qlge_main.c 108 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. /* NETIF_MSG_TX_QUEUED | */
  58. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  72. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  73. /* required last entry */
  74. {0,}
  75. };
  76. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  77. /* This hardware semaphore causes exclusive access to
  78. * resources shared between the NIC driver, MPI firmware,
  79. * FCOE firmware and the FC driver.
  80. */
  81. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  82. {
  83. u32 sem_bits = 0;
  84. switch (sem_mask) {
  85. case SEM_XGMAC0_MASK:
  86. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  87. break;
  88. case SEM_XGMAC1_MASK:
  89. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  90. break;
  91. case SEM_ICB_MASK:
  92. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  93. break;
  94. case SEM_MAC_ADDR_MASK:
  95. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  96. break;
  97. case SEM_FLASH_MASK:
  98. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  99. break;
  100. case SEM_PROBE_MASK:
  101. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  102. break;
  103. case SEM_RT_IDX_MASK:
  104. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  105. break;
  106. case SEM_PROC_REG_MASK:
  107. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  108. break;
  109. default:
  110. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  111. return -EINVAL;
  112. }
  113. ql_write32(qdev, SEM, sem_bits | sem_mask);
  114. return !(ql_read32(qdev, SEM) & sem_bits);
  115. }
  116. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  117. {
  118. unsigned int wait_count = 30;
  119. do {
  120. if (!ql_sem_trylock(qdev, sem_mask))
  121. return 0;
  122. udelay(100);
  123. } while (--wait_count);
  124. return -ETIMEDOUT;
  125. }
  126. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  127. {
  128. ql_write32(qdev, SEM, sem_mask);
  129. ql_read32(qdev, SEM); /* flush */
  130. }
  131. /* This function waits for a specific bit to come ready
  132. * in a given register. It is used mostly by the initialize
  133. * process, but is also used in kernel thread API such as
  134. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  135. */
  136. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  137. {
  138. u32 temp;
  139. int count = UDELAY_COUNT;
  140. while (count) {
  141. temp = ql_read32(qdev, reg);
  142. /* check for errors */
  143. if (temp & err_bit) {
  144. QPRINTK(qdev, PROBE, ALERT,
  145. "register 0x%.08x access error, value = 0x%.08x!.\n",
  146. reg, temp);
  147. return -EIO;
  148. } else if (temp & bit)
  149. return 0;
  150. udelay(UDELAY_DELAY);
  151. count--;
  152. }
  153. QPRINTK(qdev, PROBE, ALERT,
  154. "Timed out waiting for reg %x to come ready.\n", reg);
  155. return -ETIMEDOUT;
  156. }
  157. /* The CFG register is used to download TX and RX control blocks
  158. * to the chip. This function waits for an operation to complete.
  159. */
  160. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  161. {
  162. int count = UDELAY_COUNT;
  163. u32 temp;
  164. while (count) {
  165. temp = ql_read32(qdev, CFG);
  166. if (temp & CFG_LE)
  167. return -EIO;
  168. if (!(temp & bit))
  169. return 0;
  170. udelay(UDELAY_DELAY);
  171. count--;
  172. }
  173. return -ETIMEDOUT;
  174. }
  175. /* Used to issue init control blocks to hw. Maps control block,
  176. * sets address, triggers download, waits for completion.
  177. */
  178. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  179. u16 q_id)
  180. {
  181. u64 map;
  182. int status = 0;
  183. int direction;
  184. u32 mask;
  185. u32 value;
  186. direction =
  187. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  188. PCI_DMA_FROMDEVICE;
  189. map = pci_map_single(qdev->pdev, ptr, size, direction);
  190. if (pci_dma_mapping_error(qdev->pdev, map)) {
  191. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  192. return -ENOMEM;
  193. }
  194. status = ql_wait_cfg(qdev, bit);
  195. if (status) {
  196. QPRINTK(qdev, IFUP, ERR,
  197. "Timed out waiting for CFG to come ready.\n");
  198. goto exit;
  199. }
  200. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  201. if (status)
  202. goto exit;
  203. ql_write32(qdev, ICB_L, (u32) map);
  204. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  205. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  206. mask = CFG_Q_MASK | (bit << 16);
  207. value = bit | (q_id << CFG_Q_SHIFT);
  208. ql_write32(qdev, CFG, (mask | value));
  209. /*
  210. * Wait for the bit to clear after signaling hw.
  211. */
  212. status = ql_wait_cfg(qdev, bit);
  213. exit:
  214. pci_unmap_single(qdev->pdev, map, size, direction);
  215. return status;
  216. }
  217. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  218. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  219. u32 *value)
  220. {
  221. u32 offset = 0;
  222. int status;
  223. switch (type) {
  224. case MAC_ADDR_TYPE_MULTI_MAC:
  225. case MAC_ADDR_TYPE_CAM_MAC:
  226. {
  227. status =
  228. ql_wait_reg_rdy(qdev,
  229. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  230. if (status)
  231. goto exit;
  232. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  233. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  234. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  235. status =
  236. ql_wait_reg_rdy(qdev,
  237. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  238. if (status)
  239. goto exit;
  240. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  241. status =
  242. ql_wait_reg_rdy(qdev,
  243. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  244. if (status)
  245. goto exit;
  246. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  247. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  248. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  249. status =
  250. ql_wait_reg_rdy(qdev,
  251. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  252. if (status)
  253. goto exit;
  254. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  255. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  256. status =
  257. ql_wait_reg_rdy(qdev,
  258. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  259. if (status)
  260. goto exit;
  261. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  262. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  263. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  264. status =
  265. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  266. MAC_ADDR_MR, 0);
  267. if (status)
  268. goto exit;
  269. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  270. }
  271. break;
  272. }
  273. case MAC_ADDR_TYPE_VLAN:
  274. case MAC_ADDR_TYPE_MULTI_FLTR:
  275. default:
  276. QPRINTK(qdev, IFUP, CRIT,
  277. "Address type %d not yet supported.\n", type);
  278. status = -EPERM;
  279. }
  280. exit:
  281. return status;
  282. }
  283. /* Set up a MAC, multicast or VLAN address for the
  284. * inbound frame matching.
  285. */
  286. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  287. u16 index)
  288. {
  289. u32 offset = 0;
  290. int status = 0;
  291. switch (type) {
  292. case MAC_ADDR_TYPE_MULTI_MAC:
  293. case MAC_ADDR_TYPE_CAM_MAC:
  294. {
  295. u32 cam_output;
  296. u32 upper = (addr[0] << 8) | addr[1];
  297. u32 lower =
  298. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  299. (addr[5]);
  300. QPRINTK(qdev, IFUP, DEBUG,
  301. "Adding %s address %pM"
  302. " at index %d in the CAM.\n",
  303. ((type ==
  304. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  305. "UNICAST"), addr, index);
  306. status =
  307. ql_wait_reg_rdy(qdev,
  308. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  309. if (status)
  310. goto exit;
  311. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  312. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  313. type); /* type */
  314. ql_write32(qdev, MAC_ADDR_DATA, lower);
  315. status =
  316. ql_wait_reg_rdy(qdev,
  317. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  318. if (status)
  319. goto exit;
  320. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  321. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  322. type); /* type */
  323. ql_write32(qdev, MAC_ADDR_DATA, upper);
  324. status =
  325. ql_wait_reg_rdy(qdev,
  326. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  327. if (status)
  328. goto exit;
  329. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  330. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  331. type); /* type */
  332. /* This field should also include the queue id
  333. and possibly the function id. Right now we hardcode
  334. the route field to NIC core.
  335. */
  336. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  337. cam_output = (CAM_OUT_ROUTE_NIC |
  338. (qdev->
  339. func << CAM_OUT_FUNC_SHIFT) |
  340. (qdev->
  341. rss_ring_first_cq_id <<
  342. CAM_OUT_CQ_ID_SHIFT));
  343. if (qdev->vlgrp)
  344. cam_output |= CAM_OUT_RV;
  345. /* route to NIC core */
  346. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  347. }
  348. break;
  349. }
  350. case MAC_ADDR_TYPE_VLAN:
  351. {
  352. u32 enable_bit = *((u32 *) &addr[0]);
  353. /* For VLAN, the addr actually holds a bit that
  354. * either enables or disables the vlan id we are
  355. * addressing. It's either MAC_ADDR_E on or off.
  356. * That's bit-27 we're talking about.
  357. */
  358. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  359. (enable_bit ? "Adding" : "Removing"),
  360. index, (enable_bit ? "to" : "from"));
  361. status =
  362. ql_wait_reg_rdy(qdev,
  363. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  364. if (status)
  365. goto exit;
  366. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  367. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  368. type | /* type */
  369. enable_bit); /* enable/disable */
  370. break;
  371. }
  372. case MAC_ADDR_TYPE_MULTI_FLTR:
  373. default:
  374. QPRINTK(qdev, IFUP, CRIT,
  375. "Address type %d not yet supported.\n", type);
  376. status = -EPERM;
  377. }
  378. exit:
  379. return status;
  380. }
  381. /* Get a specific frame routing value from the CAM.
  382. * Used for debug and reg dump.
  383. */
  384. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  385. {
  386. int status = 0;
  387. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  388. if (status)
  389. goto exit;
  390. ql_write32(qdev, RT_IDX,
  391. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  392. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  393. if (status)
  394. goto exit;
  395. *value = ql_read32(qdev, RT_DATA);
  396. exit:
  397. return status;
  398. }
  399. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  400. * to route different frame types to various inbound queues. We send broadcast/
  401. * multicast/error frames to the default queue for slow handling,
  402. * and CAM hit/RSS frames to the fast handling queues.
  403. */
  404. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  405. int enable)
  406. {
  407. int status = -EINVAL; /* Return error if no mask match. */
  408. u32 value = 0;
  409. QPRINTK(qdev, IFUP, DEBUG,
  410. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  411. (enable ? "Adding" : "Removing"),
  412. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  413. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  414. ((index ==
  415. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  416. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  417. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  418. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  419. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  420. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  421. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  422. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  423. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  424. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  425. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  426. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  427. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  428. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  429. (enable ? "to" : "from"));
  430. switch (mask) {
  431. case RT_IDX_CAM_HIT:
  432. {
  433. value = RT_IDX_DST_CAM_Q | /* dest */
  434. RT_IDX_TYPE_NICQ | /* type */
  435. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  436. break;
  437. }
  438. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  439. {
  440. value = RT_IDX_DST_DFLT_Q | /* dest */
  441. RT_IDX_TYPE_NICQ | /* type */
  442. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  443. break;
  444. }
  445. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  446. {
  447. value = RT_IDX_DST_DFLT_Q | /* dest */
  448. RT_IDX_TYPE_NICQ | /* type */
  449. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  450. break;
  451. }
  452. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  453. {
  454. value = RT_IDX_DST_DFLT_Q | /* dest */
  455. RT_IDX_TYPE_NICQ | /* type */
  456. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  457. break;
  458. }
  459. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  460. {
  461. value = RT_IDX_DST_CAM_Q | /* dest */
  462. RT_IDX_TYPE_NICQ | /* type */
  463. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  464. break;
  465. }
  466. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  467. {
  468. value = RT_IDX_DST_CAM_Q | /* dest */
  469. RT_IDX_TYPE_NICQ | /* type */
  470. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  471. break;
  472. }
  473. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  474. {
  475. value = RT_IDX_DST_RSS | /* dest */
  476. RT_IDX_TYPE_NICQ | /* type */
  477. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  478. break;
  479. }
  480. case 0: /* Clear the E-bit on an entry. */
  481. {
  482. value = RT_IDX_DST_DFLT_Q | /* dest */
  483. RT_IDX_TYPE_NICQ | /* type */
  484. (index << RT_IDX_IDX_SHIFT);/* index */
  485. break;
  486. }
  487. default:
  488. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  489. mask);
  490. status = -EPERM;
  491. goto exit;
  492. }
  493. if (value) {
  494. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  495. if (status)
  496. goto exit;
  497. value |= (enable ? RT_IDX_E : 0);
  498. ql_write32(qdev, RT_IDX, value);
  499. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  500. }
  501. exit:
  502. return status;
  503. }
  504. static void ql_enable_interrupts(struct ql_adapter *qdev)
  505. {
  506. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  507. }
  508. static void ql_disable_interrupts(struct ql_adapter *qdev)
  509. {
  510. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  511. }
  512. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  513. * Otherwise, we may have multiple outstanding workers and don't want to
  514. * enable until the last one finishes. In this case, the irq_cnt gets
  515. * incremented everytime we queue a worker and decremented everytime
  516. * a worker finishes. Once it hits zero we enable the interrupt.
  517. */
  518. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  519. {
  520. u32 var = 0;
  521. unsigned long hw_flags = 0;
  522. struct intr_context *ctx = qdev->intr_context + intr;
  523. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  524. /* Always enable if we're MSIX multi interrupts and
  525. * it's not the default (zeroeth) interrupt.
  526. */
  527. ql_write32(qdev, INTR_EN,
  528. ctx->intr_en_mask);
  529. var = ql_read32(qdev, STS);
  530. return var;
  531. }
  532. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  533. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  534. ql_write32(qdev, INTR_EN,
  535. ctx->intr_en_mask);
  536. var = ql_read32(qdev, STS);
  537. }
  538. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  539. return var;
  540. }
  541. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  542. {
  543. u32 var = 0;
  544. struct intr_context *ctx;
  545. /* HW disables for us if we're MSIX multi interrupts and
  546. * it's not the default (zeroeth) interrupt.
  547. */
  548. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  549. return 0;
  550. ctx = qdev->intr_context + intr;
  551. spin_lock(&qdev->hw_lock);
  552. if (!atomic_read(&ctx->irq_cnt)) {
  553. ql_write32(qdev, INTR_EN,
  554. ctx->intr_dis_mask);
  555. var = ql_read32(qdev, STS);
  556. }
  557. atomic_inc(&ctx->irq_cnt);
  558. spin_unlock(&qdev->hw_lock);
  559. return var;
  560. }
  561. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  562. {
  563. int i;
  564. for (i = 0; i < qdev->intr_count; i++) {
  565. /* The enable call does a atomic_dec_and_test
  566. * and enables only if the result is zero.
  567. * So we precharge it here.
  568. */
  569. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  570. i == 0))
  571. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  572. ql_enable_completion_interrupt(qdev, i);
  573. }
  574. }
  575. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  576. {
  577. int status, i;
  578. u16 csum = 0;
  579. __le16 *flash = (__le16 *)&qdev->flash;
  580. status = strncmp((char *)&qdev->flash, str, 4);
  581. if (status) {
  582. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  583. return status;
  584. }
  585. for (i = 0; i < size; i++)
  586. csum += le16_to_cpu(*flash++);
  587. if (csum)
  588. QPRINTK(qdev, IFUP, ERR,
  589. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  590. return csum;
  591. }
  592. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  593. {
  594. int status = 0;
  595. /* wait for reg to come ready */
  596. status = ql_wait_reg_rdy(qdev,
  597. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  598. if (status)
  599. goto exit;
  600. /* set up for reg read */
  601. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  602. /* wait for reg to come ready */
  603. status = ql_wait_reg_rdy(qdev,
  604. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  605. if (status)
  606. goto exit;
  607. /* This data is stored on flash as an array of
  608. * __le32. Since ql_read32() returns cpu endian
  609. * we need to swap it back.
