iwl-calib.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881
  1. /******************************************************************************
  2. *
  3. * This file is provided under a dual BSD/GPLv2 license. When using or
  4. * redistributing this file, you may do so under either license.
  5. *
  6. * GPL LICENSE SUMMARY
  7. *
  8. * Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of version 2 of the GNU General Public License as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22. * USA
  23. *
  24. * The full GNU General Public License is included in this distribution
  25. * in the file called LICENSE.GPL.
  26. *
  27. * Contact Information:
  28. * Intel Linux Wireless <ilw@linux.intel.com>
  29. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30. *
  31. * BSD LICENSE
  32. *
  33. * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
  34. * All rights reserved.
  35. *
  36. * Redistribution and use in source and binary forms, with or without
  37. * modification, are permitted provided that the following conditions
  38. * are met:
  39. *
  40. * * Redistributions of source code must retain the above copyright
  41. * notice, this list of conditions and the following disclaimer.
  42. * * Redistributions in binary form must reproduce the above copyright
  43. * notice, this list of conditions and the following disclaimer in
  44. * the documentation and/or other materials provided with the
  45. * distribution.
  46. * * Neither the name Intel Corporation nor the names of its
  47. * contributors may be used to endorse or promote products derived
  48. * from this software without specific prior written permission.
  49. *
  50. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61. *****************************************************************************/
  62. #include <net/mac80211.h>
  63. #include "iwl-dev.h"
  64. #include "iwl-core.h"
  65. #include "iwl-calib.h"
  66. /*****************************************************************************
  67. * INIT calibrations framework
  68. *****************************************************************************/
  69. struct statistics_general_data {
  70. u32 beacon_silence_rssi_a;
  71. u32 beacon_silence_rssi_b;
  72. u32 beacon_silence_rssi_c;
  73. u32 beacon_energy_a;
  74. u32 beacon_energy_b;
  75. u32 beacon_energy_c;
  76. };
  77. int iwl_send_calib_results(struct iwl_priv *priv)
  78. {
  79. int ret = 0;
  80. int i = 0;
  81. struct iwl_host_cmd hcmd = {
  82. .id = REPLY_PHY_CALIBRATION_CMD,
  83. .meta.flags = CMD_SIZE_HUGE,
  84. };
  85. for (i = 0; i < IWL_CALIB_MAX; i++) {
  86. if ((BIT(i) & priv->hw_params.calib_init_cfg) &&
  87. priv->calib_results[i].buf) {
  88. hcmd.len = priv->calib_results[i].buf_len;
  89. hcmd.data = priv->calib_results[i].buf;
  90. ret = iwl_send_cmd_sync(priv, &hcmd);
  91. if (ret)
  92. goto err;
  93. }
  94. }
  95. return 0;
  96. err:
  97. IWL_ERR(priv, "Error %d iteration %d\n", ret, i);
  98. return ret;
  99. }
  100. EXPORT_SYMBOL(iwl_send_calib_results);
  101. int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
  102. {
  103. if (res->buf_len != len) {
  104. kfree(res->buf);
  105. res->buf = kzalloc(len, GFP_ATOMIC);
  106. }
  107. if (unlikely(res->buf == NULL))
  108. return -ENOMEM;
  109. res->buf_len = len;
  110. memcpy(res->buf, buf, len);
  111. return 0;
  112. }
  113. EXPORT_SYMBOL(iwl_calib_set);
  114. void iwl_calib_free_results(struct iwl_priv *priv)
  115. {
  116. int i;
  117. for (i = 0; i < IWL_CALIB_MAX; i++) {
  118. kfree(priv->calib_results[i].buf);
  119. priv->calib_results[i].buf = NULL;
  120. priv->calib_results[i].buf_len = 0;
  121. }
  122. }
  123. /*****************************************************************************
  124. * RUNTIME calibrations framework
  125. *****************************************************************************/
  126. /* "false alarms" are signals that our DSP tries to lock onto,
  127. * but then determines that they are either noise, or transmissions
  128. * from a distant wireless network (also "noise", really) that get
  129. * "stepped on" by stronger transmissions within our own network.
