niu.c 231 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/pci.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/delay.h>
  14. #include <linux/bitops.h>
  15. #include <linux/mii.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/ip.h>
  19. #include <linux/in.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/log2.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/crc32.h>
  24. #include <linux/io.h>
  25. #ifdef CONFIG_SPARC64
  26. #include <linux/of_device.h>
  27. #endif
  28. #include "niu.h"
  29. #define DRV_MODULE_NAME "niu"
  30. #define PFX DRV_MODULE_NAME ": "
  31. #define DRV_MODULE_VERSION "1.0"
  32. #define DRV_MODULE_RELDATE "Nov 14, 2008"
  33. static char version[] __devinitdata =
  34. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  35. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  36. MODULE_DESCRIPTION("NIU ethernet driver");
  37. MODULE_LICENSE("GPL");
  38. MODULE_VERSION(DRV_MODULE_VERSION);
  39. #ifndef DMA_44BIT_MASK
  40. #define DMA_44BIT_MASK 0x00000fffffffffffULL
  41. #endif
  42. #ifndef readq
  43. static u64 readq(void __iomem *reg)
  44. {
  45. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  46. }
  47. static void writeq(u64 val, void __iomem *reg)
  48. {
  49. writel(val & 0xffffffff, reg);
  50. writel(val >> 32, reg + 0x4UL);
  51. }
  52. #endif
  53. static struct pci_device_id niu_pci_tbl[] = {
  54. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  55. {}
  56. };
  57. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  58. #define NIU_TX_TIMEOUT (5 * HZ)
  59. #define nr64(reg) readq(np->regs + (reg))
  60. #define nw64(reg, val) writeq((val), np->regs + (reg))
  61. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  62. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  63. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  64. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  65. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  66. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  67. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  68. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  69. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  70. static int niu_debug;
  71. static int debug = -1;
  72. module_param(debug, int, 0);
  73. MODULE_PARM_DESC(debug, "NIU debug level");
  74. #define niudbg(TYPE, f, a...) \
  75. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  76. printk(KERN_DEBUG PFX f, ## a); \
  77. } while (0)
  78. #define niuinfo(TYPE, f, a...) \
  79. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  80. printk(KERN_INFO PFX f, ## a); \
  81. } while (0)
  82. #define niuwarn(TYPE, f, a...) \
  83. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  84. printk(KERN_WARNING PFX f, ## a); \
  85. } while (0)
  86. #define niu_lock_parent(np, flags) \
  87. spin_lock_irqsave(&np->parent->lock, flags)
  88. #define niu_unlock_parent(np, flags) \
  89. spin_unlock_irqrestore(&np->parent->lock, flags)
  90. static int serdes_init_10g_serdes(struct niu *np);
  91. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  92. u64 bits, int limit, int delay)
  93. {
  94. while (--limit >= 0) {
  95. u64 val = nr64_mac(reg);
  96. if (!(val & bits))
  97. break;
  98. udelay(delay);
  99. }
  100. if (limit < 0)
  101. return -ENODEV;
  102. return 0;
  103. }
  104. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  105. u64 bits, int limit, int delay,
  106. const char *reg_name)
  107. {
  108. int err;
  109. nw64_mac(reg, bits);
  110. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  111. if (err)
  112. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  113. "would not clear, val[%llx]\n",
  114. np->dev->name, (unsigned long long) bits, reg_name,
  115. (unsigned long long) nr64_mac(reg));
  116. return err;
  117. }
  118. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  119. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  120. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  121. })
  122. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  123. u64 bits, int limit, int delay)
  124. {
  125. while (--limit >= 0) {
  126. u64 val = nr64_ipp(reg);
  127. if (!(val & bits))
  128. break;
  129. udelay(delay);
  130. }
  131. if (limit < 0)
  132. return -ENODEV;
  133. return 0;
  134. }
  135. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  136. u64 bits, int limit, int delay,
  137. const char *reg_name)
  138. {
  139. int err;
  140. u64 val;
  141. val = nr64_ipp(reg);
  142. val |= bits;
  143. nw64_ipp(reg, val);
  144. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  145. if (err)
  146. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  147. "would not clear, val[%llx]\n",
  148. np->dev->name, (unsigned long long) bits, reg_name,
  149. (unsigned long long) nr64_ipp(reg));
  150. return err;
  151. }
  152. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  153. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  154. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  155. })
  156. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  157. u64 bits, int limit, int delay)
  158. {
  159. while (--limit >= 0) {
  160. u64 val = nr64(reg);
  161. if (!(val & bits))
  162. break;
  163. udelay(delay);
  164. }
  165. if (limit < 0)
  166. return -ENODEV;
  167. return 0;
  168. }
  169. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  170. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  171. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  172. })
  173. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  174. u64 bits, int limit, int delay,
  175. const char *reg_name)
  176. {
  177. int err;
  178. nw64(reg, bits);
  179. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  180. if (err)
  181. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  182. "would not clear, val[%llx]\n",
  183. np->dev->name, (unsigned long long) bits, reg_name,
  184. (unsigned long long) nr64(reg));
  185. return err;
  186. }
  187. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  188. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  189. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  190. })
  191. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  192. {
  193. u64 val = (u64) lp->timer;
  194. if (on)
  195. val |= LDG_IMGMT_ARM;
  196. nw64(LDG_IMGMT(lp->ldg_num), val);
  197. }
  198. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  199. {
  200. unsigned long mask_reg, bits;
  201. u64 val;
  202. if (ldn < 0 || ldn > LDN_MAX)
  203. return -EINVAL;
  204. if (ldn < 64) {
  205. mask_reg = LD_IM0(ldn);
  206. bits = LD_IM0_MASK;
  207. } else {
  208. mask_reg = LD_IM1(ldn - 64);
  209. bits = LD_IM1_MASK;
  210. }
  211. val = nr64(mask_reg);
  212. if (on)
  213. val &= ~bits;
  214. else
  215. val |= bits;
  216. nw64(mask_reg, val);
  217. return 0;
  218. }
  219. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  220. {
  221. struct niu_parent *parent = np->parent;
  222. int i;
  223. for (i = 0; i <= LDN_MAX; i++) {
  224. int err;
  225. if (parent->ldg_map[i] != lp->ldg_num)
  226. continue;
  227. err = niu_ldn_irq_enable(np, i, on);
  228. if (err)
  229. return err;
  230. }
  231. return 0;
  232. }
  233. static int niu_enable_interrupts(struct niu *np, int on)
  234. {
  235. int i;
  236. for (i = 0; i < np->num_ldg; i++) {
  237. struct niu_ldg *lp = &np->ldg[i];
  238. int err;
  239. err = niu_enable_ldn_in_ldg(np, lp, on);
  240. if (err)
  241. return err;
  242. }
  243. for (i = 0; i < np->num_ldg; i++)
  244. niu_ldg_rearm(np, &np->ldg[i], on);
  245. return 0;
  246. }
  247. static u32 phy_encode(u32 type, int port)
  248. {
  249. return (type << (port * 2));
  250. }
  251. static u32 phy_decode(u32 val, int port)
  252. {
  253. return (val >> (port * 2)) & PORT_TYPE_MASK;
  254. }
  255. static int mdio_wait(struct niu *np)
  256. {
  257. int limit = 1000;
  258. u64 val;
  259. while (--limit > 0) {
  260. val = nr64(MIF_FRAME_OUTPUT);
  261. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  262. return val & MIF_FRAME_OUTPUT_DATA;
  263. udelay(10);
  264. }
  265. return -ENODEV;
  266. }
  267. static int mdio_read(struct niu *np, int port, int dev, int reg)
  268. {
  269. int err;
  270. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  271. err = mdio_wait(np);
  272. if (err < 0)
  273. return err;
  274. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  275. return mdio_wait(np);
  276. }
  277. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  278. {
  279. int err;
  280. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  281. err = mdio_wait(np);
  282. if (err < 0)
  283. return err;
  284. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  285. err = mdio_wait(np);
  286. if (err < 0)
  287. return err;
  288. return 0;
  289. }
  290. static int mii_read(struct niu *np, int port, int reg)
  291. {
  292. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  293. return mdio_wait(np);
  294. }
  295. static int mii_write(struct niu *np, int port, int reg, int data)
  296. {
  297. int err;
  298. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  299. err = mdio_wait(np);
  300. if (err < 0)
  301. return err;
  302. return 0;
  303. }
  304. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  305. {
  306. int err;
  307. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  308. ESR2_TI_PLL_TX_CFG_L(channel),
  309. val & 0xffff);
  310. if (!err)
  311. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  312. ESR2_TI_PLL_TX_CFG_H(channel),
  313. val >> 16);
  314. return err;
  315. }
  316. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  317. {
  318. int err;
  319. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  320. ESR2_TI_PLL_RX_CFG_L(channel),
  321. val & 0xffff);
  322. if (!err)
  323. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  324. ESR2_TI_PLL_RX_CFG_H(channel),
  325. val >> 16);
  326. return err;
  327. }
  328. /* Mode is always 10G fiber. */
  329. static int serdes_init_niu_10g_fiber(struct niu *np)
  330. {
  331. struct niu_link_config *lp = &np->link_config;
  332. u32 tx_cfg, rx_cfg;
  333. unsigned long i;
  334. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  335. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  336. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  337. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  338. if (lp->loopback_mode == LOOPBACK_PHY) {
  339. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  340. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  341. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  342. tx_cfg |= PLL_TX_CFG_ENTEST;
  343. rx_cfg |= PLL_RX_CFG_ENTEST;
  344. }
  345. /* Initialize all 4 lanes of the SERDES. */
  346. for (i = 0; i < 4; i++) {
  347. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  348. if (err)
  349. return err;
  350. }
  351. for (i = 0; i < 4; i++) {
  352. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  353. if (err)
  354. return err;
  355. }
  356. return 0;
  357. }
  358. static int serdes_init_niu_1g_serdes(struct niu *np)
  359. {
  360. struct niu_link_config *lp = &np->link_config;
  361. u16 pll_cfg, pll_sts;
  362. int max_retry = 100;
  363. u64 uninitialized_var(sig), mask, val;
  364. u32 tx_cfg, rx_cfg;
  365. unsigned long i;
  366. int err;
  367. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  368. PLL_TX_CFG_RATE_HALF);
  369. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  370. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  371. PLL_RX_CFG_RATE_HALF);
  372. if (np->port == 0)
  373. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  374. if (lp->loopback_mode == LOOPBACK_PHY) {
  375. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  376. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  377. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  378. tx_cfg |= PLL_TX_CFG_ENTEST;
  379. rx_cfg |= PLL_RX_CFG_ENTEST;
  380. }
  381. /* Initialize PLL for 1G */
  382. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  383. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  384. ESR2_TI_PLL_CFG_L, pll_cfg);
  385. if (err) {
  386. dev_err(np->device, PFX "NIU Port %d "
  387. "serdes_init_niu_1g_serdes: "
  388. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  389. return err;
  390. }
  391. pll_sts = PLL_CFG_ENPLL;
  392. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  393. ESR2_TI_PLL_STS_L, pll_sts);
  394. if (err) {
  395. dev_err(np->device, PFX "NIU Port %d "
  396. "serdes_init_niu_1g_serdes: "
  397. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  398. return err;
  399. }
  400. udelay(200);
  401. /* Initialize all 4 lanes of the SERDES. */
  402. for (i = 0; i < 4; i++) {
  403. err = esr2_set_tx_cfg(np, i, tx_cfg);
  404. if (err)
  405. return err;
  406. }
  407. for (i = 0; i < 4; i++) {
  408. err = esr2_set_rx_cfg(np, i, rx_cfg);
  409. if (err)
  410. return err;
  411. }
  412. switch (np->port) {
  413. case 0:
