ns83820.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339
  1. #define VERSION "0.23"
  2. /* ns83820.c by Benjamin LaHaise with contributions.
  3. *
  4. * Questions/comments/discussion to linux-ns83820@kvack.org.
  5. *
  6. * $Revision: 1.34.2.23 $
  7. *
  8. * Copyright 2001 Benjamin LaHaise.
  9. * Copyright 2001, 2002 Red Hat.
  10. *
  11. * Mmmm, chocolate vanilla mocha...
  12. *
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or
  17. * (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  27. *
  28. *
  29. * ChangeLog
  30. * =========
  31. * 20010414 0.1 - created
  32. * 20010622 0.2 - basic rx and tx.
  33. * 20010711 0.3 - added duplex and link state detection support.
  34. * 20010713 0.4 - zero copy, no hangs.
  35. * 0.5 - 64 bit dma support (davem will hate me for this)
  36. * - disable jumbo frames to avoid tx hangs
  37. * - work around tx deadlocks on my 1.02 card via
  38. * fiddling with TXCFG
  39. * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
  40. * 20010816 0.7 - misc cleanups
  41. * 20010826 0.8 - fix critical zero copy bugs
  42. * 0.9 - internal experiment
  43. * 20010827 0.10 - fix ia64 unaligned access.
  44. * 20010906 0.11 - accept all packets with checksum errors as
  45. * otherwise fragments get lost
  46. * - fix >> 32 bugs
  47. * 0.12 - add statistics counters
  48. * - add allmulti/promisc support
  49. * 20011009 0.13 - hotplug support, other smaller pci api cleanups
  50. * 20011204 0.13a - optical transceiver support added
  51. * by Michael Clark <michael@metaparadigm.com>
  52. * 20011205 0.13b - call register_netdev earlier in initialization
  53. * suppress duplicate link status messages
  54. * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
  55. * 20011204 0.15 get ppc (big endian) working
  56. * 20011218 0.16 various cleanups
  57. * 20020310 0.17 speedups
  58. * 20020610 0.18 - actually use the pci dma api for highmem
  59. * - remove pci latency register fiddling
  60. * 0.19 - better bist support
  61. * - add ihr and reset_phy parameters
  62. * - gmii bus probing
  63. * - fix missed txok introduced during performance
  64. * tuning
  65. * 0.20 - fix stupid RFEN thinko. i am such a smurf.
  66. * 20040828 0.21 - add hardware vlan accleration
  67. * by Neil Horman <nhorman@redhat.com>
  68. * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
  69. * - removal of dead code from Adrian Bunk
  70. * - fix half duplex collision behaviour
  71. * Driver Overview
  72. * ===============
  73. *
  74. * This driver was originally written for the National Semiconductor
  75. * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
  76. * this code will turn out to be a) clean, b) correct, and c) fast.
  77. * With that in mind, I'm aiming to split the code up as much as
  78. * reasonably possible. At present there are X major sections that
  79. * break down into a) packet receive, b) packet transmit, c) link
  80. * management, d) initialization and configuration. Where possible,
  81. * these code paths are designed to run in parallel.
  82. *
  83. * This driver has been tested and found to work with the following
  84. * cards (in no particular order):
  85. *
  86. * Cameo SOHO-GA2000T SOHO-GA2500T
  87. * D-Link DGE-500T
  88. * PureData PDP8023Z-TG
  89. * SMC SMC9452TX SMC9462TX
  90. * Netgear GA621
  91. *
  92. * Special thanks to SMC for providing hardware to test this driver on.
  93. *
  94. * Reports of success or failure would be greatly appreciated.
  95. */
  96. //#define dprintk printk
  97. #define dprintk(x...) do { } while (0)
  98. #include <linux/module.h>
  99. #include <linux/moduleparam.h>
  100. #include <linux/types.h>
  101. #include <linux/pci.h>
  102. #include <linux/dma-mapping.h>
  103. #include <linux/netdevice.h>
  104. #include <linux/etherdevice.h>
  105. #include <linux/delay.h>
  106. #include <linux/workqueue.h>
  107. #include <linux/init.h>
  108. #include <linux/ip.h> /* for iph */
  109. #include <linux/in.h> /* for IPPROTO_... */
  110. #include <linux/compiler.h>
  111. #include <linux/prefetch.h>
  112. #include <linux/ethtool.h>
  113. #include <linux/timer.h>
  114. #include <linux/if_vlan.h>
  115. #include <linux/rtnetlink.h>
  116. #include <linux/jiffies.h>
  117. #include <asm/io.h>
  118. #include <asm/uaccess.h>
  119. #include <asm/system.h>
  120. #define DRV_NAME "ns83820"
  121. /* Global parameters. See module_param near the bottom. */
  122. static int ihr = 2;
  123. static int reset_phy = 0;
  124. static int lnksts = 0; /* CFG_LNKSTS bit polarity */
  125. /* Dprintk is used for more interesting debug events */
  126. #undef Dprintk
  127. #define Dprintk dprintk
  128. /* tunables */
  129. #define RX_BUF_SIZE 1500 /* 8192 */
  130. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  131. #define NS83820_VLAN_ACCEL_SUPPORT
  132. #endif
  133. /* Must not exceed ~65000. */
  134. #define NR_RX_DESC 64
  135. #define NR_TX_DESC 128
  136. /* not tunable */
  137. #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
  138. #define MIN_TX_DESC_FREE 8
  139. /* register defines */
  140. #define CFGCS 0x04
  141. #define CR_TXE 0x00000001
  142. #define CR_TXD 0x00000002
  143. /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
  144. * The Receive engine skips one descriptor and moves
  145. * onto the next one!! */
  146. #define CR_RXE 0x00000004
  147. #define CR_RXD 0x00000008
  148. #define CR_TXR 0x00000010
  149. #define CR_RXR 0x00000020
  150. #define CR_SWI 0x00000080
  151. #define CR_RST 0x00000100
  152. #define PTSCR_EEBIST_FAIL 0x00000001
  153. #define PTSCR_EEBIST_EN 0x00000002
  154. #define PTSCR_EELOAD_EN 0x00000004
  155. #define PTSCR_RBIST_FAIL 0x000001b8
  156. #define PTSCR_RBIST_DONE 0x00000200
  157. #define PTSCR_RBIST_EN 0x00000400
  158. #define PTSCR_RBIST_RST 0x00002000
  159. #define MEAR_EEDI 0x00000001
  160. #define MEAR_EEDO 0x00000002
  161. #define MEAR_EECLK 0x00000004
  162. #define MEAR_EESEL 0x00000008
  163. #define MEAR_MDIO 0x00000010
  164. #define MEAR_MDDIR 0x00000020
  165. #define MEAR_MDC 0x00000040
  166. #define ISR_TXDESC3 0x40000000
  167. #define ISR_TXDESC2 0x20000000
  168. #define ISR_TXDESC1 0x10000000
  169. #define ISR_TXDESC0 0x08000000
  170. #define ISR_RXDESC3 0x04000000
  171. #define ISR_RXDESC2 0x02000000
  172. #define ISR_RXDESC1 0x01000000
  173. #define ISR_RXDESC0 0x00800000
  174. #define ISR_TXRCMP 0x00400000
  175. #define ISR_RXRCMP 0x00200000
  176. #define ISR_DPERR 0x00100000
  177. #define ISR_SSERR 0x00080000
  178. #define ISR_RMABT 0x00040000
  179. #define ISR_RTABT 0x00020000
  180. #define ISR_RXSOVR 0x00010000
  181. #define ISR_HIBINT 0x00008000
  182. #define ISR_PHY 0x00004000
  183. #define ISR_PME 0x00002000
  184. #define ISR_SWI 0x00001000
  185. #define ISR_MIB 0x00000800
  186. #define ISR_TXURN 0x00000400
  187. #define ISR_TXIDLE 0x00000200
  188. #define ISR_TXERR 0x00000100
  189. #define ISR_TXDESC 0x00000080
  190. #define ISR_TXOK 0x00000040
  191. #define ISR_RXORN 0x00000020
  192. #define ISR_RXIDLE 0x00000010
  193. #define ISR_RXEARLY 0x00000008
  194. #define ISR_RXERR 0x00000004
  195. #define ISR_RXDESC 0x00000002
  196. #define ISR_RXOK 0x00000001
  197. #define TXCFG_CSI 0x80000000
  198. #define TXCFG_HBI 0x40000000
  199. #define TXCFG_MLB 0x20000000
  200. #define TXCFG_ATP 0x10000000
  201. #define TXCFG_ECRETRY 0x00800000
  202. #define TXCFG_BRST_DIS 0x00080000
  203. #define TXCFG_MXDMA1024 0x00000000
  204. #define TXCFG_MXDMA512 0x00700000
  205. #define TXCFG_MXDMA256 0x00600000
  206. #define TXCFG_MXDMA128 0x00500000
  207. #define TXCFG_MXDMA64 0x00400000
  208. #define TXCFG_MXDMA32 0x00300000
  209. #define TXCFG_MXDMA16 0x00200000
  210. #define TXCFG_MXDMA8 0x00100000
  211. #define CFG_LNKSTS 0x80000000
  212. #define CFG_SPDSTS 0x60000000
  213. #define CFG_SPDSTS1 0x40000000
  214. #define CFG_SPDSTS0 0x20000000
  215. #define CFG_DUPSTS 0x10000000
  216. #define CFG_TBI_EN 0x01000000
  217. #define CFG_MODE_1000 0x00400000
  218. /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
  219. * Read the Phy response and then configure the MAC accordingly */
  220. #define CFG_AUTO_1000 0x00200000
  221. #define CFG_PINT_CTL 0x001c0000
  222. #define CFG_PINT_DUPSTS 0x00100000
  223. #define CFG_PINT_LNKSTS 0x00080000