  130. * This algorithm attempts to set a sensitivity level that is high
  131. * enough to receive all of our own network traffic, but not so
  132. * high that our DSP gets too busy trying to lock onto non-network
  133. * activity/noise. */
  134. static int iwl_sens_energy_cck(struct iwl_priv *priv,
  135. u32 norm_fa,
  136. u32 rx_enable_time,
  137. struct statistics_general_data *rx_info)
  138. {
  139. u32 max_nrg_cck = 0;
  140. int i = 0;
  141. u8 max_silence_rssi = 0;
  142. u32 silence_ref = 0;
  143. u8 silence_rssi_a = 0;
  144. u8 silence_rssi_b = 0;
  145. u8 silence_rssi_c = 0;
  146. u32 val;
  147. /* "false_alarms" values below are cross-multiplications to assess the
  148. * numbers of false alarms within the measured period of actual Rx
  149. * (Rx is off when we're txing), vs the min/max expected false alarms
  150. * (some should be expected if rx is sensitive enough) in a
  151. * hypothetical listening period of 200 time units (TU), 204.8 msec:
  152. *
  153. * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
  154. *
  155. * */
  156. u32 false_alarms = norm_fa * 200 * 1024;
  157. u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
  158. u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
  159. struct iwl_sensitivity_data *data = NULL;
  160. const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
  161. data = &(priv->sensitivity_data);
  162. data->nrg_auto_corr_silence_diff = 0;
  163. /* Find max silence rssi among all 3 receivers.
  164. * This is background noise, which may include transmissions from other
  165. * networks, measured during silence before our network's beacon */
  166. silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
  167. ALL_BAND_FILTER) >> 8);
  168. silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
  169. ALL_BAND_FILTER) >> 8);
  170. silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
  171. ALL_BAND_FILTER) >> 8);
  172. val = max(silence_rssi_b, silence_rssi_c);
  173. max_silence_rssi = max(silence_rssi_a, (u8) val);
  174. /* Store silence rssi in 20-beacon history table */
  175. data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
  176. data->nrg_silence_idx++;
  177. if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
  178. data->nrg_silence_idx = 0;
  179. /* Find max silence rssi across 20 beacon history */
  180. for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
  181. val = data->nrg_silence_rssi[i];
  182. silence_ref = max(silence_ref, val);
  183. }
  184. IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
  185. silence_rssi_a, silence_rssi_b, silence_rssi_c,
  186. silence_ref);
  187. /* Find max rx energy (min value!) among all 3 receivers,
  188. * measured during beacon frame.
  189. * Save it in 10-beacon history table. */
  190. i = data->nrg_energy_idx;
  191. val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
  192. data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
  193. data->nrg_energy_idx++;
  194. if (data->nrg_energy_idx >= 10)
  195. data->nrg_energy_idx = 0;
  196. /* Find min rx energy (max value) across 10 beacon history.
  197. * This is the minimum signal level that we want to receive well.
  198. * Add backoff (margin so we don't miss slightly lower energy frames).
  199. * This establishes an upper bound (min value) for energy threshold. */
  200. max_nrg_cck = data->nrg_value[0];
  201. for (i = 1; i < 10; i++)
  202. max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
  203. max_nrg_cck += 6;
  204. IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
  205. rx_info->beacon_energy_a, rx_info->beacon_energy_b,
  206. rx_info->beacon_energy_c, max_nrg_cck - 6);
  207. /* Count number of consecutive beacons with fewer-than-desired
  208. * false alarms. */
  209. if (false_alarms < min_false_alarms)
  210. data->num_in_cck_no_fa++;
  211. else
  212. data->num_in_cck_no_fa = 0;
  213. IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
  214. data->num_in_cck_no_fa);
  215. /* If we got too many false alarms this time, reduce sensitivity */
  216. if ((false_alarms > max_false_alarms) &&
  217. (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
  218. IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
  219. false_alarms, max_false_alarms);
  220. IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
  221. data->nrg_curr_state = IWL_FA_TOO_MANY;
  222. /* Store for "fewer than desired" on later beacon */
  223. data->nrg_silence_ref = silence_ref;
  224. /* increase energy threshold (reduce nrg value)
  225. * to decrease sensitivity */
  226. if (data->nrg_th_cck >
  227. (ranges->max_nrg_cck + NRG_STEP_CCK))
  228. data->nrg_th_cck = data->nrg_th_cck
  229. - NRG_STEP_CCK;
  230. else
  231. data->nrg_th_cck = ranges->max_nrg_cck;