  414. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  415. mask = val;
  416. break;
  417. case 1:
  418. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  419. mask = val;
  420. break;
  421. default:
  422. return -EINVAL;
  423. }
  424. while (max_retry--) {
  425. sig = nr64(ESR_INT_SIGNALS);
  426. if ((sig & mask) == val)
  427. break;
  428. mdelay(500);
  429. }
  430. if ((sig & mask) != val) {
  431. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  432. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  433. return -ENODEV;
  434. }
  435. return 0;
  436. }
  437. static int serdes_init_niu_10g_serdes(struct niu *np)
  438. {
  439. struct niu_link_config *lp = &np->link_config;
  440. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  441. int max_retry = 100;
  442. u64 uninitialized_var(sig), mask, val;
  443. unsigned long i;
  444. int err;
  445. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  446. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  447. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  448. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  449. if (lp->loopback_mode == LOOPBACK_PHY) {
  450. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  451. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  452. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  453. tx_cfg |= PLL_TX_CFG_ENTEST;
  454. rx_cfg |= PLL_RX_CFG_ENTEST;
  455. }
  456. /* Initialize PLL for 10G */
  457. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  458. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  459. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  460. if (err) {
  461. dev_err(np->device, PFX "NIU Port %d "
  462. "serdes_init_niu_10g_serdes: "
  463. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  464. return err;
  465. }
  466. pll_sts = PLL_CFG_ENPLL;
  467. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  468. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  469. if (err) {
  470. dev_err(np->device, PFX "NIU Port %d "
  471. "serdes_init_niu_10g_serdes: "
  472. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  473. return err;
  474. }
  475. udelay(200);
  476. /* Initialize all 4 lanes of the SERDES. */
  477. for (i = 0; i < 4; i++) {
  478. err = esr2_set_tx_cfg(np, i, tx_cfg);
  479. if (err)
  480. return err;
  481. }
  482. for (i = 0; i < 4; i++) {
  483. err = esr2_set_rx_cfg(np, i, rx_cfg);
  484. if (err)
  485. return err;
  486. }
  487. /* check if serdes is ready */
  488. switch (np->port) {
  489. case 0:
  490. mask = ESR_INT_SIGNALS_P0_BITS;
  491. val = (ESR_INT_SRDY0_P0 |
  492. ESR_INT_DET0_P0 |
  493. ESR_INT_XSRDY_P0 |
  494. ESR_INT_XDP_P0_CH3 |
  495. ESR_INT_XDP_P0_CH2 |
  496. ESR_INT_XDP_P0_CH1 |
  497. ESR_INT_XDP_P0_CH0);
  498. break;
  499. case 1:
  500. mask = ESR_INT_SIGNALS_P1_BITS;
  501. val = (ESR_INT_SRDY0_P1 |
  502. ESR_INT_DET0_P1 |
  503. ESR_INT_XSRDY_P1 |
  504. ESR_INT_XDP_P1_CH3 |
  505. ESR_INT_XDP_P1_CH2 |
  506. ESR_INT_XDP_P1_CH1 |
  507. ESR_INT_XDP_P1_CH0);
  508. break;
  509. default:
  510. return -EINVAL;
  511. }
  512. while (max_retry--) {
  513. sig = nr64(ESR_INT_SIGNALS);
  514. if ((sig & mask) == val)
  515. break;
  516. mdelay(500);
  517. }
  518. if ((sig & mask) != val) {
  519. pr_info(PFX "NIU Port %u signal bits [%08x] are not "
  520. "[%08x] for 10G...trying 1G\n",
  521. np->port, (int) (sig & mask), (int) val);
  522. /* 10G failed, try initializing at 1G */
  523. err = serdes_init_niu_1g_serdes(np);
  524. if (!err) {
  525. np->flags &= ~NIU_FLAGS_10G;
  526. np->mac_xcvr = MAC_XCVR_PCS;
  527. } else {
  528. dev_err(np->device, PFX "Port %u 10G/1G SERDES "
  529. "Link Failed \n", np->port);
  530. return -ENODEV;
  531. }
  532. }
  533. return 0;
  534. }
  535. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  536. {
  537. int err;
  538. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  539. if (err >= 0) {
  540. *val = (err & 0xffff);
  541. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  542. ESR_RXTX_CTRL_H(chan));
  543. if (err >= 0)
  544. *val |= ((err & 0xffff) << 16);
  545. err = 0;
  546. }
  547. return err;
  548. }
  549. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  550. {
  551. int err;
  552. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  553. ESR_GLUE_CTRL0_L(chan));
  554. if (err >= 0) {
  555. *val = (err & 0xffff);
  556. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  557. ESR_GLUE_CTRL0_H(chan));
  558. if (err >= 0) {
  559. *val |= ((err & 0xffff) << 16);
  560. err = 0;
  561. }
  562. }
  563. return err;
  564. }
  565. static int esr_read_reset(struct niu *np, u32 *val)
  566. {
  567. int err;
  568. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  569. ESR_RXTX_RESET_CTRL_L);
  570. if (err >= 0) {
  571. *val = (err & 0xffff);
  572. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  573. ESR_RXTX_RESET_CTRL_H);
  574. if (err >= 0) {
  575. *val |= ((err & 0xffff) << 16);
  576. err = 0;
  577. }
  578. }
  579. return err;
  580. }
  581. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  582. {
  583. int err;
  584. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  585. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  586. if (!err)
  587. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  588. ESR_RXTX_CTRL_H(chan), (val >> 16));
  589. return err;
  590. }
  591. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  592. {
  593. int err;
  594. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  595. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  596. if (!err)
  597. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  598. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  599. return err;
  600. }
  601. static int esr_reset(struct niu *np)
  602. {
  603. u32 uninitialized_var(reset);
  604. int err;
  605. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  606. ESR_RXTX_RESET_CTRL_L, 0x0000);
  607. if (err)
  608. return err;
  609. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  610. ESR_RXTX_RESET_CTRL_H, 0xffff);
  611. if (err)
  612. return err;
  613. udelay(200);
  614. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  615. ESR_RXTX_RESET_CTRL_L, 0xffff);
  616. if (err)
  617. return err;
  618. udelay(200);
  619. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  620. ESR_RXTX_RESET_CTRL_H, 0x0000);
  621. if (err)
  622. return err;
  623. udelay(200);
  624. err = esr_read_reset(np, &reset);
  625. if (err)
  626. return err;
  627. if (reset != 0) {
  628. dev_err(np->device, PFX "Port %u ESR_RESET "
  629. "did not clear [%08x]\n",
  630. np->port, reset);
  631. return -ENODEV;
  632. }
  633. return 0;
  634. }
  635. static int serdes_init_10g(struct niu *np)
  636. {
  637. struct niu_link_config *lp = &np->link_config;
  638. unsigned long ctrl_reg, test_cfg_reg, i;
  639. u64 ctrl_val, test_cfg_val, sig, mask, val;
  640. int err;
  641. switch (np->port) {
  642. case 0:
  643. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  644. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  645. break;
  646. case 1:
  647. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  648. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  649. break;
  650. default:
  651. return -EINVAL;
  652. }
  653. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  654. ENET_SERDES_CTRL_SDET_1 |
  655. ENET_SERDES_CTRL_SDET_2 |
  656. ENET_SERDES_CTRL_SDET_3 |
  657. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  658. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  659. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  660. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  661. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  662. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  663. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  664. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  665. test_cfg_val = 0;
  666. if (lp->loopback_mode == LOOPBACK_PHY) {
  667. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  668. ENET_SERDES_TEST_MD_0_SHIFT) |
  669. (ENET_TEST_MD_PAD_LOOPBACK <<
  670. ENET_SERDES_TEST_MD_1_SHIFT) |
  671. (ENET_TEST_MD_PAD_LOOPBACK <<
  672. ENET_SERDES_TEST_MD_2_SHIFT) |
  673. (ENET_TEST_MD_PAD_LOOPBACK <<
  674. ENET_SERDES_TEST_MD_3_SHIFT));
  675. }
  676. nw64(ctrl_reg, ctrl_val);
  677. nw64(test_cfg_reg, test_cfg_val);
  678. /* Initialize all 4 lanes of the SERDES. */
  679. for (i = 0; i < 4; i++) {
  680. u32 rxtx_ctrl, glue0;
  681. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  682. if (err)
  683. return err;
  684. err = esr_read_glue0(np, i, &glue0);
  685. if (err)
  686. return err;
  687. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  688. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  689. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  690. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  691. ESR_GLUE_CTRL0_THCNT |
  692. ESR_GLUE_CTRL0_BLTIME);
  693. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  694. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  695. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  696. (BLTIME_300_CYCLES <<
  697. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  698. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  699. if (err)
  700. return err;
  701. err = esr_write_glue0(np, i, glue0);
  702. if (err)
  703. return err;
  704. }
  705. err = esr_reset(np);
  706. if (err)
  707. return err;
  708. sig = nr64(ESR_INT_SIGNALS);
  709. switch (np->port) {
  710. case 0:
  711. mask = ESR_INT_SIGNALS_P0_BITS;
  712. val = (ESR_INT_SRDY0_P0 |
  713. ESR_INT_DET0_P0 |
  714. ESR_INT_XSRDY_P0 |
  715. ESR_INT_XDP_P0_CH3 |
  716. ESR_INT_XDP_P0_CH2 |
  717. ESR_INT_XDP_P0_CH1 |
  718. ESR_INT_XDP_P0_CH0);
  719. break;
  720. case 1:
  721. mask = ESR_INT_SIGNALS_P1_BITS;
  722. val = (ESR_INT_SRDY0_P1 |
  723. ESR_INT_DET0_P1 |
  724. ESR_INT_XSRDY_P1 |
  725. ESR_INT_XDP_P1_CH3 |
  726. ESR_INT_XDP_P1_CH2 |
  727. ESR_INT_XDP_P1_CH1 |
  728. ESR_INT_XDP_P1_CH0);
  729. break;
  730. default:
  731. return -EINVAL;
  732. }
  733. if ((sig & mask) != val) {
  734. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  735. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  736. return 0;
  737. }
  738. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  739. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  740. return -ENODEV;
  741. }
  742. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  743. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  744. return 0;
  745. }
  746. static int serdes_init_1g(struct niu *np)
  747. {
  748. u64 val;
  749. val = nr64(ENET_SERDES_1_PLL_CFG);
  750. val &= ~ENET_SERDES_PLL_FBDIV2;
  751. switch (np->port) {
  752. case 0:
  753. val |= ENET_SERDES_PLL_HRATE0;
  754. break;
  755. case 1:
  756. val |= ENET_SERDES_PLL_HRATE1;
  757. break;
  758. case 2:
  759. val |= ENET_SERDES_PLL_HRATE2;
  760. break;
  761. case 3:
  762. val |= ENET_SERDES_PLL_HRATE3;
  763. break;
  764. default:
  765. return -EINVAL;
  766. }
  767. nw64(ENET_SERDES_1_PLL_CFG, val);
  768. return 0;
  769. }
  770. static int serdes_init_1g_serdes(struct niu *np)
  771. {
  772. struct niu_link_config *lp = &np->link_config;
  773. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  774. u64 ctrl_val, test_cfg_val, sig, mask, val;
  775. int err;
  776. u64 reset_val, val_rd;
  777. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  778. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  779. ENET_SERDES_PLL_FBDIV0;
  780. switch (np->port) {
  781. case 0:
  782. reset_val = ENET_SERDES_RESET_0;
  783. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  784. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  785. pll_cfg = ENET_SERDES_0_PLL_CFG;
  786. break;
  787. case 1:
  788. reset_val = ENET_SERDES_RESET_1;
  789. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  790. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  791. pll_cfg = ENET_SERDES_1_PLL_CFG;
  792. break;
  793. default:
  794. return -EINVAL;
  795. }
  796. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  797. ENET_SERDES_CTRL_SDET_1 |
  798. ENET_SERDES_CTRL_SDET_2 |
  799. ENET_SERDES_CTRL_SDET_3 |
  800. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  801. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  802. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  803. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  804. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  805. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  806. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  807. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  808. test_cfg_val = 0;
  809. if (lp->loopback_mode == LOOPBACK_PHY) {
  810. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  811. ENET_SERDES_TEST_MD_0_SHIFT) |
  812. (ENET_TEST_MD_PAD_LOOPBACK <<
  813. ENET_SERDES_TEST_MD_1_SHIFT) |
  814. (ENET_TEST_MD_PAD_LOOPBACK <<
  815. ENET_SERDES_TEST_MD_2_SHIFT) |