  224. #define CFG_PINT_SPDSTS 0x00040000
  225. #define CFG_TMRTEST 0x00020000
  226. #define CFG_MRM_DIS 0x00010000
  227. #define CFG_MWI_DIS 0x00008000
  228. #define CFG_T64ADDR 0x00004000
  229. #define CFG_PCI64_DET 0x00002000
  230. #define CFG_DATA64_EN 0x00001000
  231. #define CFG_M64ADDR 0x00000800
  232. #define CFG_PHY_RST 0x00000400
  233. #define CFG_PHY_DIS 0x00000200
  234. #define CFG_EXTSTS_EN 0x00000100
  235. #define CFG_REQALG 0x00000080
  236. #define CFG_SB 0x00000040
  237. #define CFG_POW 0x00000020
  238. #define CFG_EXD 0x00000010
  239. #define CFG_PESEL 0x00000008
  240. #define CFG_BROM_DIS 0x00000004
  241. #define CFG_EXT_125 0x00000002
  242. #define CFG_BEM 0x00000001
  243. #define EXTSTS_UDPPKT 0x00200000
  244. #define EXTSTS_TCPPKT 0x00080000
  245. #define EXTSTS_IPPKT 0x00020000
  246. #define EXTSTS_VPKT 0x00010000
  247. #define EXTSTS_VTG_MASK 0x0000ffff
  248. #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
  249. #define MIBC_MIBS 0x00000008
  250. #define MIBC_ACLR 0x00000004
  251. #define MIBC_FRZ 0x00000002
  252. #define MIBC_WRN 0x00000001
  253. #define PCR_PSEN (1 << 31)
  254. #define PCR_PS_MCAST (1 << 30)
  255. #define PCR_PS_DA (1 << 29)
  256. #define PCR_STHI_8 (3 << 23)
  257. #define PCR_STLO_4 (1 << 23)
  258. #define PCR_FFHI_8K (3 << 21)
  259. #define PCR_FFLO_4K (1 << 21)
  260. #define PCR_PAUSE_CNT 0xFFFE
  261. #define RXCFG_AEP 0x80000000
  262. #define RXCFG_ARP 0x40000000
  263. #define RXCFG_STRIPCRC 0x20000000
  264. #define RXCFG_RX_FD 0x10000000
  265. #define RXCFG_ALP 0x08000000
  266. #define RXCFG_AIRL 0x04000000
  267. #define RXCFG_MXDMA512 0x00700000
  268. #define RXCFG_DRTH 0x0000003e
  269. #define RXCFG_DRTH0 0x00000002
  270. #define RFCR_RFEN 0x80000000
  271. #define RFCR_AAB 0x40000000
  272. #define RFCR_AAM 0x20000000
  273. #define RFCR_AAU 0x10000000
  274. #define RFCR_APM 0x08000000
  275. #define RFCR_APAT 0x07800000
  276. #define RFCR_APAT3 0x04000000
  277. #define RFCR_APAT2 0x02000000
  278. #define RFCR_APAT1 0x01000000
  279. #define RFCR_APAT0 0x00800000
  280. #define RFCR_AARP 0x00400000
  281. #define RFCR_MHEN 0x00200000
  282. #define RFCR_UHEN 0x00100000
  283. #define RFCR_ULM 0x00080000
  284. #define VRCR_RUDPE 0x00000080
  285. #define VRCR_RTCPE 0x00000040
  286. #define VRCR_RIPE 0x00000020
  287. #define VRCR_IPEN 0x00000010
  288. #define VRCR_DUTF 0x00000008
  289. #define VRCR_DVTF 0x00000004
  290. #define VRCR_VTREN 0x00000002
  291. #define VRCR_VTDEN 0x00000001
  292. #define VTCR_PPCHK 0x00000008
  293. #define VTCR_GCHK 0x00000004
  294. #define VTCR_VPPTI 0x00000002
  295. #define VTCR_VGTI 0x00000001
  296. #define CR 0x00
  297. #define CFG 0x04
  298. #define MEAR 0x08
  299. #define PTSCR 0x0c
  300. #define ISR 0x10
  301. #define IMR 0x14
  302. #define IER 0x18
  303. #define IHR 0x1c
  304. #define TXDP 0x20
  305. #define TXDP_HI 0x24
  306. #define TXCFG 0x28
  307. #define GPIOR 0x2c
  308. #define RXDP 0x30
  309. #define RXDP_HI 0x34
  310. #define RXCFG 0x38
  311. #define PQCR 0x3c
  312. #define WCSR 0x40
  313. #define PCR 0x44
  314. #define RFCR 0x48
  315. #define RFDR 0x4c
  316. #define SRR 0x58
  317. #define VRCR 0xbc
  318. #define VTCR 0xc0
  319. #define VDR 0xc4
  320. #define CCSR 0xcc
  321. #define TBICR 0xe0
  322. #define TBISR 0xe4
  323. #define TANAR 0xe8
  324. #define TANLPAR 0xec
  325. #define TANER 0xf0
  326. #define TESR 0xf4
  327. #define TBICR_MR_AN_ENABLE 0x00001000
  328. #define TBICR_MR_RESTART_AN 0x00000200
  329. #define TBISR_MR_LINK_STATUS 0x00000020
  330. #define TBISR_MR_AN_COMPLETE 0x00000004
  331. #define TANAR_PS2 0x00000100
  332. #define TANAR_PS1 0x00000080
  333. #define TANAR_HALF_DUP 0x00000040
  334. #define TANAR_FULL_DUP 0x00000020
  335. #define GPIOR_GP5_OE 0x00000200
  336. #define GPIOR_GP4_OE 0x00000100
  337. #define GPIOR_GP3_OE 0x00000080
  338. #define GPIOR_GP2_OE 0x00000040
  339. #define GPIOR_GP1_OE 0x00000020
  340. #define GPIOR_GP3_OUT 0x00000004
  341. #define GPIOR_GP1_OUT 0x00000001
  342. #define LINK_AUTONEGOTIATE 0x01
  343. #define LINK_DOWN 0x02
  344. #define LINK_UP 0x04
  345. #define HW_ADDR_LEN sizeof(dma_addr_t)
  346. #define desc_addr_set(desc, addr) \
  347. do { \
  348. ((desc)[0] = cpu_to_le32(addr)); \
  349. if (HW_ADDR_LEN == 8) \
  350. (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
  351. } while(0)
  352. #define desc_addr_get(desc) \
  353. (le32_to_cpu((desc)[0]) | \
  354. (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
  355. #define DESC_LINK 0
  356. #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
  357. #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
  358. #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
  359. #define CMDSTS_OWN 0x80000000
  360. #define CMDSTS_MORE 0x40000000
  361. #define CMDSTS_INTR 0x20000000
  362. #define CMDSTS_ERR 0x10000000
  363. #define CMDSTS_OK 0x08000000
  364. #define CMDSTS_RUNT 0x00200000
  365. #define CMDSTS_LEN_MASK 0x0000ffff
  366. #define CMDSTS_DEST_MASK 0x01800000
  367. #define CMDSTS_DEST_SELF 0x00800000
  368. #define CMDSTS_DEST_MULTI 0x01000000
  369. #define DESC_SIZE 8 /* Should be cache line sized */
  370. struct rx_info {
  371. spinlock_t lock;
  372. int up;
  373. unsigned long idle;
  374. struct sk_buff *skbs[NR_RX_DESC];
  375. __le32 *next_rx_desc;
  376. u16 next_rx, next_empty;
  377. __le32 *descs;
  378. dma_addr_t phy_descs;
  379. };
  380. struct ns83820 {
  381. struct net_device_stats stats;
  382. u8 __iomem *base;
  383. struct pci_dev *pci_dev;
  384. struct net_device *ndev;
  385. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  386. struct vlan_group *vlgrp;
  387. #endif
  388. struct rx_info rx_info;
  389. struct tasklet_struct rx_tasklet;
  390. unsigned ihr;
  391. struct work_struct tq_refill;
  392. /* protects everything below. irqsave when using. */
  393. spinlock_t misc_lock;
  394. u32 CFG_cache;
  395. u32 MEAR_cache;
  396. u32 IMR_cache;
  397. unsigned linkstate;
  398. spinlock_t tx_lock;
  399. u16 tx_done_idx;
  400. u16 tx_idx;
  401. volatile u16 tx_free_idx; /* idx of free desc chain */
  402. u16 tx_intr_idx;
  403. atomic_t nr_tx_skbs;
  404. struct sk_buff *tx_skbs[NR_TX_DESC];
  405. char pad[16] __attribute__((aligned(16)));
  406. __le32 *tx_descs;
  407. dma_addr_t tx_phy_descs;
  408. struct timer_list tx_watchdog;
  409. };
  410. static inline struct ns83820 *PRIV(struct net_device *dev)
  411. {
  412. return netdev_priv(dev);
  413. }
  414. #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
  415. static inline void kick_rx(struct net_device *ndev)
  416. {
  417. struct ns83820 *dev = PRIV(ndev);
  418. dprintk("kick_rx: maybe kicking\n");
  419. if (test_and_clear_bit(0, &dev->rx_info.idle)) {
  420. dprintk("actually kicking\n");
  421. writel(dev->rx_info.phy_descs +
  422. (4 * DESC_SIZE * dev->rx_info.next_rx),
  423. dev->base + RXDP);
  424. if (dev->rx_info.next_rx == dev->rx_info.next_empty)
  425. printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
  426. ndev->name);
  427. __kick_rx(dev);
  428. }
  429. }
  430. //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
  431. #define start_tx_okay(dev) \
  432. (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
  433. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  434. static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  435. {
  436. struct ns83820 *dev = PRIV(ndev);
  437. spin_lock_irq(&dev->misc_lock);
  438. spin_lock(&dev->tx_lock);
  439. dev->vlgrp = grp;
  440. spin_unlock(&dev->tx_lock);
  441. spin_unlock_irq(&dev->misc_lock);
  442. }
  443. #endif
  444. /* Packet Receiver
  445. *
  446. * The hardware supports linked lists of receive descriptors for
  447. * which ownership is transfered back and forth by means of an
  448. * ownership bit. While the hardware does support the use of a
  449. * ring for receive descriptors, we only make use of a chain in
  450. * an attempt to reduce bus traffic under heavy load scenarios.
  451. * This will also make bugs a bit more obvious. The current code
  452. * only makes use of a single rx chain; I hope to implement
  453. * priority based rx for version 1.0. Goal: even under overload
  454. * conditions, still route realtime traffic with as low jitter as
  455. * possible.