  232. /* Else if we got fewer than desired, increase sensitivity */
  233. } else if (false_alarms < min_false_alarms) {
  234. data->nrg_curr_state = IWL_FA_TOO_FEW;
  235. /* Compare silence level with silence level for most recent
  236. * healthy number or too many false alarms */
  237. data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
  238. (s32)silence_ref;
  239. IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
  240. false_alarms, min_false_alarms,
  241. data->nrg_auto_corr_silence_diff);
  242. /* Increase value to increase sensitivity, but only if:
  243. * 1a) previous beacon did *not* have *too many* false alarms
  244. * 1b) AND there's a significant difference in Rx levels
  245. * from a previous beacon with too many, or healthy # FAs
  246. * OR 2) We've seen a lot of beacons (100) with too few
  247. * false alarms */
  248. if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
  249. ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
  250. (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
  251. IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
  252. /* Increase nrg value to increase sensitivity */
  253. val = data->nrg_th_cck + NRG_STEP_CCK;
  254. data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
  255. } else {
  256. IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
  257. }
  258. /* Else we got a healthy number of false alarms, keep status quo */
  259. } else {
  260. IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
  261. data->nrg_curr_state = IWL_FA_GOOD_RANGE;
  262. /* Store for use in "fewer than desired" with later beacon */
  263. data->nrg_silence_ref = silence_ref;
  264. /* If previous beacon had too many false alarms,
  265. * give it some extra margin by reducing sensitivity again
  266. * (but don't go below measured energy of desired Rx) */
  267. if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
  268. IWL_DEBUG_CALIB(priv, "... increasing margin\n");
  269. if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
  270. data->nrg_th_cck -= NRG_MARGIN;
  271. else
  272. data->nrg_th_cck = max_nrg_cck;
  273. }
  274. }
  275. /* Make sure the energy threshold does not go above the measured
  276. * energy of the desired Rx signals (reduced by backoff margin),
  277. * or else we might start missing Rx frames.
  278. * Lower value is higher energy, so we use max()!
  279. */
  280. data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
  281. IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
  282. data->nrg_prev_state = data->nrg_curr_state;
  283. /* Auto-correlation CCK algorithm */
  284. if (false_alarms > min_false_alarms) {
  285. /* increase auto_corr values to decrease sensitivity
  286. * so the DSP won't be disturbed by the noise
  287. */
  288. if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
  289. data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
  290. else {
  291. val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
  292. data->auto_corr_cck =
  293. min((u32)ranges->auto_corr_max_cck, val);
  294. }
  295. val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
  296. data->auto_corr_cck_mrc =
  297. min((u32)ranges->auto_corr_max_cck_mrc, val);
  298. } else if ((false_alarms < min_false_alarms) &&
  299. ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
  300. (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
  301. /* Decrease auto_corr values to increase sensitivity */
  302. val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
  303. data->auto_corr_cck =
  304. max((u32)ranges->auto_corr_min_cck, val);
  305. val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
  306. data->auto_corr_cck_mrc =
  307. max((u32)ranges->auto_corr_min_cck_mrc, val);
  308. }
  309. return 0;
  310. }
  311. static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
  312. u32 norm_fa,
  313. u32 rx_enable_time)
  314. {
  315. u32 val;
  316. u32 false_alarms = norm_fa * 200 * 1024;
  317. u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
  318. u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
  319. struct iwl_sensitivity_data *data = NULL;
  320. const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
  321. data = &(priv->sensitivity_data);
  322. /* If we got too many false alarms this time, reduce sensitivity */
  323. if (false_alarms > max_false_alarms) {
  324. IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
  325. false_alarms, max_false_alarms);
  326. val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
  327. data->auto_corr_ofdm =
  328. min((u32)ranges->auto_corr_max_ofdm, val);
  329. val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
  330. data->auto_corr_ofdm_mrc =
  331. min((u32)ranges->auto_corr_max_ofdm_mrc, val);