  610. */
  611. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  612. exit:
  613. return status;
  614. }
  615. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  616. {
  617. u32 i, size;
  618. int status;
  619. __le32 *p = (__le32 *)&qdev->flash;
  620. u32 offset;
  621. /* Get flash offset for function and adjust
  622. * for dword access.
  623. */
  624. if (!qdev->func)
  625. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  626. else
  627. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  628. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  629. return -ETIMEDOUT;
  630. size = sizeof(struct flash_params_8000) / sizeof(u32);
  631. for (i = 0; i < size; i++, p++) {
  632. status = ql_read_flash_word(qdev, i+offset, p);
  633. if (status) {
  634. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  635. goto exit;
  636. }
  637. }
  638. status = ql_validate_flash(qdev,
  639. sizeof(struct flash_params_8000) / sizeof(u16),
  640. "8000");
  641. if (status) {
  642. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  643. status = -EINVAL;
  644. goto exit;
  645. }
  646. if (!is_valid_ether_addr(qdev->flash.flash_params_8000.mac_addr)) {
  647. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  648. status = -EINVAL;
  649. goto exit;
  650. }
  651. memcpy(qdev->ndev->dev_addr,
  652. qdev->flash.flash_params_8000.mac_addr,
  653. qdev->ndev->addr_len);
  654. exit:
  655. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  656. return status;
  657. }
  658. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  659. {
  660. int i;
  661. int status;
  662. __le32 *p = (__le32 *)&qdev->flash;
  663. u32 offset = 0;
  664. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  665. /* Second function's parameters follow the first
  666. * function's.
  667. */
  668. if (qdev->func)
  669. offset = size;
  670. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  671. return -ETIMEDOUT;
  672. for (i = 0; i < size; i++, p++) {
  673. status = ql_read_flash_word(qdev, i+offset, p);
  674. if (status) {
  675. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  676. goto exit;
  677. }
  678. }
  679. status = ql_validate_flash(qdev,
  680. sizeof(struct flash_params_8012) / sizeof(u16),
  681. "8012");
  682. if (status) {
  683. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  684. status = -EINVAL;
  685. goto exit;
  686. }
  687. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  688. status = -EINVAL;
  689. goto exit;
  690. }
  691. memcpy(qdev->ndev->dev_addr,
  692. qdev->flash.flash_params_8012.mac_addr,
  693. qdev->ndev->addr_len);
  694. exit:
  695. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  696. return status;
  697. }
  698. /* xgmac register are located behind the xgmac_addr and xgmac_data
  699. * register pair. Each read/write requires us to wait for the ready
  700. * bit before reading/writing the data.
  701. */
  702. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  703. {
  704. int status;
  705. /* wait for reg to come ready */
  706. status = ql_wait_reg_rdy(qdev,
  707. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  708. if (status)
  709. return status;
  710. /* write the data to the data reg */
  711. ql_write32(qdev, XGMAC_DATA, data);
  712. /* trigger the write */
  713. ql_write32(qdev, XGMAC_ADDR, reg);
  714. return status;
  715. }
  716. /* xgmac register are located behind the xgmac_addr and xgmac_data
  717. * register pair. Each read/write requires us to wait for the ready
  718. * bit before reading/writing the data.
  719. */
  720. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  721. {
  722. int status = 0;
  723. /* wait for reg to come ready */
  724. status = ql_wait_reg_rdy(qdev,
  725. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  726. if (status)
  727. goto exit;
  728. /* set up for reg read */
  729. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  730. /* wait for reg to come ready */
  731. status = ql_wait_reg_rdy(qdev,
  732. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  733. if (status)
  734. goto exit;
  735. /* get the data */
  736. *data = ql_read32(qdev, XGMAC_DATA);
  737. exit:
  738. return status;
  739. }
  740. /* This is used for reading the 64-bit statistics regs. */
  741. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  742. {
  743. int status = 0;
  744. u32 hi = 0;
  745. u32 lo = 0;
  746. status = ql_read_xgmac_reg(qdev, reg, &lo);
  747. if (status)
  748. goto exit;
  749. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  750. if (status)
  751. goto exit;
  752. *data = (u64) lo | ((u64) hi << 32);
  753. exit:
  754. return status;
  755. }
  756. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  757. {
  758. int status;
  759. status = ql_mb_get_fw_state(qdev);
  760. if (status)
  761. goto exit;
  762. /* Wake up a worker to get/set the TX/RX frame sizes. */
  763. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  764. exit:
  765. return status;
  766. }
  767. /* Take the MAC Core out of reset.
  768. * Enable statistics counting.
  769. * Take the transmitter/receiver out of reset.
  770. * This functionality may be done in the MPI firmware at a
  771. * later date.
  772. */
  773. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  774. {
  775. int status = 0;
  776. u32 data;
  777. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  778. /* Another function has the semaphore, so
  779. * wait for the port init bit to come ready.
  780. */
  781. QPRINTK(qdev, LINK, INFO,
  782. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  783. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  784. if (status) {
  785. QPRINTK(qdev, LINK, CRIT,
  786. "Port initialize timed out.\n");
  787. }
  788. return status;
  789. }
  790. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  791. /* Set the core reset. */
  792. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  793. if (status)
  794. goto end;
  795. data |= GLOBAL_CFG_RESET;
  796. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  797. if (status)
  798. goto end;
  799. /* Clear the core reset and turn on jumbo for receiver. */
  800. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  801. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  802. data |= GLOBAL_CFG_TX_STAT_EN;
  803. data |= GLOBAL_CFG_RX_STAT_EN;
  804. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  805. if (status)
  806. goto end;
  807. /* Enable transmitter, and clear it's reset. */
  808. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  809. if (status)
  810. goto end;
  811. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  812. data |= TX_CFG_EN; /* Enable the transmitter. */
  813. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  814. if (status)
  815. goto end;
  816. /* Enable receiver and clear it's reset. */
  817. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  818. if (status)
  819. goto end;
  820. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  821. data |= RX_CFG_EN; /* Enable the receiver. */
  822. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  823. if (status)
  824. goto end;
  825. /* Turn on jumbo. */
  826. status =
  827. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  828. if (status)
  829. goto end;
  830. status =
  831. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  832. if (status)
  833. goto end;
  834. /* Signal to the world that the port is enabled. */
  835. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  836. end:
  837. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  838. return status;
  839. }
  840. /* Get the next large buffer. */
  841. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  842. {
  843. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  844. rx_ring->lbq_curr_idx++;
  845. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  846. rx_ring->lbq_curr_idx = 0;
  847. rx_ring->lbq_free_cnt++;
  848. return lbq_desc;
  849. }
  850. /* Get the next small buffer. */
  851. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  852. {
  853. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  854. rx_ring->sbq_curr_idx++;
  855. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  856. rx_ring->sbq_curr_idx = 0;
  857. rx_ring->sbq_free_cnt++;
  858. return sbq_desc;
  859. }
  860. /* Update an rx ring index. */
  861. static void ql_update_cq(struct rx_ring *rx_ring)
  862. {
  863. rx_ring->cnsmr_idx++;
  864. rx_ring->curr_entry++;
  865. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  866. rx_ring->cnsmr_idx = 0;
  867. rx_ring->curr_entry = rx_ring->cq_base;
  868. }
  869. }
  870. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  871. {
  872. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  873. }
  874. /* Process (refill) a large buffer queue. */
  875. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  876. {
  877. u32 clean_idx = rx_ring->lbq_clean_idx;
  878. u32 start_idx = clean_idx;
  879. struct bq_desc *lbq_desc;
  880. u64 map;
  881. int i;
  882. while (rx_ring->lbq_free_cnt > 16) {
  883. for (i = 0; i < 16; i++) {
  884. QPRINTK(qdev, RX_STATUS, DEBUG,
  885. "lbq: try cleaning clean_idx = %d.\n",
  886. clean_idx);
  887. lbq_desc = &rx_ring->lbq[clean_idx];
  888. if (lbq_desc->p.lbq_page == NULL) {
  889. QPRINTK(qdev, RX_STATUS, DEBUG,
  890. "lbq: getting new page for index %d.\n",
  891. lbq_desc->index);
  892. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  893. if (lbq_desc->p.lbq_page == NULL) {
  894. rx_ring->lbq_clean_idx = clean_idx;
  895. QPRINTK(qdev, RX_STATUS, ERR,
  896. "Couldn't get a page.\n");
  897. return;
  898. }
  899. map = pci_map_page(qdev->pdev,
  900. lbq_desc->p.lbq_page,
  901. 0, PAGE_SIZE,
  902. PCI_DMA_FROMDEVICE);
  903. if (pci_dma_mapping_error(qdev->pdev, map)) {
  904. rx_ring->lbq_clean_idx = clean_idx;
  905. put_page(lbq_desc->p.lbq_page);
  906. lbq_desc->p.lbq_page = NULL;
  907. QPRINTK(qdev, RX_STATUS, ERR,
  908. "PCI mapping failed.\n");
  909. return;
  910. }
  911. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  912. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  913. *lbq_desc->addr = cpu_to_le64(map);
  914. }
  915. clean_idx++;
  916. if (clean_idx == rx_ring->lbq_len)
  917. clean_idx = 0;
  918. }
  919. rx_ring->lbq_clean_idx = clean_idx;
  920. rx_ring->lbq_prod_idx += 16;
  921. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  922. rx_ring->lbq_prod_idx = 0;
  923. rx_ring->lbq_free_cnt -= 16;
  924. }
  925. if (start_idx != clean_idx) {
  926. QPRINTK(qdev, RX_STATUS, DEBUG,
  927. "lbq: updating prod idx = %d.\n",
  928. rx_ring->lbq_prod_idx);
  929. ql_write_db_reg(rx_ring->lbq_prod_idx,
  930. rx_ring->lbq_prod_idx_db_reg);
  931. }
  932. }
  933. /* Process (refill) a small buffer queue. */
  934. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  935. {
  936. u32 clean_idx = rx_ring->sbq_clean_idx;
  937. u32 start_idx = clean_idx;
  938. struct bq_desc *sbq_desc;
  939. u64 map;
  940. int i;
  941. while (rx_ring->sbq_free_cnt > 16) {
  942. for (i = 0; i < 16; i++) {
  943. sbq_desc = &rx_ring->sbq[clean_idx];
  944. QPRINTK(qdev, RX_STATUS, DEBUG,
  945. "sbq: try cleaning clean_idx = %d.\n",
  946. clean_idx);
  947. if (sbq_desc->p.skb == NULL) {
  948. QPRINTK(qdev, RX_STATUS, DEBUG,
  949. "sbq: getting new skb for index %d.\n",
  950. sbq_desc->index);
  951. sbq_desc->p.skb =
  952. netdev_alloc_skb(qdev->ndev,
  953. rx_ring->sbq_buf_size);
  954. if (sbq_desc->p.skb == NULL) {
  955. QPRINTK(qdev, PROBE, ERR,
  956. "Couldn't get an skb.\n");
  957. rx_ring->sbq_clean_idx = clean_idx;
  958. return;
  959. }
  960. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  961. map = pci_map_single(qdev->pdev,
  962. sbq_desc->p.skb->data,
  963. rx_ring->sbq_buf_size /
  964. 2, PCI_DMA_FROMDEVICE);
  965. if (pci_dma_mapping_error(qdev->pdev, map)) {
  966. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  967. rx_ring->sbq_clean_idx = clean_idx;
  968. dev_kfree_skb_any(sbq_desc->p.skb);
  969. sbq_desc->p.skb = NULL;
  970. return;
  971. }
  972. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  973. pci_unmap_len_set(sbq_desc, maplen,
  974. rx_ring->sbq_buf_size / 2);
  975. *sbq_desc->addr = cpu_to_le64(map);
  976. }
  977. clean_idx++;
  978. if (clean_idx == rx_ring->sbq_len)
  979. clean_idx = 0;
  980. }
  981. rx_ring->sbq_clean_idx = clean_idx;
  982. rx_ring->sbq_prod_idx += 16;
  983. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  984. rx_ring->sbq_prod_idx = 0;
  985. rx_ring->sbq_free_cnt -= 16;
  986. }
  987. if (start_idx != clean_idx) {
  988. QPRINTK(qdev, RX_STATUS, DEBUG,
  989. "sbq: updating prod idx = %d.\n",
  990. rx_ring->sbq_prod_idx);
  991. ql_write_db_reg(rx_ring->sbq_prod_idx,
  992. rx_ring->sbq_prod_idx_db_reg);
  993. }
  994. }
  995. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  996. struct rx_ring *rx_ring)
  997. {
  998. ql_update_sbq(qdev, rx_ring);
  999. ql_update_lbq(qdev, rx_ring);
  1000. }
  1001. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1002. * fails at some stage, or from the interrupt when a tx completes.
  1003. */
  1004. static void ql_unmap_send(struct ql_adapter *qdev,
  1005. struct tx_ring_desc *tx_ring_desc, int mapped)
  1006. {
  1007. int i;
  1008. for (i = 0; i < mapped; i++) {
  1009. if (i == 0 || (i == 7 && mapped > 7)) {
  1010. /*
  1011. * Unmap the skb->data area, or the
  1012. * external sglist (AKA the Outbound
  1013. * Address List (OAL)).
  1014. * If its the zeroeth element, then it's
  1015. * the skb->data area. If it's the 7th
  1016. * element and there is more than 6 frags,
  1017. * then its an OAL.
  1018. */
  1019. if (i == 7) {
  1020. QPRINTK(qdev, TX_DONE, DEBUG,
  1021. "unmapping OAL area.\n");
  1022. }
  1023. pci_unmap_single(qdev->pdev,
  1024. pci_unmap_addr(&tx_ring_desc->map[i],
  1025. mapaddr),
  1026. pci_unmap_len(&tx_ring_desc->map[i],
  1027. maplen),
  1028. PCI_DMA_TODEVICE);
  1029. } else {
  1030. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1031. i);
  1032. pci_unmap_page(qdev->pdev,
  1033. pci_unmap_addr(&tx_ring_desc->map[i],
  1034. mapaddr),
  1035. pci_unmap_len(&tx_ring_desc->map[i],
  1036. maplen), PCI_DMA_TODEVICE);
  1037. }
  1038. }
  1039. }
  1040. /* Map the buffers for this transmit. This will return
  1041. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1042. */
  1043. static int ql_map_send(struct ql_adapter *qdev,
  1044. struct ob_mac_iocb_req *mac_iocb_ptr,
  1045. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1046. {
  1047. int len = skb_headlen(skb);
  1048. dma_addr_t map;
  1049. int frag_idx, err, map_idx = 0;
  1050. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1051. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1052. if (frag_cnt) {
  1053. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1054. }
  1055. /*
  1056. * Map the skb buffer first.