  456. */
  457. static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
  458. {
  459. desc_addr_set(desc + DESC_LINK, link);
  460. desc_addr_set(desc + DESC_BUFPTR, buf);
  461. desc[DESC_EXTSTS] = cpu_to_le32(extsts);
  462. mb();
  463. desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
  464. }
  465. #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
  466. static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
  467. {
  468. unsigned next_empty;
  469. u32 cmdsts;
  470. __le32 *sg;
  471. dma_addr_t buf;
  472. next_empty = dev->rx_info.next_empty;
  473. /* don't overrun last rx marker */
  474. if (unlikely(nr_rx_empty(dev) <= 2)) {
  475. kfree_skb(skb);
  476. return 1;
  477. }
  478. #if 0
  479. dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
  480. dev->rx_info.next_empty,
  481. dev->rx_info.nr_used,
  482. dev->rx_info.next_rx
  483. );
  484. #endif
  485. sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
  486. BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
  487. dev->rx_info.skbs[next_empty] = skb;
  488. dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
  489. cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
  490. buf = pci_map_single(dev->pci_dev, skb->data,
  491. REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  492. build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
  493. /* update link of previous rx */
  494. if (likely(next_empty != dev->rx_info.next_rx))
  495. dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
  496. return 0;
  497. }
  498. static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
  499. {
  500. struct ns83820 *dev = PRIV(ndev);
  501. unsigned i;
  502. unsigned long flags = 0;
  503. if (unlikely(nr_rx_empty(dev) <= 2))
  504. return 0;
  505. dprintk("rx_refill(%p)\n", ndev);
  506. if (gfp == GFP_ATOMIC)
  507. spin_lock_irqsave(&dev->rx_info.lock, flags);
  508. for (i=0; i<NR_RX_DESC; i++) {
  509. struct sk_buff *skb;
  510. long res;
  511. /* extra 16 bytes for alignment */
  512. skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
  513. if (unlikely(!skb))
  514. break;
  515. skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
  516. if (gfp != GFP_ATOMIC)
  517. spin_lock_irqsave(&dev->rx_info.lock, flags);
  518. res = ns83820_add_rx_skb(dev, skb);
  519. if (gfp != GFP_ATOMIC)
  520. spin_unlock_irqrestore(&dev->rx_info.lock, flags);
  521. if (res) {
  522. i = 1;
  523. break;
  524. }
  525. }
  526. if (gfp == GFP_ATOMIC)
  527. spin_unlock_irqrestore(&dev->rx_info.lock, flags);
  528. return i ? 0 : -ENOMEM;
  529. }
  530. static void rx_refill_atomic(struct net_device *ndev)
  531. {
  532. rx_refill(ndev, GFP_ATOMIC);
  533. }
  534. /* REFILL */
  535. static inline void queue_refill(struct work_struct *work)
  536. {
  537. struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
  538. struct net_device *ndev = dev->ndev;
  539. rx_refill(ndev, GFP_KERNEL);
  540. if (dev->rx_info.up)
  541. kick_rx(ndev);
  542. }
  543. static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
  544. {
  545. build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
  546. }
  547. static void phy_intr(struct net_device *ndev)
  548. {
  549. struct ns83820 *dev = PRIV(ndev);
  550. static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
  551. u32 cfg, new_cfg;
  552. u32 tbisr, tanar, tanlpar;
  553. int speed, fullduplex, newlinkstate;
  554. cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
  555. if (dev->CFG_cache & CFG_TBI_EN) {
  556. /* we have an optical transceiver */
  557. tbisr = readl(dev->base + TBISR);
  558. tanar = readl(dev->base + TANAR);
  559. tanlpar = readl(dev->base + TANLPAR);
  560. dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
  561. tbisr, tanar, tanlpar);
  562. if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
  563. && (tanar & TANAR_FULL_DUP)) ) {
  564. /* both of us are full duplex */
  565. writel(readl(dev->base + TXCFG)
  566. | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
  567. dev->base + TXCFG);
  568. writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
  569. dev->base + RXCFG);
  570. /* Light up full duplex LED */
  571. writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
  572. dev->base + GPIOR);
  573. } else if(((tanlpar & TANAR_HALF_DUP)
  574. && (tanar & TANAR_HALF_DUP))
  575. || ((tanlpar & TANAR_FULL_DUP)
  576. && (tanar & TANAR_HALF_DUP))
  577. || ((tanlpar & TANAR_HALF_DUP)
  578. && (tanar & TANAR_FULL_DUP))) {
  579. /* one or both of us are half duplex */
  580. writel((readl(dev->base + TXCFG)
  581. & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
  582. dev->base + TXCFG);
  583. writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
  584. dev->base + RXCFG);
  585. /* Turn off full duplex LED */
  586. writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
  587. dev->base + GPIOR);
  588. }
  589. speed = 4; /* 1000F */
  590. } else {
  591. /* we have a copper transceiver */
  592. new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
  593. if (cfg & CFG_SPDSTS1)
  594. new_cfg |= CFG_MODE_1000;
  595. else
  596. new_cfg &= ~CFG_MODE_1000;
  597. speed = ((cfg / CFG_SPDSTS0) & 3);
  598. fullduplex = (cfg & CFG_DUPSTS);
  599. if (fullduplex) {
  600. new_cfg |= CFG_SB;
  601. writel(readl(dev->base + TXCFG)
  602. | TXCFG_CSI | TXCFG_HBI,
  603. dev->base + TXCFG);
  604. writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
  605. dev->base + RXCFG);
  606. } else {
  607. writel(readl(dev->base + TXCFG)
  608. & ~(TXCFG_CSI | TXCFG_HBI),
  609. dev->base + TXCFG);
  610. writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
  611. dev->base + RXCFG);
  612. }
  613. if ((cfg & CFG_LNKSTS) &&
  614. ((new_cfg ^ dev->CFG_cache) != 0)) {
  615. writel(new_cfg, dev->base + CFG);
  616. dev->CFG_cache = new_cfg;
  617. }
  618. dev->CFG_cache &= ~CFG_SPDSTS;
  619. dev->CFG_cache |= cfg & CFG_SPDSTS;
  620. }
  621. newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
  622. if (newlinkstate & LINK_UP
  623. && dev->linkstate != newlinkstate) {
  624. netif_start_queue(ndev);
  625. netif_wake_queue(ndev);
  626. printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
  627. ndev->name,
  628. speeds[speed],
  629. fullduplex ? "full" : "half");
  630. } else if (newlinkstate & LINK_DOWN
  631. && dev->linkstate != newlinkstate) {
  632. netif_stop_queue(ndev);
  633. printk(KERN_INFO "%s: link now down.\n", ndev->name);
  634. }
  635. dev->linkstate = newlinkstate;
  636. }
  637. static int ns83820_setup_rx(struct net_device *ndev)
  638. {
  639. struct ns83820 *dev = PRIV(ndev);
  640. unsigned i;
  641. int ret;
  642. dprintk("ns83820_setup_rx(%p)\n", ndev);
  643. dev->rx_info.idle = 1;
  644. dev->rx_info.next_rx = 0;
  645. dev->rx_info.next_rx_desc = dev->rx_info.descs;
  646. dev->rx_info.next_empty = 0;
  647. for (i=0; i<NR_RX_DESC; i++)
  648. clear_rx_desc(dev, i);
  649. writel(0, dev->base + RXDP_HI);
  650. writel(dev->rx_info.phy_descs, dev->base + RXDP);
  651. ret = rx_refill(ndev, GFP_KERNEL);
  652. if (!ret) {
  653. dprintk("starting receiver\n");
  654. /* prevent the interrupt handler from stomping on us */
  655. spin_lock_irq(&dev->rx_info.lock);
  656. writel(0x0001, dev->base + CCSR);
  657. writel(0, dev->base + RFCR);
  658. writel(0x7fc00000, dev->base + RFCR);
  659. writel(0xffc00000, dev->base + RFCR);
  660. dev->rx_info.up = 1;
  661. phy_intr(ndev);
  662. /* Okay, let it rip */
  663. spin_lock_irq(&dev->misc_lock);
  664. dev->IMR_cache |= ISR_PHY;
  665. dev->IMR_cache |= ISR_RXRCMP;
  666. //dev->IMR_cache |= ISR_RXERR;
  667. //dev->IMR_cache |= ISR_RXOK;
  668. dev->IMR_cache |= ISR_RXORN;
  669. dev->IMR_cache |= ISR_RXSOVR;
  670. dev->IMR_cache |= ISR_RXDESC;
  671. dev->IMR_cache |= ISR_RXIDLE;
  672. dev->IMR_cache |= ISR_TXDESC;
  673. dev->IMR_cache |= ISR_TXIDLE;
  674. writel(dev->IMR_cache, dev->base + IMR);
  675. writel(1, dev->base + IER);
  676. spin_unlock(&dev->misc_lock);
  677. kick_rx(ndev);
  678. spin_unlock_irq(&dev->rx_info.lock);
  679. }
  680. return ret;
  681. }
  682. static void ns83820_cleanup_rx(struct ns83820 *dev)
  683. {
  684. unsigned i;
  685. unsigned long flags;
  686. dprintk("ns83820_cleanup_rx(%p)\n", dev);
  687. /* disable receive interrupts */
  688. spin_lock_irqsave(&dev->misc_lock, flags);
  689. dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
  690. writel(dev->IMR_cache, dev->base + IMR);
  691. spin_unlock_irqrestore(&dev->misc_lock, flags);
  692. /* synchronize with the interrupt handler and kill it */
  693. dev->rx_info.up = 0;
  694. synchronize_irq(dev->pci_dev->irq);
  695. /* touch the pci bus... */
  696. readl(dev->base + IMR);
  697. /* assumes the transmitter is already disabled and reset */
  698. writel(0, dev->base + RXDP_HI);
  699. writel(0, dev->base + RXDP);
  700. for (i=0; i<NR_RX_DESC; i++) {
  701. struct sk_buff *skb = dev->rx_info.skbs[i];
  702. dev->rx_info.skbs[i] = NULL;
  703. clear_rx_desc(dev, i);
  704. kfree_skb(skb);
  705. }
  706. }
  707. static void ns83820_rx_kick(struct net_device *ndev)
  708. {
  709. struct ns83820 *dev = PRIV(ndev);
  710. /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
  711. if (dev->rx_info.up) {
  712. rx_refill_atomic(ndev);
  713. kick_rx(ndev);
  714. }
  715. }
  716. if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
  717. schedule_work(&dev->tq_refill);
  718. else
  719. kick_rx(ndev);
  720. if (dev->rx_info.idle)
  721. printk(KERN_DEBUG "%s: BAD\n", ndev->name);
  722. }
  723. /* rx_irq
  724. *
  725. */
  726. static void rx_irq(struct net_device *ndev)
  727. {
  728. struct ns83820 *dev = PRIV(ndev);
  729. struct rx_info *info = &dev->rx_info;
  730. unsigned next_rx;
  731. int rx_rc, len;
  732. u32 cmdsts;
  733. __le32 *desc;
  734. unsigned long flags;
  735. int nr = 0;
  736. dprintk("rx_irq(%p)\n", ndev);
  737. dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
  738. readl(dev->base + RXDP),
  739. (long)(dev->rx_info.phy_descs),
  740. (int)dev->rx_info.next_rx,
  741. (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
  742. (int)dev->rx_info.next_empty,
  743. (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
  744. );
  745. spin_lock_irqsave(&info->lock, flags);
  746. if (!info->up)
  747. goto out;
  748. dprintk("walking descs\n");
  749. next_rx = info->next_rx;
  750. desc = info->next_rx_desc;
  751. while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
  752. (cmdsts != CMDSTS_OWN)) {
  753. struct sk_buff *skb;
  754. u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
  755. dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
  756. dprintk("cmdsts: %08x\n", cmdsts);
  757. dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
  758. dprintk("extsts: %08x\n", extsts);
  759. skb = info->skbs[next_rx];
  760. info->skbs[next_rx] = NULL;
  761. info->next_rx = (next_rx + 1) % NR_RX_DESC;
  762. mb();
  763. clear_rx_desc(dev, next_rx);
  764. pci_unmap_single(dev->pci_dev, bufptr,
  765. RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  766. len = cmdsts & CMDSTS_LEN_MASK;
  767. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  768. /* NH: As was mentioned below, this chip is kinda
  769. * brain dead about vlan tag stripping. Frames
  770. * that are 64 bytes with a vlan header appended
  771. * like arp frames, or pings, are flagged as Runts
  772. * when the tag is stripped and hardware. This
  773. * also means that the OK bit in the descriptor
  774. * is cleared when the frame comes in so we have
  775. * to do a specific length check here to make sure
  776. * the frame would have been ok, had we not stripped
  777. * the tag.
