rt2500usb.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079
  1. /*
  2. Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500usb
  19. Abstract: rt2500usb device specific routines.
  20. Supported chipsets: RT2570.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/usb.h>
  28. #include "rt2x00.h"
  29. #include "rt2x00usb.h"
  30. #include "rt2500usb.h"
  31. /*
  32. * Allow hardware encryption to be disabled.
  33. */
  34. static int modparam_nohwcrypt = 0;
  35. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  36. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  37. /*
  38. * Register access.
  39. * All access to the CSR registers will go through the methods
  40. * rt2500usb_register_read and rt2500usb_register_write.
  41. * BBP and RF register require indirect register access,
  42. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  43. * These indirect registers work with busy bits,
  44. * and we will try maximal REGISTER_BUSY_COUNT times to access
  45. * the register while taking a REGISTER_BUSY_DELAY us delay
  46. * between each attampt. When the busy bit is still set at that time,
  47. * the access attempt is considered to have failed,
  48. * and we will print an error.
  49. * If the csr_mutex is already held then the _lock variants must
  50. * be used instead.
  51. */
  52. static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  53. const unsigned int offset,
  54. u16 *value)
  55. {
  56. __le16 reg;
  57. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  58. USB_VENDOR_REQUEST_IN, offset,
  59. &reg, sizeof(reg), REGISTER_TIMEOUT);
  60. *value = le16_to_cpu(reg);
  61. }
  62. static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  63. const unsigned int offset,
  64. u16 *value)
  65. {
  66. __le16 reg;
  67. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  68. USB_VENDOR_REQUEST_IN, offset,
  69. &reg, sizeof(reg), REGISTER_TIMEOUT);
  70. *value = le16_to_cpu(reg);
  71. }
  72. static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
  73. const unsigned int offset,
  74. void *value, const u16 length)
  75. {
  76. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  77. USB_VENDOR_REQUEST_IN, offset,
  78. value, length,
  79. REGISTER_TIMEOUT16(length));
  80. }
  81. static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  82. const unsigned int offset,
  83. u16 value)
  84. {
  85. __le16 reg = cpu_to_le16(value);
  86. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  87. USB_VENDOR_REQUEST_OUT, offset,
  88. &reg, sizeof(reg), REGISTER_TIMEOUT);
  89. }
  90. static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
  91. const unsigned int offset,
  92. u16 value)
  93. {
  94. __le16 reg = cpu_to_le16(value);
  95. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
  96. USB_VENDOR_REQUEST_OUT, offset,
  97. &reg, sizeof(reg), REGISTER_TIMEOUT);
  98. }
  99. static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
  100. const unsigned int offset,
  101. void *value, const u16 length)
  102. {
  103. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  104. USB_VENDOR_REQUEST_OUT, offset,
  105. value, length,
  106. REGISTER_TIMEOUT16(length));
  107. }
  108. static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
  109. const unsigned int offset,
  110. struct rt2x00_field16 field,
  111. u16 *reg)
  112. {
  113. unsigned int i;
  114. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  115. rt2500usb_register_read_lock(rt2x00dev, offset, reg);
  116. if (!rt2x00_get_field16(*reg, field))
  117. return 1;
  118. udelay(REGISTER_BUSY_DELAY);
  119. }
  120. ERROR(rt2x00dev, "Indirect register access failed: "
  121. "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
  122. *reg = ~0;
  123. return 0;
  124. }
  125. #define WAIT_FOR_BBP(__dev, __reg) \
  126. rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
  127. #define WAIT_FOR_RF(__dev, __reg) \
  128. rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
  129. static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
  130. const unsigned int word, const u8 value)
  131. {
  132. u16 reg;
  133. mutex_lock(&rt2x00dev->csr_mutex);
  134. /*
  135. * Wait until the BBP becomes available, afterwards we
  136. * can safely write the new data into the register.
  137. */
  138. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  139. reg = 0;
  140. rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
  141. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  142. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
  143. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  144. }
  145. mutex_unlock(&rt2x00dev->csr_mutex);
  146. }
  147. static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
  148. const unsigned int word, u8 *value)
  149. {
  150. u16 reg;
  151. mutex_lock(&rt2x00dev->csr_mutex);
  152. /*
  153. * Wait until the BBP becomes available, afterwards we
  154. * can safely write the read request into the register.
  155. * After the data has been written, we wait until hardware
  156. * returns the correct value, if at any time the register
  157. * doesn't become available in time, reg will be 0xffffffff
  158. * which means we return 0xff to the caller.
  159. */
  160. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  161. reg = 0;
  162. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  163. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
  164. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  165. if (WAIT_FOR_BBP(rt2x00dev, &reg))
  166. rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
  167. }
  168. *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
  169. mutex_unlock(&rt2x00dev->csr_mutex);
  170. }
  171. static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
  172. const unsigned int word, const u32 value)
  173. {
  174. u16 reg;
  175. mutex_lock(&rt2x00dev->csr_mutex);
  176. /*
  177. * Wait until the RF becomes available, afterwards we
  178. * can safely write the new data into the register.