  332. val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
  333. data->auto_corr_ofdm_x1 =
  334. min((u32)ranges->auto_corr_max_ofdm_x1, val);
  335. val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
  336. data->auto_corr_ofdm_mrc_x1 =
  337. min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
  338. }
  339. /* Else if we got fewer than desired, increase sensitivity */
  340. else if (false_alarms < min_false_alarms) {
  341. IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
  342. false_alarms, min_false_alarms);
  343. val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
  344. data->auto_corr_ofdm =
  345. max((u32)ranges->auto_corr_min_ofdm, val);
  346. val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
  347. data->auto_corr_ofdm_mrc =
  348. max((u32)ranges->auto_corr_min_ofdm_mrc, val);
  349. val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
  350. data->auto_corr_ofdm_x1 =
  351. max((u32)ranges->auto_corr_min_ofdm_x1, val);
  352. val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
  353. data->auto_corr_ofdm_mrc_x1 =
  354. max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
  355. } else {
  356. IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
  357. min_false_alarms, false_alarms, max_false_alarms);
  358. }
  359. return 0;
  360. }
  361. /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
  362. static int iwl_sensitivity_write(struct iwl_priv *priv)
  363. {
  364. int ret = 0;
  365. struct iwl_sensitivity_cmd cmd ;
  366. struct iwl_sensitivity_data *data = NULL;
  367. struct iwl_host_cmd cmd_out = {
  368. .id = SENSITIVITY_CMD,
  369. .len = sizeof(struct iwl_sensitivity_cmd),
  370. .meta.flags = CMD_ASYNC,
  371. .data = &cmd,
  372. };
  373. data = &(priv->sensitivity_data);
  374. memset(&cmd, 0, sizeof(cmd));
  375. cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
  376. cpu_to_le16((u16)data->auto_corr_ofdm);
  377. cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
  378. cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
  379. cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
  380. cpu_to_le16((u16)data->auto_corr_ofdm_x1);
  381. cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
  382. cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
  383. cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
  384. cpu_to_le16((u16)data->auto_corr_cck);
  385. cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
  386. cpu_to_le16((u16)data->auto_corr_cck_mrc);
  387. cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] =
  388. cpu_to_le16((u16)data->nrg_th_cck);
  389. cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] =
  390. cpu_to_le16((u16)data->nrg_th_ofdm);
  391. cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
  392. cpu_to_le16(190);
  393. cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
  394. cpu_to_le16(390);
  395. cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] =
  396. cpu_to_le16(62);
  397. IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
  398. data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
  399. data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
  400. data->nrg_th_ofdm);
  401. IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
  402. data->auto_corr_cck, data->auto_corr_cck_mrc,
  403. data->nrg_th_cck);
  404. /* Update uCode's "work" table, and copy it to DSP */
  405. cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
  406. /* Don't send command to uCode if nothing has changed */
  407. if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
  408. sizeof(u16)*HD_TABLE_SIZE)) {
  409. IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
  410. return 0;
  411. }
  412. /* Copy table for comparison next time */
  413. memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
  414. sizeof(u16)*HD_TABLE_SIZE);
  415. ret = iwl_send_cmd(priv, &cmd_out);
  416. if (ret)
  417. IWL_ERR(priv, "SENSITIVITY_CMD failed\n");
  418. return ret;
  419. }
  420. void iwl_init_sensitivity(struct iwl_priv *priv)
  421. {
  422. int ret = 0;
  423. int i;
  424. struct iwl_sensitivity_data *data = NULL;
  425. const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
  426. if (priv->disable_sens_cal)
  427. return;
  428. IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
  429. /* Clear driver's sensitivity algo data */
  430. data = &(priv->sensitivity_data);
  431. if (ranges == NULL)
  432. return;
  433. memset(data, 0, sizeof(struct iwl_sensitivity_data));
  434. data->num_in_cck_no_fa = 0;
  435. data->nrg_curr_state = IWL_FA_TOO_MANY;
  436. data->nrg_prev_state = IWL_FA_TOO_MANY;
  437. data->nrg_silence_ref = 0;
  438. data->nrg_silence_idx = 0;
  439. data->nrg_energy_idx = 0;
  440. for (i = 0; i < 10; i++)
  441. data->nrg_value[i] = 0;
