phy_lp.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544
  1. /*
  2. Broadcom B43 wireless driver
  3. IEEE 802.11g LP-PHY driver
  4. Copyright (c) 2008-2009 Michael Buesch <mb@bu3sch.de>
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; see the file COPYING. If not, write to
  15. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  16. Boston, MA 02110-1301, USA.
  17. */
  18. #include "b43.h"
  19. #include "main.h"
  20. #include "phy_lp.h"
  21. #include "phy_common.h"
  22. #include "tables_lpphy.h"
  23. static int b43_lpphy_op_allocate(struct b43_wldev *dev)
  24. {
  25. struct b43_phy_lp *lpphy;
  26. lpphy = kzalloc(sizeof(*lpphy), GFP_KERNEL);
  27. if (!lpphy)
  28. return -ENOMEM;
  29. dev->phy.lp = lpphy;
  30. return 0;
  31. }
  32. static void b43_lpphy_op_prepare_structs(struct b43_wldev *dev)
  33. {
  34. struct b43_phy *phy = &dev->phy;
  35. struct b43_phy_lp *lpphy = phy->lp;
  36. memset(lpphy, 0, sizeof(*lpphy));
  37. //TODO
  38. }
  39. static void b43_lpphy_op_free(struct b43_wldev *dev)
  40. {
  41. struct b43_phy_lp *lpphy = dev->phy.lp;
  42. kfree(lpphy);
  43. dev->phy.lp = NULL;
  44. }
  45. static void lpphy_table_init(struct b43_wldev *dev)
  46. {
  47. //TODO
  48. }
  49. static void lpphy_baseband_rev0_1_init(struct b43_wldev *dev)
  50. {
  51. B43_WARN_ON(1);//TODO rev < 2 not supported, yet.
  52. }
  53. static void lpphy_baseband_rev2plus_init(struct b43_wldev *dev)
  54. {
  55. struct ssb_bus *bus = dev->dev->bus;
  56. struct b43_phy_lp *lpphy = dev->phy.lp;
  57. b43_phy_write(dev, B43_LPPHY_AFE_DAC_CTL, 0x50);
  58. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0x8800);
  59. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  60. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0);
  61. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  62. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  63. b43_phy_write(dev, B43_PHY_OFDM(0xF9), 0);
  64. b43_phy_write(dev, B43_LPPHY_TR_LOOKUP_1, 0);
  65. b43_phy_set(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x10);
  66. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0x78);
  67. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xF8FF, 0x200);
  68. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xFF00, 0x7F);
  69. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFF0F, 0x40);
  70. b43_phy_maskset(dev, B43_LPPHY_PREAMBLECONFIRMTO, 0xFF00, 0x2);
  71. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x4000);
  72. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x2000);
  73. b43_phy_set(dev, B43_PHY_OFDM(0x10A), 0x1);
  74. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x10);
  75. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0xFF00, 0xF4);
  76. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0x00FF, 0xF100);
  77. b43_phy_write(dev, B43_LPPHY_CLIPTHRESH, 0x48);
  78. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0xFF00, 0x46);
  79. b43_phy_maskset(dev, B43_PHY_OFDM(0xE4), 0xFF00, 0x10);
  80. b43_phy_maskset(dev, B43_LPPHY_PWR_THRESH1, 0xFFF0, 0x9);
  81. b43_phy_mask(dev, B43_LPPHY_GAINDIRECTMISMATCH, ~0xF);
  82. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5500);
  83. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xF81F, 0xA0);
  84. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xE0FF, 0x300);
  85. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2A00);
  86. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  87. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  88. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xA);
  89. } else {
  90. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x1E00);
  91. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xD);