  179. */
  180. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  181. reg = 0;
  182. rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
  183. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
  184. reg = 0;
  185. rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
  186. rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
  187. rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
  188. rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
  189. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
  190. rt2x00_rf_write(rt2x00dev, word, value);
  191. }
  192. mutex_unlock(&rt2x00dev->csr_mutex);
  193. }
  194. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  195. static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  196. const unsigned int offset,
  197. u32 *value)
  198. {
  199. rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
  200. }
  201. static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  202. const unsigned int offset,
  203. u32 value)
  204. {
  205. rt2500usb_register_write(rt2x00dev, offset, value);
  206. }
  207. static const struct rt2x00debug rt2500usb_rt2x00debug = {
  208. .owner = THIS_MODULE,
  209. .csr = {
  210. .read = _rt2500usb_register_read,
  211. .write = _rt2500usb_register_write,
  212. .flags = RT2X00DEBUGFS_OFFSET,
  213. .word_base = CSR_REG_BASE,
  214. .word_size = sizeof(u16),
  215. .word_count = CSR_REG_SIZE / sizeof(u16),
  216. },
  217. .eeprom = {
  218. .read = rt2x00_eeprom_read,
  219. .write = rt2x00_eeprom_write,
  220. .word_base = EEPROM_BASE,
  221. .word_size = sizeof(u16),
  222. .word_count = EEPROM_SIZE / sizeof(u16),
  223. },
  224. .bbp = {
  225. .read = rt2500usb_bbp_read,
  226. .write = rt2500usb_bbp_write,
  227. .word_base = BBP_BASE,
  228. .word_size = sizeof(u8),
  229. .word_count = BBP_SIZE / sizeof(u8),
  230. },
  231. .rf = {
  232. .read = rt2x00_rf_read,
  233. .write = rt2500usb_rf_write,
  234. .word_base = RF_BASE,
  235. .word_size = sizeof(u32),
  236. .word_count = RF_SIZE / sizeof(u32),
  237. },
  238. };
  239. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  240. #ifdef CONFIG_RT2X00_LIB_RFKILL
  241. static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  242. {
  243. u16 reg;
  244. rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
  245. return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
  246. }
  247. #else
  248. #define rt2500usb_rfkill_poll NULL
  249. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  250. #ifdef CONFIG_RT2X00_LIB_LEDS
  251. static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
  252. enum led_brightness brightness)
  253. {
  254. struct rt2x00_led *led =
  255. container_of(led_cdev, struct rt2x00_led, led_dev);
  256. unsigned int enabled = brightness != LED_OFF;
  257. u16 reg;
  258. rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
  259. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  260. rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
  261. else if (led->type == LED_TYPE_ACTIVITY)
  262. rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
  263. rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
  264. }
  265. static int rt2500usb_blink_set(struct led_classdev *led_cdev,
  266. unsigned long *delay_on,
  267. unsigned long *delay_off)
  268. {
  269. struct rt2x00_led *led =
  270. container_of(led_cdev, struct rt2x00_led, led_dev);
  271. u16 reg;
  272. rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
  273. rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
  274. rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
  275. rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
  276. return 0;
  277. }
  278. static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
  279. struct rt2x00_led *led,
  280. enum led_type type)
  281. {
  282. led->rt2x00dev = rt2x00dev;
  283. led->type = type;
  284. led->led_dev.brightness_set = rt2500usb_brightness_set;
  285. led->led_dev.blink_set = rt2500usb_blink_set;
  286. led->flags = LED_INITIALIZED;
  287. }
  288. #endif /* CONFIG_RT2X00_LIB_LEDS */
  289. /*
  290. * Configuration handlers.
  291. */
  292. /*
  293. * rt2500usb does not differentiate between shared and pairwise
  294. * keys, so we should use the same function for both key types.
  295. */
  296. static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
  297. struct rt2x00lib_crypto *crypto,
  298. struct ieee80211_key_conf *key)
  299. {
  300. int timeout;
  301. u32 mask;
  302. u16 reg;
  303. if (crypto->cmd == SET_KEY) {
  304. /*
  305. * Pairwise key will always be entry 0, but this
  306. * could collide with a shared key on the same
  307. * position...
  308. */
  309. mask = TXRX_CSR0_KEY_ID.bit_mask;
  310. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  311. reg &= mask;
  312. if (reg && reg == mask)
  313. return -ENOSPC;
  314. reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
  315. key->hw_key_idx += reg ? ffz(reg) : 0;
  316. /*
  317. * The encryption key doesn't fit within the CSR cache,
  318. * this means we should allocate it seperately and use
  319. * rt2x00usb_vendor_request() to send the key to the hardware.
  320. */
  321. reg = KEY_ENTRY(key->hw_key_idx);
  322. timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
  323. rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
  324. USB_VENDOR_REQUEST_OUT, reg,
  325. crypto->key,
  326. sizeof(crypto->key),
  327. timeout);
  328. /*
  329. * The driver does not support the IV/EIV generation
  330. * in hardware. However it demands the data to be provided
  331. * both seperately as well as inside the frame.
  332. * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
  333. * to ensure rt2x00lib will not strip the data from the
  334. * frame after the copy, now we must tell mac80211
  335. * to generate the IV/EIV data.
  336. */
  337. key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
  338. key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
  339. }
  340. /*
  341. * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
  342. * a particular key is valid.
  343. */
  344. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  345. rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
  346. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  347. mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
  348. if (crypto->cmd == SET_KEY)
  349. mask |= 1 << key->hw_key_idx;
  350. else if (crypto->cmd == DISABLE_KEY)
  351. mask &= ~(1 << key->hw_key_idx);
  352. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
  353. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  354. return 0;
  355. }
  356. static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
  357. const unsigned int filter_flags)
  358. {
  359. u16 reg;
  360. /*
  361. * Start configuration steps.
  362. * Note that the version error will always be dropped
  363. * and broadcast frames will always be accepted since
  364. * there is no filter for it at this time.
  365. */
  366. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  367. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
  368. !(filter_flags & FIF_FCSFAIL));
  369. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
  370. !(filter_flags & FIF_PLCPFAIL));
  371. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
  372. !(filter_flags & FIF_CONTROL));
  373. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
  374. !(filter_flags & FIF_PROMISC_IN_BSS));
  375. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
  376. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  377. !rt2x00dev->intf_ap_count);
  378. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
  379. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
  380. !(filter_flags & FIF_ALLMULTI));
  381. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
  382. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  383. }
  384. static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
  385. struct rt2x00_intf *intf,
  386. struct rt2x00intf_conf *conf,
  387. const unsigned int flags)
  388. {
  389. unsigned int bcn_preload;
  390. u16 reg;
  391. if (flags & CONFIG_UPDATE_TYPE) {
  392. /*
  393. * Enable beacon config
  394. */
  395. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  396. rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
  397. rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
  398. rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
  399. 2 * (conf->type != NL80211_IFTYPE_STATION));
  400. rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
  401. /*
  402. * Enable synchronisation.