  816. (ENET_TEST_MD_PAD_LOOPBACK <<
  817. ENET_SERDES_TEST_MD_3_SHIFT));
  818. }
  819. nw64(ENET_SERDES_RESET, reset_val);
  820. mdelay(20);
  821. val_rd = nr64(ENET_SERDES_RESET);
  822. val_rd &= ~reset_val;
  823. nw64(pll_cfg, val);
  824. nw64(ctrl_reg, ctrl_val);
  825. nw64(test_cfg_reg, test_cfg_val);
  826. nw64(ENET_SERDES_RESET, val_rd);
  827. mdelay(2000);
  828. /* Initialize all 4 lanes of the SERDES. */
  829. for (i = 0; i < 4; i++) {
  830. u32 rxtx_ctrl, glue0;
  831. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  832. if (err)
  833. return err;
  834. err = esr_read_glue0(np, i, &glue0);
  835. if (err)
  836. return err;
  837. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  838. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  839. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  840. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  841. ESR_GLUE_CTRL0_THCNT |
  842. ESR_GLUE_CTRL0_BLTIME);
  843. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  844. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  845. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  846. (BLTIME_300_CYCLES <<
  847. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  848. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  849. if (err)
  850. return err;
  851. err = esr_write_glue0(np, i, glue0);
  852. if (err)
  853. return err;
  854. }
  855. sig = nr64(ESR_INT_SIGNALS);
  856. switch (np->port) {
  857. case 0:
  858. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  859. mask = val;
  860. break;
  861. case 1:
  862. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  863. mask = val;
  864. break;
  865. default:
  866. return -EINVAL;
  867. }
  868. if ((sig & mask) != val) {
  869. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  870. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  871. return -ENODEV;
  872. }
  873. return 0;
  874. }
  875. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  876. {
  877. struct niu_link_config *lp = &np->link_config;
  878. int link_up;
  879. u64 val;
  880. u16 current_speed;
  881. unsigned long flags;
  882. u8 current_duplex;
  883. link_up = 0;
  884. current_speed = SPEED_INVALID;
  885. current_duplex = DUPLEX_INVALID;
  886. spin_lock_irqsave(&np->lock, flags);
  887. val = nr64_pcs(PCS_MII_STAT);
  888. if (val & PCS_MII_STAT_LINK_STATUS) {
  889. link_up = 1;
  890. current_speed = SPEED_1000;
  891. current_duplex = DUPLEX_FULL;
  892. }
  893. lp->active_speed = current_speed;
  894. lp->active_duplex = current_duplex;
  895. spin_unlock_irqrestore(&np->lock, flags);
  896. *link_up_p = link_up;
  897. return 0;
  898. }
  899. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  900. {
  901. unsigned long flags;
  902. struct niu_link_config *lp = &np->link_config;
  903. int link_up = 0;
  904. int link_ok = 1;
  905. u64 val, val2;
  906. u16 current_speed;
  907. u8 current_duplex;
  908. if (!(np->flags & NIU_FLAGS_10G))
  909. return link_status_1g_serdes(np, link_up_p);
  910. current_speed = SPEED_INVALID;
  911. current_duplex = DUPLEX_INVALID;
  912. spin_lock_irqsave(&np->lock, flags);
  913. val = nr64_xpcs(XPCS_STATUS(0));
  914. val2 = nr64_mac(XMAC_INTER2);
  915. if (val2 & 0x01000000)
  916. link_ok = 0;
  917. if ((val & 0x1000ULL) && link_ok) {
  918. link_up = 1;
  919. current_speed = SPEED_10000;
  920. current_duplex = DUPLEX_FULL;
  921. }
  922. lp->active_speed = current_speed;
  923. lp->active_duplex = current_duplex;
  924. spin_unlock_irqrestore(&np->lock, flags);
  925. *link_up_p = link_up;
  926. return 0;
  927. }
  928. static int link_status_mii(struct niu *np, int *link_up_p)
  929. {
  930. struct niu_link_config *lp = &np->link_config;
  931. int err;
  932. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  933. int supported, advertising, active_speed, active_duplex;
  934. err = mii_read(np, np->phy_addr, MII_BMCR);
  935. if (unlikely(err < 0))
  936. return err;
  937. bmcr = err;
  938. err = mii_read(np, np->phy_addr, MII_BMSR);
  939. if (unlikely(err < 0))
  940. return err;
  941. bmsr = err;
  942. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  943. if (unlikely(err < 0))
  944. return err;
  945. advert = err;
  946. err = mii_read(np, np->phy_addr, MII_LPA);
  947. if (unlikely(err < 0))
  948. return err;
  949. lpa = err;
  950. if (likely(bmsr & BMSR_ESTATEN)) {
  951. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  952. if (unlikely(err < 0))
  953. return err;
  954. estatus = err;
  955. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  956. if (unlikely(err < 0))
  957. return err;
  958. ctrl1000 = err;
  959. err = mii_read(np, np->phy_addr, MII_STAT1000);
  960. if (unlikely(err < 0))
  961. return err;
  962. stat1000 = err;
  963. } else
  964. estatus = ctrl1000 = stat1000 = 0;
  965. supported = 0;
  966. if (bmsr & BMSR_ANEGCAPABLE)
  967. supported |= SUPPORTED_Autoneg;
  968. if (bmsr & BMSR_10HALF)
  969. supported |= SUPPORTED_10baseT_Half;
  970. if (bmsr & BMSR_10FULL)
  971. supported |= SUPPORTED_10baseT_Full;
  972. if (bmsr & BMSR_100HALF)
  973. supported |= SUPPORTED_100baseT_Half;
  974. if (bmsr & BMSR_100FULL)
  975. supported |= SUPPORTED_100baseT_Full;
  976. if (estatus & ESTATUS_1000_THALF)
  977. supported |= SUPPORTED_1000baseT_Half;
  978. if (estatus & ESTATUS_1000_TFULL)
  979. supported |= SUPPORTED_1000baseT_Full;
  980. lp->supported = supported;
  981. advertising = 0;
  982. if (advert & ADVERTISE_10HALF)
  983. advertising |= ADVERTISED_10baseT_Half;
  984. if (advert & ADVERTISE_10FULL)
  985. advertising |= ADVERTISED_10baseT_Full;
  986. if (advert & ADVERTISE_100HALF)
  987. advertising |= ADVERTISED_100baseT_Half;
  988. if (advert & ADVERTISE_100FULL)
  989. advertising |= ADVERTISED_100baseT_Full;
  990. if (ctrl1000 & ADVERTISE_1000HALF)
  991. advertising |= ADVERTISED_1000baseT_Half;
  992. if (ctrl1000 & ADVERTISE_1000FULL)
  993. advertising |= ADVERTISED_1000baseT_Full;
  994. if (bmcr & BMCR_ANENABLE) {
  995. int neg, neg1000;
  996. lp->active_autoneg = 1;
  997. advertising |= ADVERTISED_Autoneg;
  998. neg = advert & lpa;
  999. neg1000 = (ctrl1000 << 2) & stat1000;
  1000. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  1001. active_speed = SPEED_1000;
  1002. else if (neg & LPA_100)
  1003. active_speed = SPEED_100;
  1004. else if (neg & (LPA_10HALF | LPA_10FULL))
  1005. active_speed = SPEED_10;
  1006. else
  1007. active_speed = SPEED_INVALID;
  1008. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  1009. active_duplex = DUPLEX_FULL;
  1010. else if (active_speed != SPEED_INVALID)
  1011. active_duplex = DUPLEX_HALF;
  1012. else
  1013. active_duplex = DUPLEX_INVALID;
  1014. } else {
  1015. lp->active_autoneg = 0;
  1016. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  1017. active_speed = SPEED_1000;
  1018. else if (bmcr & BMCR_SPEED100)
  1019. active_speed = SPEED_100;
  1020. else
  1021. active_speed = SPEED_10;
  1022. if (bmcr & BMCR_FULLDPLX)
  1023. active_duplex = DUPLEX_FULL;
  1024. else
  1025. active_duplex = DUPLEX_HALF;
  1026. }
  1027. lp->active_advertising = advertising;
  1028. lp->active_speed = active_speed;
  1029. lp->active_duplex = active_duplex;
  1030. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  1031. return 0;
  1032. }
  1033. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1034. {
  1035. struct niu_link_config *lp = &np->link_config;
  1036. u16 current_speed, bmsr;
  1037. unsigned long flags;
  1038. u8 current_duplex;
  1039. int err, link_up;
  1040. link_up = 0;
  1041. current_speed = SPEED_INVALID;
  1042. current_duplex = DUPLEX_INVALID;
  1043. spin_lock_irqsave(&np->lock, flags);
  1044. err = -EINVAL;
  1045. err = mii_read(np, np->phy_addr, MII_BMSR);
  1046. if (err < 0)
  1047. goto out;
  1048. bmsr = err;
  1049. if (bmsr & BMSR_LSTATUS) {
  1050. u16 adv, lpa, common, estat;
  1051. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1052. if (err < 0)
  1053. goto out;
  1054. adv = err;
  1055. err = mii_read(np, np->phy_addr, MII_LPA);
  1056. if (err < 0)
  1057. goto out;
  1058. lpa = err;
  1059. common = adv & lpa;
  1060. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1061. if (err < 0)
  1062. goto out;
  1063. estat = err;
  1064. link_up = 1;
  1065. current_speed = SPEED_1000;
  1066. current_duplex = DUPLEX_FULL;
  1067. }
  1068. lp->active_speed = current_speed;
  1069. lp->active_duplex = current_duplex;
  1070. err = 0;
  1071. out:
  1072. spin_unlock_irqrestore(&np->lock, flags);
  1073. *link_up_p = link_up;
  1074. return err;
  1075. }
  1076. static int link_status_1g(struct niu *np, int *link_up_p)
  1077. {
  1078. struct niu_link_config *lp = &np->link_config;
  1079. unsigned long flags;
  1080. int err;
  1081. spin_lock_irqsave(&np->lock, flags);
  1082. err = link_status_mii(np, link_up_p);
  1083. lp->supported |= SUPPORTED_TP;
  1084. lp->active_advertising |= ADVERTISED_TP;
  1085. spin_unlock_irqrestore(&np->lock, flags);
  1086. return err;
  1087. }
  1088. static int bcm8704_reset(struct niu *np)
  1089. {
  1090. int err, limit;
  1091. err = mdio_read(np, np->phy_addr,
  1092. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1093. if (err < 0)
  1094. return err;
  1095. err |= BMCR_RESET;
  1096. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1097. MII_BMCR, err);
  1098. if (err)
  1099. return err;
  1100. limit = 1000;
  1101. while (--limit >= 0) {
  1102. err = mdio_read(np, np->phy_addr,
  1103. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1104. if (err < 0)
  1105. return err;
  1106. if (!(err & BMCR_RESET))
  1107. break;
  1108. }
  1109. if (limit < 0) {
  1110. dev_err(np->device, PFX "Port %u PHY will not reset "
  1111. "(bmcr=%04x)\n", np->port, (err & 0xffff));
  1112. return -ENODEV;
  1113. }
  1114. return 0;
  1115. }
  1116. /* When written, certain PHY registers need to be read back twice
  1117. * in order for the bits to settle properly.
  1118. */
  1119. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1120. {
  1121. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1122. if (err < 0)
  1123. return err;
  1124. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1125. if (err < 0)
  1126. return err;
  1127. return 0;
  1128. }
  1129. static int bcm8706_init_user_dev3(struct niu *np)
  1130. {
  1131. int err;
  1132. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1133. BCM8704_USER_OPT_DIGITAL_CTRL);
  1134. if (err < 0)
  1135. return err;
  1136. err &= ~USER_ODIG_CTRL_GPIOS;
  1137. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1138. err |= USER_ODIG_CTRL_RESV2;
  1139. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1140. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1141. if (err)
  1142. return err;
  1143. mdelay(1000);
  1144. return 0;
  1145. }
  1146. static int bcm8704_init_user_dev3(struct niu *np)
  1147. {
  1148. int err;
  1149. err = mdio_write(np, np->phy_addr,
  1150. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1151. (USER_CONTROL_OPTXRST_LVL |
  1152. USER_CONTROL_OPBIASFLT_LVL |
  1153. USER_CONTROL_OBTMPFLT_LVL |
  1154. USER_CONTROL_OPPRFLT_LVL |
  1155. USER_CONTROL_OPTXFLT_LVL |
  1156. USER_CONTROL_OPRXLOS_LVL |
  1157. USER_CONTROL_OPRXFLT_LVL |
  1158. USER_CONTROL_OPTXON_LVL |
  1159. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1160. if (err)
  1161. return err;
  1162. err = mdio_write(np, np->phy_addr,
  1163. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1164. (USER_PMD_TX_CTL_XFP_CLKEN |
  1165. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1166. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1167. USER_PMD_TX_CTL_TSCK_LPWREN));
  1168. if (err)
  1169. return err;
  1170. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1171. if (err)
  1172. return err;
  1173. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1174. if (err)
  1175. return err;
  1176. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1177. BCM8704_USER_OPT_DIGITAL_CTRL);
  1178. if (err < 0)
  1179. return err;
  1180. err &= ~USER_ODIG_CTRL_GPIOS;
  1181. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1182. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1183. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1184. if (err)
  1185. return err;
  1186. mdelay(1000);
  1187. return 0;
  1188. }
  1189. static int mrvl88x2011_act_led(struct niu *np, int val)
  1190. {
  1191. int err;
  1192. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1193. MRVL88X2011_LED_8_TO_11_CTL);
  1194. if (err < 0)
  1195. return err;
  1196. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1197. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1198. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1199. MRVL88X2011_LED_8_TO_11_CTL, err);
  1200. }
  1201. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1202. {
  1203. int err;
  1204. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1205. MRVL88X2011_LED_BLINK_CTL);
  1206. if (err >= 0) {
