rt2500pci.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998
  1. /*
  2. Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2500pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. #define WAIT_FOR_BBP(__dev, __reg) \
  46. rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  47. #define WAIT_FOR_RF(__dev, __reg) \
  48. rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  49. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  50. const unsigned int word, const u8 value)
  51. {
  52. u32 reg;
  53. mutex_lock(&rt2x00dev->csr_mutex);
  54. /*
  55. * Wait until the BBP becomes available, afterwards we
  56. * can safely write the new data into the register.
  57. */
  58. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  59. reg = 0;
  60. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  61. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  62. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  63. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  64. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  65. }
  66. mutex_unlock(&rt2x00dev->csr_mutex);
  67. }
  68. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  69. const unsigned int word, u8 *value)
  70. {
  71. u32 reg;
  72. mutex_lock(&rt2x00dev->csr_mutex);
  73. /*
  74. * Wait until the BBP becomes available, afterwards we
  75. * can safely write the read request into the register.
  76. * After the data has been written, we wait until hardware
  77. * returns the correct value, if at any time the register
  78. * doesn't become available in time, reg will be 0xffffffff
  79. * which means we return 0xff to the caller.
  80. */
  81. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  82. reg = 0;
  83. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  84. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  85. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  86. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  87. WAIT_FOR_BBP(rt2x00dev, &reg);
  88. }
  89. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  90. mutex_unlock(&rt2x00dev->csr_mutex);
  91. }
  92. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  93. const unsigned int word, const u32 value)
  94. {
  95. u32 reg;
  96. mutex_lock(&rt2x00dev->csr_mutex);
  97. /*
  98. * Wait until the RF becomes available, afterwards we
  99. * can safely write the new data into the register.
  100. */
  101. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  102. reg = 0;
  103. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  104. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  105. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  106. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  107. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  108. rt2x00_rf_write(rt2x00dev, word, value);
  109. }
  110. mutex_unlock(&rt2x00dev->csr_mutex);
  111. }
  112. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  113. {
  114. struct rt2x00_dev *rt2x00dev = eeprom->data;
  115. u32 reg;
  116. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  117. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  118. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  119. eeprom->reg_data_clock =
  120. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  121. eeprom->reg_chip_select =
  122. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  123. }
  124. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  125. {
  126. struct rt2x00_dev *rt2x00dev = eeprom->data;
  127. u32 reg = 0;
  128. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  129. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  130. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  131. !!eeprom->reg_data_clock);
  132. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  133. !!eeprom->reg_chip_select);
  134. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  135. }
  136. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  137. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  138. .owner = THIS_MODULE,
  139. .csr = {
  140. .read = rt2x00pci_register_read,
  141. .write = rt2x00pci_register_write,
  142. .flags = RT2X00DEBUGFS_OFFSET,
  143. .word_base = CSR_REG_BASE,
  144. .word_size = sizeof(u32),
  145. .word_count = CSR_REG_SIZE / sizeof(u32),
  146. },
  147. .eeprom = {
  148. .read = rt2x00_eeprom_read,
  149. .write = rt2x00_eeprom_write,
  150. .word_base = EEPROM_BASE,
  151. .word_size = sizeof(u16),
  152. .word_count = EEPROM_SIZE / sizeof(u16),
  153. },
  154. .bbp = {
  155. .read = rt2500pci_bbp_read,
  156. .write = rt2500pci_bbp_write,
  157. .word_base = BBP_BASE,
  158. .word_size = sizeof(u8),
  159. .word_count = BBP_SIZE / sizeof(u8),
  160. },
  161. .rf = {
  162. .read = rt2x00_rf_read,
  163. .write = rt2500pci_rf_write,
  164. .word_base = RF_BASE,
  165. .word_size = sizeof(u32),
  166. .word_count = RF_SIZE / sizeof(u32),
  167. },
  168. };
  169. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  170. #ifdef CONFIG_RT2X00_LIB_RFKILL
  171. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  172. {
  173. u32 reg;
  174. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  175. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  176. }
  177. #else
  178. #define rt2500pci_rfkill_poll NULL
  179. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  180. #ifdef CONFIG_RT2X00_LIB_LEDS
  181. static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
  182. enum led_brightness brightness)
  183. {
  184. struct rt2x00_led *led =
  185. container_of(led_cdev, struct rt2x00_led, led_dev);
  186. unsigned int enabled = brightness != LED_OFF;
  187. u32 reg;
  188. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  189. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  190. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  191. else if (led->type == LED_TYPE_ACTIVITY)
  192. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  193. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  194. }
  195. static int rt2500pci_blink_set(struct led_classdev *led_cdev,
  196. unsigned long *delay_on,
  197. unsigned long *delay_off)
  198. {
  199. struct rt2x00_led *led =
  200. container_of(led_cdev, struct rt2x00_led, led_dev);
  201. u32 reg;
  202. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  203. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  204. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  205. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  206. return 0;
  207. }
  208. static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
  209. struct rt2x00_led *led,
  210. enum led_type type)
  211. {
  212. led->rt2x00dev = rt2x00dev;
  213. led->type = type;
  214. led->led_dev.brightness_set = rt2500pci_brightness_set;
  215. led->led_dev.blink_set = rt2500pci_blink_set;
  216. led->flags = LED_INITIALIZED;
  217. }
  218. #endif /* CONFIG_RT2X00_LIB_LEDS */
  219. /*
  220. * Configuration handlers.