  1057. */
  1058. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1059. err = pci_dma_mapping_error(qdev->pdev, map);
  1060. if (err) {
  1061. QPRINTK(qdev, TX_QUEUED, ERR,
  1062. "PCI mapping failed with error: %d\n", err);
  1063. return NETDEV_TX_BUSY;
  1064. }
  1065. tbd->len = cpu_to_le32(len);
  1066. tbd->addr = cpu_to_le64(map);
  1067. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1068. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1069. map_idx++;
  1070. /*
  1071. * This loop fills the remainder of the 8 address descriptors
  1072. * in the IOCB. If there are more than 7 fragments, then the
  1073. * eighth address desc will point to an external list (OAL).
  1074. * When this happens, the remainder of the frags will be stored
  1075. * in this list.
  1076. */
  1077. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1078. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1079. tbd++;
  1080. if (frag_idx == 6 && frag_cnt > 7) {
  1081. /* Let's tack on an sglist.
  1082. * Our control block will now
  1083. * look like this:
  1084. * iocb->seg[0] = skb->data
  1085. * iocb->seg[1] = frag[0]
  1086. * iocb->seg[2] = frag[1]
  1087. * iocb->seg[3] = frag[2]
  1088. * iocb->seg[4] = frag[3]
  1089. * iocb->seg[5] = frag[4]
  1090. * iocb->seg[6] = frag[5]
  1091. * iocb->seg[7] = ptr to OAL (external sglist)
  1092. * oal->seg[0] = frag[6]
  1093. * oal->seg[1] = frag[7]
  1094. * oal->seg[2] = frag[8]
  1095. * oal->seg[3] = frag[9]
  1096. * oal->seg[4] = frag[10]
  1097. * etc...
  1098. */
  1099. /* Tack on the OAL in the eighth segment of IOCB. */
  1100. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1101. sizeof(struct oal),
  1102. PCI_DMA_TODEVICE);
  1103. err = pci_dma_mapping_error(qdev->pdev, map);
  1104. if (err) {
  1105. QPRINTK(qdev, TX_QUEUED, ERR,
  1106. "PCI mapping outbound address list with error: %d\n",
  1107. err);
  1108. goto map_error;
  1109. }
  1110. tbd->addr = cpu_to_le64(map);
  1111. /*
  1112. * The length is the number of fragments
  1113. * that remain to be mapped times the length
  1114. * of our sglist (OAL).
  1115. */
  1116. tbd->len =
  1117. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1118. (frag_cnt - frag_idx)) | TX_DESC_C);
  1119. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1120. map);
  1121. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1122. sizeof(struct oal));
  1123. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1124. map_idx++;
  1125. }
  1126. map =
  1127. pci_map_page(qdev->pdev, frag->page,
  1128. frag->page_offset, frag->size,
  1129. PCI_DMA_TODEVICE);
  1130. err = pci_dma_mapping_error(qdev->pdev, map);
  1131. if (err) {
  1132. QPRINTK(qdev, TX_QUEUED, ERR,
  1133. "PCI mapping frags failed with error: %d.\n",
  1134. err);
  1135. goto map_error;
  1136. }
  1137. tbd->addr = cpu_to_le64(map);
  1138. tbd->len = cpu_to_le32(frag->size);
  1139. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1140. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1141. frag->size);
  1142. }
  1143. /* Save the number of segments we've mapped. */
  1144. tx_ring_desc->map_cnt = map_idx;
  1145. /* Terminate the last segment. */
  1146. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1147. return NETDEV_TX_OK;
  1148. map_error:
  1149. /*
  1150. * If the first frag mapping failed, then i will be zero.
  1151. * This causes the unmap of the skb->data area. Otherwise
  1152. * we pass in the number of frags that mapped successfully
  1153. * so they can be umapped.
  1154. */
  1155. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1156. return NETDEV_TX_BUSY;
  1157. }
  1158. static void ql_realign_skb(struct sk_buff *skb, int len)
  1159. {
  1160. void *temp_addr = skb->data;
  1161. /* Undo the skb_reserve(skb,32) we did before
  1162. * giving to hardware, and realign data on
  1163. * a 2-byte boundary.
  1164. */
  1165. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1166. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1167. skb_copy_to_linear_data(skb, temp_addr,
  1168. (unsigned int)len);
  1169. }
  1170. /*
  1171. * This function builds an skb for the given inbound
  1172. * completion. It will be rewritten for readability in the near
  1173. * future, but for not it works well.
  1174. */
  1175. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1176. struct rx_ring *rx_ring,
  1177. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1178. {
  1179. struct bq_desc *lbq_desc;
  1180. struct bq_desc *sbq_desc;
  1181. struct sk_buff *skb = NULL;
  1182. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1183. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1184. /*
  1185. * Handle the header buffer if present.
  1186. */
  1187. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1188. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1189. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1190. /*
  1191. * Headers fit nicely into a small buffer.
  1192. */
  1193. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1194. pci_unmap_single(qdev->pdev,
  1195. pci_unmap_addr(sbq_desc, mapaddr),
  1196. pci_unmap_len(sbq_desc, maplen),
  1197. PCI_DMA_FROMDEVICE);
  1198. skb = sbq_desc->p.skb;
  1199. ql_realign_skb(skb, hdr_len);
  1200. skb_put(skb, hdr_len);
  1201. sbq_desc->p.skb = NULL;
  1202. }
  1203. /*
  1204. * Handle the data buffer(s).
  1205. */
  1206. if (unlikely(!length)) { /* Is there data too? */
  1207. QPRINTK(qdev, RX_STATUS, DEBUG,
  1208. "No Data buffer in this packet.\n");
  1209. return skb;
  1210. }
  1211. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1212. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1213. QPRINTK(qdev, RX_STATUS, DEBUG,
  1214. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1215. /*
  1216. * Data is less than small buffer size so it's
  1217. * stuffed in a small buffer.
  1218. * For this case we append the data
  1219. * from the "data" small buffer to the "header" small
  1220. * buffer.
  1221. */
  1222. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1223. pci_dma_sync_single_for_cpu(qdev->pdev,
  1224. pci_unmap_addr
  1225. (sbq_desc, mapaddr),
  1226. pci_unmap_len
  1227. (sbq_desc, maplen),
  1228. PCI_DMA_FROMDEVICE);
  1229. memcpy(skb_put(skb, length),
  1230. sbq_desc->p.skb->data, length);
  1231. pci_dma_sync_single_for_device(qdev->pdev,
  1232. pci_unmap_addr
  1233. (sbq_desc,
  1234. mapaddr),
  1235. pci_unmap_len
  1236. (sbq_desc,
  1237. maplen),
  1238. PCI_DMA_FROMDEVICE);
  1239. } else {
  1240. QPRINTK(qdev, RX_STATUS, DEBUG,
  1241. "%d bytes in a single small buffer.\n", length);
  1242. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1243. skb = sbq_desc->p.skb;
  1244. ql_realign_skb(skb, length);
  1245. skb_put(skb, length);
  1246. pci_unmap_single(qdev->pdev,
  1247. pci_unmap_addr(sbq_desc,
  1248. mapaddr),
  1249. pci_unmap_len(sbq_desc,
  1250. maplen),
  1251. PCI_DMA_FROMDEVICE);
  1252. sbq_desc->p.skb = NULL;
  1253. }
  1254. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1255. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1256. QPRINTK(qdev, RX_STATUS, DEBUG,
  1257. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1258. /*
  1259. * The data is in a single large buffer. We
  1260. * chain it to the header buffer's skb and let
  1261. * it rip.
  1262. */
  1263. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1264. pci_unmap_page(qdev->pdev,
  1265. pci_unmap_addr(lbq_desc,
  1266. mapaddr),
  1267. pci_unmap_len(lbq_desc, maplen),
  1268. PCI_DMA_FROMDEVICE);
  1269. QPRINTK(qdev, RX_STATUS, DEBUG,
  1270. "Chaining page to skb.\n");
  1271. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1272. 0, length);
  1273. skb->len += length;
  1274. skb->data_len += length;
  1275. skb->truesize += length;
  1276. lbq_desc->p.lbq_page = NULL;
  1277. } else {
  1278. /*
  1279. * The headers and data are in a single large buffer. We
  1280. * copy it to a new skb and let it go. This can happen with
  1281. * jumbo mtu on a non-TCP/UDP frame.
  1282. */
  1283. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1284. skb = netdev_alloc_skb(qdev->ndev, length);
  1285. if (skb == NULL) {
  1286. QPRINTK(qdev, PROBE, DEBUG,
  1287. "No skb available, drop the packet.\n");
  1288. return NULL;
  1289. }
  1290. pci_unmap_page(qdev->pdev,
  1291. pci_unmap_addr(lbq_desc,
  1292. mapaddr),
  1293. pci_unmap_len(lbq_desc, maplen),
  1294. PCI_DMA_FROMDEVICE);
  1295. skb_reserve(skb, NET_IP_ALIGN);
  1296. QPRINTK(qdev, RX_STATUS, DEBUG,
  1297. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1298. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1299. 0, length);
  1300. skb->len += length;
  1301. skb->data_len += length;
  1302. skb->truesize += length;
  1303. length -= length;
  1304. lbq_desc->p.lbq_page = NULL;
  1305. __pskb_pull_tail(skb,
  1306. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1307. VLAN_ETH_HLEN : ETH_HLEN);
  1308. }
  1309. } else {
  1310. /*
  1311. * The data is in a chain of large buffers
  1312. * pointed to by a small buffer. We loop
  1313. * thru and chain them to the our small header
  1314. * buffer's skb.
  1315. * frags: There are 18 max frags and our small
  1316. * buffer will hold 32 of them. The thing is,
  1317. * we'll use 3 max for our 9000 byte jumbo
  1318. * frames. If the MTU goes up we could
  1319. * eventually be in trouble.
  1320. */
  1321. int size, offset, i = 0;
  1322. __le64 *bq, bq_array[8];
  1323. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1324. pci_unmap_single(qdev->pdev,
  1325. pci_unmap_addr(sbq_desc, mapaddr),
  1326. pci_unmap_len(sbq_desc, maplen),
  1327. PCI_DMA_FROMDEVICE);
  1328. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1329. /*
  1330. * This is an non TCP/UDP IP frame, so
  1331. * the headers aren't split into a small
  1332. * buffer. We have to use the small buffer
  1333. * that contains our sg list as our skb to
  1334. * send upstairs. Copy the sg list here to
  1335. * a local buffer and use it to find the
  1336. * pages to chain.
  1337. */
  1338. QPRINTK(qdev, RX_STATUS, DEBUG,
  1339. "%d bytes of headers & data in chain of large.\n", length);
  1340. skb = sbq_desc->p.skb;
  1341. bq = &bq_array[0];
  1342. memcpy(bq, skb->data, sizeof(bq_array));
  1343. sbq_desc->p.skb = NULL;
  1344. skb_reserve(skb, NET_IP_ALIGN);
  1345. } else {
  1346. QPRINTK(qdev, RX_STATUS, DEBUG,
  1347. "Headers in small, %d bytes of data in chain of large.\n", length);
  1348. bq = (__le64 *)sbq_desc->p.skb->data;
  1349. }
  1350. while (length > 0) {
  1351. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1352. pci_unmap_page(qdev->pdev,
  1353. pci_unmap_addr(lbq_desc,
  1354. mapaddr),
  1355. pci_unmap_len(lbq_desc,
  1356. maplen),
  1357. PCI_DMA_FROMDEVICE);
  1358. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1359. offset = 0;
  1360. QPRINTK(qdev, RX_STATUS, DEBUG,
  1361. "Adding page %d to skb for %d bytes.\n",
  1362. i, size);
  1363. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1364. offset, size);
  1365. skb->len += size;
  1366. skb->data_len += size;
  1367. skb->truesize += size;
  1368. length -= size;
  1369. lbq_desc->p.lbq_page = NULL;
  1370. bq++;
  1371. i++;
  1372. }
  1373. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1374. VLAN_ETH_HLEN : ETH_HLEN);
  1375. }
  1376. return skb;
  1377. }
  1378. /* Process an inbound completion from an rx ring. */
  1379. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1380. struct rx_ring *rx_ring,
  1381. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1382. {
  1383. struct net_device *ndev = qdev->ndev;
  1384. struct sk_buff *skb = NULL;
  1385. u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
  1386. IB_MAC_IOCB_RSP_VLAN_MASK)
  1387. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1388. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1389. if (unlikely(!skb)) {
  1390. QPRINTK(qdev, RX_STATUS, DEBUG,
  1391. "No skb available, drop packet.\n");
  1392. return;
  1393. }
  1394. prefetch(skb->data);
  1395. skb->dev = ndev;
  1396. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1397. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1398. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1399. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1400. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1401. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1402. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1403. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1404. }
  1405. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1406. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1407. }
  1408. skb->protocol = eth_type_trans(skb, ndev);
  1409. skb->ip_summed = CHECKSUM_NONE;
  1410. /* If rx checksum is on, and there are no
  1411. * csum or frame errors.