  92. }
  93. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFFE0, 0x1F);
  94. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  95. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0xFF00, 0x19);
  96. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0x03FF, 0x3C00);
  97. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFC1F, 0x3E0);
  98. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  99. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0x00FF, 0x1900);
  100. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  101. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x12);
  102. b43_phy_maskset(dev, B43_LPPHY_GAINMISMATCH, 0x0FFF, 0x9000);
  103. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x14), 0);
  104. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x12), 0x40);
  105. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  106. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x40);
  107. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0xB00);
  108. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x6);
  109. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0x9D00);
  110. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0xFF00, 0xA1);
  111. } else /* 5GHz */
  112. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x40);
  113. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0xB3);
  114. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  115. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB, 0xFF00, lpphy->rx_pwr_offset);
  116. b43_phy_set(dev, B43_LPPHY_RESET_CTL, 0x44);
  117. b43_phy_write(dev, B43_LPPHY_RESET_CTL, 0x80);
  118. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, 0xA954);
  119. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_1,
  120. 0x2000 | ((u16)lpphy->rssi_gs << 10) |
  121. ((u16)lpphy->rssi_vc << 4) | lpphy->rssi_vf);
  122. }
  123. static void lpphy_baseband_init(struct b43_wldev *dev)
  124. {
  125. lpphy_table_init(dev);
  126. if (dev->phy.rev >= 2)
  127. lpphy_baseband_rev2plus_init(dev);
  128. else
  129. lpphy_baseband_rev0_1_init(dev);
  130. }
  131. struct b2062_freqdata {
  132. u16 freq;
  133. u8 data[6];
  134. };
  135. /* Initialize the 2062 radio. */
  136. static void lpphy_2062_init(struct b43_wldev *dev)
  137. {
  138. struct ssb_bus *bus = dev->dev->bus;
  139. u32 crystalfreq, pdiv, tmp, ref;
  140. unsigned int i;
  141. const struct b2062_freqdata *fd = NULL;
  142. static const struct b2062_freqdata freqdata_tab[] = {
  143. { .freq = 12000, .data[0] = 6, .data[1] = 6, .data[2] = 6,
  144. .data[3] = 6, .data[4] = 10, .data[5] = 6, },
  145. { .freq = 13000, .data[0] = 4, .data[1] = 4, .data[2] = 4,
  146. .data[3] = 4, .data[4] = 11, .data[5] = 7, },
  147. { .freq = 14400, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  148. .data[3] = 3, .data[4] = 12, .data[5] = 7, },
  149. { .freq = 16200, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  150. .data[3] = 3, .data[4] = 13, .data[5] = 8, },
  151. { .freq = 18000, .data[0] = 2, .data[1] = 2, .data[2] = 2,
  152. .data[3] = 2, .data[4] = 14, .data[5] = 8, },
  153. { .freq = 19200, .data[0] = 1, .data[1] = 1, .data[2] = 1,
  154. .data[3] = 1, .data[4] = 14, .data[5] = 9, },
  155. };
  156. b2062_upload_init_table(dev);
  157. b43_radio_write(dev, B2062_N_TX_CTL3, 0);
  158. b43_radio_write(dev, B2062_N_TX_CTL4, 0);
  159. b43_radio_write(dev, B2062_N_TX_CTL5, 0);
  160. b43_radio_write(dev, B2062_N_PDN_CTL0, 0x40);
  161. b43_radio_write(dev, B2062_N_PDN_CTL0, 0);
  162. b43_radio_write(dev, B2062_N_CALIB_TS, 0x10);
  163. b43_radio_write(dev, B2062_N_CALIB_TS, 0);
  164. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  165. b43_radio_set(dev, B2062_N_TSSI_CTL0, 0x1);