  221. */
  222. static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
  223. const unsigned int filter_flags)
  224. {
  225. u32 reg;
  226. /*
  227. * Start configuration steps.
  228. * Note that the version error will always be dropped
  229. * and broadcast frames will always be accepted since
  230. * there is no filter for it at this time.
  231. */
  232. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  233. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  234. !(filter_flags & FIF_FCSFAIL));
  235. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  236. !(filter_flags & FIF_PLCPFAIL));
  237. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  238. !(filter_flags & FIF_CONTROL));
  239. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  240. !(filter_flags & FIF_PROMISC_IN_BSS));
  241. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  242. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  243. !rt2x00dev->intf_ap_count);
  244. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  245. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  246. !(filter_flags & FIF_ALLMULTI));
  247. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  248. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  249. }
  250. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  251. struct rt2x00_intf *intf,
  252. struct rt2x00intf_conf *conf,
  253. const unsigned int flags)
  254. {
  255. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
  256. unsigned int bcn_preload;
  257. u32 reg;
  258. if (flags & CONFIG_UPDATE_TYPE) {
  259. /*
  260. * Enable beacon config
  261. */
  262. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  263. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  264. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  265. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  266. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  267. /*
  268. * Enable synchronisation.
  269. */
  270. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  271. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  272. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  273. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  274. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  275. }
  276. if (flags & CONFIG_UPDATE_MAC)
  277. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  278. conf->mac, sizeof(conf->mac));
  279. if (flags & CONFIG_UPDATE_BSSID)
  280. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  281. conf->bssid, sizeof(conf->bssid));
  282. }
  283. static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
  284. struct rt2x00lib_erp *erp)
  285. {
  286. int preamble_mask;
  287. u32 reg;
  288. /*
  289. * When short preamble is enabled, we should set bit 0x08
  290. */
  291. preamble_mask = erp->short_preamble << 3;
  292. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  293. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
  294. erp->ack_timeout);
  295. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  296. erp->ack_consume_time);
  297. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  298. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  299. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  300. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  301. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
  302. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  303. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  304. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  305. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  306. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
  307. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  308. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  309. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  310. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  311. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
  312. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  313. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  314. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  315. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  316. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
  317. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  318. rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  319. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  320. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  321. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  322. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  323. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  324. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  325. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  326. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  327. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  328. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  329. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  330. }
  331. static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
  332. struct antenna_setup *ant)
  333. {
  334. u32 reg;
  335. u8 r14;
  336. u8 r2;
  337. /*
  338. * We should never come here because rt2x00lib is supposed
  339. * to catch this and send us the correct antenna explicitely.
  340. */
  341. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  342. ant->tx == ANTENNA_SW_DIVERSITY);
  343. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  344. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  345. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  346. /*
  347. * Configure the TX antenna.
  348. */
  349. switch (ant->tx) {
  350. case ANTENNA_A:
  351. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  352. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  353. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  354. break;
  355. case ANTENNA_B:
  356. default:
  357. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  358. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  359. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  360. break;
  361. }
  362. /*
  363. * Configure the RX antenna.
  364. */
  365. switch (ant->rx) {
  366. case ANTENNA_A:
  367. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  368. break;
  369. case ANTENNA_B:
  370. default:
  371. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  372. break;
  373. }
  374. /*
  375. * RT2525E and RT5222 need to flip TX I/Q
  376. */
  377. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  378. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  379. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  380. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  381. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  382. /*
  383. * RT2525E does not need RX I/Q Flip.
  384. */
  385. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  386. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  387. } else {
  388. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  389. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  390. }
  391. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  392. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  393. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  394. }
  395. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  396. struct rf_channel *rf, const int txpower)
  397. {
  398. u8 r70;
  399. /*
  400. * Set TXpower.
  401. */
  402. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  403. /*
  404. * Switch on tuning bits.
  405. * For RT2523 devices we do not need to update the R1 register.
  406. */
  407. if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
  408. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  409. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  410. /*
  411. * For RT2525 we should first set the channel to half band higher.
  412. */
  413. if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  414. static const u32 vals[] = {
  415. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  416. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  417. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  418. 0x00080d2e, 0x00080d3a
  419. };
  420. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  421. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  422. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  423. if (rf->rf4)
  424. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  425. }
  426. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  427. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  428. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  429. if (rf->rf4)
  430. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  431. /*
  432. * Channel 14 requires the Japan filter bit to be set.
  433. */
  434. r70 = 0x46;
  435. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  436. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  437. msleep(1);
  438. /*
  439. * Switch off tuning bits.
  440. * For RT2523 devices we do not need to update the R1 register.
  441. */
  442. if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  443. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  444. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  445. }
  446. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  447. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  448. /*
  449. * Clear false CRC during channel switch.