  1412. */
  1413. if (qdev->rx_csum &&
  1414. !(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) &&
  1415. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1416. /* TCP frame. */
  1417. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1418. QPRINTK(qdev, RX_STATUS, DEBUG,
  1419. "TCP checksum done!\n");
  1420. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1421. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1422. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1423. /* Unfragmented ipv4 UDP frame. */
  1424. struct iphdr *iph = (struct iphdr *) skb->data;
  1425. if (!(iph->frag_off &
  1426. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1427. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1428. QPRINTK(qdev, RX_STATUS, DEBUG,
  1429. "TCP checksum done!\n");
  1430. }
  1431. }
  1432. }
  1433. qdev->stats.rx_packets++;
  1434. qdev->stats.rx_bytes += skb->len;
  1435. skb_record_rx_queue(skb,
  1436. rx_ring->cq_id - qdev->rss_ring_first_cq_id);
  1437. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1438. if (qdev->vlgrp &&
  1439. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1440. (vlan_id != 0))
  1441. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1442. vlan_id, skb);
  1443. else
  1444. napi_gro_receive(&rx_ring->napi, skb);
  1445. } else {
  1446. if (qdev->vlgrp &&
  1447. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1448. (vlan_id != 0))
  1449. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1450. else
  1451. netif_receive_skb(skb);
  1452. }
  1453. }
  1454. /* Process an outbound completion from an rx ring. */
  1455. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1456. struct ob_mac_iocb_rsp *mac_rsp)
  1457. {
  1458. struct tx_ring *tx_ring;
  1459. struct tx_ring_desc *tx_ring_desc;
  1460. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1461. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1462. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1463. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1464. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1465. qdev->stats.tx_packets++;
  1466. dev_kfree_skb(tx_ring_desc->skb);
  1467. tx_ring_desc->skb = NULL;
  1468. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1469. OB_MAC_IOCB_RSP_S |
  1470. OB_MAC_IOCB_RSP_L |
  1471. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1472. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1473. QPRINTK(qdev, TX_DONE, WARNING,
  1474. "Total descriptor length did not match transfer length.\n");
  1475. }
  1476. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1477. QPRINTK(qdev, TX_DONE, WARNING,
  1478. "Frame too short to be legal, not sent.\n");
  1479. }
  1480. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1481. QPRINTK(qdev, TX_DONE, WARNING,
  1482. "Frame too long, but sent anyway.\n");
  1483. }
  1484. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1485. QPRINTK(qdev, TX_DONE, WARNING,
  1486. "PCI backplane error. Frame not sent.\n");
  1487. }
  1488. }
  1489. atomic_inc(&tx_ring->tx_count);
  1490. }
  1491. /* Fire up a handler to reset the MPI processor. */
  1492. void ql_queue_fw_error(struct ql_adapter *qdev)
  1493. {
  1494. netif_carrier_off(qdev->ndev);
  1495. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1496. }
  1497. void ql_queue_asic_error(struct ql_adapter *qdev)
  1498. {
  1499. netif_carrier_off(qdev->ndev);
  1500. ql_disable_interrupts(qdev);
  1501. /* Clear adapter up bit to signal the recovery
  1502. * process that it shouldn't kill the reset worker
  1503. * thread
  1504. */
  1505. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1506. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1507. }
  1508. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1509. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1510. {
  1511. switch (ib_ae_rsp->event) {
  1512. case MGMT_ERR_EVENT:
  1513. QPRINTK(qdev, RX_ERR, ERR,
  1514. "Management Processor Fatal Error.\n");
  1515. ql_queue_fw_error(qdev);
  1516. return;
  1517. case CAM_LOOKUP_ERR_EVENT:
  1518. QPRINTK(qdev, LINK, ERR,
  1519. "Multiple CAM hits lookup occurred.\n");
  1520. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1521. ql_queue_asic_error(qdev);
  1522. return;
  1523. case SOFT_ECC_ERROR_EVENT:
  1524. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1525. ql_queue_asic_error(qdev);
  1526. break;
  1527. case PCI_ERR_ANON_BUF_RD:
  1528. QPRINTK(qdev, RX_ERR, ERR,
  1529. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1530. ib_ae_rsp->q_id);
  1531. ql_queue_asic_error(qdev);
  1532. break;
  1533. default:
  1534. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1535. ib_ae_rsp->event);
  1536. ql_queue_asic_error(qdev);
  1537. break;
  1538. }
  1539. }
  1540. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1541. {
  1542. struct ql_adapter *qdev = rx_ring->qdev;
  1543. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1544. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1545. int count = 0;
  1546. struct tx_ring *tx_ring;
  1547. /* While there are entries in the completion queue. */
  1548. while (prod != rx_ring->cnsmr_idx) {
  1549. QPRINTK(qdev, RX_STATUS, DEBUG,
  1550. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1551. prod, rx_ring->cnsmr_idx);
  1552. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1553. rmb();
  1554. switch (net_rsp->opcode) {
  1555. case OPCODE_OB_MAC_TSO_IOCB:
  1556. case OPCODE_OB_MAC_IOCB:
  1557. ql_process_mac_tx_intr(qdev, net_rsp);
  1558. break;
  1559. default:
  1560. QPRINTK(qdev, RX_STATUS, DEBUG,
  1561. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1562. net_rsp->opcode);
  1563. }
  1564. count++;
  1565. ql_update_cq(rx_ring);
  1566. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1567. }
  1568. ql_write_cq_idx(rx_ring);
  1569. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1570. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
  1571. net_rsp != NULL) {
  1572. if (atomic_read(&tx_ring->queue_stopped) &&
  1573. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1574. /*
  1575. * The queue got stopped because the tx_ring was full.
  1576. * Wake it up, because it's now at least 25% empty.
  1577. */
  1578. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  1579. }
  1580. return count;
  1581. }
  1582. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1583. {
  1584. struct ql_adapter *qdev = rx_ring->qdev;
  1585. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1586. struct ql_net_rsp_iocb *net_rsp;
  1587. int count = 0;
  1588. /* While there are entries in the completion queue. */
  1589. while (prod != rx_ring->cnsmr_idx) {
  1590. QPRINTK(qdev, RX_STATUS, DEBUG,
  1591. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1592. prod, rx_ring->cnsmr_idx);
  1593. net_rsp = rx_ring->curr_entry;
  1594. rmb();
  1595. switch (net_rsp->opcode) {
  1596. case OPCODE_IB_MAC_IOCB:
  1597. ql_process_mac_rx_intr(qdev, rx_ring,
  1598. (struct ib_mac_iocb_rsp *)
  1599. net_rsp);
  1600. break;
  1601. case OPCODE_IB_AE_IOCB:
  1602. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1603. net_rsp);
  1604. break;
  1605. default:
  1606. {
  1607. QPRINTK(qdev, RX_STATUS, DEBUG,
  1608. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1609. net_rsp->opcode);
  1610. }
  1611. }
  1612. count++;
  1613. ql_update_cq(rx_ring);
  1614. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1615. if (count == budget)
  1616. break;
  1617. }
  1618. ql_update_buffer_queues(qdev, rx_ring);
  1619. ql_write_cq_idx(rx_ring);
  1620. return count;
  1621. }
  1622. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1623. {
  1624. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1625. struct ql_adapter *qdev = rx_ring->qdev;
  1626. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1627. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1628. rx_ring->cq_id);
  1629. if (work_done < budget) {
  1630. napi_complete(napi);
  1631. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1632. }
  1633. return work_done;
  1634. }
  1635. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1636. {
  1637. struct ql_adapter *qdev = netdev_priv(ndev);
  1638. qdev->vlgrp = grp;
  1639. if (grp) {
  1640. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1641. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1642. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1643. } else {
  1644. QPRINTK(qdev, IFUP, DEBUG,
  1645. "Turning off VLAN in NIC_RCV_CFG.\n");
  1646. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1647. }
  1648. }
  1649. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1650. {
  1651. struct ql_adapter *qdev = netdev_priv(ndev);
  1652. u32 enable_bit = MAC_ADDR_E;
  1653. int status;
  1654. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1655. if (status)
  1656. return;
  1657. spin_lock(&qdev->hw_lock);
  1658. if (ql_set_mac_addr_reg
  1659. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1660. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1661. }
  1662. spin_unlock(&qdev->hw_lock);
  1663. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1664. }
  1665. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1666. {
  1667. struct ql_adapter *qdev = netdev_priv(ndev);
  1668. u32 enable_bit = 0;
  1669. int status;
  1670. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1671. if (status)
  1672. return;
  1673. spin_lock(&qdev->hw_lock);
  1674. if (ql_set_mac_addr_reg
  1675. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1676. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1677. }
  1678. spin_unlock(&qdev->hw_lock);
  1679. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1680. }
  1681. /* Worker thread to process a given rx_ring that is dedicated
  1682. * to outbound completions.
  1683. */
  1684. static void ql_tx_clean(struct work_struct *work)
  1685. {
  1686. struct rx_ring *rx_ring =
  1687. container_of(work, struct rx_ring, rx_work.work);
  1688. ql_clean_outbound_rx_ring(rx_ring);
  1689. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1690. }
  1691. /* Worker thread to process a given rx_ring that is dedicated
  1692. * to inbound completions.
  1693. */
  1694. static void ql_rx_clean(struct work_struct *work)
  1695. {
  1696. struct rx_ring *rx_ring =
  1697. container_of(work, struct rx_ring, rx_work.work);
  1698. ql_clean_inbound_rx_ring(rx_ring, 64);
  1699. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1700. }
  1701. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1702. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1703. {
  1704. struct rx_ring *rx_ring = dev_id;
  1705. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1706. &rx_ring->rx_work, 0);
  1707. return IRQ_HANDLED;
  1708. }
  1709. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1710. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1711. {
  1712. struct rx_ring *rx_ring = dev_id;
  1713. napi_schedule(&rx_ring->napi);
  1714. return IRQ_HANDLED;
  1715. }
  1716. /* This handles a fatal error, MPI activity, and the default
  1717. * rx_ring in an MSI-X multiple vector environment.
  1718. * In MSI/Legacy environment it also process the rest of
  1719. * the rx_rings.
  1720. */
  1721. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1722. {
  1723. struct rx_ring *rx_ring = dev_id;
  1724. struct ql_adapter *qdev = rx_ring->qdev;
  1725. struct intr_context *intr_context = &qdev->intr_context[0];
  1726. u32 var;
  1727. int i;
  1728. int work_done = 0;
  1729. spin_lock(&qdev->hw_lock);
  1730. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1731. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1732. spin_unlock(&qdev->hw_lock);
  1733. return IRQ_NONE;
  1734. }
  1735. spin_unlock(&qdev->hw_lock);
  1736. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1737. /*
  1738. * Check for fatal error.
  1739. */
  1740. if (var & STS_FE) {
  1741. ql_queue_asic_error(qdev);
  1742. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1743. var = ql_read32(qdev, ERR_STS);
  1744. QPRINTK(qdev, INTR, ERR,
  1745. "Resetting chip. Error Status Register = 0x%x\n", var);
  1746. return IRQ_HANDLED;
  1747. }
  1748. /*
  1749. * Check MPI processor activity.
  1750. */
  1751. if (var & STS_PI) {
  1752. /*
  1753. * We've got an async event or mailbox completion.
  1754. * Handle it and clear the source of the interrupt.
  1755. */
  1756. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1757. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1758. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1759. &qdev->mpi_work, 0);
  1760. work_done++;
  1761. }
  1762. /*
  1763. * Check the default queue and wake handler if active.
  1764. */
  1765. rx_ring = &qdev->rx_ring[0];
  1766. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1767. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1768. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1769. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1770. &rx_ring->rx_work, 0);
  1771. work_done++;
  1772. }
  1773. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1774. /*
  1775. * Start the DPC for each active queue.
  1776. */
  1777. for (i = 1; i < qdev->rx_ring_count; i++) {
  1778. rx_ring = &qdev->rx_ring[i];
  1779. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1780. rx_ring->cnsmr_idx) {
  1781. QPRINTK(qdev, INTR, INFO,
  1782. "Waking handler for rx_ring[%d].\n", i);
  1783. ql_disable_completion_interrupt(qdev,
  1784. intr_context->
  1785. intr);
  1786. if (i < qdev->rss_ring_first_cq_id)
  1787. queue_delayed_work_on(rx_ring->cpu,
  1788. qdev->q_workqueue,
  1789. &rx_ring->rx_work,
  1790. 0);
  1791. else
  1792. napi_schedule(&rx_ring->napi);
  1793. work_done++;
  1794. }
  1795. }
  1796. }
  1797. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1798. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1799. }
  1800. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1801. {
  1802. if (skb_is_gso(skb)) {
  1803. int err;
  1804. if (skb_header_cloned(skb)) {
  1805. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1806. if (err)
  1807. return err;
  1808. }
  1809. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1810. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1811. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1812. mac_iocb_ptr->total_hdrs_len =
  1813. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1814. mac_iocb_ptr->net_trans_offset =
  1815. cpu_to_le16(skb_network_offset(skb) |
  1816. skb_transport_offset(skb)
  1817. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1818. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1819. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1820. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1821. struct iphdr *iph = ip_hdr(skb);
  1822. iph->check = 0;
  1823. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1824. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1825. iph->daddr, 0,
  1826. IPPROTO_TCP,
  1827. 0);
  1828. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1829. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1830. tcp_hdr(skb)->check =
  1831. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1832. &ipv6_hdr(skb)->daddr,
  1833. 0, IPPROTO_TCP, 0);
  1834. }
  1835. return 1;
  1836. }
  1837. return 0;
  1838. }
  1839. static void ql_hw_csum_setup(struct sk_buff *skb,
  1840. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1841. {
  1842. int len;
  1843. struct iphdr *iph = ip_hdr(skb);
  1844. __sum16 *check;
  1845. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1846. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1847. mac_iocb_ptr->net_trans_offset =
  1848. cpu_to_le16(skb_network_offset(skb) |
  1849. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1850. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1851. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1852. if (likely(iph->protocol == IPPROTO_TCP)) {
  1853. check = &(tcp_hdr(skb)->check);
  1854. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1855. mac_iocb_ptr->total_hdrs_len =
  1856. cpu_to_le16(skb_transport_offset(skb) +
  1857. (tcp_hdr(skb)->doff << 2));
  1858. } else {
  1859. check = &(udp_hdr(skb)->check);
  1860. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1861. mac_iocb_ptr->total_hdrs_len =
  1862. cpu_to_le16(skb_transport_offset(skb) +
  1863. sizeof(struct udphdr));
  1864. }
  1865. *check = ~csum_tcpudp_magic(iph->saddr,
  1866. iph->daddr, len, iph->protocol, 0);
  1867. }
  1868. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1869. {
  1870. struct tx_ring_desc *tx_ring_desc;
  1871. struct ob_mac_iocb_req *mac_iocb_ptr;
  1872. struct ql_adapter *qdev = netdev_priv(ndev);
  1873. int tso;
  1874. struct tx_ring *tx_ring;
  1875. u32 tx_ring_idx = (u32) skb->queue_mapping;
  1876. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1877. if (skb_padto(skb, ETH_ZLEN))
  1878. return NETDEV_TX_OK;
  1879. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1880. QPRINTK(qdev, TX_QUEUED, INFO,
  1881. "%s: shutting down tx queue %d du to lack of resources.\n",
  1882. __func__, tx_ring_idx);
  1883. netif_stop_subqueue(ndev, tx_ring->wq_id);
  1884. atomic_inc(&tx_ring->queue_stopped);
  1885. return NETDEV_TX_BUSY;
  1886. }
  1887. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1888. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1889. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1890. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1891. mac_iocb_ptr->tid = tx_ring_desc->index;
  1892. /* We use the upper 32-bits to store the tx queue for this IO.
  1893. * When we get the completion we can use it to establish the context.