  1207. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1208. err |= (rate << 4);
  1209. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1210. MRVL88X2011_LED_BLINK_CTL, err);
  1211. }
  1212. return err;
  1213. }
  1214. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1215. {
  1216. int err;
  1217. /* Set LED functions */
  1218. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1219. if (err)
  1220. return err;
  1221. /* led activity */
  1222. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1223. if (err)
  1224. return err;
  1225. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1226. MRVL88X2011_GENERAL_CTL);
  1227. if (err < 0)
  1228. return err;
  1229. err |= MRVL88X2011_ENA_XFPREFCLK;
  1230. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1231. MRVL88X2011_GENERAL_CTL, err);
  1232. if (err < 0)
  1233. return err;
  1234. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1235. MRVL88X2011_PMA_PMD_CTL_1);
  1236. if (err < 0)
  1237. return err;
  1238. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1239. err |= MRVL88X2011_LOOPBACK;
  1240. else
  1241. err &= ~MRVL88X2011_LOOPBACK;
  1242. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1243. MRVL88X2011_PMA_PMD_CTL_1, err);
  1244. if (err < 0)
  1245. return err;
  1246. /* Enable PMD */
  1247. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1248. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1249. }
  1250. static int xcvr_diag_bcm870x(struct niu *np)
  1251. {
  1252. u16 analog_stat0, tx_alarm_status;
  1253. int err = 0;
  1254. #if 1
  1255. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1256. MII_STAT1000);
  1257. if (err < 0)
  1258. return err;
  1259. pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
  1260. np->port, err);
  1261. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1262. if (err < 0)
  1263. return err;
  1264. pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
  1265. np->port, err);
  1266. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1267. MII_NWAYTEST);
  1268. if (err < 0)
  1269. return err;
  1270. pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
  1271. np->port, err);
  1272. #endif
  1273. /* XXX dig this out it might not be so useful XXX */
  1274. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1275. BCM8704_USER_ANALOG_STATUS0);
  1276. if (err < 0)
  1277. return err;
  1278. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1279. BCM8704_USER_ANALOG_STATUS0);
  1280. if (err < 0)
  1281. return err;
  1282. analog_stat0 = err;
  1283. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1284. BCM8704_USER_TX_ALARM_STATUS);
  1285. if (err < 0)
  1286. return err;
  1287. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1288. BCM8704_USER_TX_ALARM_STATUS);
  1289. if (err < 0)
  1290. return err;
  1291. tx_alarm_status = err;
  1292. if (analog_stat0 != 0x03fc) {
  1293. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1294. pr_info(PFX "Port %u cable not connected "
  1295. "or bad cable.\n", np->port);
  1296. } else if (analog_stat0 == 0x639c) {
  1297. pr_info(PFX "Port %u optical module is bad "
  1298. "or missing.\n", np->port);
  1299. }
  1300. }
  1301. return 0;
  1302. }
  1303. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1304. {
  1305. struct niu_link_config *lp = &np->link_config;
  1306. int err;
  1307. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1308. MII_BMCR);
  1309. if (err < 0)
  1310. return err;
  1311. err &= ~BMCR_LOOPBACK;
  1312. if (lp->loopback_mode == LOOPBACK_MAC)
  1313. err |= BMCR_LOOPBACK;
  1314. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1315. MII_BMCR, err);
  1316. if (err)
  1317. return err;
  1318. return 0;
  1319. }
  1320. static int xcvr_init_10g_bcm8706(struct niu *np)
  1321. {
  1322. int err = 0;
  1323. u64 val;
  1324. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1325. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1326. return err;
  1327. val = nr64_mac(XMAC_CONFIG);
  1328. val &= ~XMAC_CONFIG_LED_POLARITY;
  1329. val |= XMAC_CONFIG_FORCE_LED_ON;
  1330. nw64_mac(XMAC_CONFIG, val);
  1331. val = nr64(MIF_CONFIG);
  1332. val |= MIF_CONFIG_INDIRECT_MODE;
  1333. nw64(MIF_CONFIG, val);
  1334. err = bcm8704_reset(np);
  1335. if (err)
  1336. return err;
  1337. err = xcvr_10g_set_lb_bcm870x(np);
  1338. if (err)
  1339. return err;
  1340. err = bcm8706_init_user_dev3(np);
  1341. if (err)
  1342. return err;
  1343. err = xcvr_diag_bcm870x(np);
  1344. if (err)
  1345. return err;
  1346. return 0;
  1347. }
  1348. static int xcvr_init_10g_bcm8704(struct niu *np)
  1349. {
  1350. int err;
  1351. err = bcm8704_reset(np);
  1352. if (err)
  1353. return err;
  1354. err = bcm8704_init_user_dev3(np);
  1355. if (err)
  1356. return err;
  1357. err = xcvr_10g_set_lb_bcm870x(np);
  1358. if (err)
  1359. return err;
  1360. err = xcvr_diag_bcm870x(np);
  1361. if (err)
  1362. return err;
  1363. return 0;
  1364. }
  1365. static int xcvr_init_10g(struct niu *np)
  1366. {
  1367. int phy_id, err;
  1368. u64 val;
  1369. val = nr64_mac(XMAC_CONFIG);
  1370. val &= ~XMAC_CONFIG_LED_POLARITY;
  1371. val |= XMAC_CONFIG_FORCE_LED_ON;
  1372. nw64_mac(XMAC_CONFIG, val);
  1373. /* XXX shared resource, lock parent XXX */
  1374. val = nr64(MIF_CONFIG);
  1375. val |= MIF_CONFIG_INDIRECT_MODE;
  1376. nw64(MIF_CONFIG, val);
  1377. phy_id = phy_decode(np->parent->port_phy, np->port);
  1378. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1379. /* handle different phy types */
  1380. switch (phy_id & NIU_PHY_ID_MASK) {
  1381. case NIU_PHY_ID_MRVL88X2011:
  1382. err = xcvr_init_10g_mrvl88x2011(np);
  1383. break;
  1384. default: /* bcom 8704 */
  1385. err = xcvr_init_10g_bcm8704(np);
  1386. break;
  1387. }
  1388. return 0;
  1389. }
  1390. static int mii_reset(struct niu *np)
  1391. {
  1392. int limit, err;
  1393. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1394. if (err)
  1395. return err;
  1396. limit = 1000;
  1397. while (--limit >= 0) {
  1398. udelay(500);
  1399. err = mii_read(np, np->phy_addr, MII_BMCR);
  1400. if (err < 0)
  1401. return err;
  1402. if (!(err & BMCR_RESET))
  1403. break;
  1404. }
  1405. if (limit < 0) {
  1406. dev_err(np->device, PFX "Port %u MII would not reset, "
  1407. "bmcr[%04x]\n", np->port, err);
  1408. return -ENODEV;
  1409. }
  1410. return 0;
  1411. }
  1412. static int xcvr_init_1g_rgmii(struct niu *np)
  1413. {
  1414. int err;
  1415. u64 val;
  1416. u16 bmcr, bmsr, estat;
  1417. val = nr64(MIF_CONFIG);
  1418. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1419. nw64(MIF_CONFIG, val);
  1420. err = mii_reset(np);
  1421. if (err)
  1422. return err;
  1423. err = mii_read(np, np->phy_addr, MII_BMSR);
  1424. if (err < 0)
  1425. return err;
  1426. bmsr = err;
  1427. estat = 0;
  1428. if (bmsr & BMSR_ESTATEN) {
  1429. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1430. if (err < 0)
  1431. return err;
  1432. estat = err;
  1433. }
  1434. bmcr = 0;
  1435. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1436. if (err)
  1437. return err;
  1438. if (bmsr & BMSR_ESTATEN) {
  1439. u16 ctrl1000 = 0;
  1440. if (estat & ESTATUS_1000_TFULL)
  1441. ctrl1000 |= ADVERTISE_1000FULL;
  1442. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1443. if (err)
  1444. return err;
  1445. }
  1446. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1447. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1448. if (err)
  1449. return err;
  1450. err = mii_read(np, np->phy_addr, MII_BMCR);
  1451. if (err < 0)
  1452. return err;
  1453. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1454. err = mii_read(np, np->phy_addr, MII_BMSR);
  1455. if (err < 0)
  1456. return err;
  1457. return 0;
  1458. }
  1459. static int mii_init_common(struct niu *np)
  1460. {
  1461. struct niu_link_config *lp = &np->link_config;
  1462. u16 bmcr, bmsr, adv, estat;
  1463. int err;
  1464. err = mii_reset(np);
  1465. if (err)
  1466. return err;
  1467. err = mii_read(np, np->phy_addr, MII_BMSR);
  1468. if (err < 0)
  1469. return err;
  1470. bmsr = err;
  1471. estat = 0;
  1472. if (bmsr & BMSR_ESTATEN) {
  1473. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1474. if (err < 0)
  1475. return err;
  1476. estat = err;
  1477. }
  1478. bmcr = 0;
  1479. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1480. if (err)
  1481. return err;
  1482. if (lp->loopback_mode == LOOPBACK_MAC) {
  1483. bmcr |= BMCR_LOOPBACK;
  1484. if (lp->active_speed == SPEED_1000)
  1485. bmcr |= BMCR_SPEED1000;
  1486. if (lp->active_duplex == DUPLEX_FULL)
  1487. bmcr |= BMCR_FULLDPLX;
  1488. }
  1489. if (lp->loopback_mode == LOOPBACK_PHY) {
  1490. u16 aux;
  1491. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1492. BCM5464R_AUX_CTL_WRITE_1);
  1493. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1494. if (err)
  1495. return err;
  1496. }
  1497. if (lp->autoneg) {
  1498. u16 ctrl1000;
  1499. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1500. if ((bmsr & BMSR_10HALF) &&
  1501. (lp->advertising & ADVERTISED_10baseT_Half))
  1502. adv |= ADVERTISE_10HALF;
  1503. if ((bmsr & BMSR_10FULL) &&
  1504. (lp->advertising & ADVERTISED_10baseT_Full))
  1505. adv |= ADVERTISE_10FULL;
  1506. if ((bmsr & BMSR_100HALF) &&
  1507. (lp->advertising & ADVERTISED_100baseT_Half))
  1508. adv |= ADVERTISE_100HALF;
  1509. if ((bmsr & BMSR_100FULL) &&
  1510. (lp->advertising & ADVERTISED_100baseT_Full))
  1511. adv |= ADVERTISE_100FULL;
  1512. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1513. if (err)
  1514. return err;
  1515. if (likely(bmsr & BMSR_ESTATEN)) {
  1516. ctrl1000 = 0;
  1517. if ((estat & ESTATUS_1000_THALF) &&
  1518. (lp->advertising & ADVERTISED_1000baseT_Half))
  1519. ctrl1000 |= ADVERTISE_1000HALF;
  1520. if ((estat & ESTATUS_1000_TFULL) &&
  1521. (lp->advertising & ADVERTISED_1000baseT_Full))
  1522. ctrl1000 |= ADVERTISE_1000FULL;
  1523. err = mii_write(np, np->phy_addr,
  1524. MII_CTRL1000, ctrl1000);
  1525. if (err)
  1526. return err;
  1527. }
  1528. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1529. } else {
  1530. /* !lp->autoneg */
  1531. int fulldpx;
  1532. if (lp->duplex == DUPLEX_FULL) {
  1533. bmcr |= BMCR_FULLDPLX;
  1534. fulldpx = 1;
  1535. } else if (lp->duplex == DUPLEX_HALF)
  1536. fulldpx = 0;
  1537. else
  1538. return -EINVAL;
  1539. if (lp->speed == SPEED_1000) {
  1540. /* if X-full requested while not supported, or
  1541. X-half requested while not supported... */
  1542. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1543. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1544. return -EINVAL;
  1545. bmcr |= BMCR_SPEED1000;
  1546. } else if (lp->speed == SPEED_100) {
  1547. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1548. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1549. return -EINVAL;
  1550. bmcr |= BMCR_SPEED100;
  1551. } else if (lp->speed == SPEED_10) {
  1552. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1553. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1554. return -EINVAL;
  1555. } else
  1556. return -EINVAL;
  1557. }
  1558. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1559. if (err)
  1560. return err;
  1561. #if 0
  1562. err = mii_read(np, np->phy_addr, MII_BMCR);
  1563. if (err < 0)
  1564. return err;
  1565. bmcr = err;
  1566. err = mii_read(np, np->phy_addr, MII_BMSR);
  1567. if (err < 0)
  1568. return err;
  1569. bmsr = err;
  1570. pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1571. np->port, bmcr, bmsr);
  1572. #endif
  1573. return 0;
  1574. }
  1575. static int xcvr_init_1g(struct niu *np)
  1576. {
  1577. u64 val;
  1578. /* XXX shared resource, lock parent XXX */
  1579. val = nr64(MIF_CONFIG);
  1580. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1581. nw64(MIF_CONFIG, val);
  1582. return mii_init_common(np);
  1583. }
  1584. static int niu_xcvr_init(struct niu *np)
  1585. {
  1586. const struct niu_phy_ops *ops = np->phy_ops;
  1587. int err;
  1588. err = 0;
  1589. if (ops->xcvr_init)
  1590. err = ops->xcvr_init(np);
  1591. return err;
  1592. }
  1593. static int niu_serdes_init(struct niu *np)
  1594. {
  1595. const struct niu_phy_ops *ops = np->phy_ops;
  1596. int err;
  1597. err = 0;
  1598. if (ops->serdes_init)
  1599. err = ops->serdes_init(np);
  1600. return err;
  1601. }
  1602. static void niu_init_xif(struct niu *);
  1603. static void niu_handle_led(struct niu *, int status);
  1604. static int niu_link_status_common(struct niu *np, int link_up)
  1605. {
  1606. struct niu_link_config *lp = &np->link_config;
  1607. struct net_device *dev = np->dev;
  1608. unsigned long flags;
  1609. if (!netif_carrier_ok(dev) && link_up) {
  1610. niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
  1611. dev->name,
  1612. (lp->active_speed == SPEED_10000 ?
  1613. "10Gb/sec" :
  1614. (lp->active_speed == SPEED_1000 ?
  1615. "1Gb/sec" :
  1616. (lp->active_speed == SPEED_100 ?
  1617. "100Mbit/sec" : "10Mbit/sec"))),
  1618. (lp->active_duplex == DUPLEX_FULL ?