  450. */
  451. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  452. }
  453. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  454. const int txpower)
  455. {
  456. u32 rf3;
  457. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  458. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  459. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  460. }
  461. static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  462. struct rt2x00lib_conf *libconf)
  463. {
  464. u32 reg;
  465. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  466. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  467. libconf->conf->long_frame_max_tx_count);
  468. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  469. libconf->conf->short_frame_max_tx_count);
  470. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  471. }
  472. static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
  473. struct rt2x00lib_conf *libconf)
  474. {
  475. u32 reg;
  476. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  477. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  478. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  479. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  480. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  481. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  482. libconf->conf->beacon_int * 16);
  483. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  484. libconf->conf->beacon_int * 16);
  485. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  486. }
  487. static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
  488. struct rt2x00lib_conf *libconf)
  489. {
  490. enum dev_state state =
  491. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  492. STATE_SLEEP : STATE_AWAKE;
  493. u32 reg;
  494. if (state == STATE_SLEEP) {
  495. rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
  496. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  497. (libconf->conf->beacon_int - 20) * 16);
  498. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  499. libconf->conf->listen_interval - 1);
  500. /* We must first disable autowake before it can be enabled */
  501. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  502. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  503. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  504. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  505. }
  506. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  507. }
  508. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  509. struct rt2x00lib_conf *libconf,
  510. const unsigned int flags)
  511. {
  512. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  513. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  514. libconf->conf->power_level);
  515. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  516. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  517. rt2500pci_config_txpower(rt2x00dev,
  518. libconf->conf->power_level);
  519. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  520. rt2500pci_config_retry_limit(rt2x00dev, libconf);
  521. if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
  522. rt2500pci_config_duration(rt2x00dev, libconf);
  523. if (flags & IEEE80211_CONF_CHANGE_PS)
  524. rt2500pci_config_ps(rt2x00dev, libconf);
  525. }
  526. /*
  527. * Link tuning
  528. */
  529. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  530. struct link_qual *qual)
  531. {
  532. u32 reg;
  533. /*
  534. * Update FCS error count from register.
  535. */
  536. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  537. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  538. /*
  539. * Update False CCA count from register.
  540. */
  541. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  542. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  543. }
  544. static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  545. struct link_qual *qual, u8 vgc_level)
  546. {
  547. if (qual->vgc_level_reg != vgc_level) {
  548. rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
  549. qual->vgc_level_reg = vgc_level;
  550. }
  551. }
  552. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  553. struct link_qual *qual)
  554. {
  555. rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
  556. }
  557. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  558. struct link_qual *qual, const u32 count)
  559. {
  560. /*
  561. * To prevent collisions with MAC ASIC on chipsets
  562. * up to version C the link tuning should halt after 20
  563. * seconds while being associated.
  564. */
  565. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
  566. rt2x00dev->intf_associated && count > 20)
  567. return;
  568. /*
  569. * Chipset versions C and lower should directly continue
  570. * to the dynamic CCA tuning. Chipset version D and higher
  571. * should go straight to dynamic CCA tuning when they
  572. * are not associated.
  573. */
  574. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
  575. !rt2x00dev->intf_associated)
  576. goto dynamic_cca_tune;
  577. /*
  578. * A too low RSSI will cause too much false CCA which will
  579. * then corrupt the R17 tuning. To remidy this the tuning should
  580. * be stopped (While making sure the R17 value will not exceed limits)
  581. */
  582. if (qual->rssi < -80 && count > 20) {
  583. if (qual->vgc_level_reg >= 0x41)
  584. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  585. return;
  586. }
  587. /*
  588. * Special big-R17 for short distance
  589. */
  590. if (qual->rssi >= -58) {
  591. rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
  592. return;
  593. }
  594. /*
  595. * Special mid-R17 for middle distance
  596. */
  597. if (qual->rssi >= -74) {
  598. rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
  599. return;
  600. }
  601. /*
  602. * Leave short or middle distance condition, restore r17
  603. * to the dynamic tuning range.
  604. */
  605. if (qual->vgc_level_reg >= 0x41) {
  606. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  607. return;
  608. }
  609. dynamic_cca_tune:
  610. /*
  611. * R17 is inside the dynamic tuning range,
  612. * start tuning the link based on the false cca counter.
  613. */
  614. if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) {
  615. rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
  616. qual->vgc_level = qual->vgc_level_reg;
  617. } else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) {
  618. rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
  619. qual->vgc_level = qual->vgc_level_reg;
  620. }
  621. }
  622. /*
  623. * Initialization functions.
  624. */
  625. static bool rt2500pci_get_entry_state(struct queue_entry *entry)
  626. {
  627. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  628. u32 word;
  629. if (entry->queue->qid == QID_RX) {
  630. rt2x00_desc_read(entry_priv->desc, 0, &word);
  631. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  632. } else {
  633. rt2x00_desc_read(entry_priv->desc, 0, &word);
  634. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  635. rt2x00_get_field32(word, TXD_W0_VALID));
  636. }
  637. }
  638. static void rt2500pci_clear_entry(struct queue_entry *entry)
  639. {
  640. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  641. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  642. u32 word;
  643. if (entry->queue->qid == QID_RX) {
  644. rt2x00_desc_read(entry_priv->desc, 1, &word);
  645. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  646. rt2x00_desc_write(entry_priv->desc, 1, word);
  647. rt2x00_desc_read(entry_priv->desc, 0, &word);
  648. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  649. rt2x00_desc_write(entry_priv->desc, 0, word);
  650. } else {
  651. rt2x00_desc_read(entry_priv->desc, 0, &word);
  652. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  653. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  654. rt2x00_desc_write(entry_priv->desc, 0, word);
  655. }
  656. }
  657. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  658. {
  659. struct queue_entry_priv_pci *entry_priv;
  660. u32 reg;
  661. /*
  662. * Initialize registers.