  1894. */
  1895. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1896. tx_ring_desc->skb = skb;
  1897. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1898. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1899. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1900. vlan_tx_tag_get(skb));
  1901. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1902. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1903. }
  1904. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1905. if (tso < 0) {
  1906. dev_kfree_skb_any(skb);
  1907. return NETDEV_TX_OK;
  1908. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1909. ql_hw_csum_setup(skb,
  1910. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1911. }
  1912. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1913. NETDEV_TX_OK) {
  1914. QPRINTK(qdev, TX_QUEUED, ERR,
  1915. "Could not map the segments.\n");
  1916. return NETDEV_TX_BUSY;
  1917. }
  1918. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1919. tx_ring->prod_idx++;
  1920. if (tx_ring->prod_idx == tx_ring->wq_len)
  1921. tx_ring->prod_idx = 0;
  1922. wmb();
  1923. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1924. ndev->trans_start = jiffies;
  1925. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1926. tx_ring->prod_idx, skb->len);
  1927. atomic_dec(&tx_ring->tx_count);
  1928. return NETDEV_TX_OK;
  1929. }
  1930. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1931. {
  1932. if (qdev->rx_ring_shadow_reg_area) {
  1933. pci_free_consistent(qdev->pdev,
  1934. PAGE_SIZE,
  1935. qdev->rx_ring_shadow_reg_area,
  1936. qdev->rx_ring_shadow_reg_dma);
  1937. qdev->rx_ring_shadow_reg_area = NULL;
  1938. }
  1939. if (qdev->tx_ring_shadow_reg_area) {
  1940. pci_free_consistent(qdev->pdev,
  1941. PAGE_SIZE,
  1942. qdev->tx_ring_shadow_reg_area,
  1943. qdev->tx_ring_shadow_reg_dma);
  1944. qdev->tx_ring_shadow_reg_area = NULL;
  1945. }
  1946. }
  1947. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1948. {
  1949. qdev->rx_ring_shadow_reg_area =
  1950. pci_alloc_consistent(qdev->pdev,
  1951. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1952. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1953. QPRINTK(qdev, IFUP, ERR,
  1954. "Allocation of RX shadow space failed.\n");
  1955. return -ENOMEM;
  1956. }
  1957. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  1958. qdev->tx_ring_shadow_reg_area =
  1959. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1960. &qdev->tx_ring_shadow_reg_dma);
  1961. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1962. QPRINTK(qdev, IFUP, ERR,
  1963. "Allocation of TX shadow space failed.\n");
  1964. goto err_wqp_sh_area;
  1965. }
  1966. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  1967. return 0;
  1968. err_wqp_sh_area:
  1969. pci_free_consistent(qdev->pdev,
  1970. PAGE_SIZE,
  1971. qdev->rx_ring_shadow_reg_area,
  1972. qdev->rx_ring_shadow_reg_dma);
  1973. return -ENOMEM;
  1974. }
  1975. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1976. {
  1977. struct tx_ring_desc *tx_ring_desc;
  1978. int i;
  1979. struct ob_mac_iocb_req *mac_iocb_ptr;
  1980. mac_iocb_ptr = tx_ring->wq_base;
  1981. tx_ring_desc = tx_ring->q;
  1982. for (i = 0; i < tx_ring->wq_len; i++) {
  1983. tx_ring_desc->index = i;
  1984. tx_ring_desc->skb = NULL;
  1985. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1986. mac_iocb_ptr++;
  1987. tx_ring_desc++;
  1988. }
  1989. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1990. atomic_set(&tx_ring->queue_stopped, 0);
  1991. }
  1992. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1993. struct tx_ring *tx_ring)
  1994. {
  1995. if (tx_ring->wq_base) {
  1996. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1997. tx_ring->wq_base, tx_ring->wq_base_dma);
  1998. tx_ring->wq_base = NULL;
  1999. }
  2000. kfree(tx_ring->q);
  2001. tx_ring->q = NULL;
  2002. }
  2003. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2004. struct tx_ring *tx_ring)
  2005. {
  2006. tx_ring->wq_base =
  2007. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2008. &tx_ring->wq_base_dma);
  2009. if ((tx_ring->wq_base == NULL)
  2010. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  2011. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  2012. return -ENOMEM;
  2013. }
  2014. tx_ring->q =
  2015. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2016. if (tx_ring->q == NULL)
  2017. goto err;
  2018. return 0;
  2019. err:
  2020. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2021. tx_ring->wq_base, tx_ring->wq_base_dma);
  2022. return -ENOMEM;
  2023. }
  2024. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2025. {
  2026. int i;
  2027. struct bq_desc *lbq_desc;
  2028. for (i = 0; i < rx_ring->lbq_len; i++) {
  2029. lbq_desc = &rx_ring->lbq[i];
  2030. if (lbq_desc->p.lbq_page) {
  2031. pci_unmap_page(qdev->pdev,
  2032. pci_unmap_addr(lbq_desc, mapaddr),
  2033. pci_unmap_len(lbq_desc, maplen),
  2034. PCI_DMA_FROMDEVICE);
  2035. put_page(lbq_desc->p.lbq_page);
  2036. lbq_desc->p.lbq_page = NULL;
  2037. }
  2038. }
  2039. }
  2040. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2041. {
  2042. int i;
  2043. struct bq_desc *sbq_desc;
  2044. for (i = 0; i < rx_ring->sbq_len; i++) {
  2045. sbq_desc = &rx_ring->sbq[i];
  2046. if (sbq_desc == NULL) {
  2047. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2048. return;
  2049. }
  2050. if (sbq_desc->p.skb) {
  2051. pci_unmap_single(qdev->pdev,
  2052. pci_unmap_addr(sbq_desc, mapaddr),
  2053. pci_unmap_len(sbq_desc, maplen),
  2054. PCI_DMA_FROMDEVICE);
  2055. dev_kfree_skb(sbq_desc->p.skb);
  2056. sbq_desc->p.skb = NULL;
  2057. }
  2058. }
  2059. }
  2060. /* Free all large and small rx buffers associated
  2061. * with the completion queues for this device.
  2062. */
  2063. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2064. {
  2065. int i;
  2066. struct rx_ring *rx_ring;
  2067. for (i = 0; i < qdev->rx_ring_count; i++) {
  2068. rx_ring = &qdev->rx_ring[i];
  2069. if (rx_ring->lbq)
  2070. ql_free_lbq_buffers(qdev, rx_ring);
  2071. if (rx_ring->sbq)
  2072. ql_free_sbq_buffers(qdev, rx_ring);
  2073. }
  2074. }
  2075. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2076. {
  2077. struct rx_ring *rx_ring;
  2078. int i;
  2079. for (i = 0; i < qdev->rx_ring_count; i++) {
  2080. rx_ring = &qdev->rx_ring[i];
  2081. if (rx_ring->type != TX_Q)
  2082. ql_update_buffer_queues(qdev, rx_ring);
  2083. }
  2084. }
  2085. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2086. struct rx_ring *rx_ring)
  2087. {
  2088. int i;
  2089. struct bq_desc *lbq_desc;
  2090. __le64 *bq = rx_ring->lbq_base;
  2091. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2092. for (i = 0; i < rx_ring->lbq_len; i++) {
  2093. lbq_desc = &rx_ring->lbq[i];
  2094. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2095. lbq_desc->index = i;
  2096. lbq_desc->addr = bq;
  2097. bq++;
  2098. }
  2099. }
  2100. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2101. struct rx_ring *rx_ring)
  2102. {
  2103. int i;
  2104. struct bq_desc *sbq_desc;
  2105. __le64 *bq = rx_ring->sbq_base;
  2106. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2107. for (i = 0; i < rx_ring->sbq_len; i++) {
  2108. sbq_desc = &rx_ring->sbq[i];
  2109. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2110. sbq_desc->index = i;
  2111. sbq_desc->addr = bq;
  2112. bq++;
  2113. }
  2114. }
  2115. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2116. struct rx_ring *rx_ring)
  2117. {
  2118. /* Free the small buffer queue. */
  2119. if (rx_ring->sbq_base) {
  2120. pci_free_consistent(qdev->pdev,
  2121. rx_ring->sbq_size,
  2122. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2123. rx_ring->sbq_base = NULL;
  2124. }
  2125. /* Free the small buffer queue control blocks. */
  2126. kfree(rx_ring->sbq);
  2127. rx_ring->sbq = NULL;
  2128. /* Free the large buffer queue. */
  2129. if (rx_ring->lbq_base) {
  2130. pci_free_consistent(qdev->pdev,
  2131. rx_ring->lbq_size,
  2132. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2133. rx_ring->lbq_base = NULL;
  2134. }
  2135. /* Free the large buffer queue control blocks. */
  2136. kfree(rx_ring->lbq);
  2137. rx_ring->lbq = NULL;
  2138. /* Free the rx queue. */
  2139. if (rx_ring->cq_base) {
  2140. pci_free_consistent(qdev->pdev,
  2141. rx_ring->cq_size,
  2142. rx_ring->cq_base, rx_ring->cq_base_dma);
  2143. rx_ring->cq_base = NULL;
  2144. }
  2145. }
  2146. /* Allocate queues and buffers for this completions queue based
  2147. * on the values in the parameter structure. */
  2148. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2149. struct rx_ring *rx_ring)
  2150. {
  2151. /*
  2152. * Allocate the completion queue for this rx_ring.
  2153. */
  2154. rx_ring->cq_base =
  2155. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2156. &rx_ring->cq_base_dma);
  2157. if (rx_ring->cq_base == NULL) {
  2158. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2159. return -ENOMEM;
  2160. }
  2161. if (rx_ring->sbq_len) {
  2162. /*
  2163. * Allocate small buffer queue.
  2164. */
  2165. rx_ring->sbq_base =
  2166. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2167. &rx_ring->sbq_base_dma);
  2168. if (rx_ring->sbq_base == NULL) {
  2169. QPRINTK(qdev, IFUP, ERR,
  2170. "Small buffer queue allocation failed.\n");
  2171. goto err_mem;
  2172. }
  2173. /*
  2174. * Allocate small buffer queue control blocks.
  2175. */
  2176. rx_ring->sbq =
  2177. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2178. GFP_KERNEL);
  2179. if (rx_ring->sbq == NULL) {
  2180. QPRINTK(qdev, IFUP, ERR,
  2181. "Small buffer queue control block allocation failed.\n");
  2182. goto err_mem;
  2183. }
  2184. ql_init_sbq_ring(qdev, rx_ring);
  2185. }
  2186. if (rx_ring->lbq_len) {
  2187. /*
  2188. * Allocate large buffer queue.
  2189. */
  2190. rx_ring->lbq_base =
  2191. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2192. &rx_ring->lbq_base_dma);
  2193. if (rx_ring->lbq_base == NULL) {
  2194. QPRINTK(qdev, IFUP, ERR,
  2195. "Large buffer queue allocation failed.\n");
  2196. goto err_mem;
  2197. }
  2198. /*
  2199. * Allocate large buffer queue control blocks.
  2200. */
  2201. rx_ring->lbq =
  2202. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2203. GFP_KERNEL);
  2204. if (rx_ring->lbq == NULL) {
  2205. QPRINTK(qdev, IFUP, ERR,
  2206. "Large buffer queue control block allocation failed.\n");
  2207. goto err_mem;
  2208. }
  2209. ql_init_lbq_ring(qdev, rx_ring);
  2210. }
  2211. return 0;
  2212. err_mem:
  2213. ql_free_rx_resources(qdev, rx_ring);
  2214. return -ENOMEM;
  2215. }
  2216. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2217. {
  2218. struct tx_ring *tx_ring;
  2219. struct tx_ring_desc *tx_ring_desc;
  2220. int i, j;
  2221. /*
  2222. * Loop through all queues and free
  2223. * any resources.
  2224. */
  2225. for (j = 0; j < qdev->tx_ring_count; j++) {
  2226. tx_ring = &qdev->tx_ring[j];
  2227. for (i = 0; i < tx_ring->wq_len; i++) {
  2228. tx_ring_desc = &tx_ring->q[i];
  2229. if (tx_ring_desc && tx_ring_desc->skb) {
  2230. QPRINTK(qdev, IFDOWN, ERR,
  2231. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2232. tx_ring_desc->skb, j,
  2233. tx_ring_desc->index);
  2234. ql_unmap_send(qdev, tx_ring_desc,
  2235. tx_ring_desc->map_cnt);
  2236. dev_kfree_skb(tx_ring_desc->skb);
  2237. tx_ring_desc->skb = NULL;
  2238. }
  2239. }
  2240. }
  2241. }
  2242. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2243. {
  2244. int i;
  2245. for (i = 0; i < qdev->tx_ring_count; i++)
  2246. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2247. for (i = 0; i < qdev->rx_ring_count; i++)
  2248. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2249. ql_free_shadow_space(qdev);
  2250. }
  2251. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2252. {
  2253. int i;
  2254. /* Allocate space for our shadow registers and such. */
  2255. if (ql_alloc_shadow_space(qdev))
  2256. return -ENOMEM;
  2257. for (i = 0; i < qdev->rx_ring_count; i++) {
  2258. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2259. QPRINTK(qdev, IFUP, ERR,
  2260. "RX resource allocation failed.\n");
  2261. goto err_mem;
  2262. }
  2263. }
  2264. /* Allocate tx queue resources */
  2265. for (i = 0; i < qdev->tx_ring_count; i++) {
  2266. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2267. QPRINTK(qdev, IFUP, ERR,
  2268. "TX resource allocation failed.\n");
  2269. goto err_mem;
  2270. }
  2271. }
  2272. return 0;
  2273. err_mem:
  2274. ql_free_mem_resources(qdev);
  2275. return -ENOMEM;
  2276. }
  2277. /* Set up the rx ring control block and pass it to the chip.
  2278. * The control block is defined as
  2279. * "Completion Queue Initialization Control Block", or cqicb.
  2280. */
  2281. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2282. {
  2283. struct cqicb *cqicb = &rx_ring->cqicb;
  2284. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2285. (rx_ring->cq_id * sizeof(u64) * 4);
  2286. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2287. (rx_ring->cq_id * sizeof(u64) * 4);
  2288. void __iomem *doorbell_area =
  2289. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2290. int err = 0;
  2291. u16 bq_len;
  2292. u64 tmp;
  2293. /* Set up the shadow registers for this ring. */
  2294. rx_ring->prod_idx_sh_reg = shadow_reg;
  2295. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2296. shadow_reg += sizeof(u64);
  2297. shadow_reg_dma += sizeof(u64);
  2298. rx_ring->lbq_base_indirect = shadow_reg;
  2299. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2300. shadow_reg += sizeof(u64);
  2301. shadow_reg_dma += sizeof(u64);
  2302. rx_ring->sbq_base_indirect = shadow_reg;
  2303. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2304. /* PCI doorbell mem area + 0x00 for consumer index register */
  2305. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2306. rx_ring->cnsmr_idx = 0;
  2307. rx_ring->curr_entry = rx_ring->cq_base;
  2308. /* PCI doorbell mem area + 0x04 for valid register */
  2309. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2310. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2311. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2312. /* PCI doorbell mem area + 0x1c */
  2313. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2314. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2315. cqicb->msix_vect = rx_ring->irq;
  2316. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2317. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2318. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2319. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2320. /*
  2321. * Set up the control block load flags.