  403. */
  404. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  405. rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
  406. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  407. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  408. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  409. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
  410. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  411. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  412. }
  413. if (flags & CONFIG_UPDATE_MAC)
  414. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
  415. (3 * sizeof(__le16)));
  416. if (flags & CONFIG_UPDATE_BSSID)
  417. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
  418. (3 * sizeof(__le16)));
  419. }
  420. static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
  421. struct rt2x00lib_erp *erp)
  422. {
  423. u16 reg;
  424. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  425. rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
  426. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  427. rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
  428. rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
  429. !!erp->short_preamble);
  430. rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
  431. rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
  432. rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
  433. rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
  434. rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
  435. }
  436. static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
  437. struct antenna_setup *ant)
  438. {
  439. u8 r2;
  440. u8 r14;
  441. u16 csr5;
  442. u16 csr6;
  443. /*
  444. * We should never come here because rt2x00lib is supposed
  445. * to catch this and send us the correct antenna explicitely.
  446. */
  447. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  448. ant->tx == ANTENNA_SW_DIVERSITY);
  449. rt2500usb_bbp_read(rt2x00dev, 2, &r2);
  450. rt2500usb_bbp_read(rt2x00dev, 14, &r14);
  451. rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
  452. rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
  453. /*
  454. * Configure the TX antenna.
  455. */
  456. switch (ant->tx) {
  457. case ANTENNA_HW_DIVERSITY:
  458. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
  459. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
  460. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
  461. break;
  462. case ANTENNA_A:
  463. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  464. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
  465. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
  466. break;
  467. case ANTENNA_B:
  468. default:
  469. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  470. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
  471. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
  472. break;
  473. }
  474. /*
  475. * Configure the RX antenna.
  476. */
  477. switch (ant->rx) {
  478. case ANTENNA_HW_DIVERSITY:
  479. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
  480. break;
  481. case ANTENNA_A:
  482. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  483. break;
  484. case ANTENNA_B:
  485. default:
  486. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  487. break;
  488. }
  489. /*
  490. * RT2525E and RT5222 need to flip TX I/Q
  491. */
  492. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  493. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  494. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  495. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
  496. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
  497. /*
  498. * RT2525E does not need RX I/Q Flip.
  499. */
  500. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  501. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  502. } else {
  503. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
  504. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
  505. }
  506. rt2500usb_bbp_write(rt2x00dev, 2, r2);
  507. rt2500usb_bbp_write(rt2x00dev, 14, r14);
  508. rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
  509. rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
  510. }
  511. static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
  512. struct rf_channel *rf, const int txpower)
  513. {
  514. /*
  515. * Set TXpower.
  516. */
  517. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  518. /*
  519. * For RT2525E we should first set the channel to half band higher.
  520. */
  521. if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  522. static const u32 vals[] = {
  523. 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
  524. 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
  525. 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
  526. 0x00000902, 0x00000906
  527. };
  528. rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  529. if (rf->rf4)
  530. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  531. }
  532. rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
  533. rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
  534. rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
  535. if (rf->rf4)
  536. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  537. }
  538. static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
  539. const int txpower)
  540. {
  541. u32 rf3;
  542. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  543. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  544. rt2500usb_rf_write(rt2x00dev, 3, rf3);
  545. }
  546. static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
  547. struct rt2x00lib_conf *libconf)
  548. {
  549. u16 reg;
  550. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  551. rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
  552. libconf->conf->beacon_int * 4);
  553. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  554. }
  555. static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
  556. struct rt2x00lib_conf *libconf)
  557. {
  558. enum dev_state state =
  559. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  560. STATE_SLEEP : STATE_AWAKE;
  561. u16 reg;
  562. if (state == STATE_SLEEP) {
  563. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  564. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
  565. libconf->conf->beacon_int - 20);
  566. rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
  567. libconf->conf->listen_interval - 1);
  568. /* We must first disable autowake before it can be enabled */
  569. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
  570. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  571. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
  572. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  573. }
  574. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  575. }
  576. static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
  577. struct rt2x00lib_conf *libconf,
  578. const unsigned int flags)
  579. {
  580. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  581. rt2500usb_config_channel(rt2x00dev, &libconf->rf,
  582. libconf->conf->power_level);
  583. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  584. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  585. rt2500usb_config_txpower(rt2x00dev,
  586. libconf->conf->power_level);
  587. if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
  588. rt2500usb_config_duration(rt2x00dev, libconf);
  589. if (flags & IEEE80211_CONF_CHANGE_PS)
  590. rt2500usb_config_ps(rt2x00dev, libconf);
  591. }
  592. /*
  593. * Link tuning
  594. */
  595. static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
  596. struct link_qual *qual)
  597. {
  598. u16 reg;
  599. /*
  600. * Update FCS error count from register.
  601. */
  602. rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
  603. qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
  604. /*
  605. * Update False CCA count from register.
  606. */
  607. rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
  608. qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
  609. }
  610. static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
  611. struct link_qual *qual)
  612. {
  613. u16 eeprom;
  614. u16 value;
  615. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
  616. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
  617. rt2500usb_bbp_write(rt2x00dev, 24, value);
  618. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
  619. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
  620. rt2500usb_bbp_write(rt2x00dev, 25, value);
  621. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
  622. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
  623. rt2500usb_bbp_write(rt2x00dev, 61, value);
  624. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
  625. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
  626. rt2500usb_bbp_write(rt2x00dev, 17, value);
  627. qual->vgc_level = value;
  628. }
  629. /*
  630. * NOTE: This function is directly ported from legacy driver, but
  631. * despite it being declared it was never called. Although link tuning
  632. * sounds like a good idea, and usually works well for the other drivers,
  633. * it does _not_ work with rt2500usb. Enabling this function will result
  634. * in TX capabilities only until association kicks in. Immediately
  635. * after the successful association all TX frames will be kept in the
  636. * hardware queue and never transmitted.
  637. */
  638. #if 0
  639. static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
  640. {
  641. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  642. u16 bbp_thresh;
  643. u16 vgc_bound;
  644. u16 sens;
  645. u16 r24;
  646. u16 r25;
  647. u16 r61;
  648. u16 r17_sens;
  649. u8 r17;
  650. u8 up_bound;
  651. u8 low_bound;
  652. /*
  653. * Read current r17 value, as well as the sensitivity values
  654. * for the r17 register.