  663. */
  664. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  665. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  666. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  667. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  668. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  669. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  670. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  671. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  672. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  673. entry_priv->desc_dma);
  674. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  675. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  676. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  677. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  678. entry_priv->desc_dma);
  679. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  680. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  681. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  682. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  683. entry_priv->desc_dma);
  684. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  685. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  686. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  687. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  688. entry_priv->desc_dma);
  689. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  690. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  691. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  692. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  693. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  694. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  695. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  696. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  697. entry_priv->desc_dma);
  698. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  699. return 0;
  700. }
  701. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  702. {
  703. u32 reg;
  704. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  705. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  706. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  707. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  708. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  709. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  710. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  711. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  712. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  713. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  714. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  715. rt2x00dev->rx->data_size / 128);
  716. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  717. /*
  718. * Always use CWmin and CWmax set in descriptor.
  719. */
  720. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  721. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  722. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  723. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  724. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  725. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  726. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  727. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  728. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  729. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  730. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  731. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  732. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  733. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  734. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  735. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  736. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  737. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  738. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  739. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  740. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  741. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  742. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  743. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  744. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  745. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  746. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  747. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  748. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  749. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  750. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  751. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  752. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  753. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  754. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  755. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  756. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  757. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  758. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  759. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  760. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  761. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  762. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  763. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  764. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  765. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  766. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  767. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  768. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  769. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  770. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  771. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  772. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  773. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  774. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  775. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  776. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  777. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  778. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  779. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  780. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  781. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  782. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  783. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  784. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  785. return -EBUSY;
  786. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  787. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  788. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  789. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  790. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  791. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  792. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  793. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  794. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  795. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  796. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  797. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  798. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  799. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  800. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  801. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  802. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  803. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  804. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  805. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  806. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  807. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  808. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  809. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  810. /*
  811. * We must clear the FCS and FIFO error count.
  812. * These registers are cleared on read,
  813. * so we may pass a useless variable to store the value.
  814. */
  815. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  816. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  817. return 0;
  818. }
  819. static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  820. {
  821. unsigned int i;
  822. u8 value;
  823. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  824. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  825. if ((value != 0xff) && (value != 0x00))
  826. return 0;
  827. udelay(REGISTER_BUSY_DELAY);
  828. }
  829. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  830. return -EACCES;
  831. }
  832. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  833. {
  834. unsigned int i;
  835. u16 eeprom;
  836. u8 reg_id;
  837. u8 value;
  838. if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
  839. return -EACCES;
  840. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  841. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  842. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  843. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  844. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  845. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  846. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  847. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  848. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  849. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  850. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  851. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  852. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  853. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  854. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  855. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  856. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  857. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  858. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  859. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  860. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  861. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  862. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  863. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  864. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  865. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  866. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  867. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  868. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  869. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  870. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  871. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  872. if (eeprom != 0xffff && eeprom != 0x0000) {
  873. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  874. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  875. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  876. }
  877. }
  878. return 0;
  879. }
  880. /*
  881. * Device state switch handlers.
  882. */
  883. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  884. enum dev_state state)
  885. {
  886. u32 reg;
  887. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  888. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  889. (state == STATE_RADIO_RX_OFF) ||
  890. (state == STATE_RADIO_RX_OFF_LINK));
  891. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  892. }
  893. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  894. enum dev_state state)
  895. {
  896. int mask = (state == STATE_RADIO_IRQ_OFF);
  897. u32 reg;
  898. /*
  899. * When interrupts are being enabled, the interrupt registers
  900. * should clear the register to assure a clean state.
  901. */
  902. if (state == STATE_RADIO_IRQ_ON) {
  903. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  904. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  905. }
  906. /*
  907. * Only toggle the interrupts bits we are going to use.
  908. * Non-checked interrupt bits are disabled by default.
  909. */
  910. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  911. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  912. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  913. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  914. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  915. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  916. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  917. }
  918. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  919. {
  920. /*
  921. * Initialize all registers.
  922. */
  923. if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
  924. rt2500pci_init_registers(rt2x00dev) ||
  925. rt2500pci_init_bbp(rt2x00dev)))
  926. return -EIO;
  927. return 0;
  928. }
  929. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  930. {
  931. /*
  932. * Disable power
  933. */
  934. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  935. }
  936. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  937. enum dev_state state)
  938. {
  939. u32 reg;
  940. unsigned int i;
  941. char put_to_sleep;
  942. char bbp_state;
  943. char rf_state;
  944. put_to_sleep = (state != STATE_AWAKE);
  945. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  946. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  947. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  948. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  949. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  950. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  951. /*
  952. * Device is not guaranteed to be in the requested state yet.
  953. * We must wait until the register indicates that the
  954. * device has entered the correct state.