  1619. "full" : "half"));
  1620. spin_lock_irqsave(&np->lock, flags);
  1621. niu_init_xif(np);
  1622. niu_handle_led(np, 1);
  1623. spin_unlock_irqrestore(&np->lock, flags);
  1624. netif_carrier_on(dev);
  1625. } else if (netif_carrier_ok(dev) && !link_up) {
  1626. niuwarn(LINK, "%s: Link is down\n", dev->name);
  1627. spin_lock_irqsave(&np->lock, flags);
  1628. niu_handle_led(np, 0);
  1629. spin_unlock_irqrestore(&np->lock, flags);
  1630. netif_carrier_off(dev);
  1631. }
  1632. return 0;
  1633. }
  1634. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1635. {
  1636. int err, link_up, pma_status, pcs_status;
  1637. link_up = 0;
  1638. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1639. MRVL88X2011_10G_PMD_STATUS_2);
  1640. if (err < 0)
  1641. goto out;
  1642. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1643. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1644. MRVL88X2011_PMA_PMD_STATUS_1);
  1645. if (err < 0)
  1646. goto out;
  1647. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1648. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1649. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1650. MRVL88X2011_PMA_PMD_STATUS_1);
  1651. if (err < 0)
  1652. goto out;
  1653. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1654. MRVL88X2011_PMA_PMD_STATUS_1);
  1655. if (err < 0)
  1656. goto out;
  1657. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1658. /* Check XGXS Register : 4.0018.[0-3,12] */
  1659. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1660. MRVL88X2011_10G_XGXS_LANE_STAT);
  1661. if (err < 0)
  1662. goto out;
  1663. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1664. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1665. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1666. 0x800))
  1667. link_up = (pma_status && pcs_status) ? 1 : 0;
  1668. np->link_config.active_speed = SPEED_10000;
  1669. np->link_config.active_duplex = DUPLEX_FULL;
  1670. err = 0;
  1671. out:
  1672. mrvl88x2011_act_led(np, (link_up ?
  1673. MRVL88X2011_LED_CTL_PCS_ACT :
  1674. MRVL88X2011_LED_CTL_OFF));
  1675. *link_up_p = link_up;
  1676. return err;
  1677. }
  1678. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1679. {
  1680. int err, link_up;
  1681. link_up = 0;
  1682. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1683. BCM8704_PMD_RCV_SIGDET);
  1684. if (err < 0)
  1685. goto out;
  1686. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1687. err = 0;
  1688. goto out;
  1689. }
  1690. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1691. BCM8704_PCS_10G_R_STATUS);
  1692. if (err < 0)
  1693. goto out;
  1694. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1695. err = 0;
  1696. goto out;
  1697. }
  1698. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1699. BCM8704_PHYXS_XGXS_LANE_STAT);
  1700. if (err < 0)
  1701. goto out;
  1702. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1703. PHYXS_XGXS_LANE_STAT_MAGIC |
  1704. PHYXS_XGXS_LANE_STAT_PATTEST |
  1705. PHYXS_XGXS_LANE_STAT_LANE3 |
  1706. PHYXS_XGXS_LANE_STAT_LANE2 |
  1707. PHYXS_XGXS_LANE_STAT_LANE1 |
  1708. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1709. err = 0;
  1710. np->link_config.active_speed = SPEED_INVALID;
  1711. np->link_config.active_duplex = DUPLEX_INVALID;
  1712. goto out;
  1713. }
  1714. link_up = 1;
  1715. np->link_config.active_speed = SPEED_10000;
  1716. np->link_config.active_duplex = DUPLEX_FULL;
  1717. err = 0;
  1718. out:
  1719. *link_up_p = link_up;
  1720. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  1721. err = 0;
  1722. return err;
  1723. }
  1724. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1725. {
  1726. int err, link_up;
  1727. link_up = 0;
  1728. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1729. BCM8704_PMD_RCV_SIGDET);
  1730. if (err < 0)
  1731. goto out;
  1732. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1733. err = 0;
  1734. goto out;
  1735. }
  1736. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1737. BCM8704_PCS_10G_R_STATUS);
  1738. if (err < 0)
  1739. goto out;
  1740. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1741. err = 0;
  1742. goto out;
  1743. }
  1744. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1745. BCM8704_PHYXS_XGXS_LANE_STAT);
  1746. if (err < 0)
  1747. goto out;
  1748. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1749. PHYXS_XGXS_LANE_STAT_MAGIC |
  1750. PHYXS_XGXS_LANE_STAT_LANE3 |
  1751. PHYXS_XGXS_LANE_STAT_LANE2 |
  1752. PHYXS_XGXS_LANE_STAT_LANE1 |
  1753. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1754. err = 0;
  1755. goto out;
  1756. }
  1757. link_up = 1;
  1758. np->link_config.active_speed = SPEED_10000;
  1759. np->link_config.active_duplex = DUPLEX_FULL;
  1760. err = 0;
  1761. out:
  1762. *link_up_p = link_up;
  1763. return err;
  1764. }
  1765. static int link_status_10g(struct niu *np, int *link_up_p)
  1766. {
  1767. unsigned long flags;
  1768. int err = -EINVAL;
  1769. spin_lock_irqsave(&np->lock, flags);
  1770. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1771. int phy_id;
  1772. phy_id = phy_decode(np->parent->port_phy, np->port);
  1773. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1774. /* handle different phy types */
  1775. switch (phy_id & NIU_PHY_ID_MASK) {
  1776. case NIU_PHY_ID_MRVL88X2011:
  1777. err = link_status_10g_mrvl(np, link_up_p);
  1778. break;
  1779. default: /* bcom 8704 */
  1780. err = link_status_10g_bcom(np, link_up_p);
  1781. break;
  1782. }
  1783. }
  1784. spin_unlock_irqrestore(&np->lock, flags);
  1785. return err;
  1786. }
  1787. static int niu_10g_phy_present(struct niu *np)
  1788. {
  1789. u64 sig, mask, val;
  1790. sig = nr64(ESR_INT_SIGNALS);
  1791. switch (np->port) {
  1792. case 0:
  1793. mask = ESR_INT_SIGNALS_P0_BITS;
  1794. val = (ESR_INT_SRDY0_P0 |
  1795. ESR_INT_DET0_P0 |
  1796. ESR_INT_XSRDY_P0 |
  1797. ESR_INT_XDP_P0_CH3 |
  1798. ESR_INT_XDP_P0_CH2 |
  1799. ESR_INT_XDP_P0_CH1 |
  1800. ESR_INT_XDP_P0_CH0);
  1801. break;
  1802. case 1:
  1803. mask = ESR_INT_SIGNALS_P1_BITS;
  1804. val = (ESR_INT_SRDY0_P1 |
  1805. ESR_INT_DET0_P1 |
  1806. ESR_INT_XSRDY_P1 |
  1807. ESR_INT_XDP_P1_CH3 |
  1808. ESR_INT_XDP_P1_CH2 |
  1809. ESR_INT_XDP_P1_CH1 |
  1810. ESR_INT_XDP_P1_CH0);
  1811. break;
  1812. default:
  1813. return 0;
  1814. }
  1815. if ((sig & mask) != val)
  1816. return 0;
  1817. return 1;
  1818. }
  1819. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1820. {
  1821. unsigned long flags;
  1822. int err = 0;
  1823. int phy_present;
  1824. int phy_present_prev;
  1825. spin_lock_irqsave(&np->lock, flags);
  1826. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1827. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1828. 1 : 0;
  1829. phy_present = niu_10g_phy_present(np);
  1830. if (phy_present != phy_present_prev) {
  1831. /* state change */
  1832. if (phy_present) {
  1833. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1834. if (np->phy_ops->xcvr_init)
  1835. err = np->phy_ops->xcvr_init(np);
  1836. if (err) {
  1837. /* debounce */
  1838. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1839. }
  1840. } else {
  1841. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1842. *link_up_p = 0;
  1843. niuwarn(LINK, "%s: Hotplug PHY Removed\n",
  1844. np->dev->name);
  1845. }
  1846. }
  1847. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT)
  1848. err = link_status_10g_bcm8706(np, link_up_p);
  1849. }
  1850. spin_unlock_irqrestore(&np->lock, flags);
  1851. return err;
  1852. }
  1853. static int niu_link_status(struct niu *np, int *link_up_p)
  1854. {
  1855. const struct niu_phy_ops *ops = np->phy_ops;
  1856. int err;
  1857. err = 0;
  1858. if (ops->link_status)
  1859. err = ops->link_status(np, link_up_p);
  1860. return err;
  1861. }
  1862. static void niu_timer(unsigned long __opaque)
  1863. {
  1864. struct niu *np = (struct niu *) __opaque;
  1865. unsigned long off;
  1866. int err, link_up;
  1867. err = niu_link_status(np, &link_up);
  1868. if (!err)
  1869. niu_link_status_common(np, link_up);
  1870. if (netif_carrier_ok(np->dev))
  1871. off = 5 * HZ;
  1872. else
  1873. off = 1 * HZ;
  1874. np->timer.expires = jiffies + off;
  1875. add_timer(&np->timer);
  1876. }
  1877. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1878. .serdes_init = serdes_init_10g_serdes,
  1879. .link_status = link_status_10g_serdes,
  1880. };
  1881. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1882. .serdes_init = serdes_init_niu_10g_serdes,
  1883. .link_status = link_status_10g_serdes,
  1884. };
  1885. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1886. .serdes_init = serdes_init_niu_1g_serdes,
  1887. .link_status = link_status_1g_serdes,
  1888. };
  1889. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1890. .xcvr_init = xcvr_init_1g_rgmii,
  1891. .link_status = link_status_1g_rgmii,
  1892. };
  1893. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1894. .serdes_init = serdes_init_niu_10g_fiber,
  1895. .xcvr_init = xcvr_init_10g,
  1896. .link_status = link_status_10g,
  1897. };
  1898. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1899. .serdes_init = serdes_init_10g,
  1900. .xcvr_init = xcvr_init_10g,
  1901. .link_status = link_status_10g,
  1902. };
  1903. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1904. .serdes_init = serdes_init_10g,
  1905. .xcvr_init = xcvr_init_10g_bcm8706,
  1906. .link_status = link_status_10g_hotplug,
  1907. };
  1908. static const struct niu_phy_ops phy_ops_10g_copper = {
  1909. .serdes_init = serdes_init_10g,
  1910. .link_status = link_status_10g, /* XXX */
  1911. };
  1912. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1913. .serdes_init = serdes_init_1g,
  1914. .xcvr_init = xcvr_init_1g,
  1915. .link_status = link_status_1g,
  1916. };
  1917. static const struct niu_phy_ops phy_ops_1g_copper = {
  1918. .xcvr_init = xcvr_init_1g,
  1919. .link_status = link_status_1g,
  1920. };
  1921. struct niu_phy_template {
  1922. const struct niu_phy_ops *ops;
  1923. u32 phy_addr_base;
  1924. };
  1925. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1926. .ops = &phy_ops_10g_fiber_niu,
  1927. .phy_addr_base = 16,
  1928. };
  1929. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1930. .ops = &phy_ops_10g_serdes_niu,
  1931. .phy_addr_base = 0,
  1932. };
  1933. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1934. .ops = &phy_ops_1g_serdes_niu,
  1935. .phy_addr_base = 0,
  1936. };
  1937. static const struct niu_phy_template phy_template_10g_fiber = {
  1938. .ops = &phy_ops_10g_fiber,
  1939. .phy_addr_base = 8,
  1940. };
  1941. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1942. .ops = &phy_ops_10g_fiber_hotplug,
  1943. .phy_addr_base = 8,
  1944. };
  1945. static const struct niu_phy_template phy_template_10g_copper = {
  1946. .ops = &phy_ops_10g_copper,
  1947. .phy_addr_base = 10,
  1948. };
  1949. static const struct niu_phy_template phy_template_1g_fiber = {
  1950. .ops = &phy_ops_1g_fiber,
  1951. .phy_addr_base = 0,
  1952. };
  1953. static const struct niu_phy_template phy_template_1g_copper = {
  1954. .ops = &phy_ops_1g_copper,
  1955. .phy_addr_base = 0,
  1956. };
  1957. static const struct niu_phy_template phy_template_1g_rgmii = {
  1958. .ops = &phy_ops_1g_rgmii,
  1959. .phy_addr_base = 0,
  1960. };
  1961. static const struct niu_phy_template phy_template_10g_serdes = {
  1962. .ops = &phy_ops_10g_serdes,
  1963. .phy_addr_base = 0,
  1964. };
  1965. static int niu_atca_port_num[4] = {
  1966. 0, 0, 11, 10
  1967. };
  1968. static int serdes_init_10g_serdes(struct niu *np)
  1969. {
  1970. struct niu_link_config *lp = &np->link_config;
  1971. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1972. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1973. u64 reset_val;
  1974. switch (np->port) {
  1975. case 0:
  1976. reset_val = ENET_SERDES_RESET_0;
  1977. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1978. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1979. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1980. break;
  1981. case 1:
  1982. reset_val = ENET_SERDES_RESET_1;
  1983. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1984. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1985. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1986. break;
  1987. default:
  1988. return -EINVAL;
  1989. }
  1990. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1991. ENET_SERDES_CTRL_SDET_1 |
  1992. ENET_SERDES_CTRL_SDET_2 |
  1993. ENET_SERDES_CTRL_SDET_3 |
  1994. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1995. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1996. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1997. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1998. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1999. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  2000. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  2001. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  2002. test_cfg_val = 0;