  655. */
  656. rt2500usb_bbp_read(rt2x00dev, 17, &r17);
  657. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
  658. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
  659. up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
  660. low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
  661. /*
  662. * If we are not associated, we should go straight to the
  663. * dynamic CCA tuning.
  664. */
  665. if (!rt2x00dev->intf_associated)
  666. goto dynamic_cca_tune;
  667. /*
  668. * Determine the BBP tuning threshold and correctly
  669. * set BBP 24, 25 and 61.
  670. */
  671. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
  672. bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
  673. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
  674. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
  675. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
  676. if ((rssi + bbp_thresh) > 0) {
  677. r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
  678. r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
  679. r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
  680. } else {
  681. r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
  682. r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
  683. r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
  684. }
  685. rt2500usb_bbp_write(rt2x00dev, 24, r24);
  686. rt2500usb_bbp_write(rt2x00dev, 25, r25);
  687. rt2500usb_bbp_write(rt2x00dev, 61, r61);
  688. /*
  689. * A too low RSSI will cause too much false CCA which will
  690. * then corrupt the R17 tuning. To remidy this the tuning should
  691. * be stopped (While making sure the R17 value will not exceed limits)
  692. */
  693. if (rssi >= -40) {
  694. if (r17 != 0x60)
  695. rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
  696. return;
  697. }
  698. /*
  699. * Special big-R17 for short distance
  700. */
  701. if (rssi >= -58) {
  702. sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
  703. if (r17 != sens)
  704. rt2500usb_bbp_write(rt2x00dev, 17, sens);
  705. return;
  706. }
  707. /*
  708. * Special mid-R17 for middle distance
  709. */
  710. if (rssi >= -74) {
  711. sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
  712. if (r17 != sens)
  713. rt2500usb_bbp_write(rt2x00dev, 17, sens);
  714. return;
  715. }
  716. /*
  717. * Leave short or middle distance condition, restore r17
  718. * to the dynamic tuning range.
  719. */
  720. low_bound = 0x32;
  721. if (rssi < -77)
  722. up_bound -= (-77 - rssi);
  723. if (up_bound < low_bound)
  724. up_bound = low_bound;
  725. if (r17 > up_bound) {
  726. rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
  727. rt2x00dev->link.vgc_level = up_bound;
  728. return;
  729. }
  730. dynamic_cca_tune:
  731. /*
  732. * R17 is inside the dynamic tuning range,
  733. * start tuning the link based on the false cca counter.
  734. */
  735. if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
  736. rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
  737. rt2x00dev->link.vgc_level = r17;
  738. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
  739. rt2500usb_bbp_write(rt2x00dev, 17, --r17);
  740. rt2x00dev->link.vgc_level = r17;
  741. }
  742. }
  743. #else
  744. #define rt2500usb_link_tuner NULL
  745. #endif
  746. /*
  747. * Initialization functions.
  748. */
  749. static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
  750. {
  751. u16 reg;
  752. rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
  753. USB_MODE_TEST, REGISTER_TIMEOUT);
  754. rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
  755. 0x00f0, REGISTER_TIMEOUT);
  756. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  757. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
  758. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  759. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
  760. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
  761. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  762. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
  763. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
  764. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  765. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  766. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  767. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  768. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  769. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  770. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  771. rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
  772. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
  773. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
  774. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
  775. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
  776. rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
  777. rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
  778. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
  779. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
  780. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
  781. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
  782. rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
  783. rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
  784. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
  785. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
  786. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
  787. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
  788. rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
  789. rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
  790. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
  791. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
  792. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
  793. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
  794. rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
  795. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  796. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
  797. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
  798. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
  799. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  800. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  801. rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
  802. rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
  803. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  804. return -EBUSY;
  805. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  806. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  807. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  808. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
  809. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  810. if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
  811. rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
  812. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
  813. } else {
  814. reg = 0;
  815. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
  816. rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
  817. }
  818. rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
  819. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
  820. rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
  821. rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
  822. rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
  823. rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
  824. rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
  825. rt2x00dev->rx->data_size);
  826. rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
  827. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  828. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  829. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
  830. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  831. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  832. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
  833. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  834. rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
  835. rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
  836. rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
  837. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  838. rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
  839. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  840. return 0;
  841. }
  842. static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  843. {
  844. unsigned int i;
  845. u8 value;
  846. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  847. rt2500usb_bbp_read(rt2x00dev, 0, &value);
  848. if ((value != 0xff) && (value != 0x00))
  849. return 0;
  850. udelay(REGISTER_BUSY_DELAY);
  851. }
  852. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  853. return -EACCES;
  854. }
  855. static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
  856. {
  857. unsigned int i;
  858. u16 eeprom;
  859. u8 value;
  860. u8 reg_id;
  861. if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
  862. return -EACCES;
  863. rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
  864. rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
  865. rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
  866. rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
  867. rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
  868. rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
  869. rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
  870. rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
  871. rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
  872. rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
  873. rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
  874. rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
  875. rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
  876. rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
  877. rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
  878. rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
  879. rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
  880. rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
  881. rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
  882. rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
  883. rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
  884. rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
  885. rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
  886. rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
  887. rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
  888. rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
  889. rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
  890. rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
  891. rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
  892. rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
  893. rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
  894. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  895. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  896. if (eeprom != 0xffff && eeprom != 0x0000) {
  897. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  898. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  899. rt2500usb_bbp_write(rt2x00dev, reg_id, value);
  900. }
  901. }
  902. return 0;
  903. }
  904. /*
  905. * Device state switch handlers.
  906. */
  907. static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
  908. enum dev_state state)
  909. {
  910. u16 reg;
  911. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  912. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
  913. (state == STATE_RADIO_RX_OFF) ||
  914. (state == STATE_RADIO_RX_OFF_LINK));
  915. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  916. }
  917. static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
  918. {
  919. /*
  920. * Initialize all registers.
  921. */
  922. if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
  923. rt2500usb_init_bbp(rt2x00dev)))
  924. return -EIO;
  925. return 0;
  926. }
  927. static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
  928. {
  929. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
  930. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
  931. /*
  932. * Disable synchronisation.