  778. */
  779. if (likely((CMDSTS_OK & cmdsts) ||
  780. ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
  781. #else
  782. if (likely(CMDSTS_OK & cmdsts)) {
  783. #endif
  784. skb_put(skb, len);
  785. if (unlikely(!skb))
  786. goto netdev_mangle_me_harder_failed;
  787. if (cmdsts & CMDSTS_DEST_MULTI)
  788. dev->stats.multicast ++;
  789. dev->stats.rx_packets ++;
  790. dev->stats.rx_bytes += len;
  791. if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
  792. skb->ip_summed = CHECKSUM_UNNECESSARY;
  793. } else {
  794. skb->ip_summed = CHECKSUM_NONE;
  795. }
  796. skb->protocol = eth_type_trans(skb, ndev);
  797. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  798. if(extsts & EXTSTS_VPKT) {
  799. unsigned short tag;
  800. tag = ntohs(extsts & EXTSTS_VTG_MASK);
  801. rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
  802. } else {
  803. rx_rc = netif_rx(skb);
  804. }
  805. #else
  806. rx_rc = netif_rx(skb);
  807. #endif
  808. if (NET_RX_DROP == rx_rc) {
  809. netdev_mangle_me_harder_failed:
  810. dev->stats.rx_dropped ++;
  811. }
  812. } else {
  813. kfree_skb(skb);
  814. }
  815. nr++;
  816. next_rx = info->next_rx;
  817. desc = info->descs + (DESC_SIZE * next_rx);
  818. }
  819. info->next_rx = next_rx;
  820. info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
  821. out:
  822. if (0 && !nr) {
  823. Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
  824. }
  825. spin_unlock_irqrestore(&info->lock, flags);
  826. }
  827. static void rx_action(unsigned long _dev)
  828. {
  829. struct net_device *ndev = (void *)_dev;
  830. struct ns83820 *dev = PRIV(ndev);
  831. rx_irq(ndev);
  832. writel(ihr, dev->base + IHR);
  833. spin_lock_irq(&dev->misc_lock);
  834. dev->IMR_cache |= ISR_RXDESC;
  835. writel(dev->IMR_cache, dev->base + IMR);
  836. spin_unlock_irq(&dev->misc_lock);
  837. rx_irq(ndev);
  838. ns83820_rx_kick(ndev);
  839. }
  840. /* Packet Transmit code
  841. */
  842. static inline void kick_tx(struct ns83820 *dev)
  843. {
  844. dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
  845. dev, dev->tx_idx, dev->tx_free_idx);
  846. writel(CR_TXE, dev->base + CR);
  847. }
  848. /* No spinlock needed on the transmit irq path as the interrupt handler is
  849. * serialized.
  850. */
  851. static void do_tx_done(struct net_device *ndev)
  852. {
  853. struct ns83820 *dev = PRIV(ndev);
  854. u32 cmdsts, tx_done_idx;
  855. __le32 *desc;
  856. dprintk("do_tx_done(%p)\n", ndev);
  857. tx_done_idx = dev->tx_done_idx;
  858. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  859. dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  860. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  861. while ((tx_done_idx != dev->tx_free_idx) &&
  862. !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
  863. struct sk_buff *skb;
  864. unsigned len;
  865. dma_addr_t addr;
  866. if (cmdsts & CMDSTS_ERR)
  867. dev->stats.tx_errors ++;
  868. if (cmdsts & CMDSTS_OK)
  869. dev->stats.tx_packets ++;
  870. if (cmdsts & CMDSTS_OK)
  871. dev->stats.tx_bytes += cmdsts & 0xffff;
  872. dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  873. tx_done_idx, dev->tx_free_idx, cmdsts);
  874. skb = dev->tx_skbs[tx_done_idx];
  875. dev->tx_skbs[tx_done_idx] = NULL;
  876. dprintk("done(%p)\n", skb);
  877. len = cmdsts & CMDSTS_LEN_MASK;
  878. addr = desc_addr_get(desc + DESC_BUFPTR);
  879. if (skb) {
  880. pci_unmap_single(dev->pci_dev,
  881. addr,
  882. len,
  883. PCI_DMA_TODEVICE);
  884. dev_kfree_skb_irq(skb);
  885. atomic_dec(&dev->nr_tx_skbs);
  886. } else
  887. pci_unmap_page(dev->pci_dev,
  888. addr,
  889. len,
  890. PCI_DMA_TODEVICE);
  891. tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
  892. dev->tx_done_idx = tx_done_idx;
  893. desc[DESC_CMDSTS] = cpu_to_le32(0);
  894. mb();
  895. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  896. }
  897. /* Allow network stack to resume queueing packets after we've
  898. * finished transmitting at least 1/4 of the packets in the queue.
  899. */
  900. if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
  901. dprintk("start_queue(%p)\n", ndev);
  902. netif_start_queue(ndev);
  903. netif_wake_queue(ndev);
  904. }
  905. }
  906. static void ns83820_cleanup_tx(struct ns83820 *dev)
  907. {
  908. unsigned i;
  909. for (i=0; i<NR_TX_DESC; i++) {
  910. struct sk_buff *skb = dev->tx_skbs[i];
  911. dev->tx_skbs[i] = NULL;
  912. if (skb) {
  913. __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
  914. pci_unmap_single(dev->pci_dev,
  915. desc_addr_get(desc + DESC_BUFPTR),
  916. le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
  917. PCI_DMA_TODEVICE);
  918. dev_kfree_skb_irq(skb);
  919. atomic_dec(&dev->nr_tx_skbs);
  920. }
  921. }
  922. memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
  923. }
  924. /* transmit routine. This code relies on the network layer serializing
  925. * its calls in, but will run happily in parallel with the interrupt
  926. * handler. This code currently has provisions for fragmenting tx buffers
  927. * while trying to track down a bug in either the zero copy code or
  928. * the tx fifo (hence the MAX_FRAG_LEN).