  442. for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
  443. data->nrg_silence_rssi[i] = 0;
  444. data->auto_corr_ofdm = 90;
  445. data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
  446. data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
  447. data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
  448. data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
  449. data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
  450. data->nrg_th_cck = ranges->nrg_th_cck;
  451. data->nrg_th_ofdm = ranges->nrg_th_ofdm;
  452. data->last_bad_plcp_cnt_ofdm = 0;
  453. data->last_fa_cnt_ofdm = 0;
  454. data->last_bad_plcp_cnt_cck = 0;
  455. data->last_fa_cnt_cck = 0;
  456. ret |= iwl_sensitivity_write(priv);
  457. IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
  458. }
  459. EXPORT_SYMBOL(iwl_init_sensitivity);
  460. void iwl_sensitivity_calibration(struct iwl_priv *priv,
  461. struct iwl_notif_statistics *resp)
  462. {
  463. u32 rx_enable_time;
  464. u32 fa_cck;
  465. u32 fa_ofdm;
  466. u32 bad_plcp_cck;
  467. u32 bad_plcp_ofdm;
  468. u32 norm_fa_ofdm;
  469. u32 norm_fa_cck;
  470. struct iwl_sensitivity_data *data = NULL;
  471. struct statistics_rx_non_phy *rx_info = &(resp->rx.general);
  472. struct statistics_rx *statistics = &(resp->rx);
  473. unsigned long flags;
  474. struct statistics_general_data statis;
  475. if (priv->disable_sens_cal)
  476. return;
  477. data = &(priv->sensitivity_data);
  478. if (!iwl_is_associated(priv)) {
  479. IWL_DEBUG_CALIB(priv, "<< - not associated\n");
  480. return;
  481. }
  482. spin_lock_irqsave(&priv->lock, flags);
  483. if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
  484. IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
  485. spin_unlock_irqrestore(&priv->lock, flags);
  486. return;
  487. }
  488. /* Extract Statistics: */
  489. rx_enable_time = le32_to_cpu(rx_info->channel_load);
  490. fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt);
  491. fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt);
  492. bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err);
  493. bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err);
  494. statis.beacon_silence_rssi_a =
  495. le32_to_cpu(statistics->general.beacon_silence_rssi_a);
  496. statis.beacon_silence_rssi_b =
  497. le32_to_cpu(statistics->general.beacon_silence_rssi_b);
  498. statis.beacon_silence_rssi_c =
  499. le32_to_cpu(statistics->general.beacon_silence_rssi_c);
  500. statis.beacon_energy_a =
  501. le32_to_cpu(statistics->general.beacon_energy_a);
  502. statis.beacon_energy_b =
  503. le32_to_cpu(statistics->general.beacon_energy_b);
  504. statis.beacon_energy_c =
  505. le32_to_cpu(statistics->general.beacon_energy_c);
  506. spin_unlock_irqrestore(&priv->lock, flags);
  507. IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
  508. if (!rx_enable_time) {
  509. IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0! \n");
  510. return;
  511. }
  512. /* These statistics increase monotonically, and do not reset
  513. * at each beacon. Calculate difference from last value, or just
  514. * use the new statistics value if it has reset or wrapped around. */
  515. if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
  516. data->last_bad_plcp_cnt_cck = bad_plcp_cck;
  517. else {
  518. bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
  519. data->last_bad_plcp_cnt_cck += bad_plcp_cck;
  520. }
  521. if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
  522. data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
  523. else {
  524. bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
  525. data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
  526. }
  527. if (data->last_fa_cnt_ofdm > fa_ofdm)
  528. data->last_fa_cnt_ofdm = fa_ofdm;
  529. else {
  530. fa_ofdm -= data->last_fa_cnt_ofdm;
  531. data->last_fa_cnt_ofdm += fa_ofdm;
  532. }
  533. if (data->last_fa_cnt_cck > fa_cck)
  534. data->last_fa_cnt_cck = fa_cck;
  535. else {
  536. fa_cck -= data->last_fa_cnt_cck;
  537. data->last_fa_cnt_cck += fa_cck;
  538. }
  539. /* Total aborted signal locks */
  540. norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
  541. norm_fa_cck = fa_cck + bad_plcp_cck;
  542. IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
  543. bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
  544. iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
  545. iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
  546. iwl_sensitivity_write(priv);
  547. return;
  548. }
  549. EXPORT_SYMBOL(iwl_sensitivity_calibration);
  550. /*
  551. * Accumulate 20 beacons of signal and noise statistics for each of
  552. * 3 receivers/antennas/rx-chains, then figure out:
  553. * 1) Which antennas are connected.