  955. */
  956. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  957. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  958. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  959. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  960. if (bbp_state == state && rf_state == state)
  961. return 0;
  962. msleep(10);
  963. }
  964. return -EBUSY;
  965. }
  966. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  967. enum dev_state state)
  968. {
  969. int retval = 0;
  970. switch (state) {
  971. case STATE_RADIO_ON:
  972. retval = rt2500pci_enable_radio(rt2x00dev);
  973. break;
  974. case STATE_RADIO_OFF:
  975. rt2500pci_disable_radio(rt2x00dev);
  976. break;
  977. case STATE_RADIO_RX_ON:
  978. case STATE_RADIO_RX_ON_LINK:
  979. case STATE_RADIO_RX_OFF:
  980. case STATE_RADIO_RX_OFF_LINK:
  981. rt2500pci_toggle_rx(rt2x00dev, state);
  982. break;
  983. case STATE_RADIO_IRQ_ON:
  984. case STATE_RADIO_IRQ_OFF:
  985. rt2500pci_toggle_irq(rt2x00dev, state);
  986. break;
  987. case STATE_DEEP_SLEEP:
  988. case STATE_SLEEP:
  989. case STATE_STANDBY:
  990. case STATE_AWAKE:
  991. retval = rt2500pci_set_state(rt2x00dev, state);
  992. break;
  993. default:
  994. retval = -ENOTSUPP;
  995. break;
  996. }
  997. if (unlikely(retval))
  998. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  999. state, retval);
  1000. return retval;
  1001. }
  1002. /*
  1003. * TX descriptor initialization
  1004. */
  1005. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  1006. struct sk_buff *skb,
  1007. struct txentry_desc *txdesc)
  1008. {
  1009. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  1010. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  1011. __le32 *txd = skbdesc->desc;
  1012. u32 word;
  1013. /*
  1014. * Start writing the descriptor words.
  1015. */
  1016. rt2x00_desc_read(entry_priv->desc, 1, &word);
  1017. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1018. rt2x00_desc_write(entry_priv->desc, 1, word);
  1019. rt2x00_desc_read(txd, 2, &word);
  1020. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1021. rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
  1022. rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
  1023. rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
  1024. rt2x00_desc_write(txd, 2, word);
  1025. rt2x00_desc_read(txd, 3, &word);
  1026. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  1027. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  1028. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
  1029. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
  1030. rt2x00_desc_write(txd, 3, word);
  1031. rt2x00_desc_read(txd, 10, &word);
  1032. rt2x00_set_field32(&word, TXD_W10_RTS,
  1033. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  1034. rt2x00_desc_write(txd, 10, word);
  1035. rt2x00_desc_read(txd, 0, &word);
  1036. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1037. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1038. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1039. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1040. rt2x00_set_field32(&word, TXD_W0_ACK,
  1041. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1042. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1043. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1044. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1045. (txdesc->rate_mode == RATE_MODE_OFDM));
  1046. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1047. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1048. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1049. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  1050. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
  1051. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1052. rt2x00_desc_write(txd, 0, word);
  1053. }
  1054. /*
  1055. * TX data initialization
  1056. */
  1057. static void rt2500pci_write_beacon(struct queue_entry *entry)
  1058. {
  1059. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1060. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1061. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1062. u32 word;
  1063. u32 reg;
  1064. /*
  1065. * Disable beaconing while we are reloading the beacon data,
  1066. * otherwise we might be sending out invalid data.
  1067. */
  1068. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1069. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  1070. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  1071. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1072. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1073. /*
  1074. * Replace rt2x00lib allocated descriptor with the
  1075. * pointer to the _real_ hardware descriptor.
  1076. * After that, map the beacon to DMA and update the
  1077. * descriptor.
  1078. */
  1079. memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
  1080. skbdesc->desc = entry_priv->desc;
  1081. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  1082. rt2x00_desc_read(entry_priv->desc, 1, &word);
  1083. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1084. rt2x00_desc_write(entry_priv->desc, 1, word);
  1085. }
  1086. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1087. const enum data_queue_qid queue)
  1088. {
  1089. u32 reg;
  1090. if (queue == QID_BEACON) {
  1091. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1092. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1093. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  1094. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  1095. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1096. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1097. }
  1098. return;
  1099. }
  1100. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1101. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  1102. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  1103. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  1104. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1105. }
  1106. static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  1107. const enum data_queue_qid qid)
  1108. {
  1109. u32 reg;
  1110. if (qid == QID_BEACON) {
  1111. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  1112. } else {
  1113. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1114. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  1115. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1116. }
  1117. }
  1118. /*
  1119. * RX control handlers
  1120. */
  1121. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1122. struct rxdone_entry_desc *rxdesc)
  1123. {
  1124. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1125. u32 word0;
  1126. u32 word2;
  1127. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  1128. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  1129. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1130. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1131. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1132. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1133. /*
  1134. * Obtain the status about this packet.
  1135. * When frame was received with an OFDM bitrate,
  1136. * the signal is the PLCP value. If it was received with
  1137. * a CCK bitrate the signal is the rate in 100kbit/s.
  1138. */
  1139. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1140. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1141. entry->queue->rt2x00dev->rssi_offset;
  1142. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1143. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1144. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1145. else
  1146. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1147. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1148. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1149. }
  1150. /*
  1151. * Interrupt functions.
  1152. */
  1153. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1154. const enum data_queue_qid queue_idx)
  1155. {
  1156. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1157. struct queue_entry_priv_pci *entry_priv;
  1158. struct queue_entry *entry;
  1159. struct txdone_entry_desc txdesc;
  1160. u32 word;
  1161. while (!rt2x00queue_empty(queue)) {
  1162. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1163. entry_priv = entry->priv_data;
  1164. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1165. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1166. !rt2x00_get_field32(word, TXD_W0_VALID))
  1167. break;
  1168. /*
  1169. * Obtain the status about this packet.