  929. */
  930. static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  931. {
  932. struct ns83820 *dev = PRIV(ndev);
  933. u32 free_idx, cmdsts, extsts;
  934. int nr_free, nr_frags;
  935. unsigned tx_done_idx, last_idx;
  936. dma_addr_t buf;
  937. unsigned len;
  938. skb_frag_t *frag;
  939. int stopped = 0;
  940. int do_intr = 0;
  941. volatile __le32 *first_desc;
  942. dprintk("ns83820_hard_start_xmit\n");
  943. nr_frags = skb_shinfo(skb)->nr_frags;
  944. again:
  945. if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
  946. netif_stop_queue(ndev);
  947. if (unlikely(dev->CFG_cache & CFG_LNKSTS))
  948. return 1;
  949. netif_start_queue(ndev);
  950. }
  951. last_idx = free_idx = dev->tx_free_idx;
  952. tx_done_idx = dev->tx_done_idx;
  953. nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
  954. nr_free -= 1;
  955. if (nr_free <= nr_frags) {
  956. dprintk("stop_queue - not enough(%p)\n", ndev);
  957. netif_stop_queue(ndev);
  958. /* Check again: we may have raced with a tx done irq */
  959. if (dev->tx_done_idx != tx_done_idx) {
  960. dprintk("restart queue(%p)\n", ndev);
  961. netif_start_queue(ndev);
  962. goto again;
  963. }
  964. return 1;
  965. }
  966. if (free_idx == dev->tx_intr_idx) {
  967. do_intr = 1;
  968. dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
  969. }
  970. nr_free -= nr_frags;
  971. if (nr_free < MIN_TX_DESC_FREE) {
  972. dprintk("stop_queue - last entry(%p)\n", ndev);
  973. netif_stop_queue(ndev);
  974. stopped = 1;
  975. }
  976. frag = skb_shinfo(skb)->frags;
  977. if (!nr_frags)
  978. frag = NULL;
  979. extsts = 0;
  980. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  981. extsts |= EXTSTS_IPPKT;
  982. if (IPPROTO_TCP == ip_hdr(skb)->protocol)
  983. extsts |= EXTSTS_TCPPKT;
  984. else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
  985. extsts |= EXTSTS_UDPPKT;
  986. }
  987. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  988. if(vlan_tx_tag_present(skb)) {
  989. /* fetch the vlan tag info out of the
  990. * ancilliary data if the vlan code
  991. * is using hw vlan acceleration
  992. */
  993. short tag = vlan_tx_tag_get(skb);
  994. extsts |= (EXTSTS_VPKT | htons(tag));
  995. }
  996. #endif
  997. len = skb->len;
  998. if (nr_frags)
  999. len -= skb->data_len;
  1000. buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
  1001. first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
  1002. for (;;) {
  1003. volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
  1004. dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
  1005. (unsigned long long)buf);
  1006. last_idx = free_idx;
  1007. free_idx = (free_idx + 1) % NR_TX_DESC;
  1008. desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
  1009. desc_addr_set(desc + DESC_BUFPTR, buf);
  1010. desc[DESC_EXTSTS] = cpu_to_le32(extsts);
  1011. cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
  1012. cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
  1013. cmdsts |= len;
  1014. desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
  1015. if (!nr_frags)
  1016. break;
  1017. buf = pci_map_page(dev->pci_dev, frag->page,
  1018. frag->page_offset,
  1019. frag->size, PCI_DMA_TODEVICE);
  1020. dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
  1021. (long long)buf, (long) page_to_pfn(frag->page),
  1022. frag->page_offset);
  1023. len = frag->size;
  1024. frag++;
  1025. nr_frags--;
  1026. }
  1027. dprintk("done pkt\n");
  1028. spin_lock_irq(&dev->tx_lock);
  1029. dev->tx_skbs[last_idx] = skb;
  1030. first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
  1031. dev->tx_free_idx = free_idx;
  1032. atomic_inc(&dev->nr_tx_skbs);
  1033. spin_unlock_irq(&dev->tx_lock);
  1034. kick_tx(dev);
  1035. /* Check again: we may have raced with a tx done irq */
  1036. if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
  1037. netif_start_queue(ndev);
  1038. /* set the transmit start time to catch transmit timeouts */
  1039. ndev->trans_start = jiffies;
  1040. return 0;
  1041. }
  1042. static void ns83820_update_stats(struct ns83820 *dev)
  1043. {
  1044. u8 __iomem *base = dev->base;
  1045. /* the DP83820 will freeze counters, so we need to read all of them */
  1046. dev->stats.rx_errors += readl(base + 0x60) & 0xffff;
  1047. dev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
  1048. dev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
  1049. dev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
  1050. /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
  1051. dev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
  1052. dev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
  1053. /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
  1054. /*dev->stats.rx_pause_count += */ readl(base + 0x80);
  1055. /*dev->stats.tx_pause_count += */ readl(base + 0x84);
  1056. dev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
  1057. }
  1058. static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
  1059. {
  1060. struct ns83820 *dev = PRIV(ndev);
  1061. /* somewhat overkill */
  1062. spin_lock_irq(&dev->misc_lock);
  1063. ns83820_update_stats(dev);
  1064. spin_unlock_irq(&dev->misc_lock);
  1065. return &dev->stats;
  1066. }
  1067. /* Let ethtool retrieve info */
  1068. static int ns83820_get_settings(struct net_device *ndev,
  1069. struct ethtool_cmd *cmd)
  1070. {
  1071. struct ns83820 *dev = PRIV(ndev);
  1072. u32 cfg, tanar, tbicr;
  1073. int have_optical = 0;
  1074. int fullduplex = 0;
  1075. /*
  1076. * Here's the list of available ethtool commands from other drivers:
  1077. * cmd->advertising =
  1078. * cmd->speed =
  1079. * cmd->duplex =
  1080. * cmd->port = 0;
  1081. * cmd->phy_address =
  1082. * cmd->transceiver = 0;
  1083. * cmd->autoneg =
  1084. * cmd->maxtxpkt = 0;
  1085. * cmd->maxrxpkt = 0;
  1086. */
  1087. /* read current configuration */
  1088. cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
  1089. tanar = readl(dev->base + TANAR);
  1090. tbicr = readl(dev->base + TBICR);
  1091. if (dev->CFG_cache & CFG_TBI_EN) {
  1092. /* we have an optical interface */
  1093. have_optical = 1;
  1094. fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
  1095. } else {
  1096. /* We have copper */
  1097. fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
  1098. }
  1099. cmd->supported = SUPPORTED_Autoneg;
  1100. /* we have optical interface */
  1101. if (dev->CFG_cache & CFG_TBI_EN) {
  1102. cmd->supported |= SUPPORTED_1000baseT_Half |
  1103. SUPPORTED_1000baseT_Full |
  1104. SUPPORTED_FIBRE;
  1105. cmd->port = PORT_FIBRE;
  1106. } /* TODO: else copper related support */
  1107. cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
  1108. switch (cfg / CFG_SPDSTS0 & 3) {
  1109. case 2:
  1110. cmd->speed = SPEED_1000;
  1111. break;
  1112. case 1:
  1113. cmd->speed = SPEED_100;
  1114. break;
  1115. default:
  1116. cmd->speed = SPEED_10;
  1117. break;
  1118. }
  1119. cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE) ? 1: 0;
  1120. return 0;
  1121. }
  1122. /* Let ethool change settings*/
  1123. static int ns83820_set_settings(struct net_device *ndev,
  1124. struct ethtool_cmd *cmd)
  1125. {
  1126. struct ns83820 *dev = PRIV(ndev);
  1127. u32 cfg, tanar;
  1128. int have_optical = 0;
  1129. int fullduplex = 0;
  1130. /* read current configuration */
  1131. cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
  1132. tanar = readl(dev->base + TANAR);
  1133. if (dev->CFG_cache & CFG_TBI_EN) {
  1134. /* we have optical */
  1135. have_optical = 1;
  1136. fullduplex = (tanar & TANAR_FULL_DUP);
  1137. } else {
  1138. /* we have copper */
  1139. fullduplex = cfg & CFG_DUPSTS;
  1140. }
  1141. spin_lock_irq(&dev->misc_lock);
  1142. spin_lock(&dev->tx_lock);
  1143. /* Set duplex */
  1144. if (cmd->duplex != fullduplex) {
  1145. if (have_optical) {
  1146. /*set full duplex*/
  1147. if (cmd->duplex == DUPLEX_FULL) {
  1148. /* force full duplex */
  1149. writel(readl(dev->base + TXCFG)
  1150. | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
  1151. dev->base + TXCFG);
  1152. writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
  1153. dev->base + RXCFG);
  1154. /* Light up full duplex LED */
  1155. writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
  1156. dev->base + GPIOR);
  1157. } else {
  1158. /*TODO: set half duplex */
  1159. }
  1160. } else {
  1161. /*we have copper*/
  1162. /* TODO: Set duplex for copper cards */
  1163. }
  1164. printk(KERN_INFO "%s: Duplex set via ethtool\n",
  1165. ndev->name);
  1166. }
  1167. /* Set autonegotiation */
  1168. if (1) {
  1169. if (cmd->autoneg == AUTONEG_ENABLE) {
  1170. /* restart auto negotiation */
  1171. writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
  1172. dev->base + TBICR);
  1173. writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
  1174. dev->linkstate = LINK_AUTONEGOTIATE;
  1175. printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
  1176. ndev->name);
  1177. } else {
  1178. /* disable auto negotiation */
  1179. writel(0x00000000, dev->base + TBICR);
  1180. }
  1181. printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
  1182. cmd->autoneg ? "ENABLED" : "DISABLED");
  1183. }
  1184. phy_intr(ndev);
  1185. spin_unlock(&dev->tx_lock);
  1186. spin_unlock_irq(&dev->misc_lock);
  1187. return 0;
  1188. }
  1189. /* end ethtool get/set support -df */
  1190. static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
  1191. {
  1192. struct ns83820 *dev = PRIV(ndev);
  1193. strcpy(info->driver, "ns83820");
  1194. strcpy(info->version, VERSION);
  1195. strcpy(info->bus_info, pci_name(dev->pci_dev));
  1196. }
  1197. static u32 ns83820_get_link(struct net_device *ndev)
  1198. {
  1199. struct ns83820 *dev = PRIV(ndev);
  1200. u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
  1201. return cfg & CFG_LNKSTS ? 1 : 0;
  1202. }
  1203. static const struct ethtool_ops ops = {
  1204. .get_settings = ns83820_get_settings,
  1205. .set_settings = ns83820_set_settings,
  1206. .get_drvinfo = ns83820_get_drvinfo,
  1207. .get_link = ns83820_get_link
  1208. };
  1209. /* this function is called in irq context from the ISR */
  1210. static void ns83820_mib_isr(struct ns83820 *dev)
  1211. {
  1212. unsigned long flags;
  1213. spin_lock_irqsave(&dev->misc_lock, flags);
  1214. ns83820_update_stats(dev);
  1215. spin_unlock_irqrestore(&dev->misc_lock, flags);
  1216. }
  1217. static void ns83820_do_isr(struct net_device *ndev, u32 isr);
  1218. static irqreturn_t ns83820_irq(int foo, void *data)
  1219. {
  1220. struct net_device *ndev = data;
  1221. struct ns83820 *dev = PRIV(ndev);
  1222. u32 isr;
  1223. dprintk("ns83820_irq(%p)\n", ndev);
  1224. dev->ihr = 0;
  1225. isr = readl(dev->base + ISR);
  1226. dprintk("irq: %08x\n", isr);
  1227. ns83820_do_isr(ndev, isr);
  1228. return IRQ_HANDLED;
  1229. }
  1230. static void ns83820_do_isr(struct net_device *ndev, u32 isr)
  1231. {
  1232. struct ns83820 *dev = PRIV(ndev);
  1233. unsigned long flags;
  1234. #ifdef DEBUG
  1235. if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
  1236. Dprintk("odd isr? 0x%08x\n", isr);
  1237. #endif
  1238. if (ISR_RXIDLE & isr) {
  1239. dev->rx_info.idle = 1;
  1240. Dprintk("oh dear, we are idle\n");
  1241. ns83820_rx_kick(ndev);
  1242. }
  1243. if ((ISR_RXDESC | ISR_RXOK) & isr) {
  1244. prefetch(dev->rx_info.next_rx_desc);
  1245. spin_lock_irqsave(&dev->misc_lock, flags);
  1246. dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
  1247. writel(dev->IMR_cache, dev->base + IMR);
  1248. spin_unlock_irqrestore(&dev->misc_lock, flags);
  1249. tasklet_schedule(&dev->rx_tasklet);
  1250. //rx_irq(ndev);
  1251. //writel(4, dev->base + IHR);
  1252. }
  1253. if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
  1254. ns83820_rx_kick(ndev);
  1255. if (unlikely(ISR_RXSOVR & isr)) {
  1256. //printk("overrun: rxsovr\n");
  1257. dev->stats.rx_fifo_errors ++;
  1258. }
  1259. if (unlikely(ISR_RXORN & isr)) {
  1260. //printk("overrun: rxorn\n");
  1261. dev->stats.rx_fifo_errors ++;
  1262. }
  1263. if ((ISR_RXRCMP & isr) && dev->rx_info.up)
  1264. writel(CR_RXE, dev->base + CR);
  1265. if (ISR_TXIDLE & isr) {
  1266. u32 txdp;
  1267. txdp = readl(dev->base + TXDP);
  1268. dprintk("txdp: %08x\n", txdp);
  1269. txdp -= dev->tx_phy_descs;
  1270. dev->tx_idx = txdp / (DESC_SIZE * 4);
  1271. if (dev->tx_idx >= NR_TX_DESC) {
  1272. printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
  1273. dev->tx_idx = 0;
  1274. }
  1275. /* The may have been a race between a pci originated read
  1276. * and the descriptor update from the cpu. Just in case,
  1277. * kick the transmitter if the hardware thinks it is on a
  1278. * different descriptor than we are.