  933. */
  934. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  935. rt2x00usb_disable_radio(rt2x00dev);
  936. }
  937. static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
  938. enum dev_state state)
  939. {
  940. u16 reg;
  941. u16 reg2;
  942. unsigned int i;
  943. char put_to_sleep;
  944. char bbp_state;
  945. char rf_state;
  946. put_to_sleep = (state != STATE_AWAKE);
  947. reg = 0;
  948. rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
  949. rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
  950. rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
  951. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  952. rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
  953. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  954. /*
  955. * Device is not guaranteed to be in the requested state yet.
  956. * We must wait until the register indicates that the
  957. * device has entered the correct state.
  958. */
  959. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  960. rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
  961. bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
  962. rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
  963. if (bbp_state == state && rf_state == state)
  964. return 0;
  965. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  966. msleep(30);
  967. }
  968. return -EBUSY;
  969. }
  970. static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
  971. enum dev_state state)
  972. {
  973. int retval = 0;
  974. switch (state) {
  975. case STATE_RADIO_ON:
  976. retval = rt2500usb_enable_radio(rt2x00dev);
  977. break;
  978. case STATE_RADIO_OFF:
  979. rt2500usb_disable_radio(rt2x00dev);
  980. break;
  981. case STATE_RADIO_RX_ON:
  982. case STATE_RADIO_RX_ON_LINK:
  983. case STATE_RADIO_RX_OFF:
  984. case STATE_RADIO_RX_OFF_LINK:
  985. rt2500usb_toggle_rx(rt2x00dev, state);
  986. break;
  987. case STATE_RADIO_IRQ_ON:
  988. case STATE_RADIO_IRQ_OFF:
  989. /* No support, but no error either */
  990. break;
  991. case STATE_DEEP_SLEEP:
  992. case STATE_SLEEP:
  993. case STATE_STANDBY:
  994. case STATE_AWAKE:
  995. retval = rt2500usb_set_state(rt2x00dev, state);
  996. break;
  997. default:
  998. retval = -ENOTSUPP;
  999. break;
  1000. }
  1001. if (unlikely(retval))
  1002. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  1003. state, retval);
  1004. return retval;
  1005. }
  1006. /*
  1007. * TX descriptor initialization
  1008. */
  1009. static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  1010. struct sk_buff *skb,
  1011. struct txentry_desc *txdesc)
  1012. {
  1013. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  1014. __le32 *txd = skbdesc->desc;
  1015. u32 word;
  1016. /*
  1017. * Start writing the descriptor words.
  1018. */
  1019. rt2x00_desc_read(txd, 1, &word);
  1020. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
  1021. rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
  1022. rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
  1023. rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
  1024. rt2x00_desc_write(txd, 1, word);
  1025. rt2x00_desc_read(txd, 2, &word);
  1026. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
  1027. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
  1028. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
  1029. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
  1030. rt2x00_desc_write(txd, 2, word);
  1031. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
  1032. _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
  1033. _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
  1034. }
  1035. rt2x00_desc_read(txd, 0, &word);
  1036. rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
  1037. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1038. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1039. rt2x00_set_field32(&word, TXD_W0_ACK,
  1040. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1041. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1042. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1043. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1044. (txdesc->rate_mode == RATE_MODE_OFDM));
  1045. rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
  1046. test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
  1047. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1048. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
  1049. rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
  1050. rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
  1051. rt2x00_desc_write(txd, 0, word);
  1052. }
  1053. /*
  1054. * TX data initialization
  1055. */
  1056. static void rt2500usb_beacondone(struct urb *urb);
  1057. static void rt2500usb_write_beacon(struct queue_entry *entry)
  1058. {
  1059. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1060. struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
  1061. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  1062. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1063. int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
  1064. int length;
  1065. u16 reg;
  1066. /*
  1067. * Add the descriptor in front of the skb.
  1068. */
  1069. skb_push(entry->skb, entry->queue->desc_size);
  1070. memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
  1071. skbdesc->desc = entry->skb->data;
  1072. /*
  1073. * Disable beaconing while we are reloading the beacon data,
  1074. * otherwise we might be sending out invalid data.
  1075. */
  1076. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  1077. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
  1078. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
  1079. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  1080. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1081. /*
  1082. * USB devices cannot blindly pass the skb->len as the
  1083. * length of the data to usb_fill_bulk_urb. Pass the skb
  1084. * to the driver to determine what the length should be.
  1085. */
  1086. length = rt2x00dev->ops->lib->get_tx_data_len(entry);
  1087. usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
  1088. entry->skb->data, length, rt2500usb_beacondone,
  1089. entry);
  1090. /*
  1091. * Second we need to create the guardian byte.
  1092. * We only need a single byte, so lets recycle
  1093. * the 'flags' field we are not using for beacons.
  1094. */
  1095. bcn_priv->guardian_data = 0;
  1096. usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
  1097. &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
  1098. entry);
  1099. /*
  1100. * Send out the guardian byte.
  1101. */
  1102. usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
  1103. }
  1104. static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
  1105. {
  1106. int length;
  1107. /*
  1108. * The length _must_ be a multiple of 2,
  1109. * but it must _not_ be a multiple of the USB packet size.
  1110. */
  1111. length = roundup(entry->skb->len, 2);
  1112. length += (2 * !(length % entry->queue->usb_maxpacket));
  1113. return length;
  1114. }
  1115. static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1116. const enum data_queue_qid queue)
  1117. {
  1118. u16 reg;
  1119. if (queue != QID_BEACON) {
  1120. rt2x00usb_kick_tx_queue(rt2x00dev, queue);
  1121. return;
  1122. }
  1123. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  1124. if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
  1125. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  1126. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  1127. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
  1128. /*
  1129. * Beacon generation will fail initially.
  1130. * To prevent this we need to register the TXRX_CSR19
  1131. * register several times.
  1132. */
  1133. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1134. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  1135. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1136. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  1137. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1138. }
  1139. }
  1140. /*
  1141. * RX control handlers
  1142. */
  1143. static void rt2500usb_fill_rxdone(struct queue_entry *entry,
  1144. struct rxdone_entry_desc *rxdesc)
  1145. {
  1146. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1147. struct queue_entry_priv_usb *entry_priv = entry->priv_data;
  1148. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1149. __le32 *rxd =
  1150. (__le32 *)(entry->skb->data +
  1151. (entry_priv->urb->actual_length -
  1152. entry->queue->desc_size));
  1153. u32 word0;
  1154. u32 word1;
  1155. /*
  1156. * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
  1157. * frame data in rt2x00usb.