  1170. */
  1171. txdesc.flags = 0;
  1172. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1173. case 0: /* Success */
  1174. case 1: /* Success with retry */
  1175. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1176. break;
  1177. case 2: /* Failure, excessive retries */
  1178. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1179. /* Don't break, this is a failed frame! */
  1180. default: /* Failure */
  1181. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1182. }
  1183. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1184. rt2x00lib_txdone(entry, &txdesc);
  1185. }
  1186. }
  1187. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1188. {
  1189. struct rt2x00_dev *rt2x00dev = dev_instance;
  1190. u32 reg;
  1191. /*
  1192. * Get the interrupt sources & saved to local variable.
  1193. * Write register value back to clear pending interrupts.
  1194. */
  1195. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1196. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1197. if (!reg)
  1198. return IRQ_NONE;
  1199. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1200. return IRQ_HANDLED;
  1201. /*
  1202. * Handle interrupts, walk through all bits
  1203. * and run the tasks, the bits are checked in order of
  1204. * priority.
  1205. */
  1206. /*
  1207. * 1 - Beacon timer expired interrupt.
  1208. */
  1209. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1210. rt2x00lib_beacondone(rt2x00dev);
  1211. /*
  1212. * 2 - Rx ring done interrupt.
  1213. */
  1214. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1215. rt2x00pci_rxdone(rt2x00dev);
  1216. /*
  1217. * 3 - Atim ring transmit done interrupt.
  1218. */
  1219. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1220. rt2500pci_txdone(rt2x00dev, QID_ATIM);
  1221. /*
  1222. * 4 - Priority ring transmit done interrupt.
  1223. */
  1224. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1225. rt2500pci_txdone(rt2x00dev, QID_AC_BE);
  1226. /*
  1227. * 5 - Tx ring transmit done interrupt.
  1228. */
  1229. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1230. rt2500pci_txdone(rt2x00dev, QID_AC_BK);
  1231. return IRQ_HANDLED;
  1232. }
  1233. /*
  1234. * Device probe functions.
  1235. */
  1236. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1237. {
  1238. struct eeprom_93cx6 eeprom;
  1239. u32 reg;
  1240. u16 word;
  1241. u8 *mac;
  1242. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1243. eeprom.data = rt2x00dev;
  1244. eeprom.register_read = rt2500pci_eepromregister_read;
  1245. eeprom.register_write = rt2500pci_eepromregister_write;
  1246. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1247. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1248. eeprom.reg_data_in = 0;
  1249. eeprom.reg_data_out = 0;
  1250. eeprom.reg_data_clock = 0;
  1251. eeprom.reg_chip_select = 0;
  1252. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1253. EEPROM_SIZE / sizeof(u16));
  1254. /*
  1255. * Start validation of the data that has been read.
  1256. */
  1257. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1258. if (!is_valid_ether_addr(mac)) {
  1259. random_ether_addr(mac);
  1260. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1261. }
  1262. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1263. if (word == 0xffff) {
  1264. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1265. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1266. ANTENNA_SW_DIVERSITY);
  1267. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1268. ANTENNA_SW_DIVERSITY);
  1269. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1270. LED_MODE_DEFAULT);
  1271. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1272. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1273. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1274. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1275. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1276. }
  1277. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1278. if (word == 0xffff) {
  1279. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1280. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1281. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1282. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1283. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1284. }
  1285. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1286. if (word == 0xffff) {
  1287. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1288. DEFAULT_RSSI_OFFSET);
  1289. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1290. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1291. }
  1292. return 0;
  1293. }
  1294. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1295. {
  1296. u32 reg;
  1297. u16 value;
  1298. u16 eeprom;
  1299. /*
  1300. * Read EEPROM word for configuration.
  1301. */
  1302. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1303. /*
  1304. * Identify RF chipset.
  1305. */
  1306. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1307. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1308. rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
  1309. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1310. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1311. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1312. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1313. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1314. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1315. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1316. return -ENODEV;
  1317. }
  1318. /*
  1319. * Identify default antenna configuration.
  1320. */
  1321. rt2x00dev->default_ant.tx =
  1322. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1323. rt2x00dev->default_ant.rx =
  1324. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1325. /*
  1326. * Store led mode, for correct led behaviour.
  1327. */
  1328. #ifdef CONFIG_RT2X00_LIB_LEDS
  1329. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1330. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1331. if (value == LED_MODE_TXRX_ACTIVITY ||
  1332. value == LED_MODE_DEFAULT ||
  1333. value == LED_MODE_ASUS)
  1334. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1335. LED_TYPE_ACTIVITY);
  1336. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1337. /*
  1338. * Detect if this device has an hardware controlled radio.
  1339. */
  1340. #ifdef CONFIG_RT2X00_LIB_RFKILL
  1341. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1342. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1343. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  1344. /*
  1345. * Check if the BBP tuning should be enabled.
  1346. */
  1347. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1348. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1349. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1350. /*
  1351. * Read the RSSI <-> dBm offset information.