  1279. */
  1280. if (dev->tx_idx != dev->tx_free_idx)
  1281. kick_tx(dev);
  1282. }
  1283. /* Defer tx ring processing until more than a minimum amount of
  1284. * work has accumulated
  1285. */
  1286. if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
  1287. spin_lock_irqsave(&dev->tx_lock, flags);
  1288. do_tx_done(ndev);
  1289. spin_unlock_irqrestore(&dev->tx_lock, flags);
  1290. /* Disable TxOk if there are no outstanding tx packets.
  1291. */
  1292. if ((dev->tx_done_idx == dev->tx_free_idx) &&
  1293. (dev->IMR_cache & ISR_TXOK)) {
  1294. spin_lock_irqsave(&dev->misc_lock, flags);
  1295. dev->IMR_cache &= ~ISR_TXOK;
  1296. writel(dev->IMR_cache, dev->base + IMR);
  1297. spin_unlock_irqrestore(&dev->misc_lock, flags);
  1298. }
  1299. }
  1300. /* The TxIdle interrupt can come in before the transmit has
  1301. * completed. Normally we reap packets off of the combination
  1302. * of TxDesc and TxIdle and leave TxOk disabled (since it
  1303. * occurs on every packet), but when no further irqs of this
  1304. * nature are expected, we must enable TxOk.
  1305. */
  1306. if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
  1307. spin_lock_irqsave(&dev->misc_lock, flags);
  1308. dev->IMR_cache |= ISR_TXOK;
  1309. writel(dev->IMR_cache, dev->base + IMR);
  1310. spin_unlock_irqrestore(&dev->misc_lock, flags);
  1311. }
  1312. /* MIB interrupt: one of the statistics counters is about to overflow */
  1313. if (unlikely(ISR_MIB & isr))
  1314. ns83820_mib_isr(dev);
  1315. /* PHY: Link up/down/negotiation state change */
  1316. if (unlikely(ISR_PHY & isr))
  1317. phy_intr(ndev);
  1318. #if 0 /* Still working on the interrupt mitigation strategy */
  1319. if (dev->ihr)
  1320. writel(dev->ihr, dev->base + IHR);
  1321. #endif
  1322. }
  1323. static void ns83820_do_reset(struct ns83820 *dev, u32 which)
  1324. {
  1325. Dprintk("resetting chip...\n");
  1326. writel(which, dev->base + CR);
  1327. do {
  1328. schedule();
  1329. } while (readl(dev->base + CR) & which);
  1330. Dprintk("okay!\n");
  1331. }
  1332. static int ns83820_stop(struct net_device *ndev)
  1333. {
  1334. struct ns83820 *dev = PRIV(ndev);
  1335. /* FIXME: protect against interrupt handler? */
  1336. del_timer_sync(&dev->tx_watchdog);
  1337. /* disable interrupts */
  1338. writel(0, dev->base + IMR);
  1339. writel(0, dev->base + IER);
  1340. readl(dev->base + IER);
  1341. dev->rx_info.up = 0;
  1342. synchronize_irq(dev->pci_dev->irq);
  1343. ns83820_do_reset(dev, CR_RST);
  1344. synchronize_irq(dev->pci_dev->irq);
  1345. spin_lock_irq(&dev->misc_lock);
  1346. dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
  1347. spin_unlock_irq(&dev->misc_lock);
  1348. ns83820_cleanup_rx(dev);
  1349. ns83820_cleanup_tx(dev);
  1350. return 0;
  1351. }
  1352. static void ns83820_tx_timeout(struct net_device *ndev)
  1353. {
  1354. struct ns83820 *dev = PRIV(ndev);
  1355. u32 tx_done_idx;
  1356. __le32 *desc;
  1357. unsigned long flags;
  1358. spin_lock_irqsave(&dev->tx_lock, flags);
  1359. tx_done_idx = dev->tx_done_idx;
  1360. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  1361. printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  1362. ndev->name,
  1363. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  1364. #if defined(DEBUG)
  1365. {
  1366. u32 isr;
  1367. isr = readl(dev->base + ISR);
  1368. printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
  1369. ns83820_do_isr(ndev, isr);
  1370. }
  1371. #endif
  1372. do_tx_done(ndev);
  1373. tx_done_idx = dev->tx_done_idx;
  1374. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  1375. printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  1376. ndev->name,
  1377. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  1378. spin_unlock_irqrestore(&dev->tx_lock, flags);
  1379. }
  1380. static void ns83820_tx_watch(unsigned long data)
  1381. {
  1382. struct net_device *ndev = (void *)data;
  1383. struct ns83820 *dev = PRIV(ndev);
  1384. #if defined(DEBUG)
  1385. printk("ns83820_tx_watch: %u %u %d\n",
  1386. dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
  1387. );
  1388. #endif
  1389. if (time_after(jiffies, ndev->trans_start + 1*HZ) &&
  1390. dev->tx_done_idx != dev->tx_free_idx) {
  1391. printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
  1392. ndev->name,
  1393. dev->tx_done_idx, dev->tx_free_idx,
  1394. atomic_read(&dev->nr_tx_skbs));
  1395. ns83820_tx_timeout(ndev);
  1396. }
  1397. mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
  1398. }
  1399. static int ns83820_open(struct net_device *ndev)
  1400. {
  1401. struct ns83820 *dev = PRIV(ndev);
  1402. unsigned i;
  1403. u32 desc;
  1404. int ret;
  1405. dprintk("ns83820_open\n");
  1406. writel(0, dev->base + PQCR);
  1407. ret = ns83820_setup_rx(ndev);
  1408. if (ret)
  1409. goto failed;
  1410. memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
  1411. for (i=0; i<NR_TX_DESC; i++) {
  1412. dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
  1413. = cpu_to_le32(
  1414. dev->tx_phy_descs
  1415. + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
  1416. }
  1417. dev->tx_idx = 0;
  1418. dev->tx_done_idx = 0;
  1419. desc = dev->tx_phy_descs;
  1420. writel(0, dev->base + TXDP_HI);
  1421. writel(desc, dev->base + TXDP);
  1422. init_timer(&dev->tx_watchdog);
  1423. dev->tx_watchdog.data = (unsigned long)ndev;
  1424. dev->tx_watchdog.function = ns83820_tx_watch;
  1425. mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
  1426. netif_start_queue(ndev); /* FIXME: wait for phy to come up */
  1427. return 0;
  1428. failed:
  1429. ns83820_stop(ndev);
  1430. return ret;
  1431. }
  1432. static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
  1433. {
  1434. unsigned i;
  1435. for (i=0; i<3; i++) {
  1436. u32 data;
  1437. /* Read from the perfect match memory: this is loaded by
  1438. * the chip from the EEPROM via the EELOAD self test.