  2322. */
  2323. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2324. FLAGS_LV | /* Load MSI-X vector */
  2325. FLAGS_LI; /* Load irq delay values */
  2326. if (rx_ring->lbq_len) {
  2327. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2328. tmp = (u64)rx_ring->lbq_base_dma;;
  2329. *((__le64 *) rx_ring->lbq_base_indirect) = cpu_to_le64(tmp);
  2330. cqicb->lbq_addr =
  2331. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2332. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2333. (u16) rx_ring->lbq_buf_size;
  2334. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2335. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2336. (u16) rx_ring->lbq_len;
  2337. cqicb->lbq_len = cpu_to_le16(bq_len);
  2338. rx_ring->lbq_prod_idx = 0;
  2339. rx_ring->lbq_curr_idx = 0;
  2340. rx_ring->lbq_clean_idx = 0;
  2341. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2342. }
  2343. if (rx_ring->sbq_len) {
  2344. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2345. tmp = (u64)rx_ring->sbq_base_dma;;
  2346. *((__le64 *) rx_ring->sbq_base_indirect) = cpu_to_le64(tmp);
  2347. cqicb->sbq_addr =
  2348. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2349. cqicb->sbq_buf_size =
  2350. cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
  2351. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2352. (u16) rx_ring->sbq_len;
  2353. cqicb->sbq_len = cpu_to_le16(bq_len);
  2354. rx_ring->sbq_prod_idx = 0;
  2355. rx_ring->sbq_curr_idx = 0;
  2356. rx_ring->sbq_clean_idx = 0;
  2357. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2358. }
  2359. switch (rx_ring->type) {
  2360. case TX_Q:
  2361. /* If there's only one interrupt, then we use
  2362. * worker threads to process the outbound
  2363. * completion handling rx_rings. We do this so
  2364. * they can be run on multiple CPUs. There is
  2365. * room to play with this more where we would only
  2366. * run in a worker if there are more than x number
  2367. * of outbound completions on the queue and more
  2368. * than one queue active. Some threshold that
  2369. * would indicate a benefit in spite of the cost
  2370. * of a context switch.
  2371. * If there's more than one interrupt, then the
  2372. * outbound completions are processed in the ISR.
  2373. */
  2374. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2375. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2376. else {
  2377. /* With all debug warnings on we see a WARN_ON message
  2378. * when we free the skb in the interrupt context.
  2379. */
  2380. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2381. }
  2382. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2383. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2384. break;
  2385. case DEFAULT_Q:
  2386. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2387. cqicb->irq_delay = 0;
  2388. cqicb->pkt_delay = 0;
  2389. break;
  2390. case RX_Q:
  2391. /* Inbound completion handling rx_rings run in
  2392. * separate NAPI contexts.
  2393. */
  2394. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2395. 64);
  2396. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2397. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2398. break;
  2399. default:
  2400. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2401. rx_ring->type);
  2402. }
  2403. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2404. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2405. CFG_LCQ, rx_ring->cq_id);
  2406. if (err) {
  2407. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2408. return err;
  2409. }
  2410. return err;
  2411. }
  2412. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2413. {
  2414. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2415. void __iomem *doorbell_area =
  2416. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2417. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2418. (tx_ring->wq_id * sizeof(u64));
  2419. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2420. (tx_ring->wq_id * sizeof(u64));
  2421. int err = 0;
  2422. /*
  2423. * Assign doorbell registers for this tx_ring.
  2424. */
  2425. /* TX PCI doorbell mem area for tx producer index */
  2426. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2427. tx_ring->prod_idx = 0;
  2428. /* TX PCI doorbell mem area + 0x04 */
  2429. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2430. /*
  2431. * Assign shadow registers for this tx_ring.
  2432. */
  2433. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2434. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2435. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2436. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2437. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2438. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2439. wqicb->rid = 0;
  2440. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2441. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2442. ql_init_tx_ring(qdev, tx_ring);
  2443. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2444. (u16) tx_ring->wq_id);
  2445. if (err) {
  2446. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2447. return err;
  2448. }
  2449. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2450. return err;
  2451. }
  2452. static void ql_disable_msix(struct ql_adapter *qdev)
  2453. {
  2454. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2455. pci_disable_msix(qdev->pdev);
  2456. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2457. kfree(qdev->msi_x_entry);
  2458. qdev->msi_x_entry = NULL;
  2459. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2460. pci_disable_msi(qdev->pdev);
  2461. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2462. }
  2463. }
  2464. static void ql_enable_msix(struct ql_adapter *qdev)
  2465. {
  2466. int i;
  2467. qdev->intr_count = 1;
  2468. /* Get the MSIX vectors. */
  2469. if (irq_type == MSIX_IRQ) {
  2470. /* Try to alloc space for the msix struct,
  2471. * if it fails then go to MSI/legacy.
  2472. */
  2473. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2474. sizeof(struct msix_entry),
  2475. GFP_KERNEL);
  2476. if (!qdev->msi_x_entry) {
  2477. irq_type = MSI_IRQ;
  2478. goto msi;
  2479. }
  2480. for (i = 0; i < qdev->rx_ring_count; i++)
  2481. qdev->msi_x_entry[i].entry = i;
  2482. if (!pci_enable_msix
  2483. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2484. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2485. qdev->intr_count = qdev->rx_ring_count;
  2486. QPRINTK(qdev, IFUP, DEBUG,
  2487. "MSI-X Enabled, got %d vectors.\n",
  2488. qdev->intr_count);
  2489. return;
  2490. } else {
  2491. kfree(qdev->msi_x_entry);
  2492. qdev->msi_x_entry = NULL;
  2493. QPRINTK(qdev, IFUP, WARNING,
  2494. "MSI-X Enable failed, trying MSI.\n");
  2495. irq_type = MSI_IRQ;
  2496. }
  2497. }
  2498. msi:
  2499. if (irq_type == MSI_IRQ) {
  2500. if (!pci_enable_msi(qdev->pdev)) {
  2501. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2502. QPRINTK(qdev, IFUP, INFO,
  2503. "Running with MSI interrupts.\n");
  2504. return;
  2505. }
  2506. }
  2507. irq_type = LEG_IRQ;
  2508. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2509. }
  2510. /*
  2511. * Here we build the intr_context structures based on
  2512. * our rx_ring count and intr vector count.
  2513. * The intr_context structure is used to hook each vector
  2514. * to possibly different handlers.
  2515. */
  2516. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2517. {
  2518. int i = 0;
  2519. struct intr_context *intr_context = &qdev->intr_context[0];
  2520. ql_enable_msix(qdev);
  2521. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2522. /* Each rx_ring has it's
  2523. * own intr_context since we have separate
  2524. * vectors for each queue.
  2525. * This only true when MSI-X is enabled.
  2526. */
  2527. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2528. qdev->rx_ring[i].irq = i;
  2529. intr_context->intr = i;
  2530. intr_context->qdev = qdev;
  2531. /*
  2532. * We set up each vectors enable/disable/read bits so
  2533. * there's no bit/mask calculations in the critical path.
  2534. */
  2535. intr_context->intr_en_mask =
  2536. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2537. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2538. | i;
  2539. intr_context->intr_dis_mask =
  2540. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2541. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2542. INTR_EN_IHD | i;
  2543. intr_context->intr_read_mask =
  2544. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2545. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2546. i;
  2547. if (i == 0) {
  2548. /*
  2549. * Default queue handles bcast/mcast plus
  2550. * async events. Needs buffers.
  2551. */
  2552. intr_context->handler = qlge_isr;
  2553. sprintf(intr_context->name, "%s-default-queue",
  2554. qdev->ndev->name);
  2555. } else if (i < qdev->rss_ring_first_cq_id) {
  2556. /*
  2557. * Outbound queue is for outbound completions only.
  2558. */
  2559. intr_context->handler = qlge_msix_tx_isr;
  2560. sprintf(intr_context->name, "%s-tx-%d",
  2561. qdev->ndev->name, i);
  2562. } else {
  2563. /*
  2564. * Inbound queues handle unicast frames only.
  2565. */
  2566. intr_context->handler = qlge_msix_rx_isr;
  2567. sprintf(intr_context->name, "%s-rx-%d",
  2568. qdev->ndev->name, i);
  2569. }
  2570. }
  2571. } else {
  2572. /*
  2573. * All rx_rings use the same intr_context since
  2574. * there is only one vector.
  2575. */
  2576. intr_context->intr = 0;
  2577. intr_context->qdev = qdev;
  2578. /*
  2579. * We set up each vectors enable/disable/read bits so
  2580. * there's no bit/mask calculations in the critical path.
  2581. */
  2582. intr_context->intr_en_mask =
  2583. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2584. intr_context->intr_dis_mask =
  2585. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2586. INTR_EN_TYPE_DISABLE;
  2587. intr_context->intr_read_mask =
  2588. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2589. /*
  2590. * Single interrupt means one handler for all rings.
  2591. */
  2592. intr_context->handler = qlge_isr;
  2593. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2594. for (i = 0; i < qdev->rx_ring_count; i++)
  2595. qdev->rx_ring[i].irq = 0;
  2596. }
  2597. }
  2598. static void ql_free_irq(struct ql_adapter *qdev)
  2599. {
  2600. int i;
  2601. struct intr_context *intr_context = &qdev->intr_context[0];
  2602. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2603. if (intr_context->hooked) {
  2604. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2605. free_irq(qdev->msi_x_entry[i].vector,
  2606. &qdev->rx_ring[i]);
  2607. QPRINTK(qdev, IFDOWN, DEBUG,
  2608. "freeing msix interrupt %d.\n", i);
  2609. } else {
  2610. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2611. QPRINTK(qdev, IFDOWN, DEBUG,
  2612. "freeing msi interrupt %d.\n", i);
  2613. }
  2614. }
  2615. }
  2616. ql_disable_msix(qdev);
  2617. }
  2618. static int ql_request_irq(struct ql_adapter *qdev)
  2619. {
  2620. int i;
  2621. int status = 0;
  2622. struct pci_dev *pdev = qdev->pdev;
  2623. struct intr_context *intr_context = &qdev->intr_context[0];
  2624. ql_resolve_queues_to_irqs(qdev);
  2625. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2626. atomic_set(&intr_context->irq_cnt, 0);
  2627. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2628. status = request_irq(qdev->msi_x_entry[i].vector,
  2629. intr_context->handler,
  2630. 0,
  2631. intr_context->name,
  2632. &qdev->rx_ring[i]);
  2633. if (status) {
  2634. QPRINTK(qdev, IFUP, ERR,
  2635. "Failed request for MSIX interrupt %d.\n",
  2636. i);
  2637. goto err_irq;
  2638. } else {
  2639. QPRINTK(qdev, IFUP, DEBUG,
  2640. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2641. i,
  2642. qdev->rx_ring[i].type ==
  2643. DEFAULT_Q ? "DEFAULT_Q" : "",
  2644. qdev->rx_ring[i].type ==
  2645. TX_Q ? "TX_Q" : "",
  2646. qdev->rx_ring[i].type ==
  2647. RX_Q ? "RX_Q" : "", intr_context->name);
  2648. }
  2649. } else {
  2650. QPRINTK(qdev, IFUP, DEBUG,
  2651. "trying msi or legacy interrupts.\n");
  2652. QPRINTK(qdev, IFUP, DEBUG,
  2653. "%s: irq = %d.\n", __func__, pdev->irq);
  2654. QPRINTK(qdev, IFUP, DEBUG,
  2655. "%s: context->name = %s.\n", __func__,
  2656. intr_context->name);
  2657. QPRINTK(qdev, IFUP, DEBUG,
  2658. "%s: dev_id = 0x%p.\n", __func__,
  2659. &qdev->rx_ring[0]);
  2660. status =
  2661. request_irq(pdev->irq, qlge_isr,
  2662. test_bit(QL_MSI_ENABLED,
  2663. &qdev->
  2664. flags) ? 0 : IRQF_SHARED,
  2665. intr_context->name, &qdev->rx_ring[0]);
  2666. if (status)
  2667. goto err_irq;
  2668. QPRINTK(qdev, IFUP, ERR,
  2669. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2670. i,
  2671. qdev->rx_ring[0].type ==
  2672. DEFAULT_Q ? "DEFAULT_Q" : "",
  2673. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2674. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2675. intr_context->name);
  2676. }
  2677. intr_context->hooked = 1;
  2678. }
  2679. return status;
  2680. err_irq:
  2681. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2682. ql_free_irq(qdev);
  2683. return status;
  2684. }
  2685. static int ql_start_rss(struct ql_adapter *qdev)
  2686. {
  2687. struct ricb *ricb = &qdev->ricb;
  2688. int status = 0;
  2689. int i;
  2690. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2691. memset((void *)ricb, 0, sizeof(ricb));
  2692. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2693. ricb->flags =
  2694. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2695. RSS_RT6);
  2696. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2697. /*
  2698. * Fill out the Indirection Table.
  2699. */
  2700. for (i = 0; i < 256; i++)
  2701. hash_id[i] = i & (qdev->rss_ring_count - 1);
  2702. /*
  2703. * Random values for the IPv6 and IPv4 Hash Keys.
  2704. */
  2705. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2706. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2707. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  2708. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2709. if (status) {
  2710. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2711. return status;
  2712. }
  2713. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  2714. return status;
  2715. }
  2716. /* Initialize the frame-to-queue routing. */
  2717. static int ql_route_initialize(struct ql_adapter *qdev)
  2718. {
  2719. int status = 0;
  2720. int i;
  2721. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2722. if (status)
  2723. return status;
  2724. /* Clear all the entries in the routing table. */
  2725. for (i = 0; i < 16; i++) {
  2726. status = ql_set_routing_reg(qdev, i, 0, 0);
  2727. if (status) {
  2728. QPRINTK(qdev, IFUP, ERR,
  2729. "Failed to init routing register for CAM packets.\n");
  2730. goto exit;
  2731. }
  2732. }
  2733. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2734. if (status) {
  2735. QPRINTK(qdev, IFUP, ERR,
  2736. "Failed to init routing register for error packets.\n");
  2737. goto exit;
  2738. }
  2739. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2740. if (status) {
  2741. QPRINTK(qdev, IFUP, ERR,
  2742. "Failed to init routing register for broadcast packets.\n");
  2743. goto exit;
  2744. }
  2745. /* If we have more than one inbound queue, then turn on RSS in the
  2746. * routing block.
  2747. */
  2748. if (qdev->rss_ring_count > 1) {
  2749. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2750. RT_IDX_RSS_MATCH, 1);
  2751. if (status) {
  2752. QPRINTK(qdev, IFUP, ERR,
  2753. "Failed to init routing register for MATCH RSS packets.\n");
  2754. goto exit;
  2755. }
  2756. }
  2757. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2758. RT_IDX_CAM_HIT, 1);
  2759. if (status)
  2760. QPRINTK(qdev, IFUP, ERR,
  2761. "Failed to init routing register for CAM packets.\n");
  2762. exit:
  2763. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2764. return status;
  2765. }
  2766. int ql_cam_route_initialize(struct ql_adapter *qdev)
  2767. {
  2768. int status;
  2769. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2770. if (status)
  2771. return status;
  2772. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2773. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  2774. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2775. if (status) {
  2776. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2777. return status;
  2778. }
  2779. status = ql_route_initialize(qdev);
  2780. if (status)
  2781. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2782. return status;
  2783. }
  2784. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2785. {
  2786. u32 value, mask;
  2787. int i;
  2788. int status = 0;
  2789. /*
  2790. * Set up the System register to halt on errors.