  166. else
  167. b43_radio_mask(dev, B2062_N_TSSI_CTL0, ~0x1);
  168. /* Get the crystal freq, in Hz. */
  169. crystalfreq = bus->chipco.pmu.crystalfreq * 1000;
  170. B43_WARN_ON(!(bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU));
  171. B43_WARN_ON(crystalfreq == 0);
  172. if (crystalfreq >= 30000000) {
  173. pdiv = 1;
  174. b43_radio_mask(dev, B2062_S_RFPLL_CTL1, 0xFFFB);
  175. } else {
  176. pdiv = 2;
  177. b43_radio_set(dev, B2062_S_RFPLL_CTL1, 0x4);
  178. }
  179. tmp = (800000000 * pdiv + crystalfreq) / (32000000 * pdiv);
  180. tmp = (tmp - 1) & 0xFF;
  181. b43_radio_write(dev, B2062_S_RFPLL_CTL18, tmp);
  182. tmp = (2 * crystalfreq + 1000000 * pdiv) / (2000000 * pdiv);
  183. tmp = ((tmp & 0xFF) - 1) & 0xFFFF;
  184. b43_radio_write(dev, B2062_S_RFPLL_CTL19, tmp);
  185. ref = (1000 * pdiv + 2 * crystalfreq) / (2000 * pdiv);
  186. ref &= 0xFFFF;
  187. for (i = 0; i < ARRAY_SIZE(freqdata_tab); i++) {
  188. if (ref < freqdata_tab[i].freq) {
  189. fd = &freqdata_tab[i];
  190. break;
  191. }
  192. }
  193. if (!fd)
  194. fd = &freqdata_tab[ARRAY_SIZE(freqdata_tab) - 1];
  195. b43dbg(dev->wl, "b2062: Using crystal tab entry %u kHz.\n",
  196. fd->freq); /* FIXME: Keep this printk until the code is fully debugged. */
  197. b43_radio_write(dev, B2062_S_RFPLL_CTL8,
  198. ((u16)(fd->data[1]) << 4) | fd->data[0]);
  199. b43_radio_write(dev, B2062_S_RFPLL_CTL9,
  200. ((u16)(fd->data[3]) << 4) | fd->data[2]);
  201. b43_radio_write(dev, B2062_S_RFPLL_CTL10, fd->data[4]);
  202. b43_radio_write(dev, B2062_S_RFPLL_CTL11, fd->data[5]);
  203. }
  204. /* Initialize the 2063 radio. */
  205. static void lpphy_2063_init(struct b43_wldev *dev)
  206. {
  207. //TODO
  208. }
  209. static void lpphy_sync_stx(struct b43_wldev *dev)
  210. {
  211. //TODO
  212. }
  213. static void lpphy_radio_init(struct b43_wldev *dev)
  214. {
  215. /* The radio is attached through the 4wire bus. */
  216. b43_phy_set(dev, B43_LPPHY_FOURWIRE_CTL, 0x2);
  217. udelay(1);
  218. b43_phy_mask(dev, B43_LPPHY_FOURWIRE_CTL, 0xFFFD);
  219. udelay(1);
  220. if (dev->phy.rev < 2) {
  221. lpphy_2062_init(dev);
  222. } else {
  223. lpphy_2063_init(dev);
  224. lpphy_sync_stx(dev);
  225. b43_phy_write(dev, B43_PHY_OFDM(0xF0), 0x5F80);
  226. b43_phy_write(dev, B43_PHY_OFDM(0xF1), 0);
  227. //TODO Do something on the backplane
  228. }
  229. }
  230. /* Read the TX power control mode from hardware. */
  231. static void lpphy_read_tx_pctl_mode_from_hardware(struct b43_wldev *dev)
  232. {
  233. struct b43_phy_lp *lpphy = dev->phy.lp;
  234. u16 ctl;
  235. ctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD);
  236. switch (ctl & B43_LPPHY_TX_PWR_CTL_CMD_MODE) {
  237. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF:
  238. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_OFF;
  239. break;
  240. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW:
  241. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_SW;
  242. break;
  243. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW:
  244. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_HW;
  245. break;
  246. default:
  247. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_UNKNOWN;
  248. B43_WARN_ON(1);
  249. break;
  250. }
  251. }
  252. /* Set the TX power control mode in hardware. */
  253. static void lpphy_write_tx_pctl_mode_to_hardware(struct b43_wldev *dev)
  254. {
  255. struct b43_phy_lp *lpphy = dev->phy.lp;
  256. u16 ctl;
  257. switch (lpphy->txpctl_mode) {
  258. case B43_LPPHY_TXPCTL_OFF:
  259. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF;
  260. break;
  261. case B43_LPPHY_TXPCTL_HW:
  262. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW;