  1439. */
  1440. writel(i*2, dev->base + RFCR);
  1441. data = readl(dev->base + RFDR);
  1442. *mac++ = data;
  1443. *mac++ = data >> 8;
  1444. }
  1445. }
  1446. static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
  1447. {
  1448. if (new_mtu > RX_BUF_SIZE)
  1449. return -EINVAL;
  1450. ndev->mtu = new_mtu;
  1451. return 0;
  1452. }
  1453. static void ns83820_set_multicast(struct net_device *ndev)
  1454. {
  1455. struct ns83820 *dev = PRIV(ndev);
  1456. u8 __iomem *rfcr = dev->base + RFCR;
  1457. u32 and_mask = 0xffffffff;
  1458. u32 or_mask = 0;
  1459. u32 val;
  1460. if (ndev->flags & IFF_PROMISC)
  1461. or_mask |= RFCR_AAU | RFCR_AAM;
  1462. else
  1463. and_mask &= ~(RFCR_AAU | RFCR_AAM);
  1464. if (ndev->flags & IFF_ALLMULTI || ndev->mc_count)
  1465. or_mask |= RFCR_AAM;
  1466. else
  1467. and_mask &= ~RFCR_AAM;
  1468. spin_lock_irq(&dev->misc_lock);
  1469. val = (readl(rfcr) & and_mask) | or_mask;
  1470. /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
  1471. writel(val & ~RFCR_RFEN, rfcr);
  1472. writel(val, rfcr);
  1473. spin_unlock_irq(&dev->misc_lock);
  1474. }
  1475. static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
  1476. {
  1477. struct ns83820 *dev = PRIV(ndev);
  1478. int timed_out = 0;
  1479. unsigned long start;
  1480. u32 status;
  1481. int loops = 0;
  1482. dprintk("%s: start %s\n", ndev->name, name);
  1483. start = jiffies;
  1484. writel(enable, dev->base + PTSCR);
  1485. for (;;) {
  1486. loops++;
  1487. status = readl(dev->base + PTSCR);
  1488. if (!(status & enable))
  1489. break;
  1490. if (status & done)
  1491. break;
  1492. if (status & fail)
  1493. break;
  1494. if (time_after_eq(jiffies, start + HZ)) {
  1495. timed_out = 1;
  1496. break;
  1497. }
  1498. schedule_timeout_uninterruptible(1);
  1499. }
  1500. if (status & fail)
  1501. printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
  1502. ndev->name, name, status, fail);
  1503. else if (timed_out)
  1504. printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
  1505. ndev->name, name, status);
  1506. dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
  1507. }
  1508. #ifdef PHY_CODE_IS_FINISHED
  1509. static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
  1510. {
  1511. /* drive MDC low */
  1512. dev->MEAR_cache &= ~MEAR_MDC;
  1513. writel(dev->MEAR_cache, dev->base + MEAR);
  1514. readl(dev->base + MEAR);
  1515. /* enable output, set bit */
  1516. dev->MEAR_cache |= MEAR_MDDIR;
  1517. if (bit)
  1518. dev->MEAR_cache |= MEAR_MDIO;
  1519. else
  1520. dev->MEAR_cache &= ~MEAR_MDIO;
  1521. /* set the output bit */
  1522. writel(dev->MEAR_cache, dev->base + MEAR);
  1523. readl(dev->base + MEAR);
  1524. /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
  1525. udelay(1);
  1526. /* drive MDC high causing the data bit to be latched */
  1527. dev->MEAR_cache |= MEAR_MDC;
  1528. writel(dev->MEAR_cache, dev->base + MEAR);
  1529. readl(dev->base + MEAR);
  1530. /* Wait again... */
  1531. udelay(1);
  1532. }
  1533. static int ns83820_mii_read_bit(struct ns83820 *dev)
  1534. {
  1535. int bit;
  1536. /* drive MDC low, disable output */
  1537. dev->MEAR_cache &= ~MEAR_MDC;
  1538. dev->MEAR_cache &= ~MEAR_MDDIR;
  1539. writel(dev->MEAR_cache, dev->base + MEAR);
  1540. readl(dev->base + MEAR);
  1541. /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
  1542. udelay(1);
  1543. /* drive MDC high causing the data bit to be latched */
  1544. bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
  1545. dev->MEAR_cache |= MEAR_MDC;
  1546. writel(dev->MEAR_cache, dev->base + MEAR);
  1547. /* Wait again... */
  1548. udelay(1);
  1549. return bit;
  1550. }
  1551. static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
  1552. {
  1553. unsigned data = 0;
  1554. int i;
  1555. /* read some garbage so that we eventually sync up */
  1556. for (i=0; i<64; i++)
  1557. ns83820_mii_read_bit(dev);
  1558. ns83820_mii_write_bit(dev, 0); /* start */
  1559. ns83820_mii_write_bit(dev, 1);
  1560. ns83820_mii_write_bit(dev, 1); /* opcode read */
  1561. ns83820_mii_write_bit(dev, 0);
  1562. /* write out the phy address: 5 bits, msb first */
  1563. for (i=0; i<5; i++)
  1564. ns83820_mii_write_bit(dev, phy & (0x10 >> i));
  1565. /* write out the register address, 5 bits, msb first */
  1566. for (i=0; i<5; i++)
  1567. ns83820_mii_write_bit(dev, reg & (0x10 >> i));
  1568. ns83820_mii_read_bit(dev); /* turn around cycles */
  1569. ns83820_mii_read_bit(dev);
  1570. /* read in the register data, 16 bits msb first */
  1571. for (i=0; i<16; i++) {
  1572. data <<= 1;
  1573. data |= ns83820_mii_read_bit(dev);
  1574. }
  1575. return data;
  1576. }
  1577. static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
  1578. {
  1579. int i;
  1580. /* read some garbage so that we eventually sync up */
  1581. for (i=0; i<64; i++)
  1582. ns83820_mii_read_bit(dev);
  1583. ns83820_mii_write_bit(dev, 0); /* start */
  1584. ns83820_mii_write_bit(dev, 1);
  1585. ns83820_mii_write_bit(dev, 0); /* opcode read */
  1586. ns83820_mii_write_bit(dev, 1);
  1587. /* write out the phy address: 5 bits, msb first */
  1588. for (i=0; i<5; i++)
  1589. ns83820_mii_write_bit(dev, phy & (0x10 >> i));
  1590. /* write out the register address, 5 bits, msb first */
  1591. for (i=0; i<5; i++)
  1592. ns83820_mii_write_bit(dev, reg & (0x10 >> i));
  1593. ns83820_mii_read_bit(dev); /* turn around cycles */
  1594. ns83820_mii_read_bit(dev);
  1595. /* read in the register data, 16 bits msb first */
  1596. for (i=0; i<16; i++)
  1597. ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
  1598. return data;
  1599. }
  1600. static void ns83820_probe_phy(struct net_device *ndev)
  1601. {
  1602. struct ns83820 *dev = PRIV(ndev);
  1603. static int first;
  1604. int i;
  1605. #define MII_PHYIDR1 0x02
  1606. #define MII_PHYIDR2 0x03
  1607. #if 0
  1608. if (!first) {
  1609. unsigned tmp;
  1610. ns83820_mii_read_reg(dev, 1, 0x09);
  1611. ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
  1612. tmp = ns83820_mii_read_reg(dev, 1, 0x00);
  1613. ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
  1614. udelay(1300);
  1615. ns83820_mii_read_reg(dev, 1, 0x09);
  1616. }
  1617. #endif
  1618. first = 1;
  1619. for (i=1; i<2; i++) {
  1620. int j;
  1621. unsigned a, b;
  1622. a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
  1623. b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
  1624. //printk("%s: phy %d: 0x%04x 0x%04x\n",
  1625. // ndev->name, i, a, b);
  1626. for (j=0; j<0x16; j+=4) {
  1627. dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
  1628. ndev->name, j,
  1629. ns83820_mii_read_reg(dev, i, 0 + j),
  1630. ns83820_mii_read_reg(dev, i, 1 + j),
  1631. ns83820_mii_read_reg(dev, i, 2 + j),
  1632. ns83820_mii_read_reg(dev, i, 3 + j)
  1633. );
  1634. }
  1635. }
  1636. {
  1637. unsigned a, b;
  1638. /* read firmware version: memory addr is 0x8402 and 0x8403 */
  1639. ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
  1640. ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
  1641. a = ns83820_mii_read_reg(dev, 1, 0x1d);
  1642. ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
  1643. ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
  1644. b = ns83820_mii_read_reg(dev, 1, 0x1d);
  1645. dprintk("version: 0x%04x 0x%04x\n", a, b);
  1646. }
  1647. }
  1648. #endif
  1649. static const struct net_device_ops netdev_ops = {
  1650. .ndo_open = ns83820_open,
  1651. .ndo_stop = ns83820_stop,
  1652. .ndo_start_xmit = ns83820_hard_start_xmit,
  1653. .ndo_get_stats = ns83820_get_stats,
  1654. .ndo_change_mtu = ns83820_change_mtu,
  1655. .ndo_set_multicast_list = ns83820_set_multicast,
  1656. .ndo_validate_addr = eth_validate_addr,
  1657. .ndo_set_mac_address = eth_mac_addr,
  1658. .ndo_tx_timeout = ns83820_tx_timeout,
  1659. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1660. .ndo_vlan_rx_register = ns83820_vlan_rx_register,
  1661. #endif
  1662. };
  1663. static int __devinit ns83820_init_one(struct pci_dev *pci_dev,
  1664. const struct pci_device_id *id)
  1665. {
  1666. struct net_device *ndev;
  1667. struct ns83820 *dev;
  1668. long addr;
  1669. int err;
  1670. int using_dac = 0;
  1671. /* See if we can set the dma mask early on; failure is fatal. */
  1672. if (sizeof(dma_addr_t) == 8 &&
  1673. !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
  1674. using_dac = 1;
  1675. } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
  1676. using_dac = 0;
  1677. } else {
  1678. dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
  1679. return -ENODEV;
  1680. }
  1681. ndev = alloc_etherdev(sizeof(struct ns83820));
  1682. dev = PRIV(ndev);
  1683. err = -ENOMEM;
  1684. if (!dev)
  1685. goto out;
  1686. dev->ndev = ndev;
  1687. spin_lock_init(&dev->rx_info.lock);
  1688. spin_lock_init(&dev->tx_lock);
  1689. spin_lock_init(&dev->misc_lock);
  1690. dev->pci_dev = pci_dev;
  1691. SET_NETDEV_DEV(ndev, &pci_dev->dev);
  1692. INIT_WORK(&dev->tq_refill, queue_refill);
  1693. tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
  1694. err = pci_enable_device(pci_dev);
  1695. if (err) {
  1696. dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
  1697. goto out_free;
  1698. }
  1699. pci_set_master(pci_dev);
  1700. addr = pci_resource_start(pci_dev, 1);
  1701. dev->base = ioremap_nocache(addr, PAGE_SIZE);
  1702. dev->tx_descs = pci_alloc_consistent(pci_dev,
  1703. 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
  1704. dev->rx_info.descs = pci_alloc_consistent(pci_dev,
  1705. 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
  1706. err = -ENOMEM;
  1707. if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
  1708. goto out_disable;
  1709. dprintk("%p: %08lx %p: %08lx\n",
  1710. dev->tx_descs, (long)dev->tx_phy_descs,
  1711. dev->rx_info.descs, (long)dev->rx_info.phy_descs);
  1712. /* disable interrupts */
  1713. writel(0, dev->base + IMR);
  1714. writel(0, dev->base + IER);
  1715. readl(dev->base + IER);
  1716. dev->IMR_cache = 0;
  1717. err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
  1718. DRV_NAME, ndev);
  1719. if (err) {
  1720. dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
  1721. pci_dev->irq, err);
  1722. goto out_disable;
  1723. }
  1724. /*
  1725. * FIXME: we are holding rtnl_lock() over obscenely long area only
  1726. * because some of the setup code uses dev->name. It's Wrong(tm) -
  1727. * we should be using driver-specific names for all that stuff.