  554. * 2) Differential rx gain settings to balance the 3 receivers.
  555. */
  556. void iwl_chain_noise_calibration(struct iwl_priv *priv,
  557. struct iwl_notif_statistics *stat_resp)
  558. {
  559. struct iwl_chain_noise_data *data = NULL;
  560. u32 chain_noise_a;
  561. u32 chain_noise_b;
  562. u32 chain_noise_c;
  563. u32 chain_sig_a;
  564. u32 chain_sig_b;
  565. u32 chain_sig_c;
  566. u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
  567. u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
  568. u32 max_average_sig;
  569. u16 max_average_sig_antenna_i;
  570. u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
  571. u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
  572. u16 i = 0;
  573. u16 rxon_chnum = INITIALIZATION_VALUE;
  574. u16 stat_chnum = INITIALIZATION_VALUE;
  575. u8 rxon_band24;
  576. u8 stat_band24;
  577. u32 active_chains = 0;
  578. u8 num_tx_chains;
  579. unsigned long flags;
  580. struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general);
  581. if (priv->disable_chain_noise_cal)
  582. return;
  583. data = &(priv->chain_noise_data);
  584. /* Accumulate just the first 20 beacons after the first association,
  585. * then we're done forever. */
  586. if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
  587. if (data->state == IWL_CHAIN_NOISE_ALIVE)
  588. IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
  589. return;
  590. }
  591. spin_lock_irqsave(&priv->lock, flags);
  592. if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
  593. IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
  594. spin_unlock_irqrestore(&priv->lock, flags);
  595. return;
  596. }
  597. rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK);
  598. rxon_chnum = le16_to_cpu(priv->staging_rxon.channel);
  599. stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
  600. stat_chnum = le32_to_cpu(stat_resp->flag) >> 16;
  601. /* Make sure we accumulate data for just the associated channel
  602. * (even if scanning). */
  603. if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
  604. IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
  605. rxon_chnum, rxon_band24);
  606. spin_unlock_irqrestore(&priv->lock, flags);
  607. return;
  608. }
  609. /* Accumulate beacon statistics values across 20 beacons */
  610. chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
  611. IN_BAND_FILTER;
  612. chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
  613. IN_BAND_FILTER;
  614. chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
  615. IN_BAND_FILTER;
  616. chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
  617. chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
  618. chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
  619. spin_unlock_irqrestore(&priv->lock, flags);
  620. data->beacon_count++;
  621. data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
  622. data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
  623. data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
  624. data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
  625. data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
  626. data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
  627. IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
  628. rxon_chnum, rxon_band24, data->beacon_count);
  629. IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
  630. chain_sig_a, chain_sig_b, chain_sig_c);
  631. IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
  632. chain_noise_a, chain_noise_b, chain_noise_c);
  633. /* If this is the 20th beacon, determine:
  634. * 1) Disconnected antennas (using signal strengths)
  635. * 2) Differential gain (using silence noise) to balance receivers */
  636. if (data->beacon_count != CAL_NUM_OF_BEACONS)
  637. return;
  638. /* Analyze signal for disconnected antenna */
  639. average_sig[0] = (data->chain_signal_a) / CAL_NUM_OF_BEACONS;
  640. average_sig[1] = (data->chain_signal_b) / CAL_NUM_OF_BEACONS;
  641. average_sig[2] = (data->chain_signal_c) / CAL_NUM_OF_BEACONS;
  642. if (average_sig[0] >= average_sig[1]) {
  643. max_average_sig = average_sig[0];
  644. max_average_sig_antenna_i = 0;