  263. break;
  264. case B43_LPPHY_TXPCTL_SW:
  265. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW;
  266. break;
  267. default:
  268. ctl = 0;
  269. B43_WARN_ON(1);
  270. }
  271. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  272. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE, ctl);
  273. }
  274. static void lpphy_set_tx_power_control(struct b43_wldev *dev,
  275. enum b43_lpphy_txpctl_mode mode)
  276. {
  277. struct b43_phy_lp *lpphy = dev->phy.lp;
  278. enum b43_lpphy_txpctl_mode oldmode;
  279. oldmode = lpphy->txpctl_mode;
  280. lpphy_read_tx_pctl_mode_from_hardware(dev);
  281. if (lpphy->txpctl_mode == mode)
  282. return;
  283. lpphy->txpctl_mode = mode;
  284. if (oldmode == B43_LPPHY_TXPCTL_HW) {
  285. //TODO Update TX Power NPT
  286. //TODO Clear all TX Power offsets
  287. } else {
  288. if (mode == B43_LPPHY_TXPCTL_HW) {
  289. //TODO Recalculate target TX power
  290. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  291. 0xFF80, lpphy->tssi_idx);
  292. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM,
  293. 0x8FFF, ((u16)lpphy->tssi_npt << 16));
  294. //TODO Set "TSSI Transmit Count" variable to total transmitted frame count
  295. //TODO Disable TX gain override
  296. lpphy->tx_pwr_idx_over = -1;
  297. }
  298. }
  299. if (dev->phy.rev >= 2) {
  300. if (mode == B43_LPPHY_TXPCTL_HW)
  301. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0x2);
  302. else
  303. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0);
  304. }
  305. lpphy_write_tx_pctl_mode_to_hardware(dev);
  306. }
  307. static void lpphy_set_tx_power_by_index(struct b43_wldev *dev, u8 index)
  308. {
  309. struct b43_phy_lp *lpphy = dev->phy.lp;
  310. lpphy->tx_pwr_idx_over = index;
  311. if (lpphy->txpctl_mode != B43_LPPHY_TXPCTL_OFF)
  312. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_SW);
  313. //TODO
  314. }
  315. static void lpphy_btcoex_override(struct b43_wldev *dev)
  316. {
  317. b43_write16(dev, B43_MMIO_BTCOEX_CTL, 0x3);
  318. b43_write16(dev, B43_MMIO_BTCOEX_TXCTL, 0xFF);
  319. }
  320. static void lpphy_pr41573_workaround(struct b43_wldev *dev)
  321. {
  322. struct b43_phy_lp *lpphy = dev->phy.lp;
  323. u32 *saved_tab;
  324. const unsigned int saved_tab_size = 256;
  325. enum b43_lpphy_txpctl_mode txpctl_mode;
  326. s8 tx_pwr_idx_over;
  327. u16 tssi_npt, tssi_idx;
  328. saved_tab = kcalloc(saved_tab_size, sizeof(saved_tab[0]), GFP_KERNEL);
  329. if (!saved_tab) {
  330. b43err(dev->wl, "PR41573 failed. Out of memory!\n");
  331. return;
  332. }
  333. lpphy_read_tx_pctl_mode_from_hardware(dev);
  334. txpctl_mode = lpphy->txpctl_mode;
  335. tx_pwr_idx_over = lpphy->tx_pwr_idx_over;
  336. tssi_npt = lpphy->tssi_npt;
  337. tssi_idx = lpphy->tssi_idx;
  338. if (dev->phy.rev < 2) {
  339. b43_lptab_read_bulk(dev, B43_LPTAB32(10, 0x140),
  340. saved_tab_size, saved_tab);
  341. } else {
  342. b43_lptab_read_bulk(dev, B43_LPTAB32(7, 0x140),
  343. saved_tab_size, saved_tab);
  344. }
  345. //TODO
  346. kfree(saved_tab);
  347. }
  348. static void lpphy_calibration(struct b43_wldev *dev)
  349. {
  350. struct b43_phy_lp *lpphy = dev->phy.lp;
  351. enum b43_lpphy_txpctl_mode saved_pctl_mode;
  352. b43_mac_suspend(dev);
  353. lpphy_btcoex_override(dev);
  354. lpphy_read_tx_pctl_mode_from_hardware(dev);
  355. saved_pctl_mode = lpphy->txpctl_mode;
  356. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  357. //TODO Perform transmit power table I/Q LO calibration
  358. if ((dev->phy.rev == 0) && (saved_pctl_mode != B43_LPPHY_TXPCTL_OFF))
  359. lpphy_pr41573_workaround(dev);
  360. //TODO If a full calibration has not been performed on this channel yet, perform PAPD TX-power calibration