  2791. */
  2792. value = SYS_EFE | SYS_FAE;
  2793. mask = value << 16;
  2794. ql_write32(qdev, SYS, mask | value);
  2795. /* Set the default queue, and VLAN behavior. */
  2796. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  2797. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  2798. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2799. /* Set the MPI interrupt to enabled. */
  2800. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2801. /* Enable the function, set pagesize, enable error checking. */
  2802. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2803. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2804. /* Set/clear header splitting. */
  2805. mask = FSC_VM_PAGESIZE_MASK |
  2806. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2807. ql_write32(qdev, FSC, mask | value);
  2808. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2809. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2810. /* Start up the rx queues. */
  2811. for (i = 0; i < qdev->rx_ring_count; i++) {
  2812. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2813. if (status) {
  2814. QPRINTK(qdev, IFUP, ERR,
  2815. "Failed to start rx ring[%d].\n", i);
  2816. return status;
  2817. }
  2818. }
  2819. /* If there is more than one inbound completion queue
  2820. * then download a RICB to configure RSS.
  2821. */
  2822. if (qdev->rss_ring_count > 1) {
  2823. status = ql_start_rss(qdev);
  2824. if (status) {
  2825. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2826. return status;
  2827. }
  2828. }
  2829. /* Start up the tx queues. */
  2830. for (i = 0; i < qdev->tx_ring_count; i++) {
  2831. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2832. if (status) {
  2833. QPRINTK(qdev, IFUP, ERR,
  2834. "Failed to start tx ring[%d].\n", i);
  2835. return status;
  2836. }
  2837. }
  2838. /* Initialize the port and set the max framesize. */
  2839. status = qdev->nic_ops->port_initialize(qdev);
  2840. if (status) {
  2841. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2842. return status;
  2843. }
  2844. /* Set up the MAC address and frame routing filter. */
  2845. status = ql_cam_route_initialize(qdev);
  2846. if (status) {
  2847. QPRINTK(qdev, IFUP, ERR,
  2848. "Failed to init CAM/Routing tables.\n");
  2849. return status;
  2850. }
  2851. /* Start NAPI for the RSS queues. */
  2852. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2853. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  2854. i);
  2855. napi_enable(&qdev->rx_ring[i].napi);
  2856. }
  2857. return status;
  2858. }
  2859. /* Issue soft reset to chip. */
  2860. static int ql_adapter_reset(struct ql_adapter *qdev)
  2861. {
  2862. u32 value;
  2863. int status = 0;
  2864. unsigned long end_jiffies = jiffies +
  2865. max((unsigned long)1, usecs_to_jiffies(30));
  2866. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2867. do {
  2868. value = ql_read32(qdev, RST_FO);
  2869. if ((value & RST_FO_FR) == 0)
  2870. break;
  2871. cpu_relax();
  2872. } while (time_before(jiffies, end_jiffies));
  2873. if (value & RST_FO_FR) {
  2874. QPRINTK(qdev, IFDOWN, ERR,
  2875. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2876. status = -ETIMEDOUT;
  2877. }
  2878. return status;
  2879. }
  2880. static void ql_display_dev_info(struct net_device *ndev)
  2881. {
  2882. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2883. QPRINTK(qdev, PROBE, INFO,
  2884. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2885. "XG Roll = %d, XG Rev = %d.\n",
  2886. qdev->func,
  2887. qdev->chip_rev_id & 0x0000000f,
  2888. qdev->chip_rev_id >> 4 & 0x0000000f,
  2889. qdev->chip_rev_id >> 8 & 0x0000000f,
  2890. qdev->chip_rev_id >> 12 & 0x0000000f);
  2891. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2892. }
  2893. static int ql_adapter_down(struct ql_adapter *qdev)
  2894. {
  2895. int i, status = 0;
  2896. struct rx_ring *rx_ring;
  2897. netif_carrier_off(qdev->ndev);
  2898. /* Don't kill the reset worker thread if we
  2899. * are in the process of recovery.
  2900. */
  2901. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  2902. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2903. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2904. cancel_delayed_work_sync(&qdev->mpi_work);
  2905. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  2906. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  2907. /* The default queue at index 0 is always processed in
  2908. * a workqueue.
  2909. */
  2910. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2911. /* The rest of the rx_rings are processed in
  2912. * a workqueue only if it's a single interrupt
  2913. * environment (MSI/Legacy).
  2914. */
  2915. for (i = 1; i < qdev->rx_ring_count; i++) {
  2916. rx_ring = &qdev->rx_ring[i];
  2917. /* Only the RSS rings use NAPI on multi irq
  2918. * environment. Outbound completion processing
  2919. * is done in interrupt context.
  2920. */
  2921. if (i >= qdev->rss_ring_first_cq_id) {
  2922. napi_disable(&rx_ring->napi);
  2923. } else {
  2924. cancel_delayed_work_sync(&rx_ring->rx_work);
  2925. }
  2926. }
  2927. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2928. ql_disable_interrupts(qdev);
  2929. ql_tx_ring_clean(qdev);
  2930. /* Call netif_napi_del() from common point.
  2931. */
  2932. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
  2933. netif_napi_del(&qdev->rx_ring[i].napi);
  2934. ql_free_rx_buffers(qdev);
  2935. spin_lock(&qdev->hw_lock);
  2936. status = ql_adapter_reset(qdev);
  2937. if (status)
  2938. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2939. qdev->func);
  2940. spin_unlock(&qdev->hw_lock);
  2941. return status;
  2942. }
  2943. static int ql_adapter_up(struct ql_adapter *qdev)
  2944. {
  2945. int err = 0;
  2946. err = ql_adapter_initialize(qdev);
  2947. if (err) {
  2948. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2949. spin_unlock(&qdev->hw_lock);
  2950. goto err_init;
  2951. }
  2952. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2953. ql_alloc_rx_buffers(qdev);
  2954. if ((ql_read32(qdev, STS) & qdev->port_init))
  2955. netif_carrier_on(qdev->ndev);
  2956. ql_enable_interrupts(qdev);
  2957. ql_enable_all_completion_interrupts(qdev);
  2958. netif_tx_start_all_queues(qdev->ndev);
  2959. return 0;
  2960. err_init:
  2961. ql_adapter_reset(qdev);
  2962. return err;
  2963. }
  2964. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2965. {
  2966. ql_free_mem_resources(qdev);
  2967. ql_free_irq(qdev);
  2968. }
  2969. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2970. {
  2971. int status = 0;
  2972. if (ql_alloc_mem_resources(qdev)) {
  2973. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2974. return -ENOMEM;
  2975. }
  2976. status = ql_request_irq(qdev);
  2977. if (status)
  2978. goto err_irq;
  2979. return status;
  2980. err_irq:
  2981. ql_free_mem_resources(qdev);
  2982. return status;
  2983. }
  2984. static int qlge_close(struct net_device *ndev)
  2985. {
  2986. struct ql_adapter *qdev = netdev_priv(ndev);
  2987. /*
  2988. * Wait for device to recover from a reset.
  2989. * (Rarely happens, but possible.)
  2990. */
  2991. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2992. msleep(1);
  2993. ql_adapter_down(qdev);
  2994. ql_release_adapter_resources(qdev);
  2995. return 0;
  2996. }
  2997. static int ql_configure_rings(struct ql_adapter *qdev)
  2998. {
  2999. int i;
  3000. struct rx_ring *rx_ring;
  3001. struct tx_ring *tx_ring;
  3002. int cpu_cnt = num_online_cpus();
  3003. /*
  3004. * For each processor present we allocate one
  3005. * rx_ring for outbound completions, and one
  3006. * rx_ring for inbound completions. Plus there is
  3007. * always the one default queue. For the CPU
  3008. * counts we end up with the following rx_rings:
  3009. * rx_ring count =
  3010. * one default queue +
  3011. * (CPU count * outbound completion rx_ring) +
  3012. * (CPU count * inbound (RSS) completion rx_ring)
  3013. * To keep it simple we limit the total number of
  3014. * queues to < 32, so we truncate CPU to 8.
  3015. * This limitation can be removed when requested.
  3016. */
  3017. if (cpu_cnt > MAX_CPUS)
  3018. cpu_cnt = MAX_CPUS;
  3019. /*
  3020. * rx_ring[0] is always the default queue.
  3021. */
  3022. /* Allocate outbound completion ring for each CPU. */
  3023. qdev->tx_ring_count = cpu_cnt;
  3024. /* Allocate inbound completion (RSS) ring for each CPU. */
  3025. qdev->rss_ring_count = cpu_cnt;
  3026. /* cq_id for the first inbound ring handler. */
  3027. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  3028. /*
  3029. * qdev->rx_ring_count:
  3030. * Total number of rx_rings. This includes the one
  3031. * default queue, a number of outbound completion
  3032. * handler rx_rings, and the number of inbound
  3033. * completion handler rx_rings.
  3034. */
  3035. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  3036. netif_set_gso_max_size(qdev->ndev, 65536);
  3037. for (i = 0; i < qdev->tx_ring_count; i++) {
  3038. tx_ring = &qdev->tx_ring[i];
  3039. memset((void *)tx_ring, 0, sizeof(tx_ring));
  3040. tx_ring->qdev = qdev;
  3041. tx_ring->wq_id = i;
  3042. tx_ring->wq_len = qdev->tx_ring_size;
  3043. tx_ring->wq_size =
  3044. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3045. /*
  3046. * The completion queue ID for the tx rings start
  3047. * immediately after the default Q ID, which is zero.
  3048. */
  3049. tx_ring->cq_id = i + 1;
  3050. }
  3051. for (i = 0; i < qdev->rx_ring_count; i++) {
  3052. rx_ring = &qdev->rx_ring[i];
  3053. memset((void *)rx_ring, 0, sizeof(rx_ring));
  3054. rx_ring->qdev = qdev;
  3055. rx_ring->cq_id = i;
  3056. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3057. if (i == 0) { /* Default queue at index 0. */
  3058. /*
  3059. * Default queue handles bcast/mcast plus
  3060. * async events. Needs buffers.
  3061. */
  3062. rx_ring->cq_len = qdev->rx_ring_size;
  3063. rx_ring->cq_size =
  3064. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3065. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3066. rx_ring->lbq_size =
  3067. rx_ring->lbq_len * sizeof(__le64);
  3068. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3069. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3070. rx_ring->sbq_size =
  3071. rx_ring->sbq_len * sizeof(__le64);
  3072. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3073. rx_ring->type = DEFAULT_Q;
  3074. } else if (i < qdev->rss_ring_first_cq_id) {
  3075. /*
  3076. * Outbound queue handles outbound completions only.
  3077. */
  3078. /* outbound cq is same size as tx_ring it services. */
  3079. rx_ring->cq_len = qdev->tx_ring_size;
  3080. rx_ring->cq_size =
  3081. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3082. rx_ring->lbq_len = 0;
  3083. rx_ring->lbq_size = 0;
  3084. rx_ring->lbq_buf_size = 0;
  3085. rx_ring->sbq_len = 0;
  3086. rx_ring->sbq_size = 0;
  3087. rx_ring->sbq_buf_size = 0;
  3088. rx_ring->type = TX_Q;
  3089. } else { /* Inbound completions (RSS) queues */
  3090. /*
  3091. * Inbound queues handle unicast frames only.
  3092. */
  3093. rx_ring->cq_len = qdev->rx_ring_size;
  3094. rx_ring->cq_size =
  3095. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3096. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3097. rx_ring->lbq_size =
  3098. rx_ring->lbq_len * sizeof(__le64);
  3099. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3100. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3101. rx_ring->sbq_size =
  3102. rx_ring->sbq_len * sizeof(__le64);
  3103. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3104. rx_ring->type = RX_Q;
  3105. }
  3106. }
  3107. return 0;
  3108. }
  3109. static int qlge_open(struct net_device *ndev)
  3110. {
  3111. int err = 0;
  3112. struct ql_adapter *qdev = netdev_priv(ndev);
  3113. err = ql_configure_rings(qdev);
  3114. if (err)
  3115. return err;
  3116. err = ql_get_adapter_resources(qdev);
  3117. if (err)
  3118. goto error_up;
  3119. err = ql_adapter_up(qdev);
  3120. if (err)
  3121. goto error_up;
  3122. return err;
  3123. error_up:
  3124. ql_release_adapter_resources(qdev);
  3125. return err;
  3126. }
  3127. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3128. {
  3129. struct ql_adapter *qdev = netdev_priv(ndev);
  3130. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3131. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3132. queue_delayed_work(qdev->workqueue,
  3133. &qdev->mpi_port_cfg_work, 0);
  3134. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3135. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3136. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3137. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3138. return 0;
  3139. } else
  3140. return -EINVAL;
  3141. ndev->mtu = new_mtu;
  3142. return 0;
  3143. }
  3144. static struct net_device_stats *qlge_get_stats(struct net_device
  3145. *ndev)
  3146. {
  3147. struct ql_adapter *qdev = netdev_priv(ndev);
  3148. return &qdev->stats;
  3149. }
  3150. static void qlge_set_multicast_list(struct net_device *ndev)
  3151. {
  3152. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3153. struct dev_mc_list *mc_ptr;
  3154. int i, status;
  3155. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3156. if (status)
  3157. return;
  3158. spin_lock(&qdev->hw_lock);
  3159. /*
  3160. * Set or clear promiscuous mode if a
  3161. * transition is taking place.
  3162. */
  3163. if (ndev->flags & IFF_PROMISC) {
  3164. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3165. if (ql_set_routing_reg
  3166. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3167. QPRINTK(qdev, HW, ERR,
  3168. "Failed to set promiscous mode.\n");
  3169. } else {
  3170. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3171. }
  3172. }
  3173. } else {
  3174. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3175. if (ql_set_routing_reg
  3176. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3177. QPRINTK(qdev, HW, ERR,
  3178. "Failed to clear promiscous mode.\n");
  3179. } else {
  3180. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3181. }
  3182. }
  3183. }
  3184. /*
  3185. * Set or clear all multicast mode if a
  3186. * transition is taking place.