  2003. if (lp->loopback_mode == LOOPBACK_PHY) {
  2004. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  2005. ENET_SERDES_TEST_MD_0_SHIFT) |
  2006. (ENET_TEST_MD_PAD_LOOPBACK <<
  2007. ENET_SERDES_TEST_MD_1_SHIFT) |
  2008. (ENET_TEST_MD_PAD_LOOPBACK <<
  2009. ENET_SERDES_TEST_MD_2_SHIFT) |
  2010. (ENET_TEST_MD_PAD_LOOPBACK <<
  2011. ENET_SERDES_TEST_MD_3_SHIFT));
  2012. }
  2013. esr_reset(np);
  2014. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  2015. nw64(ctrl_reg, ctrl_val);
  2016. nw64(test_cfg_reg, test_cfg_val);
  2017. /* Initialize all 4 lanes of the SERDES. */
  2018. for (i = 0; i < 4; i++) {
  2019. u32 rxtx_ctrl, glue0;
  2020. int err;
  2021. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  2022. if (err)
  2023. return err;
  2024. err = esr_read_glue0(np, i, &glue0);
  2025. if (err)
  2026. return err;
  2027. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2028. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2029. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2030. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2031. ESR_GLUE_CTRL0_THCNT |
  2032. ESR_GLUE_CTRL0_BLTIME);
  2033. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2034. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2035. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2036. (BLTIME_300_CYCLES <<
  2037. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2038. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2039. if (err)
  2040. return err;
  2041. err = esr_write_glue0(np, i, glue0);
  2042. if (err)
  2043. return err;
  2044. }
  2045. sig = nr64(ESR_INT_SIGNALS);
  2046. switch (np->port) {
  2047. case 0:
  2048. mask = ESR_INT_SIGNALS_P0_BITS;
  2049. val = (ESR_INT_SRDY0_P0 |
  2050. ESR_INT_DET0_P0 |
  2051. ESR_INT_XSRDY_P0 |
  2052. ESR_INT_XDP_P0_CH3 |
  2053. ESR_INT_XDP_P0_CH2 |
  2054. ESR_INT_XDP_P0_CH1 |
  2055. ESR_INT_XDP_P0_CH0);
  2056. break;
  2057. case 1:
  2058. mask = ESR_INT_SIGNALS_P1_BITS;
  2059. val = (ESR_INT_SRDY0_P1 |
  2060. ESR_INT_DET0_P1 |
  2061. ESR_INT_XSRDY_P1 |
  2062. ESR_INT_XDP_P1_CH3 |
  2063. ESR_INT_XDP_P1_CH2 |
  2064. ESR_INT_XDP_P1_CH1 |
  2065. ESR_INT_XDP_P1_CH0);
  2066. break;
  2067. default:
  2068. return -EINVAL;
  2069. }
  2070. if ((sig & mask) != val) {
  2071. int err;
  2072. err = serdes_init_1g_serdes(np);
  2073. if (!err) {
  2074. np->flags &= ~NIU_FLAGS_10G;
  2075. np->mac_xcvr = MAC_XCVR_PCS;
  2076. } else {
  2077. dev_err(np->device, PFX "Port %u 10G/1G SERDES Link Failed \n",
  2078. np->port);
  2079. return -ENODEV;
  2080. }
  2081. }
  2082. return 0;
  2083. }
  2084. static int niu_determine_phy_disposition(struct niu *np)
  2085. {
  2086. struct niu_parent *parent = np->parent;
  2087. u8 plat_type = parent->plat_type;
  2088. const struct niu_phy_template *tp;
  2089. u32 phy_addr_off = 0;
  2090. if (plat_type == PLAT_TYPE_NIU) {
  2091. switch (np->flags &
  2092. (NIU_FLAGS_10G |
  2093. NIU_FLAGS_FIBER |
  2094. NIU_FLAGS_XCVR_SERDES)) {
  2095. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2096. /* 10G Serdes */
  2097. tp = &phy_template_niu_10g_serdes;
  2098. break;
  2099. case NIU_FLAGS_XCVR_SERDES:
  2100. /* 1G Serdes */
  2101. tp = &phy_template_niu_1g_serdes;
  2102. break;
  2103. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2104. /* 10G Fiber */
  2105. default:
  2106. tp = &phy_template_niu_10g_fiber;
  2107. phy_addr_off += np->port;
  2108. break;
  2109. }
  2110. } else {
  2111. switch (np->flags &
  2112. (NIU_FLAGS_10G |
  2113. NIU_FLAGS_FIBER |
  2114. NIU_FLAGS_XCVR_SERDES)) {
  2115. case 0:
  2116. /* 1G copper */
  2117. tp = &phy_template_1g_copper;
  2118. if (plat_type == PLAT_TYPE_VF_P0)
  2119. phy_addr_off = 10;
  2120. else if (plat_type == PLAT_TYPE_VF_P1)
  2121. phy_addr_off = 26;
  2122. phy_addr_off += (np->port ^ 0x3);
  2123. break;
  2124. case NIU_FLAGS_10G:
  2125. /* 10G copper */
  2126. tp = &phy_template_10g_copper;
  2127. break;
  2128. case NIU_FLAGS_FIBER:
  2129. /* 1G fiber */
  2130. tp = &phy_template_1g_fiber;
  2131. break;
  2132. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2133. /* 10G fiber */
  2134. tp = &phy_template_10g_fiber;
  2135. if (plat_type == PLAT_TYPE_VF_P0 ||
  2136. plat_type == PLAT_TYPE_VF_P1)
  2137. phy_addr_off = 8;
  2138. phy_addr_off += np->port;
  2139. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2140. tp = &phy_template_10g_fiber_hotplug;
  2141. if (np->port == 0)
  2142. phy_addr_off = 8;
  2143. if (np->port == 1)
  2144. phy_addr_off = 12;
  2145. }
  2146. break;
  2147. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2148. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2149. case NIU_FLAGS_XCVR_SERDES:
  2150. switch(np->port) {
  2151. case 0:
  2152. case 1:
  2153. tp = &phy_template_10g_serdes;
  2154. break;
  2155. case 2:
  2156. case 3:
  2157. tp = &phy_template_1g_rgmii;
  2158. break;
  2159. default:
  2160. return -EINVAL;
  2161. break;
  2162. }
  2163. phy_addr_off = niu_atca_port_num[np->port];
  2164. break;
  2165. default:
  2166. return -EINVAL;
  2167. }
  2168. }
  2169. np->phy_ops = tp->ops;
  2170. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2171. return 0;
  2172. }
  2173. static int niu_init_link(struct niu *np)
  2174. {
  2175. struct niu_parent *parent = np->parent;
  2176. int err, ignore;
  2177. if (parent->plat_type == PLAT_TYPE_NIU) {
  2178. err = niu_xcvr_init(np);
  2179. if (err)
  2180. return err;
  2181. msleep(200);
  2182. }
  2183. err = niu_serdes_init(np);
  2184. if (err)
  2185. return err;
  2186. msleep(200);
  2187. err = niu_xcvr_init(np);
  2188. if (!err)
  2189. niu_link_status(np, &ignore);
  2190. return 0;
  2191. }
  2192. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2193. {
  2194. u16 reg0 = addr[4] << 8 | addr[5];
  2195. u16 reg1 = addr[2] << 8 | addr[3];
  2196. u16 reg2 = addr[0] << 8 | addr[1];
  2197. if (np->flags & NIU_FLAGS_XMAC) {
  2198. nw64_mac(XMAC_ADDR0, reg0);
  2199. nw64_mac(XMAC_ADDR1, reg1);
  2200. nw64_mac(XMAC_ADDR2, reg2);
  2201. } else {
  2202. nw64_mac(BMAC_ADDR0, reg0);
  2203. nw64_mac(BMAC_ADDR1, reg1);
  2204. nw64_mac(BMAC_ADDR2, reg2);
  2205. }
  2206. }
  2207. static int niu_num_alt_addr(struct niu *np)
  2208. {
  2209. if (np->flags & NIU_FLAGS_XMAC)
  2210. return XMAC_NUM_ALT_ADDR;
  2211. else
  2212. return BMAC_NUM_ALT_ADDR;
  2213. }
  2214. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2215. {
  2216. u16 reg0 = addr[4] << 8 | addr[5];
  2217. u16 reg1 = addr[2] << 8 | addr[3];
  2218. u16 reg2 = addr[0] << 8 | addr[1];
  2219. if (index >= niu_num_alt_addr(np))
  2220. return -EINVAL;
  2221. if (np->flags & NIU_FLAGS_XMAC) {
  2222. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2223. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2224. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2225. } else {
  2226. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2227. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2228. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2229. }
  2230. return 0;
  2231. }
  2232. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2233. {
  2234. unsigned long reg;
  2235. u64 val, mask;
  2236. if (index >= niu_num_alt_addr(np))
  2237. return -EINVAL;
  2238. if (np->flags & NIU_FLAGS_XMAC) {
  2239. reg = XMAC_ADDR_CMPEN;
  2240. mask = 1 << index;
  2241. } else {
  2242. reg = BMAC_ADDR_CMPEN;
  2243. mask = 1 << (index + 1);
  2244. }
  2245. val = nr64_mac(reg);
  2246. if (on)
  2247. val |= mask;
  2248. else
  2249. val &= ~mask;
  2250. nw64_mac(reg, val);
  2251. return 0;
  2252. }
  2253. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2254. int num, int mac_pref)
  2255. {
  2256. u64 val = nr64_mac(reg);
  2257. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2258. val |= num;
  2259. if (mac_pref)
  2260. val |= HOST_INFO_MPR;
  2261. nw64_mac(reg, val);
  2262. }
  2263. static int __set_rdc_table_num(struct niu *np,
  2264. int xmac_index, int bmac_index,
  2265. int rdc_table_num, int mac_pref)
  2266. {
  2267. unsigned long reg;
  2268. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2269. return -EINVAL;
  2270. if (np->flags & NIU_FLAGS_XMAC)
  2271. reg = XMAC_HOST_INFO(xmac_index);
  2272. else
  2273. reg = BMAC_HOST_INFO(bmac_index);
  2274. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2275. return 0;
  2276. }
  2277. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2278. int mac_pref)
  2279. {
  2280. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2281. }
  2282. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2283. int mac_pref)
  2284. {
  2285. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2286. }
  2287. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2288. int table_num, int mac_pref)
  2289. {
  2290. if (idx >= niu_num_alt_addr(np))
  2291. return -EINVAL;
  2292. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2293. }
  2294. static u64 vlan_entry_set_parity(u64 reg_val)
  2295. {
  2296. u64 port01_mask;
  2297. u64 port23_mask;
  2298. port01_mask = 0x00ff;
  2299. port23_mask = 0xff00;
  2300. if (hweight64(reg_val & port01_mask) & 1)
  2301. reg_val |= ENET_VLAN_TBL_PARITY0;
  2302. else
  2303. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2304. if (hweight64(reg_val & port23_mask) & 1)
  2305. reg_val |= ENET_VLAN_TBL_PARITY1;
  2306. else
  2307. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2308. return reg_val;
  2309. }
  2310. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2311. int port, int vpr, int rdc_table)
  2312. {
  2313. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2314. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2315. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2316. ENET_VLAN_TBL_SHIFT(port));
  2317. if (vpr)
  2318. reg_val |= (ENET_VLAN_TBL_VPR <<
  2319. ENET_VLAN_TBL_SHIFT(port));
  2320. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2321. reg_val = vlan_entry_set_parity(reg_val);
  2322. nw64(ENET_VLAN_TBL(index), reg_val);
  2323. }
  2324. static void vlan_tbl_clear(struct niu *np)
  2325. {
  2326. int i;
  2327. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2328. nw64(ENET_VLAN_TBL(i), 0);
  2329. }
  2330. static int tcam_wait_bit(struct niu *np, u64 bit)
  2331. {
  2332. int limit = 1000;
  2333. while (--limit > 0) {
  2334. if (nr64(TCAM_CTL) & bit)
  2335. break;
  2336. udelay(1);
  2337. }
  2338. if (limit < 0)
  2339. return -ENODEV;
  2340. return 0;
  2341. }
  2342. static int tcam_flush(struct niu *np, int index)
  2343. {
  2344. nw64(TCAM_KEY_0, 0x00);
  2345. nw64(TCAM_KEY_MASK_0, 0xff);
  2346. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2347. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2348. }
  2349. #if 0
  2350. static int tcam_read(struct niu *np, int index,
  2351. u64 *key, u64 *mask)
  2352. {
  2353. int err;
  2354. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2355. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2356. if (!err) {
  2357. key[0] = nr64(TCAM_KEY_0);
  2358. key[1] = nr64(TCAM_KEY_1);
  2359. key[2] = nr64(TCAM_KEY_2);
  2360. key[3] = nr64(TCAM_KEY_3);
  2361. mask[0] = nr64(TCAM_KEY_MASK_0);
  2362. mask[1] = nr64(TCAM_KEY_MASK_1);
  2363. mask[2] = nr64(TCAM_KEY_MASK_2);
  2364. mask[3] = nr64(TCAM_KEY_MASK_3);
  2365. }
  2366. return err;
  2367. }
  2368. #endif
  2369. static int tcam_write(struct niu *np, int index,
  2370. u64 *key, u64 *mask)
  2371. {
  2372. nw64(TCAM_KEY_0, key[0]);
  2373. nw64(TCAM_KEY_1, key[1]);
  2374. nw64(TCAM_KEY_2, key[2]);
  2375. nw64(TCAM_KEY_3, key[3]);
  2376. nw64(TCAM_KEY_MASK_0, mask[0]);
  2377. nw64(TCAM_KEY_MASK_1, mask[1]);
  2378. nw64(TCAM_KEY_MASK_2, mask[2]);
  2379. nw64(TCAM_KEY_MASK_3, mask[3]);
  2380. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2381. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2382. }
  2383. #if 0
  2384. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2385. {
  2386. int err;
  2387. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2388. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2389. if (!err)
  2390. *data = nr64(TCAM_KEY_1);
  2391. return err;
  2392. }
  2393. #endif
  2394. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2395. {
  2396. nw64(TCAM_KEY_1, assoc_data);
  2397. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2398. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2399. }
  2400. static void tcam_enable(struct niu *np, int on)
  2401. {
  2402. u64 val = nr64(FFLP_CFG_1);
  2403. if (on)
  2404. val &= ~FFLP_CFG_1_TCAM_DIS;
  2405. else