  1352. */
  1353. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1354. rt2x00dev->rssi_offset =
  1355. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1356. return 0;
  1357. }
  1358. /*
  1359. * RF value list for RF2522
  1360. * Supports: 2.4 GHz
  1361. */
  1362. static const struct rf_channel rf_vals_bg_2522[] = {
  1363. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1364. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1365. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1366. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1367. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1368. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1369. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1370. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1371. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1372. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1373. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1374. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1375. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1376. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1377. };
  1378. /*
  1379. * RF value list for RF2523
  1380. * Supports: 2.4 GHz
  1381. */
  1382. static const struct rf_channel rf_vals_bg_2523[] = {
  1383. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1384. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1385. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1386. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1387. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1388. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1389. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1390. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1391. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1392. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1393. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1394. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1395. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1396. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1397. };
  1398. /*
  1399. * RF value list for RF2524
  1400. * Supports: 2.4 GHz
  1401. */
  1402. static const struct rf_channel rf_vals_bg_2524[] = {
  1403. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1404. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1405. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1406. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1407. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1408. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1409. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1410. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1411. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1412. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1413. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1414. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1415. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1416. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1417. };
  1418. /*
  1419. * RF value list for RF2525
  1420. * Supports: 2.4 GHz
  1421. */
  1422. static const struct rf_channel rf_vals_bg_2525[] = {
  1423. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1424. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1425. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1426. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1427. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1428. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1429. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1430. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1431. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1432. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1433. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1434. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1435. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1436. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1437. };
  1438. /*
  1439. * RF value list for RF2525e
  1440. * Supports: 2.4 GHz
  1441. */
  1442. static const struct rf_channel rf_vals_bg_2525e[] = {
  1443. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1444. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1445. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1446. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1447. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1448. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1449. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1450. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1451. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1452. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1453. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1454. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1455. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1456. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1457. };
  1458. /*
  1459. * RF value list for RF5222
  1460. * Supports: 2.4 GHz & 5.2 GHz
  1461. */
  1462. static const struct rf_channel rf_vals_5222[] = {
  1463. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1464. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1465. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1466. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1467. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1468. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1469. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1470. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1471. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1472. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1473. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1474. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1475. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1476. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1477. /* 802.11 UNI / HyperLan 2 */
  1478. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1479. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1480. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1481. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1482. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1483. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1484. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1485. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1486. /* 802.11 HyperLan 2 */
  1487. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1488. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1489. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1490. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1491. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1492. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1493. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1494. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1495. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1496. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1497. /* 802.11 UNII */
  1498. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1499. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1500. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1501. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1502. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1503. };
  1504. static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1505. {
  1506. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1507. struct channel_info *info;
  1508. char *tx_power;
  1509. unsigned int i;
  1510. /*
  1511. * Initialize all hw fields.
  1512. */
  1513. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1514. IEEE80211_HW_SIGNAL_DBM |
  1515. IEEE80211_HW_SUPPORTS_PS |
  1516. IEEE80211_HW_PS_NULLFUNC_STACK;
  1517. rt2x00dev->hw->extra_tx_headroom = 0;
  1518. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1519. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1520. rt2x00_eeprom_addr(rt2x00dev,
  1521. EEPROM_MAC_ADDR_0));
  1522. /*
  1523. * Initialize hw_mode information.
  1524. */
  1525. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1526. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1527. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1528. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1529. spec->channels = rf_vals_bg_2522;
  1530. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1531. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1532. spec->channels = rf_vals_bg_2523;
  1533. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1534. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1535. spec->channels = rf_vals_bg_2524;
  1536. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1537. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1538. spec->channels = rf_vals_bg_2525;
  1539. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1540. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1541. spec->channels = rf_vals_bg_2525e;
  1542. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1543. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1544. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1545. spec->channels = rf_vals_5222;
  1546. }
  1547. /*
  1548. * Create channel information array
  1549. */
  1550. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1551. if (!info)
  1552. return -ENOMEM;
  1553. spec->channels_info = info;
  1554. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1555. for (i = 0; i < 14; i++)
  1556. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1557. if (spec->num_channels > 14) {
  1558. for (i = 14; i < spec->num_channels; i++)
  1559. info[i].tx_power1 = DEFAULT_TXPOWER;
  1560. }
  1561. return 0;
  1562. }
  1563. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1564. {
  1565. int retval;
  1566. /*
  1567. * Allocate eeprom data.
  1568. */
  1569. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1570. if (retval)
  1571. return retval;
  1572. retval = rt2500pci_init_eeprom(rt2x00dev);
  1573. if (retval)
  1574. return retval;
  1575. /*
  1576. * Initialize hw specifications.
  1577. */
  1578. retval = rt2500pci_probe_hw_mode(rt2x00dev);
  1579. if (retval)
  1580. return retval;
  1581. /*
  1582. * This device requires the atim queue and DMA-mapped skbs.
  1583. */
  1584. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1585. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1586. /*
  1587. * Set the rssi offset.
  1588. */
  1589. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1590. return 0;
  1591. }
  1592. /*
  1593. * IEEE80211 stack callback functions.
