
  186. while (bytes > 0) {
  187. if (bio_data_dir(bio) == READ) {
  188. if (xpram_page_in(page_addr, index) != 0)
  189. goto fail;
  190. } else {
  191. if (xpram_page_out(page_addr, index) != 0)
  192. goto fail;
  193. }
  194. page_addr += 4096;
  195. bytes -= 4096;
  196. index++;
  197. }
  198. }
  199. set_bit(BIO_UPTODATE, &bio->bi_flags);
  200. bio_endio(bio, 0);
  201. return 0;
  202. fail:
  203. bio_io_error(bio);
  204. return 0;
  205. }
  206. static int xpram_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  207. {
  208. unsigned long size;
  209. /*
  210. * get geometry: we have to fake one... trim the size to a
  211. * multiple of 64 (32k): tell we have 16 sectors, 4 heads,
  212. * whatever cylinders. Tell also that data starts at sector. 4.
  213. */
  214. size = (xpram_pages * 8) & ~0x3f;
  215. geo->cylinders = size >> 6;
  216. geo->heads = 4;
  217. geo->sectors = 16;
  218. geo->start = 4;
  219. return 0;
  220. }
  221. static struct block_device_operations xpram_devops =
  222. {
  223. .owner = THIS_MODULE,
  224. .getgeo = xpram_getgeo,
  225. };
  226. /*
  227. * Setup xpram_sizes array.
  228. */
  229. static int __init xpram_setup_sizes(unsigned long pages)
  230. {
  231. unsigned long mem_needed;
  232. unsigned long mem_auto;
  233. unsigned long long size;
  234. int mem_auto_no;
  235. int i;
  236. /* Check number of devices. */
  237. if (devs <= 0 || devs > XPRAM_MAX_DEVS) {
  238. pr_err("%d is not a valid number of XPRAM devices\n",devs);
  239. return -EINVAL;
  240. }
  241. xpram_devs = devs;
  242. /*
  243. * Copy sizes array to xpram_sizes and align partition
  244. * sizes to page boundary.
  245. */
  246. mem_needed = 0;
  247. mem_auto_no = 0;
  248. for (i = 0; i < xpram_devs; i++) {
  249. if (sizes[i]) {
  250. size = simple_strtoull(sizes[i], &sizes[i], 0);
  251. switch (sizes[i][0]) {
  252. case 'g':
  253. case 'G':
  254. size <<= 20;
  255. break;
  256. case 'm':
  257. case 'M':
  258. size <<= 10;
  259. }
  260. xpram_sizes[i] = (size + 3) & -4UL;
  261. }
  262. if (xpram_sizes[i])
  263. mem_needed += xpram_sizes[i];
  264. else
  265. mem_auto_no++;
  266. }
  267. pr_info(" number of devices (partitions): %d \n", xpram_devs);
  268. for (i = 0; i < xpram_devs; i++) {
  269. if (xpram_sizes[i])
  270. pr_info(" size of partition %d: %u kB\n",
  271. i, xpram_sizes[i]);
  272. else
  273. pr_info(" size of partition %d to be set "
  274. "automatically\n",i);
  275. }
  276. pr_info(" memory needed (for sized partitions): %lu kB\n",
  277. mem_needed);
  278. pr_info(" partitions to be sized automatically: %d\n",
  279. mem_auto_no);
  280. if (mem_needed > pages * 4) {
  281. pr_err("Not enough expanded memory available\n");
  282. return -EINVAL;
  283. }
  284. /*
  285. * partitioning:
  286. * xpram_sizes[i] != 0; partition i has size xpram_sizes[i] kB
  287. * else: ; all partitions with zero xpram_sizes[i]
  288. * partition equally the remaining space
  289. */
  290. if (mem_auto_no) {
  291. mem_auto = ((pages - mem_needed / 4) / mem_auto_no) * 4;
  292. pr_info(" automatically determined "
  293. "partition size: %lu kB\n", mem_auto);
  294. for (i = 0; i < xpram_devs; i++)
  295. if (xpram_sizes[i] == 0)
  296. xpram_sizes[i] = mem_auto;
  297. }
  298. return 0;
  299. }
  300. static int __init xpram_setup_blkdev(void)
  301. {
  302. unsigned long offset;
  303. int i, rc = -ENOMEM;
  304. for (i = 0; i < xpram_devs; i++) {
  305. xpram_disks[i] = alloc_disk(1);
  306. if (!xpram_disks[i])
  307. goto out;
  308. xpram_queues[i] = blk_alloc_queue(GFP_KERNEL);
  309. if (!xpram_queues[i]) {
  310. put_disk(xpram_disks[i]);
  311. goto out;
  312. }
  313. blk_queue_make_request(xpram_queues[i], xpram_make_request);
  314. blk_queue_hardsect_size(xpram_queues[i], 4096);
  315. }
  316. /*
  317. * Register xpram major.
  318. */
  319. rc = register_blkdev(XPRAM_MAJOR, XPRAM_NAME);
  320. if (rc < 0)
  321. goto out;
  322. /*
  323. * Setup device structures.
  324. */
  325. offset = 0;
  326. for (i = 0; i < xpram_devs; i++) {
  327. struct gendisk *disk = xpram_disks[i];
  328. xpram_devices[i].size = xpram_sizes[i] / 4;
  329. xpram_devices[i].offset = offset;
  330. offset += xpram_devices[i].size;
  331. disk->major = XPRAM_MAJOR;
  332. disk->first_minor = i;
  333. disk->fops = &xpram_devops;
  334. disk->private_data = &xpram_devices[i];
  335. disk->queue = xpram_queues[i];
  336. sprintf(disk->disk_name, "slram%d", i);
  337. set_capacity(disk, xpram_sizes[i] << 1);
  338. add_disk(disk);
  339. }
  340. return 0;
  341. out:
  342. while (i--) {
  343. blk_cleanup_queue(xpram_queues[i]);
  344. put_disk(xpram_disks[i]);
  345. }
  346. return rc;
  347. }
  348. /*
  349. * Finally, the init/exit functions.
  350. */
  351. static void __exit xpram_exit(void)
  352. {
  353. int i;
  354. for (i = 0; i < xpram_devs; i++) {
  355. del_gendisk(xpram_disks[i]);
  356. blk_cleanup_queue(xpram_queues[i]);
  357. put_disk(xpram_disks[i]);
  358. }
  359. unregister_blkdev(XPRAM_MAJOR, XPRAM_NAME);
  360. }
  361. static int __init xpram_init(void)
  362. {
  363. int rc;
  364. /* Find out size of expanded memory. */
  365. if (xpram_present() != 0) {
  366. pr_err("No expanded memory available\n");
  367. return -ENODEV;
  368. }
  369. xpram_pages = xpram_highest_page_index() + 1;
  370. pr_info(" %u pages expanded memory found (%lu KB).\n",
  371. xpram_pages, (unsigned long) xpram_pages*4);
  372. rc = xpram_setup_sizes(xpram_pages);
  373. if (rc)
  374. return rc;
  375. return xpram_setup_blkdev();
  376. }
  377. module_init(xpram_init);
  378. module_exit(xpram_exit);