  2406. val |= FFLP_CFG_1_TCAM_DIS;
  2407. nw64(FFLP_CFG_1, val);
  2408. }
  2409. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2410. {
  2411. u64 val = nr64(FFLP_CFG_1);
  2412. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2413. FFLP_CFG_1_CAMLAT |
  2414. FFLP_CFG_1_CAMRATIO);
  2415. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2416. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2417. nw64(FFLP_CFG_1, val);
  2418. val = nr64(FFLP_CFG_1);
  2419. val |= FFLP_CFG_1_FFLPINITDONE;
  2420. nw64(FFLP_CFG_1, val);
  2421. }
  2422. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2423. int on)
  2424. {
  2425. unsigned long reg;
  2426. u64 val;
  2427. if (class < CLASS_CODE_ETHERTYPE1 ||
  2428. class > CLASS_CODE_ETHERTYPE2)
  2429. return -EINVAL;
  2430. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2431. val = nr64(reg);
  2432. if (on)
  2433. val |= L2_CLS_VLD;
  2434. else
  2435. val &= ~L2_CLS_VLD;
  2436. nw64(reg, val);
  2437. return 0;
  2438. }
  2439. #if 0
  2440. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2441. u64 ether_type)
  2442. {
  2443. unsigned long reg;
  2444. u64 val;
  2445. if (class < CLASS_CODE_ETHERTYPE1 ||
  2446. class > CLASS_CODE_ETHERTYPE2 ||
  2447. (ether_type & ~(u64)0xffff) != 0)
  2448. return -EINVAL;
  2449. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2450. val = nr64(reg);
  2451. val &= ~L2_CLS_ETYPE;
  2452. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2453. nw64(reg, val);
  2454. return 0;
  2455. }
  2456. #endif
  2457. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2458. int on)
  2459. {
  2460. unsigned long reg;
  2461. u64 val;
  2462. if (class < CLASS_CODE_USER_PROG1 ||
  2463. class > CLASS_CODE_USER_PROG4)
  2464. return -EINVAL;
  2465. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2466. val = nr64(reg);
  2467. if (on)
  2468. val |= L3_CLS_VALID;
  2469. else
  2470. val &= ~L3_CLS_VALID;
  2471. nw64(reg, val);
  2472. return 0;
  2473. }
  2474. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2475. int ipv6, u64 protocol_id,
  2476. u64 tos_mask, u64 tos_val)
  2477. {
  2478. unsigned long reg;
  2479. u64 val;
  2480. if (class < CLASS_CODE_USER_PROG1 ||
  2481. class > CLASS_CODE_USER_PROG4 ||
  2482. (protocol_id & ~(u64)0xff) != 0 ||
  2483. (tos_mask & ~(u64)0xff) != 0 ||
  2484. (tos_val & ~(u64)0xff) != 0)
  2485. return -EINVAL;
  2486. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2487. val = nr64(reg);
  2488. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2489. L3_CLS_TOSMASK | L3_CLS_TOS);
  2490. if (ipv6)
  2491. val |= L3_CLS_IPVER;
  2492. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2493. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2494. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2495. nw64(reg, val);
  2496. return 0;
  2497. }
  2498. static int tcam_early_init(struct niu *np)
  2499. {
  2500. unsigned long i;
  2501. int err;
  2502. tcam_enable(np, 0);
  2503. tcam_set_lat_and_ratio(np,
  2504. DEFAULT_TCAM_LATENCY,
  2505. DEFAULT_TCAM_ACCESS_RATIO);
  2506. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2507. err = tcam_user_eth_class_enable(np, i, 0);
  2508. if (err)
  2509. return err;
  2510. }
  2511. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2512. err = tcam_user_ip_class_enable(np, i, 0);
  2513. if (err)
  2514. return err;
  2515. }
  2516. return 0;
  2517. }
  2518. static int tcam_flush_all(struct niu *np)
  2519. {
  2520. unsigned long i;
  2521. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2522. int err = tcam_flush(np, i);
  2523. if (err)
  2524. return err;
  2525. }
  2526. return 0;
  2527. }
  2528. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2529. {
  2530. return ((u64)index | (num_entries == 1 ?
  2531. HASH_TBL_ADDR_AUTOINC : 0));
  2532. }
  2533. #if 0
  2534. static int hash_read(struct niu *np, unsigned long partition,
  2535. unsigned long index, unsigned long num_entries,
  2536. u64 *data)
  2537. {
  2538. u64 val = hash_addr_regval(index, num_entries);
  2539. unsigned long i;
  2540. if (partition >= FCRAM_NUM_PARTITIONS ||
  2541. index + num_entries > FCRAM_SIZE)
  2542. return -EINVAL;
  2543. nw64(HASH_TBL_ADDR(partition), val);
  2544. for (i = 0; i < num_entries; i++)
  2545. data[i] = nr64(HASH_TBL_DATA(partition));
  2546. return 0;
  2547. }
  2548. #endif
  2549. static int hash_write(struct niu *np, unsigned long partition,
  2550. unsigned long index, unsigned long num_entries,
  2551. u64 *data)
  2552. {
  2553. u64 val = hash_addr_regval(index, num_entries);
  2554. unsigned long i;
  2555. if (partition >= FCRAM_NUM_PARTITIONS ||
  2556. index + (num_entries * 8) > FCRAM_SIZE)
  2557. return -EINVAL;
  2558. nw64(HASH_TBL_ADDR(partition), val);
  2559. for (i = 0; i < num_entries; i++)
  2560. nw64(HASH_TBL_DATA(partition), data[i]);
  2561. return 0;
  2562. }
  2563. static void fflp_reset(struct niu *np)
  2564. {
  2565. u64 val;
  2566. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2567. udelay(10);
  2568. nw64(FFLP_CFG_1, 0);
  2569. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2570. nw64(FFLP_CFG_1, val);
  2571. }
  2572. static void fflp_set_timings(struct niu *np)
  2573. {
  2574. u64 val = nr64(FFLP_CFG_1);
  2575. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2576. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2577. nw64(FFLP_CFG_1, val);
  2578. val = nr64(FFLP_CFG_1);
  2579. val |= FFLP_CFG_1_FFLPINITDONE;
  2580. nw64(FFLP_CFG_1, val);
  2581. val = nr64(FCRAM_REF_TMR);
  2582. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2583. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2584. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2585. nw64(FCRAM_REF_TMR, val);
  2586. }
  2587. static int fflp_set_partition(struct niu *np, u64 partition,
  2588. u64 mask, u64 base, int enable)
  2589. {
  2590. unsigned long reg;
  2591. u64 val;
  2592. if (partition >= FCRAM_NUM_PARTITIONS ||
  2593. (mask & ~(u64)0x1f) != 0 ||
  2594. (base & ~(u64)0x1f) != 0)
  2595. return -EINVAL;
  2596. reg = FLW_PRT_SEL(partition);
  2597. val = nr64(reg);
  2598. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2599. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2600. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2601. if (enable)
  2602. val |= FLW_PRT_SEL_EXT;
  2603. nw64(reg, val);
  2604. return 0;
  2605. }
  2606. static int fflp_disable_all_partitions(struct niu *np)
  2607. {
  2608. unsigned long i;
  2609. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2610. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2611. if (err)
  2612. return err;
  2613. }
  2614. return 0;
  2615. }
  2616. static void fflp_llcsnap_enable(struct niu *np, int on)
  2617. {
  2618. u64 val = nr64(FFLP_CFG_1);
  2619. if (on)
  2620. val |= FFLP_CFG_1_LLCSNAP;
  2621. else
  2622. val &= ~FFLP_CFG_1_LLCSNAP;
  2623. nw64(FFLP_CFG_1, val);
  2624. }
  2625. static void fflp_errors_enable(struct niu *np, int on)
  2626. {
  2627. u64 val = nr64(FFLP_CFG_1);
  2628. if (on)
  2629. val &= ~FFLP_CFG_1_ERRORDIS;
  2630. else
  2631. val |= FFLP_CFG_1_ERRORDIS;
  2632. nw64(FFLP_CFG_1, val);
  2633. }
  2634. static int fflp_hash_clear(struct niu *np)
  2635. {
  2636. struct fcram_hash_ipv4 ent;
  2637. unsigned long i;
  2638. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2639. memset(&ent, 0, sizeof(ent));
  2640. ent.header = HASH_HEADER_EXT;
  2641. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2642. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2643. if (err)
  2644. return err;
  2645. }
  2646. return 0;
  2647. }
  2648. static int fflp_early_init(struct niu *np)
  2649. {
  2650. struct niu_parent *parent;
  2651. unsigned long flags;
  2652. int err;
  2653. niu_lock_parent(np, flags);
  2654. parent = np->parent;
  2655. err = 0;
  2656. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2657. niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
  2658. np->port);
  2659. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2660. fflp_reset(np);
  2661. fflp_set_timings(np);
  2662. err = fflp_disable_all_partitions(np);
  2663. if (err) {
  2664. niudbg(PROBE, "fflp_disable_all_partitions "
  2665. "failed, err=%d\n", err);
  2666. goto out;
  2667. }
  2668. }
  2669. err = tcam_early_init(np);
  2670. if (err) {
  2671. niudbg(PROBE, "tcam_early_init failed, err=%d\n",
  2672. err);
  2673. goto out;
  2674. }
  2675. fflp_llcsnap_enable(np, 1);
  2676. fflp_errors_enable(np, 0);
  2677. nw64(H1POLY, 0);
  2678. nw64(H2POLY, 0);
  2679. err = tcam_flush_all(np);
  2680. if (err) {
  2681. niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
  2682. err);
  2683. goto out;
  2684. }
  2685. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2686. err = fflp_hash_clear(np);
  2687. if (err) {
  2688. niudbg(PROBE, "fflp_hash_clear failed, "
  2689. "err=%d\n", err);
  2690. goto out;
  2691. }
  2692. }
  2693. vlan_tbl_clear(np);
  2694. niudbg(PROBE, "fflp_early_init: Success\n");
  2695. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2696. }
  2697. out:
  2698. niu_unlock_parent(np, flags);
  2699. return err;
  2700. }
  2701. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2702. {
  2703. if (class_code < CLASS_CODE_USER_PROG1 ||
  2704. class_code > CLASS_CODE_SCTP_IPV6)
  2705. return -EINVAL;
  2706. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2707. return 0;
  2708. }
  2709. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2710. {
  2711. if (class_code < CLASS_CODE_USER_PROG1 ||
  2712. class_code > CLASS_CODE_SCTP_IPV6)
  2713. return -EINVAL;
  2714. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2715. return 0;
  2716. }
  2717. /* Entries for the ports are interleaved in the TCAM */
  2718. static u16 tcam_get_index(struct niu *np, u16 idx)
  2719. {
  2720. /* One entry reserved for IP fragment rule */
  2721. if (idx >= (np->clas.tcam_sz - 1))
  2722. idx = 0;
  2723. return (np->clas.tcam_top + ((idx+1) * np->parent->num_ports));
  2724. }
  2725. static u16 tcam_get_size(struct niu *np)
  2726. {
  2727. /* One entry reserved for IP fragment rule */
  2728. return np->clas.tcam_sz - 1;
  2729. }
  2730. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2731. {
  2732. /* One entry reserved for IP fragment rule */
  2733. return np->clas.tcam_valid_entries - 1;
  2734. }
  2735. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2736. u32 offset, u32 size)
  2737. {
  2738. int i = skb_shinfo(skb)->nr_frags;
  2739. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2740. frag->page = page;
  2741. frag->page_offset = offset;
  2742. frag->size = size;
  2743. skb->len += size;
  2744. skb->data_len += size;
  2745. skb->truesize += size;
  2746. skb_shinfo(skb)->nr_frags = i + 1;
  2747. }
  2748. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2749. {
  2750. a >>= PAGE_SHIFT;
  2751. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2752. return (a & (MAX_RBR_RING_SIZE - 1));
  2753. }
  2754. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2755. struct page ***link)
  2756. {
  2757. unsigned int h = niu_hash_rxaddr(rp, addr);
  2758. struct page *p, **pp;
  2759. addr &= PAGE_MASK;
  2760. pp = &rp->rxhash[h];
  2761. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2762. if (p->index == addr) {
  2763. *link = pp;
  2764. break;
  2765. }
  2766. }
  2767. return p;
  2768. }
  2769. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2770. {
  2771. unsigned int h = niu_hash_rxaddr(rp, base);
  2772. page->index = base;
  2773. page->mapping = (struct address_space *) rp->rxhash[h];
  2774. rp->rxhash[h] = page;
  2775. }
  2776. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2777. gfp_t mask, int start_index)
  2778. {
  2779. struct page *page;
  2780. u64 addr;
  2781. int i;
  2782. page = alloc_page(mask);
  2783. if (!page)
  2784. return -ENOMEM;
  2785. addr = np->ops->map_page(np->device, page, 0,
  2786. PAGE_SIZE, DMA_FROM_DEVICE);
  2787. niu_hash_page(rp, page, addr);
  2788. if (rp->rbr_blocks_per_page > 1)
  2789. atomic_add(rp->rbr_blocks_per_page - 1,
  2790. &compound_head(page)->_count);
  2791. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2792. __le32 *rbr = &rp->rbr[start_index + i];
  2793. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2794. addr += rp->rbr_block_size;
  2795. }
  2796. return 0;
  2797. }
  2798. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2799. {
  2800. int index = rp->rbr_index;
  2801. rp->rbr_pending++;
  2802. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2803. int err = niu_rbr_add_page(np, rp, mask, index);
  2804. if (unlikely(err)) {
  2805. rp->rbr_pending--;
  2806. return;
  2807. }
  2808. rp->rbr_index += rp->rbr_blocks_per_page;
  2809. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2810. if (rp->rbr_index == rp->rbr_table_size)