  1158. */
  1159. memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
  1160. rxd = (__le32 *)skbdesc->desc;
  1161. /*
  1162. * It is now safe to read the descriptor on all architectures.
  1163. */
  1164. rt2x00_desc_read(rxd, 0, &word0);
  1165. rt2x00_desc_read(rxd, 1, &word1);
  1166. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1167. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1168. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1169. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1170. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  1171. rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
  1172. if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
  1173. rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
  1174. }
  1175. if (rxdesc->cipher != CIPHER_NONE) {
  1176. _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
  1177. _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
  1178. rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
  1179. /* ICV is located at the end of frame */
  1180. rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
  1181. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  1182. rxdesc->flags |= RX_FLAG_DECRYPTED;
  1183. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  1184. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  1185. }
  1186. /*
  1187. * Obtain the status about this packet.
  1188. * When frame was received with an OFDM bitrate,
  1189. * the signal is the PLCP value. If it was received with
  1190. * a CCK bitrate the signal is the rate in 100kbit/s.
  1191. */
  1192. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  1193. rxdesc->rssi =
  1194. rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
  1195. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1196. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1197. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1198. else
  1199. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1200. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1201. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1202. /*
  1203. * Adjust the skb memory window to the frame boundaries.
  1204. */
  1205. skb_trim(entry->skb, rxdesc->size);
  1206. }
  1207. /*
  1208. * Interrupt functions.
  1209. */
  1210. static void rt2500usb_beacondone(struct urb *urb)
  1211. {
  1212. struct queue_entry *entry = (struct queue_entry *)urb->context;
  1213. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  1214. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
  1215. return;
  1216. /*
  1217. * Check if this was the guardian beacon,
  1218. * if that was the case we need to send the real beacon now.
  1219. * Otherwise we should free the sk_buffer, the device
  1220. * should be doing the rest of the work now.
  1221. */
  1222. if (bcn_priv->guardian_urb == urb) {
  1223. usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
  1224. } else if (bcn_priv->urb == urb) {
  1225. dev_kfree_skb(entry->skb);
  1226. entry->skb = NULL;
  1227. }
  1228. }
  1229. /*
  1230. * Device probe functions.
  1231. */
  1232. static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1233. {
  1234. u16 word;
  1235. u8 *mac;
  1236. u8 bbp;
  1237. rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
  1238. /*
  1239. * Start validation of the data that has been read.
  1240. */
  1241. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1242. if (!is_valid_ether_addr(mac)) {
  1243. random_ether_addr(mac);
  1244. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1245. }
  1246. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1247. if (word == 0xffff) {
  1248. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1249. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1250. ANTENNA_SW_DIVERSITY);
  1251. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1252. ANTENNA_SW_DIVERSITY);
  1253. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1254. LED_MODE_DEFAULT);
  1255. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1256. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1257. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1258. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1259. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1260. }
  1261. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1262. if (word == 0xffff) {
  1263. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1264. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1265. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1266. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1267. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1268. }
  1269. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1270. if (word == 0xffff) {
  1271. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1272. DEFAULT_RSSI_OFFSET);
  1273. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1274. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1275. }
  1276. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
  1277. if (word == 0xffff) {
  1278. rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
  1279. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
  1280. EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
  1281. }
  1282. /*
  1283. * Switch lower vgc bound to current BBP R17 value,
  1284. * lower the value a bit for better quality.
  1285. */
  1286. rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
  1287. bbp -= 6;
  1288. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
  1289. if (word == 0xffff) {
  1290. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
  1291. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1292. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1293. EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
  1294. } else {
  1295. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1296. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1297. }
  1298. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
  1299. if (word == 0xffff) {
  1300. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
  1301. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
  1302. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
  1303. EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
  1304. }
  1305. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
  1306. if (word == 0xffff) {
  1307. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
  1308. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
  1309. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
  1310. EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
  1311. }
  1312. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
  1313. if (word == 0xffff) {
  1314. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
  1315. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
  1316. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
  1317. EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
  1318. }
  1319. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
  1320. if (word == 0xffff) {
  1321. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
  1322. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
  1323. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
  1324. EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
  1325. }
  1326. return 0;
  1327. }
  1328. static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1329. {
  1330. u16 reg;
  1331. u16 value;
  1332. u16 eeprom;
  1333. /*
  1334. * Read EEPROM word for configuration.
  1335. */
  1336. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1337. /*
  1338. * Identify RF chipset.
  1339. */
  1340. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1341. rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
  1342. rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
  1343. if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
  1344. ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
  1345. return -ENODEV;
  1346. }
  1347. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1348. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1349. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1350. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1351. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1352. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1353. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1354. return -ENODEV;
  1355. }
  1356. /*
  1357. * Identify default antenna configuration.
  1358. */
  1359. rt2x00dev->default_ant.tx =
  1360. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1361. rt2x00dev->default_ant.rx =
  1362. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1363. /*
  1364. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1365. * I am not 100% sure about this, but the legacy drivers do not
  1366. * indicate antenna swapping in software is required when
  1367. * diversity is enabled.
  1368. */
  1369. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1370. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1371. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1372. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1373. /*
  1374. * Store led mode, for correct led behaviour.
  1375. */
  1376. #ifdef CONFIG_RT2X00_LIB_LEDS
  1377. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1378. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1379. if (value == LED_MODE_TXRX_ACTIVITY ||
  1380. value == LED_MODE_DEFAULT ||
  1381. value == LED_MODE_ASUS)
  1382. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1383. LED_TYPE_ACTIVITY);
  1384. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1385. /*
  1386. * Detect if this device has an hardware controlled radio.
  1387. */
  1388. #ifdef CONFIG_RT2X00_LIB_RFKILL
  1389. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1390. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1391. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  1392. /*
  1393. * Check if the BBP tuning should be disabled.