  1728. * For now that will do, but we really need to come back and kill
  1729. * most of the dev_alloc_name() users later.
  1730. */
  1731. rtnl_lock();
  1732. err = dev_alloc_name(ndev, ndev->name);
  1733. if (err < 0) {
  1734. dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
  1735. goto out_free_irq;
  1736. }
  1737. printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
  1738. ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
  1739. pci_dev->subsystem_vendor, pci_dev->subsystem_device);
  1740. ndev->netdev_ops = &netdev_ops;
  1741. SET_ETHTOOL_OPS(ndev, &ops);
  1742. ndev->watchdog_timeo = 5 * HZ;
  1743. pci_set_drvdata(pci_dev, ndev);
  1744. ns83820_do_reset(dev, CR_RST);
  1745. /* Must reset the ram bist before running it */
  1746. writel(PTSCR_RBIST_RST, dev->base + PTSCR);
  1747. ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
  1748. PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
  1749. ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
  1750. PTSCR_EEBIST_FAIL);
  1751. ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
  1752. /* I love config registers */
  1753. dev->CFG_cache = readl(dev->base + CFG);
  1754. if ((dev->CFG_cache & CFG_PCI64_DET)) {
  1755. printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
  1756. ndev->name);
  1757. /*dev->CFG_cache |= CFG_DATA64_EN;*/
  1758. if (!(dev->CFG_cache & CFG_DATA64_EN))
  1759. printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
  1760. ndev->name);
  1761. } else
  1762. dev->CFG_cache &= ~(CFG_DATA64_EN);
  1763. dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
  1764. CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
  1765. CFG_M64ADDR);
  1766. dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
  1767. CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
  1768. dev->CFG_cache |= CFG_REQALG;
  1769. dev->CFG_cache |= CFG_POW;
  1770. dev->CFG_cache |= CFG_TMRTEST;
  1771. /* When compiled with 64 bit addressing, we must always enable
  1772. * the 64 bit descriptor format.
  1773. */
  1774. if (sizeof(dma_addr_t) == 8)
  1775. dev->CFG_cache |= CFG_M64ADDR;
  1776. if (using_dac)
  1777. dev->CFG_cache |= CFG_T64ADDR;
  1778. /* Big endian mode does not seem to do what the docs suggest */
  1779. dev->CFG_cache &= ~CFG_BEM;
  1780. /* setup optical transceiver if we have one */
  1781. if (dev->CFG_cache & CFG_TBI_EN) {
  1782. printk(KERN_INFO "%s: enabling optical transceiver\n",
  1783. ndev->name);
  1784. writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
  1785. /* setup auto negotiation feature advertisement */
  1786. writel(readl(dev->base + TANAR)
  1787. | TANAR_HALF_DUP | TANAR_FULL_DUP,
  1788. dev->base + TANAR);
  1789. /* start auto negotiation */
  1790. writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
  1791. dev->base + TBICR);
  1792. writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
  1793. dev->linkstate = LINK_AUTONEGOTIATE;
  1794. dev->CFG_cache |= CFG_MODE_1000;
  1795. }
  1796. writel(dev->CFG_cache, dev->base + CFG);
  1797. dprintk("CFG: %08x\n", dev->CFG_cache);
  1798. if (reset_phy) {
  1799. printk(KERN_INFO "%s: resetting phy\n", ndev->name);
  1800. writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
  1801. msleep(10);
  1802. writel(dev->CFG_cache, dev->base + CFG);
  1803. }
  1804. #if 0 /* Huh? This sets the PCI latency register. Should be done via
  1805. * the PCI layer. FIXME.
  1806. */
  1807. if (readl(dev->base + SRR))
  1808. writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
  1809. #endif
  1810. /* Note! The DMA burst size interacts with packet
  1811. * transmission, such that the largest packet that
  1812. * can be transmitted is 8192 - FLTH - burst size.
  1813. * If only the transmit fifo was larger...
  1814. */
  1815. /* Ramit : 1024 DMA is not a good idea, it ends up banging
  1816. * some DELL and COMPAQ SMP systems */
  1817. writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
  1818. | ((1600 / 32) * 0x100),
  1819. dev->base + TXCFG);
  1820. /* Flush the interrupt holdoff timer */
  1821. writel(0x000, dev->base + IHR);
  1822. writel(0x100, dev->base + IHR);
  1823. writel(0x000, dev->base + IHR);
  1824. /* Set Rx to full duplex, don't accept runt, errored, long or length
  1825. * range errored packets. Use 512 byte DMA.
  1826. */
  1827. /* Ramit : 1024 DMA is not a good idea, it ends up banging
  1828. * some DELL and COMPAQ SMP systems
  1829. * Turn on ALP, only we are accpeting Jumbo Packets */
  1830. writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
  1831. | RXCFG_STRIPCRC
  1832. //| RXCFG_ALP
  1833. | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
  1834. /* Disable priority queueing */
  1835. writel(0, dev->base + PQCR);
  1836. /* Enable IP checksum validation and detetion of VLAN headers.
  1837. * Note: do not set the reject options as at least the 0x102
  1838. * revision of the chip does not properly accept IP fragments
  1839. * at least for UDP.
  1840. */
  1841. /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
  1842. * the MAC it calculates the packetsize AFTER stripping the VLAN
  1843. * header, and if a VLAN Tagged packet of 64 bytes is received (like
  1844. * a ping with a VLAN header) then the card, strips the 4 byte VLAN
  1845. * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
  1846. * it discrards it!. These guys......
  1847. * also turn on tag stripping if hardware acceleration is enabled
  1848. */
  1849. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1850. #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
  1851. #else
  1852. #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
  1853. #endif
  1854. writel(VRCR_INIT_VALUE, dev->base + VRCR);
  1855. /* Enable per-packet TCP/UDP/IP checksumming
  1856. * and per packet vlan tag insertion if
  1857. * vlan hardware acceleration is enabled
  1858. */
  1859. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1860. #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
  1861. #else
  1862. #define VTCR_INIT_VALUE VTCR_PPCHK
  1863. #endif
  1864. writel(VTCR_INIT_VALUE, dev->base + VTCR);
  1865. /* Ramit : Enable async and sync pause frames */
  1866. /* writel(0, dev->base + PCR); */
  1867. writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
  1868. PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
  1869. dev->base + PCR);
  1870. /* Disable Wake On Lan */
  1871. writel(0, dev->base + WCSR);
  1872. ns83820_getmac(dev, ndev->dev_addr);
  1873. /* Yes, we support dumb IP checksum on transmit */
  1874. ndev->features |= NETIF_F_SG;
  1875. ndev->features |= NETIF_F_IP_CSUM;
  1876. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1877. /* We also support hardware vlan acceleration */
  1878. ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  1879. #endif
  1880. if (using_dac) {
  1881. printk(KERN_INFO "%s: using 64 bit addressing.\n",
  1882. ndev->name);
  1883. ndev->features |= NETIF_F_HIGHDMA;
  1884. }
  1885. printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
  1886. ndev->name,
  1887. (unsigned)readl(dev->base + SRR) >> 8,
  1888. (unsigned)readl(dev->base + SRR) & 0xff,
  1889. ndev->dev_addr, addr, pci_dev->irq,
  1890. (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
  1891. );
  1892. #ifdef PHY_CODE_IS_FINISHED
  1893. ns83820_probe_phy(ndev);
  1894. #endif
  1895. err = register_netdevice(ndev);
  1896. if (err) {
  1897. printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
  1898. goto out_cleanup;
  1899. }
  1900. rtnl_unlock();
  1901. return 0;
  1902. out_cleanup:
  1903. writel(0, dev->base + IMR); /* paranoia */
  1904. writel(0, dev->base + IER);
  1905. readl(dev->base + IER);
  1906. out_free_irq:
  1907. rtnl_unlock();
  1908. free_irq(pci_dev->irq, ndev);
  1909. out_disable:
  1910. if (dev->base)
  1911. iounmap(dev->base);
  1912. pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
  1913. pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
  1914. pci_disable_device(pci_dev);
  1915. out_free:
  1916. free_netdev(ndev);
  1917. pci_set_drvdata(pci_dev, NULL);
  1918. out:
  1919. return err;
  1920. }
  1921. static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
  1922. {
  1923. struct net_device *ndev = pci_get_drvdata(pci_dev);
  1924. struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
  1925. if (!ndev) /* paranoia */
  1926. return;
  1927. writel(0, dev->base + IMR); /* paranoia */
  1928. writel(0, dev->base + IER);
  1929. readl(dev->base + IER);
  1930. unregister_netdev(ndev);
  1931. free_irq(dev->pci_dev->irq, ndev);
  1932. iounmap(dev->base);
  1933. pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
  1934. dev->tx_descs, dev->tx_phy_descs);
  1935. pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
  1936. dev->rx_info.descs, dev->rx_info.phy_descs);
  1937. pci_disable_device(dev->pci_dev);
  1938. free_netdev(ndev);
  1939. pci_set_drvdata(pci_dev, NULL);
  1940. }
  1941. static struct pci_device_id ns83820_pci_tbl[] = {
  1942. { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
  1943. { 0, },
  1944. };
  1945. static struct pci_driver driver = {
  1946. .name = "ns83820",
  1947. .id_table = ns83820_pci_tbl,
  1948. .probe = ns83820_init_one,
  1949. .remove = __devexit_p(ns83820_remove_one),
  1950. #if 0 /* FIXME: implement */
  1951. .suspend = ,
  1952. .resume = ,
  1953. #endif
  1954. };
  1955. static int __init ns83820_init(void)
  1956. {
  1957. printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
  1958. return pci_register_driver(&driver);
  1959. }
  1960. static void __exit ns83820_exit(void)
  1961. {
  1962. pci_unregister_driver(&driver);
  1963. }
  1964. MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
  1965. MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
  1966. MODULE_LICENSE("GPL");
  1967. MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
  1968. module_param(lnksts, int, 0);
  1969. MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
  1970. module_param(ihr, int, 0);
  1971. MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
  1972. module_param(reset_phy, int, 0);
  1973. MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
  1974. module_init(ns83820_init);
  1975. module_exit(ns83820_exit);