  1594. */
  1595. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1596. {
  1597. struct rt2x00_dev *rt2x00dev = hw->priv;
  1598. u64 tsf;
  1599. u32 reg;
  1600. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1601. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1602. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1603. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1604. return tsf;
  1605. }
  1606. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1607. {
  1608. struct rt2x00_dev *rt2x00dev = hw->priv;
  1609. u32 reg;
  1610. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1611. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1612. }
  1613. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1614. .tx = rt2x00mac_tx,
  1615. .start = rt2x00mac_start,
  1616. .stop = rt2x00mac_stop,
  1617. .add_interface = rt2x00mac_add_interface,
  1618. .remove_interface = rt2x00mac_remove_interface,
  1619. .config = rt2x00mac_config,
  1620. .config_interface = rt2x00mac_config_interface,
  1621. .configure_filter = rt2x00mac_configure_filter,
  1622. .get_stats = rt2x00mac_get_stats,
  1623. .bss_info_changed = rt2x00mac_bss_info_changed,
  1624. .conf_tx = rt2x00mac_conf_tx,
  1625. .get_tx_stats = rt2x00mac_get_tx_stats,
  1626. .get_tsf = rt2500pci_get_tsf,
  1627. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1628. };
  1629. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1630. .irq_handler = rt2500pci_interrupt,
  1631. .probe_hw = rt2500pci_probe_hw,
  1632. .initialize = rt2x00pci_initialize,
  1633. .uninitialize = rt2x00pci_uninitialize,
  1634. .get_entry_state = rt2500pci_get_entry_state,
  1635. .clear_entry = rt2500pci_clear_entry,
  1636. .set_device_state = rt2500pci_set_device_state,
  1637. .rfkill_poll = rt2500pci_rfkill_poll,
  1638. .link_stats = rt2500pci_link_stats,
  1639. .reset_tuner = rt2500pci_reset_tuner,
  1640. .link_tuner = rt2500pci_link_tuner,
  1641. .write_tx_desc = rt2500pci_write_tx_desc,
  1642. .write_tx_data = rt2x00pci_write_tx_data,
  1643. .write_beacon = rt2500pci_write_beacon,
  1644. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1645. .kill_tx_queue = rt2500pci_kill_tx_queue,
  1646. .fill_rxdone = rt2500pci_fill_rxdone,
  1647. .config_filter = rt2500pci_config_filter,
  1648. .config_intf = rt2500pci_config_intf,
  1649. .config_erp = rt2500pci_config_erp,
  1650. .config_ant = rt2500pci_config_ant,
  1651. .config = rt2500pci_config,
  1652. };
  1653. static const struct data_queue_desc rt2500pci_queue_rx = {
  1654. .entry_num = RX_ENTRIES,
  1655. .data_size = DATA_FRAME_SIZE,
  1656. .desc_size = RXD_DESC_SIZE,
  1657. .priv_size = sizeof(struct queue_entry_priv_pci),
  1658. };
  1659. static const struct data_queue_desc rt2500pci_queue_tx = {
  1660. .entry_num = TX_ENTRIES,
  1661. .data_size = DATA_FRAME_SIZE,
  1662. .desc_size = TXD_DESC_SIZE,
  1663. .priv_size = sizeof(struct queue_entry_priv_pci),
  1664. };
  1665. static const struct data_queue_desc rt2500pci_queue_bcn = {
  1666. .entry_num = BEACON_ENTRIES,
  1667. .data_size = MGMT_FRAME_SIZE,
  1668. .desc_size = TXD_DESC_SIZE,
  1669. .priv_size = sizeof(struct queue_entry_priv_pci),
  1670. };
  1671. static const struct data_queue_desc rt2500pci_queue_atim = {
  1672. .entry_num = ATIM_ENTRIES,
  1673. .data_size = DATA_FRAME_SIZE,
  1674. .desc_size = TXD_DESC_SIZE,
  1675. .priv_size = sizeof(struct queue_entry_priv_pci),
  1676. };
  1677. static const struct rt2x00_ops rt2500pci_ops = {
  1678. .name = KBUILD_MODNAME,
  1679. .max_sta_intf = 1,
  1680. .max_ap_intf = 1,
  1681. .eeprom_size = EEPROM_SIZE,
  1682. .rf_size = RF_SIZE,
  1683. .tx_queues = NUM_TX_QUEUES,
  1684. .rx = &rt2500pci_queue_rx,
  1685. .tx = &rt2500pci_queue_tx,
  1686. .bcn = &rt2500pci_queue_bcn,
  1687. .atim = &rt2500pci_queue_atim,
  1688. .lib = &rt2500pci_rt2x00_ops,
  1689. .hw = &rt2500pci_mac80211_ops,
  1690. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1691. .debugfs = &rt2500pci_rt2x00debug,
  1692. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1693. };
  1694. /*
  1695. * RT2500pci module information.
  1696. */
  1697. static struct pci_device_id rt2500pci_device_table[] = {
  1698. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1699. { 0, }
  1700. };
  1701. MODULE_AUTHOR(DRV_PROJECT);
  1702. MODULE_VERSION(DRV_VERSION);
  1703. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1704. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1705. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1706. MODULE_LICENSE("GPL");
  1707. static struct pci_driver rt2500pci_driver = {
  1708. .name = KBUILD_MODNAME,
  1709. .id_table = rt2500pci_device_table,
  1710. .probe = rt2x00pci_probe,
  1711. .remove = __devexit_p(rt2x00pci_remove),
  1712. .suspend = rt2x00pci_suspend,
  1713. .resume = rt2x00pci_resume,
  1714. };
  1715. static int __init rt2500pci_init(void)
  1716. {
  1717. return pci_register_driver(&rt2500pci_driver);
  1718. }
  1719. static void __exit rt2500pci_exit(void)
  1720. {
  1721. pci_unregister_driver(&rt2500pci_driver);
  1722. }
  1723. module_init(rt2500pci_init);
  1724. module_exit(rt2500pci_exit);