  1394. */
  1395. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1396. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1397. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1398. /*
  1399. * Read the RSSI <-> dBm offset information.
  1400. */
  1401. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1402. rt2x00dev->rssi_offset =
  1403. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1404. return 0;
  1405. }
  1406. /*
  1407. * RF value list for RF2522
  1408. * Supports: 2.4 GHz
  1409. */
  1410. static const struct rf_channel rf_vals_bg_2522[] = {
  1411. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1412. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1413. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1414. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1415. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1416. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1417. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1418. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1419. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1420. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1421. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1422. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1423. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1424. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1425. };
  1426. /*
  1427. * RF value list for RF2523
  1428. * Supports: 2.4 GHz
  1429. */
  1430. static const struct rf_channel rf_vals_bg_2523[] = {
  1431. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1432. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1433. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1434. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1435. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1436. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1437. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1438. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1439. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1440. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1441. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1442. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1443. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1444. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1445. };
  1446. /*
  1447. * RF value list for RF2524
  1448. * Supports: 2.4 GHz
  1449. */
  1450. static const struct rf_channel rf_vals_bg_2524[] = {
  1451. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1452. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1453. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1454. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1455. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1456. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1457. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1458. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1459. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1460. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1461. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1462. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1463. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1464. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1465. };
  1466. /*
  1467. * RF value list for RF2525
  1468. * Supports: 2.4 GHz
  1469. */
  1470. static const struct rf_channel rf_vals_bg_2525[] = {
  1471. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1472. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1473. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1474. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1475. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1476. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1477. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1478. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1479. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1480. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1481. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1482. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1483. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1484. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1485. };
  1486. /*
  1487. * RF value list for RF2525e
  1488. * Supports: 2.4 GHz
  1489. */
  1490. static const struct rf_channel rf_vals_bg_2525e[] = {
  1491. { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
  1492. { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
  1493. { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
  1494. { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
  1495. { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
  1496. { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
  1497. { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
  1498. { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
  1499. { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
  1500. { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
  1501. { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
  1502. { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
  1503. { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
  1504. { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
  1505. };
  1506. /*
  1507. * RF value list for RF5222
  1508. * Supports: 2.4 GHz & 5.2 GHz
  1509. */
  1510. static const struct rf_channel rf_vals_5222[] = {
  1511. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1512. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1513. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1514. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1515. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1516. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1517. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1518. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1519. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1520. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1521. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1522. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1523. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1524. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1525. /* 802.11 UNI / HyperLan 2 */
  1526. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1527. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1528. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1529. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1530. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1531. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1532. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1533. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1534. /* 802.11 HyperLan 2 */
  1535. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1536. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1537. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1538. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1539. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1540. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1541. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1542. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1543. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1544. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1545. /* 802.11 UNII */
  1546. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1547. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1548. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1549. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1550. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1551. };
  1552. static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1553. {
  1554. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1555. struct channel_info *info;
  1556. char *tx_power;
  1557. unsigned int i;
  1558. /*
  1559. * Initialize all hw fields.
  1560. */
  1561. rt2x00dev->hw->flags =
  1562. IEEE80211_HW_RX_INCLUDES_FCS |
  1563. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1564. IEEE80211_HW_SIGNAL_DBM |
  1565. IEEE80211_HW_SUPPORTS_PS |
  1566. IEEE80211_HW_PS_NULLFUNC_STACK;
  1567. rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
  1568. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1569. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1570. rt2x00_eeprom_addr(rt2x00dev,
  1571. EEPROM_MAC_ADDR_0));
  1572. /*
  1573. * Initialize hw_mode information.
  1574. */
  1575. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1576. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1577. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1578. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1579. spec->channels = rf_vals_bg_2522;
  1580. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1581. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1582. spec->channels = rf_vals_bg_2523;
  1583. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1584. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1585. spec->channels = rf_vals_bg_2524;
  1586. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1587. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1588. spec->channels = rf_vals_bg_2525;
  1589. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1590. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1591. spec->channels = rf_vals_bg_2525e;
  1592. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1593. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1594. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1595. spec->channels = rf_vals_5222;
  1596. }
  1597. /*
  1598. * Create channel information array
  1599. */
  1600. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1601. if (!info)
  1602. return -ENOMEM;
  1603. spec->channels_info = info;
  1604. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1605. for (i = 0; i < 14; i++)
  1606. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1607. if (spec->num_channels > 14) {
  1608. for (i = 14; i < spec->num_channels; i++)
  1609. info[i].tx_power1 = DEFAULT_TXPOWER;
  1610. }
  1611. return 0;
  1612. }
  1613. static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
  1614. {
  1615. int retval;
  1616. /*
  1617. * Allocate eeprom data.
  1618. */
  1619. retval = rt2500usb_validate_eeprom(rt2x00dev);
  1620. if (retval)
  1621. return retval;
  1622. retval = rt2500usb_init_eeprom(rt2x00dev);
  1623. if (retval)
  1624. return retval;
  1625. /*
  1626. * Initialize hw specifications.
  1627. */
  1628. retval = rt2500usb_probe_hw_mode(rt2x00dev);
  1629. if (retval)
  1630. return retval;
  1631. /*
  1632. * This device requires the atim queue
  1633. */
  1634. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1635. __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
  1636. __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
  1637. if (!modparam_nohwcrypt) {
  1638. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  1639. __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
  1640. }
  1641. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1642. /*
  1643. * Set the rssi offset.