  3187. */
  3188. if ((ndev->flags & IFF_ALLMULTI) ||
  3189. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3190. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3191. if (ql_set_routing_reg
  3192. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3193. QPRINTK(qdev, HW, ERR,
  3194. "Failed to set all-multi mode.\n");
  3195. } else {
  3196. set_bit(QL_ALLMULTI, &qdev->flags);
  3197. }
  3198. }
  3199. } else {
  3200. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3201. if (ql_set_routing_reg
  3202. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3203. QPRINTK(qdev, HW, ERR,
  3204. "Failed to clear all-multi mode.\n");
  3205. } else {
  3206. clear_bit(QL_ALLMULTI, &qdev->flags);
  3207. }
  3208. }
  3209. }
  3210. if (ndev->mc_count) {
  3211. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3212. if (status)
  3213. goto exit;
  3214. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3215. i++, mc_ptr = mc_ptr->next)
  3216. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3217. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3218. QPRINTK(qdev, HW, ERR,
  3219. "Failed to loadmulticast address.\n");
  3220. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3221. goto exit;
  3222. }
  3223. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3224. if (ql_set_routing_reg
  3225. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3226. QPRINTK(qdev, HW, ERR,
  3227. "Failed to set multicast match mode.\n");
  3228. } else {
  3229. set_bit(QL_ALLMULTI, &qdev->flags);
  3230. }
  3231. }
  3232. exit:
  3233. spin_unlock(&qdev->hw_lock);
  3234. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3235. }
  3236. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3237. {
  3238. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3239. struct sockaddr *addr = p;
  3240. int status;
  3241. if (netif_running(ndev))
  3242. return -EBUSY;
  3243. if (!is_valid_ether_addr(addr->sa_data))
  3244. return -EADDRNOTAVAIL;
  3245. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3246. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3247. if (status)
  3248. return status;
  3249. spin_lock(&qdev->hw_lock);
  3250. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3251. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3252. spin_unlock(&qdev->hw_lock);
  3253. if (status)
  3254. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3255. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3256. return status;
  3257. }
  3258. static void qlge_tx_timeout(struct net_device *ndev)
  3259. {
  3260. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3261. ql_queue_asic_error(qdev);
  3262. }
  3263. static void ql_asic_reset_work(struct work_struct *work)
  3264. {
  3265. struct ql_adapter *qdev =
  3266. container_of(work, struct ql_adapter, asic_reset_work.work);
  3267. int status;
  3268. status = ql_adapter_down(qdev);
  3269. if (status)
  3270. goto error;
  3271. status = ql_adapter_up(qdev);
  3272. if (status)
  3273. goto error;
  3274. return;
  3275. error:
  3276. QPRINTK(qdev, IFUP, ALERT,
  3277. "Driver up/down cycle failed, closing device\n");
  3278. rtnl_lock();
  3279. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3280. dev_close(qdev->ndev);
  3281. rtnl_unlock();
  3282. }
  3283. static struct nic_operations qla8012_nic_ops = {
  3284. .get_flash = ql_get_8012_flash_params,
  3285. .port_initialize = ql_8012_port_initialize,
  3286. };
  3287. static struct nic_operations qla8000_nic_ops = {
  3288. .get_flash = ql_get_8000_flash_params,
  3289. .port_initialize = ql_8000_port_initialize,
  3290. };
  3291. static void ql_get_board_info(struct ql_adapter *qdev)
  3292. {
  3293. qdev->func =
  3294. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3295. if (qdev->func) {
  3296. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3297. qdev->port_link_up = STS_PL1;
  3298. qdev->port_init = STS_PI1;
  3299. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3300. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3301. } else {
  3302. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3303. qdev->port_link_up = STS_PL0;
  3304. qdev->port_init = STS_PI0;
  3305. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3306. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3307. }
  3308. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3309. qdev->device_id = qdev->pdev->device;
  3310. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3311. qdev->nic_ops = &qla8012_nic_ops;
  3312. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3313. qdev->nic_ops = &qla8000_nic_ops;
  3314. }
  3315. static void ql_release_all(struct pci_dev *pdev)
  3316. {
  3317. struct net_device *ndev = pci_get_drvdata(pdev);
  3318. struct ql_adapter *qdev = netdev_priv(ndev);
  3319. if (qdev->workqueue) {
  3320. destroy_workqueue(qdev->workqueue);
  3321. qdev->workqueue = NULL;
  3322. }
  3323. if (qdev->q_workqueue) {
  3324. destroy_workqueue(qdev->q_workqueue);
  3325. qdev->q_workqueue = NULL;
  3326. }
  3327. if (qdev->reg_base)
  3328. iounmap(qdev->reg_base);
  3329. if (qdev->doorbell_area)
  3330. iounmap(qdev->doorbell_area);
  3331. pci_release_regions(pdev);
  3332. pci_set_drvdata(pdev, NULL);
  3333. }
  3334. static int __devinit ql_init_device(struct pci_dev *pdev,
  3335. struct net_device *ndev, int cards_found)
  3336. {
  3337. struct ql_adapter *qdev = netdev_priv(ndev);
  3338. int pos, err = 0;
  3339. u16 val16;
  3340. memset((void *)qdev, 0, sizeof(qdev));
  3341. err = pci_enable_device(pdev);
  3342. if (err) {
  3343. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3344. return err;
  3345. }
  3346. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3347. if (pos <= 0) {
  3348. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3349. "aborting.\n");
  3350. goto err_out;
  3351. } else {
  3352. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3353. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3354. val16 |= (PCI_EXP_DEVCTL_CERE |
  3355. PCI_EXP_DEVCTL_NFERE |
  3356. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3357. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3358. }
  3359. err = pci_request_regions(pdev, DRV_NAME);
  3360. if (err) {
  3361. dev_err(&pdev->dev, "PCI region request failed.\n");
  3362. goto err_out;
  3363. }
  3364. pci_set_master(pdev);
  3365. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3366. set_bit(QL_DMA64, &qdev->flags);
  3367. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3368. } else {
  3369. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3370. if (!err)
  3371. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3372. }
  3373. if (err) {
  3374. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3375. goto err_out;
  3376. }
  3377. pci_set_drvdata(pdev, ndev);
  3378. qdev->reg_base =
  3379. ioremap_nocache(pci_resource_start(pdev, 1),
  3380. pci_resource_len(pdev, 1));
  3381. if (!qdev->reg_base) {
  3382. dev_err(&pdev->dev, "Register mapping failed.\n");
  3383. err = -ENOMEM;
  3384. goto err_out;
  3385. }
  3386. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3387. qdev->doorbell_area =
  3388. ioremap_nocache(pci_resource_start(pdev, 3),
  3389. pci_resource_len(pdev, 3));
  3390. if (!qdev->doorbell_area) {
  3391. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3392. err = -ENOMEM;
  3393. goto err_out;
  3394. }
  3395. qdev->ndev = ndev;
  3396. qdev->pdev = pdev;
  3397. ql_get_board_info(qdev);
  3398. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3399. spin_lock_init(&qdev->hw_lock);
  3400. spin_lock_init(&qdev->stats_lock);
  3401. /* make sure the EEPROM is good */
  3402. err = qdev->nic_ops->get_flash(qdev);
  3403. if (err) {
  3404. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3405. goto err_out;
  3406. }
  3407. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3408. /* Set up the default ring sizes. */
  3409. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3410. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3411. /* Set up the coalescing parameters. */
  3412. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3413. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3414. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3415. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3416. /*
  3417. * Set up the operating parameters.
  3418. */
  3419. qdev->rx_csum = 1;
  3420. qdev->q_workqueue = create_workqueue(ndev->name);
  3421. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3422. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3423. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3424. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3425. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  3426. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  3427. mutex_init(&qdev->mpi_mutex);
  3428. init_completion(&qdev->ide_completion);
  3429. if (!cards_found) {
  3430. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3431. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3432. DRV_NAME, DRV_VERSION);
  3433. }
  3434. return 0;
  3435. err_out:
  3436. ql_release_all(pdev);
  3437. pci_disable_device(pdev);
  3438. return err;
  3439. }
  3440. static const struct net_device_ops qlge_netdev_ops = {
  3441. .ndo_open = qlge_open,
  3442. .ndo_stop = qlge_close,
  3443. .ndo_start_xmit = qlge_send,
  3444. .ndo_change_mtu = qlge_change_mtu,
  3445. .ndo_get_stats = qlge_get_stats,
  3446. .ndo_set_multicast_list = qlge_set_multicast_list,
  3447. .ndo_set_mac_address = qlge_set_mac_address,
  3448. .ndo_validate_addr = eth_validate_addr,
  3449. .ndo_tx_timeout = qlge_tx_timeout,
  3450. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3451. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3452. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3453. };
  3454. static int __devinit qlge_probe(struct pci_dev *pdev,
  3455. const struct pci_device_id *pci_entry)
  3456. {
  3457. struct net_device *ndev = NULL;
  3458. struct ql_adapter *qdev = NULL;
  3459. static int cards_found = 0;
  3460. int err = 0;
  3461. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  3462. min(MAX_CPUS, (int)num_online_cpus()));
  3463. if (!ndev)
  3464. return -ENOMEM;
  3465. err = ql_init_device(pdev, ndev, cards_found);
  3466. if (err < 0) {
  3467. free_netdev(ndev);
  3468. return err;
  3469. }
  3470. qdev = netdev_priv(ndev);
  3471. SET_NETDEV_DEV(ndev, &pdev->dev);
  3472. ndev->features = (0
  3473. | NETIF_F_IP_CSUM
  3474. | NETIF_F_SG
  3475. | NETIF_F_TSO
  3476. | NETIF_F_TSO6
  3477. | NETIF_F_TSO_ECN
  3478. | NETIF_F_HW_VLAN_TX
  3479. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3480. ndev->features |= NETIF_F_GRO;
  3481. if (test_bit(QL_DMA64, &qdev->flags))
  3482. ndev->features |= NETIF_F_HIGHDMA;
  3483. /*
  3484. * Set up net_device structure.
  3485. */
  3486. ndev->tx_queue_len = qdev->tx_ring_size;
  3487. ndev->irq = pdev->irq;
  3488. ndev->netdev_ops = &qlge_netdev_ops;
  3489. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3490. ndev->watchdog_timeo = 10 * HZ;
  3491. err = register_netdev(ndev);
  3492. if (err) {
  3493. dev_err(&pdev->dev, "net device registration failed.\n");
  3494. ql_release_all(pdev);
  3495. pci_disable_device(pdev);
  3496. return err;
  3497. }
  3498. netif_carrier_off(ndev);
  3499. ql_display_dev_info(ndev);
  3500. cards_found++;
  3501. return 0;
  3502. }
  3503. static void __devexit qlge_remove(struct pci_dev *pdev)
  3504. {
  3505. struct net_device *ndev = pci_get_drvdata(pdev);
  3506. unregister_netdev(ndev);
  3507. ql_release_all(pdev);
  3508. pci_disable_device(pdev);
  3509. free_netdev(ndev);
  3510. }
  3511. /*
  3512. * This callback is called by the PCI subsystem whenever
  3513. * a PCI bus error is detected.
  3514. */
  3515. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3516. enum pci_channel_state state)
  3517. {
  3518. struct net_device *ndev = pci_get_drvdata(pdev);
  3519. struct ql_adapter *qdev = netdev_priv(ndev);
  3520. if (netif_running(ndev))
  3521. ql_adapter_down(qdev);
  3522. pci_disable_device(pdev);
  3523. /* Request a slot reset. */
  3524. return PCI_ERS_RESULT_NEED_RESET;
  3525. }
  3526. /*
  3527. * This callback is called after the PCI buss has been reset.
  3528. * Basically, this tries to restart the card from scratch.
  3529. * This is a shortened version of the device probe/discovery code,
  3530. * it resembles the first-half of the () routine.
  3531. */
  3532. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3533. {
  3534. struct net_device *ndev = pci_get_drvdata(pdev);
  3535. struct ql_adapter *qdev = netdev_priv(ndev);
  3536. if (pci_enable_device(pdev)) {
  3537. QPRINTK(qdev, IFUP, ERR,
  3538. "Cannot re-enable PCI device after reset.\n");
  3539. return PCI_ERS_RESULT_DISCONNECT;
  3540. }
  3541. pci_set_master(pdev);
  3542. netif_carrier_off(ndev);
  3543. ql_adapter_reset(qdev);
  3544. /* Make sure the EEPROM is good */
  3545. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3546. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3547. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3548. return PCI_ERS_RESULT_DISCONNECT;
  3549. }
  3550. return PCI_ERS_RESULT_RECOVERED;
  3551. }
  3552. static void qlge_io_resume(struct pci_dev *pdev)
  3553. {
  3554. struct net_device *ndev = pci_get_drvdata(pdev);
  3555. struct ql_adapter *qdev = netdev_priv(ndev);
  3556. pci_set_master(pdev);
  3557. if (netif_running(ndev)) {
  3558. if (ql_adapter_up(qdev)) {
  3559. QPRINTK(qdev, IFUP, ERR,
  3560. "Device initialization failed after reset.\n");
  3561. return;
  3562. }
  3563. }
  3564. netif_device_attach(ndev);
  3565. }
  3566. static struct pci_error_handlers qlge_err_handler = {
  3567. .error_detected = qlge_io_error_detected,
  3568. .slot_reset = qlge_io_slot_reset,
  3569. .resume = qlge_io_resume,
  3570. };
  3571. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3572. {
  3573. struct net_device *ndev = pci_get_drvdata(pdev);
  3574. struct ql_adapter *qdev = netdev_priv(ndev);
  3575. int err;
  3576. netif_device_detach(ndev);
  3577. if (netif_running(ndev)) {
  3578. err = ql_adapter_down(qdev);
  3579. if (!err)
  3580. return err;
  3581. }
  3582. err = pci_save_state(pdev);
  3583. if (err)
  3584. return err;
  3585. pci_disable_device(pdev);
  3586. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3587. return 0;
  3588. }
  3589. #ifdef CONFIG_PM
  3590. static int qlge_resume(struct pci_dev *pdev)
  3591. {
  3592. struct net_device *ndev = pci_get_drvdata(pdev);
  3593. struct ql_adapter *qdev = netdev_priv(ndev);
  3594. int err;
  3595. pci_set_power_state(pdev, PCI_D0);
  3596. pci_restore_state(pdev);
  3597. err = pci_enable_device(pdev);
  3598. if (err) {
  3599. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3600. return err;
  3601. }
  3602. pci_set_master(pdev);
  3603. pci_enable_wake(pdev, PCI_D3hot, 0);
  3604. pci_enable_wake(pdev, PCI_D3cold, 0);
  3605. if (netif_running(ndev)) {
  3606. err = ql_adapter_up(qdev);
  3607. if (err)
  3608. return err;
  3609. }
  3610. netif_device_attach(ndev);
  3611. return 0;
  3612. }
  3613. #endif /* CONFIG_PM */
  3614. static void qlge_shutdown(struct pci_dev *pdev)
  3615. {
  3616. qlge_suspend(pdev, PMSG_SUSPEND);
  3617. }
  3618. static struct pci_driver qlge_driver = {
  3619. .name = DRV_NAME,
  3620. .id_table = qlge_pci_tbl,
  3621. .probe = qlge_probe,
  3622. .remove = __devexit_p(qlge_remove),
  3623. #ifdef CONFIG_PM
  3624. .suspend = qlge_suspend,
  3625. .resume = qlge_resume,
  3626. #endif
  3627. .shutdown = qlge_shutdown,
  3628. .err_handler = &qlge_err_handler
  3629. };
  3630. static int __init qlge_init_module(void)
  3631. {
  3632. return pci_register_driver(&qlge_driver);
  3633. }
  3634. static void __exit qlge_exit(void)
  3635. {
  3636. pci_unregister_driver(&qlge_driver);
  3637. }
  3638. module_init(qlge_init_module);
  3639. module_exit(qlge_exit);