  361. lpphy_set_tx_power_control(dev, saved_pctl_mode);
  362. //TODO Perform I/Q calibration with a single control value set
  363. b43_mac_enable(dev);
  364. }
  365. /* Initialize TX power control */
  366. static void lpphy_tx_pctl_init(struct b43_wldev *dev)
  367. {
  368. if (0/*FIXME HWPCTL capable */) {
  369. //TODO
  370. } else { /* This device is only software TX power control capable. */
  371. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  372. //TODO
  373. } else {
  374. //TODO
  375. }
  376. //TODO set BB multiplier to 0x0096
  377. }
  378. }
  379. static int b43_lpphy_op_init(struct b43_wldev *dev)
  380. {
  381. /* TODO: band SPROM */
  382. lpphy_baseband_init(dev);
  383. lpphy_radio_init(dev);
  384. //TODO calibrate RC
  385. //TODO set channel
  386. lpphy_tx_pctl_init(dev);
  387. //TODO full calib
  388. return 0;
  389. }
  390. static u16 b43_lpphy_op_read(struct b43_wldev *dev, u16 reg)
  391. {
  392. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  393. return b43_read16(dev, B43_MMIO_PHY_DATA);
  394. }
  395. static void b43_lpphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
  396. {
  397. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  398. b43_write16(dev, B43_MMIO_PHY_DATA, value);
  399. }
  400. static u16 b43_lpphy_op_radio_read(struct b43_wldev *dev, u16 reg)
  401. {
  402. /* Register 1 is a 32-bit register. */
  403. B43_WARN_ON(reg == 1);
  404. /* LP-PHY needs a special bit set for read access */
  405. if (dev->phy.rev < 2) {
  406. if (reg != 0x4001)
  407. reg |= 0x100;
  408. } else
  409. reg |= 0x200;
  410. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  411. return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
  412. }
  413. static void b43_lpphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
  414. {
  415. /* Register 1 is a 32-bit register. */
  416. B43_WARN_ON(reg == 1);
  417. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  418. b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
  419. }
  420. static void b43_lpphy_op_software_rfkill(struct b43_wldev *dev,
  421. enum rfkill_state state)
  422. {
  423. //TODO
  424. }
  425. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  426. unsigned int new_channel)
  427. {
  428. //TODO
  429. return 0;
  430. }
  431. static unsigned int b43_lpphy_op_get_default_chan(struct b43_wldev *dev)
  432. {
  433. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  434. return 1;
  435. return 36;
  436. }
  437. static void b43_lpphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
  438. {
  439. //TODO
  440. }
  441. static void b43_lpphy_op_adjust_txpower(struct b43_wldev *dev)
  442. {
  443. //TODO
  444. }
  445. static enum b43_txpwr_result b43_lpphy_op_recalc_txpower(struct b43_wldev *dev,
  446. bool ignore_tssi)
  447. {
  448. //TODO
  449. return B43_TXPWR_RES_DONE;
  450. }
  451. const struct b43_phy_operations b43_phyops_lp = {
  452. .allocate = b43_lpphy_op_allocate,
  453. .free = b43_lpphy_op_free,
  454. .prepare_structs = b43_lpphy_op_prepare_structs,
  455. .init = b43_lpphy_op_init,
  456. .phy_read = b43_lpphy_op_read,
  457. .phy_write = b43_lpphy_op_write,
  458. .radio_read = b43_lpphy_op_radio_read,
  459. .radio_write = b43_lpphy_op_radio_write,
  460. .software_rfkill = b43_lpphy_op_software_rfkill,
  461. .switch_analog = b43_phyop_switch_analog_generic,
  462. .switch_channel = b43_lpphy_op_switch_channel,
  463. .get_default_chan = b43_lpphy_op_get_default_chan,
  464. .set_rx_antenna = b43_lpphy_op_set_rx_antenna,
  465. .recalc_txpower = b43_lpphy_op_recalc_txpower,
  466. .adjust_txpower = b43_lpphy_op_adjust_txpower,
  467. };