  1644. */
  1645. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1646. return 0;
  1647. }
  1648. static const struct ieee80211_ops rt2500usb_mac80211_ops = {
  1649. .tx = rt2x00mac_tx,
  1650. .start = rt2x00mac_start,
  1651. .stop = rt2x00mac_stop,
  1652. .add_interface = rt2x00mac_add_interface,
  1653. .remove_interface = rt2x00mac_remove_interface,
  1654. .config = rt2x00mac_config,
  1655. .config_interface = rt2x00mac_config_interface,
  1656. .configure_filter = rt2x00mac_configure_filter,
  1657. .set_key = rt2x00mac_set_key,
  1658. .get_stats = rt2x00mac_get_stats,
  1659. .bss_info_changed = rt2x00mac_bss_info_changed,
  1660. .conf_tx = rt2x00mac_conf_tx,
  1661. .get_tx_stats = rt2x00mac_get_tx_stats,
  1662. };
  1663. static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
  1664. .probe_hw = rt2500usb_probe_hw,
  1665. .initialize = rt2x00usb_initialize,
  1666. .uninitialize = rt2x00usb_uninitialize,
  1667. .clear_entry = rt2x00usb_clear_entry,
  1668. .set_device_state = rt2500usb_set_device_state,
  1669. .rfkill_poll = rt2500usb_rfkill_poll,
  1670. .link_stats = rt2500usb_link_stats,
  1671. .reset_tuner = rt2500usb_reset_tuner,
  1672. .link_tuner = rt2500usb_link_tuner,
  1673. .write_tx_desc = rt2500usb_write_tx_desc,
  1674. .write_tx_data = rt2x00usb_write_tx_data,
  1675. .write_beacon = rt2500usb_write_beacon,
  1676. .get_tx_data_len = rt2500usb_get_tx_data_len,
  1677. .kick_tx_queue = rt2500usb_kick_tx_queue,
  1678. .kill_tx_queue = rt2x00usb_kill_tx_queue,
  1679. .fill_rxdone = rt2500usb_fill_rxdone,
  1680. .config_shared_key = rt2500usb_config_key,
  1681. .config_pairwise_key = rt2500usb_config_key,
  1682. .config_filter = rt2500usb_config_filter,
  1683. .config_intf = rt2500usb_config_intf,
  1684. .config_erp = rt2500usb_config_erp,
  1685. .config_ant = rt2500usb_config_ant,
  1686. .config = rt2500usb_config,
  1687. };
  1688. static const struct data_queue_desc rt2500usb_queue_rx = {
  1689. .entry_num = RX_ENTRIES,
  1690. .data_size = DATA_FRAME_SIZE,
  1691. .desc_size = RXD_DESC_SIZE,
  1692. .priv_size = sizeof(struct queue_entry_priv_usb),
  1693. };
  1694. static const struct data_queue_desc rt2500usb_queue_tx = {
  1695. .entry_num = TX_ENTRIES,
  1696. .data_size = DATA_FRAME_SIZE,
  1697. .desc_size = TXD_DESC_SIZE,
  1698. .priv_size = sizeof(struct queue_entry_priv_usb),
  1699. };
  1700. static const struct data_queue_desc rt2500usb_queue_bcn = {
  1701. .entry_num = BEACON_ENTRIES,
  1702. .data_size = MGMT_FRAME_SIZE,
  1703. .desc_size = TXD_DESC_SIZE,
  1704. .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
  1705. };
  1706. static const struct data_queue_desc rt2500usb_queue_atim = {
  1707. .entry_num = ATIM_ENTRIES,
  1708. .data_size = DATA_FRAME_SIZE,
  1709. .desc_size = TXD_DESC_SIZE,
  1710. .priv_size = sizeof(struct queue_entry_priv_usb),
  1711. };
  1712. static const struct rt2x00_ops rt2500usb_ops = {
  1713. .name = KBUILD_MODNAME,
  1714. .max_sta_intf = 1,
  1715. .max_ap_intf = 1,
  1716. .eeprom_size = EEPROM_SIZE,
  1717. .rf_size = RF_SIZE,
  1718. .tx_queues = NUM_TX_QUEUES,
  1719. .rx = &rt2500usb_queue_rx,
  1720. .tx = &rt2500usb_queue_tx,
  1721. .bcn = &rt2500usb_queue_bcn,
  1722. .atim = &rt2500usb_queue_atim,
  1723. .lib = &rt2500usb_rt2x00_ops,
  1724. .hw = &rt2500usb_mac80211_ops,
  1725. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1726. .debugfs = &rt2500usb_rt2x00debug,
  1727. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1728. };
  1729. /*
  1730. * rt2500usb module information.
  1731. */
  1732. static struct usb_device_id rt2500usb_device_table[] = {
  1733. /* ASUS */
  1734. { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1735. { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
  1736. /* Belkin */
  1737. { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
  1738. { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
  1739. { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1740. /* Cisco Systems */
  1741. { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
  1742. { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
  1743. { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1744. /* CNet */
  1745. { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
  1746. /* Conceptronic */
  1747. { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
  1748. /* D-LINK */
  1749. { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
  1750. /* Gigabyte */
  1751. { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
  1752. { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
  1753. /* Hercules */
  1754. { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
  1755. /* Melco */
  1756. { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
  1757. { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
  1758. { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
  1759. { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1760. { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
  1761. /* MSI */
  1762. { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
  1763. { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
  1764. { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
  1765. /* Ralink */
  1766. { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1767. { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
  1768. { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
  1769. { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1770. /* Sagem */
  1771. { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1772. /* Siemens */
  1773. { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
  1774. /* SMC */
  1775. { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
  1776. /* Spairon */
  1777. { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
  1778. /* SURECOM */
  1779. { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
  1780. /* Trust */
  1781. { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1782. /* VTech */
  1783. { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
  1784. /* Zinwell */
  1785. { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
  1786. { 0, }
  1787. };
  1788. MODULE_AUTHOR(DRV_PROJECT);
  1789. MODULE_VERSION(DRV_VERSION);
  1790. MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
  1791. MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
  1792. MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
  1793. MODULE_LICENSE("GPL");
  1794. static struct usb_driver rt2500usb_driver = {
  1795. .name = KBUILD_MODNAME,
  1796. .id_table = rt2500usb_device_table,
  1797. .probe = rt2x00usb_probe,
  1798. .disconnect = rt2x00usb_disconnect,
  1799. .suspend = rt2x00usb_suspend,
  1800. .resume = rt2x00usb_resume,
  1801. };
  1802. static int __init rt2500usb_init(void)
  1803. {
  1804. return usb_register(&rt2500usb_driver);
  1805. }
  1806. static void __exit rt2500usb_exit(void)
  1807. {
  1808. usb_deregister(&rt2500usb_driver);
  1809. }
  1810. module_init(rt2500usb_init);
  1811. module_exit(rt2500usb_exit);