  645. active_chains = (1 << max_average_sig_antenna_i);
  646. } else {
  647. max_average_sig = average_sig[1];
  648. max_average_sig_antenna_i = 1;
  649. active_chains = (1 << max_average_sig_antenna_i);
  650. }
  651. if (average_sig[2] >= max_average_sig) {
  652. max_average_sig = average_sig[2];
  653. max_average_sig_antenna_i = 2;
  654. active_chains = (1 << max_average_sig_antenna_i);
  655. }
  656. IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
  657. average_sig[0], average_sig[1], average_sig[2]);
  658. IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
  659. max_average_sig, max_average_sig_antenna_i);
  660. /* Compare signal strengths for all 3 receivers. */
  661. for (i = 0; i < NUM_RX_CHAINS; i++) {
  662. if (i != max_average_sig_antenna_i) {
  663. s32 rssi_delta = (max_average_sig - average_sig[i]);
  664. /* If signal is very weak, compared with
  665. * strongest, mark it as disconnected. */
  666. if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
  667. data->disconn_array[i] = 1;
  668. else
  669. active_chains |= (1 << i);
  670. IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
  671. "disconn_array[i] = %d\n",
  672. i, rssi_delta, data->disconn_array[i]);
  673. }
  674. }
  675. num_tx_chains = 0;
  676. for (i = 0; i < NUM_RX_CHAINS; i++) {
  677. /* loops on all the bits of
  678. * priv->hw_setting.valid_tx_ant */
  679. u8 ant_msk = (1 << i);
  680. if (!(priv->hw_params.valid_tx_ant & ant_msk))
  681. continue;
  682. num_tx_chains++;
  683. if (data->disconn_array[i] == 0)
  684. /* there is a Tx antenna connected */
  685. break;
  686. if (num_tx_chains == priv->hw_params.tx_chains_num &&
  687. data->disconn_array[i]) {
  688. /* This is the last TX antenna and is also
  689. * disconnected connect it anyway */
  690. data->disconn_array[i] = 0;
  691. active_chains |= ant_msk;
  692. IWL_DEBUG_CALIB(priv, "All Tx chains are disconnected W/A - "
  693. "declare %d as connected\n", i);
  694. break;
  695. }
  696. }
  697. /* Save for use within RXON, TX, SCAN commands, etc. */
  698. priv->chain_noise_data.active_chains = active_chains;
  699. IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
  700. active_chains);
  701. /* Analyze noise for rx balance */
  702. average_noise[0] = ((data->chain_noise_a)/CAL_NUM_OF_BEACONS);
  703. average_noise[1] = ((data->chain_noise_b)/CAL_NUM_OF_BEACONS);
  704. average_noise[2] = ((data->chain_noise_c)/CAL_NUM_OF_BEACONS);
  705. for (i = 0; i < NUM_RX_CHAINS; i++) {
  706. if (!(data->disconn_array[i]) &&
  707. (average_noise[i] <= min_average_noise)) {
  708. /* This means that chain i is active and has
  709. * lower noise values so far: */
  710. min_average_noise = average_noise[i];
  711. min_average_noise_antenna_i = i;
  712. }
  713. }
  714. IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
  715. average_noise[0], average_noise[1],
  716. average_noise[2]);
  717. IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
  718. min_average_noise, min_average_noise_antenna_i);
  719. if (priv->cfg->ops->utils->gain_computation)
  720. priv->cfg->ops->utils->gain_computation(priv, average_noise,
  721. min_average_noise_antenna_i, min_average_noise);
  722. /* Some power changes may have been made during the calibration.
  723. * Update and commit the RXON
  724. */
  725. if (priv->cfg->ops->lib->update_chain_flags)
  726. priv->cfg->ops->lib->update_chain_flags(priv);
  727. data->state = IWL_CHAIN_NOISE_DONE;
  728. iwl_power_enable_management(priv);
  729. }
  730. EXPORT_SYMBOL(iwl_chain_noise_calibration);
  731. void iwl_reset_run_time_calib(struct iwl_priv *priv)
  732. {
  733. int i;
  734. memset(&(priv->sensitivity_data), 0,
  735. sizeof(struct iwl_sensitivity_data));
  736. memset(&(priv->chain_noise_data), 0,
  737. sizeof(struct iwl_chain_noise_data));
  738. for (i = 0; i < NUM_RX_CHAINS; i++)
  739. priv->chain_noise_data.delta_gain_code[i] =
  740. CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
  741. /* Ask for statistics now, the uCode will send notification
  742. * periodically after association */
  743. iwl_send_statistics_request(priv, CMD_ASYNC);
  744. }
  745. EXPORT_SYMBOL(iwl_reset_run_time_calib);