  2811. rp->rbr_index = 0;
  2812. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2813. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2814. rp->rbr_pending = 0;
  2815. }
  2816. }
  2817. }
  2818. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2819. {
  2820. unsigned int index = rp->rcr_index;
  2821. int num_rcr = 0;
  2822. rp->rx_dropped++;
  2823. while (1) {
  2824. struct page *page, **link;
  2825. u64 addr, val;
  2826. u32 rcr_size;
  2827. num_rcr++;
  2828. val = le64_to_cpup(&rp->rcr[index]);
  2829. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2830. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2831. page = niu_find_rxpage(rp, addr, &link);
  2832. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2833. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2834. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2835. *link = (struct page *) page->mapping;
  2836. np->ops->unmap_page(np->device, page->index,
  2837. PAGE_SIZE, DMA_FROM_DEVICE);
  2838. page->index = 0;
  2839. page->mapping = NULL;
  2840. __free_page(page);
  2841. rp->rbr_refill_pending++;
  2842. }
  2843. index = NEXT_RCR(rp, index);
  2844. if (!(val & RCR_ENTRY_MULTI))
  2845. break;
  2846. }
  2847. rp->rcr_index = index;
  2848. return num_rcr;
  2849. }
  2850. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2851. struct rx_ring_info *rp)
  2852. {
  2853. unsigned int index = rp->rcr_index;
  2854. struct sk_buff *skb;
  2855. int len, num_rcr;
  2856. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2857. if (unlikely(!skb))
  2858. return niu_rx_pkt_ignore(np, rp);
  2859. num_rcr = 0;
  2860. while (1) {
  2861. struct page *page, **link;
  2862. u32 rcr_size, append_size;
  2863. u64 addr, val, off;
  2864. num_rcr++;
  2865. val = le64_to_cpup(&rp->rcr[index]);
  2866. len = (val & RCR_ENTRY_L2_LEN) >>
  2867. RCR_ENTRY_L2_LEN_SHIFT;
  2868. len -= ETH_FCS_LEN;
  2869. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2870. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2871. page = niu_find_rxpage(rp, addr, &link);
  2872. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2873. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2874. off = addr & ~PAGE_MASK;
  2875. append_size = rcr_size;
  2876. if (num_rcr == 1) {
  2877. int ptype;
  2878. off += 2;
  2879. append_size -= 2;
  2880. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2881. if ((ptype == RCR_PKT_TYPE_TCP ||
  2882. ptype == RCR_PKT_TYPE_UDP) &&
  2883. !(val & (RCR_ENTRY_NOPORT |
  2884. RCR_ENTRY_ERROR)))
  2885. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2886. else
  2887. skb->ip_summed = CHECKSUM_NONE;
  2888. }
  2889. if (!(val & RCR_ENTRY_MULTI))
  2890. append_size = len - skb->len;
  2891. niu_rx_skb_append(skb, page, off, append_size);
  2892. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2893. *link = (struct page *) page->mapping;
  2894. np->ops->unmap_page(np->device, page->index,
  2895. PAGE_SIZE, DMA_FROM_DEVICE);
  2896. page->index = 0;
  2897. page->mapping = NULL;
  2898. rp->rbr_refill_pending++;
  2899. } else
  2900. get_page(page);
  2901. index = NEXT_RCR(rp, index);
  2902. if (!(val & RCR_ENTRY_MULTI))
  2903. break;
  2904. }
  2905. rp->rcr_index = index;
  2906. skb_reserve(skb, NET_IP_ALIGN);
  2907. __pskb_pull_tail(skb, min(len, NIU_RXPULL_MAX));
  2908. rp->rx_packets++;
  2909. rp->rx_bytes += skb->len;
  2910. skb->protocol = eth_type_trans(skb, np->dev);
  2911. skb_record_rx_queue(skb, rp->rx_channel);
  2912. napi_gro_receive(napi, skb);
  2913. return num_rcr;
  2914. }
  2915. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2916. {
  2917. int blocks_per_page = rp->rbr_blocks_per_page;
  2918. int err, index = rp->rbr_index;
  2919. err = 0;
  2920. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2921. err = niu_rbr_add_page(np, rp, mask, index);
  2922. if (err)
  2923. break;
  2924. index += blocks_per_page;
  2925. }
  2926. rp->rbr_index = index;
  2927. return err;
  2928. }
  2929. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2930. {
  2931. int i;
  2932. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2933. struct page *page;
  2934. page = rp->rxhash[i];
  2935. while (page) {
  2936. struct page *next = (struct page *) page->mapping;
  2937. u64 base = page->index;
  2938. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2939. DMA_FROM_DEVICE);
  2940. page->index = 0;
  2941. page->mapping = NULL;
  2942. __free_page(page);
  2943. page = next;
  2944. }
  2945. }
  2946. for (i = 0; i < rp->rbr_table_size; i++)
  2947. rp->rbr[i] = cpu_to_le32(0);
  2948. rp->rbr_index = 0;
  2949. }
  2950. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2951. {
  2952. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2953. struct sk_buff *skb = tb->skb;
  2954. struct tx_pkt_hdr *tp;
  2955. u64 tx_flags;
  2956. int i, len;
  2957. tp = (struct tx_pkt_hdr *) skb->data;
  2958. tx_flags = le64_to_cpup(&tp->flags);
  2959. rp->tx_packets++;
  2960. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2961. ((tx_flags & TXHDR_PAD) / 2));
  2962. len = skb_headlen(skb);
  2963. np->ops->unmap_single(np->device, tb->mapping,
  2964. len, DMA_TO_DEVICE);
  2965. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2966. rp->mark_pending--;
  2967. tb->skb = NULL;
  2968. do {
  2969. idx = NEXT_TX(rp, idx);
  2970. len -= MAX_TX_DESC_LEN;
  2971. } while (len > 0);
  2972. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2973. tb = &rp->tx_buffs[idx];
  2974. BUG_ON(tb->skb != NULL);
  2975. np->ops->unmap_page(np->device, tb->mapping,
  2976. skb_shinfo(skb)->frags[i].size,
  2977. DMA_TO_DEVICE);
  2978. idx = NEXT_TX(rp, idx);
  2979. }
  2980. dev_kfree_skb(skb);
  2981. return idx;
  2982. }
  2983. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2984. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2985. {
  2986. struct netdev_queue *txq;
  2987. u16 pkt_cnt, tmp;
  2988. int cons, index;
  2989. u64 cs;
  2990. index = (rp - np->tx_rings);
  2991. txq = netdev_get_tx_queue(np->dev, index);
  2992. cs = rp->tx_cs;
  2993. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2994. goto out;
  2995. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2996. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2997. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2998. rp->last_pkt_cnt = tmp;
  2999. cons = rp->cons;
  3000. niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
  3001. np->dev->name, pkt_cnt, cons);
  3002. while (pkt_cnt--)
  3003. cons = release_tx_packet(np, rp, cons);
  3004. rp->cons = cons;
  3005. smp_mb();
  3006. out:
  3007. if (unlikely(netif_tx_queue_stopped(txq) &&
  3008. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3009. __netif_tx_lock(txq, smp_processor_id());
  3010. if (netif_tx_queue_stopped(txq) &&
  3011. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3012. netif_tx_wake_queue(txq);
  3013. __netif_tx_unlock(txq);
  3014. }
  3015. }
  3016. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3017. struct rx_ring_info *rp,
  3018. const int limit)
  3019. {
  3020. /* This elaborate scheme is needed for reading the RX discard
  3021. * counters, as they are only 16-bit and can overflow quickly,
  3022. * and because the overflow indication bit is not usable as
  3023. * the counter value does not wrap, but remains at max value
  3024. * 0xFFFF.
  3025. *
  3026. * In theory and in practice counters can be lost in between
  3027. * reading nr64() and clearing the counter nw64(). For this
  3028. * reason, the number of counter clearings nw64() is
  3029. * limited/reduced though the limit parameter.
  3030. */
  3031. int rx_channel = rp->rx_channel;
  3032. u32 misc, wred;
  3033. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3034. * following discard events: IPP (Input Port Process),
  3035. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3036. * Block Ring) prefetch buffer is empty.
  3037. */
  3038. misc = nr64(RXMISC(rx_channel));
  3039. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3040. nw64(RXMISC(rx_channel), 0);
  3041. rp->rx_errors += misc & RXMISC_COUNT;
  3042. if (unlikely(misc & RXMISC_OFLOW))
  3043. dev_err(np->device, "rx-%d: Counter overflow "
  3044. "RXMISC discard\n", rx_channel);
  3045. niudbg(RX_ERR, "%s-rx-%d: MISC drop=%u over=%u\n",
  3046. np->dev->name, rx_channel, misc, misc-limit);
  3047. }
  3048. /* WRED (Weighted Random Early Discard) by hardware */
  3049. wred = nr64(RED_DIS_CNT(rx_channel));
  3050. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3051. nw64(RED_DIS_CNT(rx_channel), 0);
  3052. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3053. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3054. dev_err(np->device, "rx-%d: Counter overflow "
  3055. "WRED discard\n", rx_channel);
  3056. niudbg(RX_ERR, "%s-rx-%d: WRED drop=%u over=%u\n",
  3057. np->dev->name, rx_channel, wred, wred-limit);
  3058. }
  3059. }
  3060. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3061. struct rx_ring_info *rp, int budget)
  3062. {
  3063. int qlen, rcr_done = 0, work_done = 0;
  3064. struct rxdma_mailbox *mbox = rp->mbox;
  3065. u64 stat;
  3066. #if 1
  3067. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3068. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3069. #else
  3070. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3071. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3072. #endif
  3073. mbox->rx_dma_ctl_stat = 0;
  3074. mbox->rcrstat_a = 0;
  3075. niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
  3076. np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
  3077. rcr_done = work_done = 0;
  3078. qlen = min(qlen, budget);
  3079. while (work_done < qlen) {
  3080. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3081. work_done++;
  3082. }
  3083. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3084. unsigned int i;
  3085. for (i = 0; i < rp->rbr_refill_pending; i++)
  3086. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3087. rp->rbr_refill_pending = 0;
  3088. }
  3089. stat = (RX_DMA_CTL_STAT_MEX |
  3090. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3091. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3092. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3093. /* Only sync discards stats when qlen indicate potential for drops */
  3094. if (qlen > 10)
  3095. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3096. return work_done;
  3097. }
  3098. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3099. {
  3100. u64 v0 = lp->v0;
  3101. u32 tx_vec = (v0 >> 32);
  3102. u32 rx_vec = (v0 & 0xffffffff);
  3103. int i, work_done = 0;
  3104. niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
  3105. np->dev->name, (unsigned long long) v0);
  3106. for (i = 0; i < np->num_tx_rings; i++) {
  3107. struct tx_ring_info *rp = &np->tx_rings[i];
  3108. if (tx_vec & (1 << rp->tx_channel))
  3109. niu_tx_work(np, rp);
  3110. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3111. }
  3112. for (i = 0; i < np->num_rx_rings; i++) {
  3113. struct rx_ring_info *rp = &np->rx_rings[i];
  3114. if (rx_vec & (1 << rp->rx_channel)) {
  3115. int this_work_done;
  3116. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3117. budget);
  3118. budget -= this_work_done;
  3119. work_done += this_work_done;
  3120. }
  3121. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3122. }
  3123. return work_done;
  3124. }
  3125. static int niu_poll(struct napi_struct *napi, int budget)
  3126. {
  3127. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3128. struct niu *np = lp->np;
  3129. int work_done;
  3130. work_done = niu_poll_core(np, lp, budget);
  3131. if (work_done < budget) {
  3132. napi_complete(napi);
  3133. niu_ldg_rearm(np, lp, 1);
  3134. }
  3135. return work_done;
  3136. }
  3137. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3138. u64 stat)
  3139. {
  3140. dev_err(np->device, PFX "%s: RX channel %u errors ( ",
  3141. np->dev->name, rp->rx_channel);
  3142. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3143. printk("RBR_TMOUT ");
  3144. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3145. printk("RSP_CNT ");
  3146. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3147. printk("BYTE_EN_BUS ");
  3148. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3149. printk("RSP_DAT ");
  3150. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3151. printk("RCR_ACK ");
  3152. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3153. printk("RCR_SHA_PAR ");
  3154. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3155. printk("RBR_PRE_PAR ");
  3156. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3157. printk("CONFIG ");
  3158. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3159. printk("RCRINCON ");
  3160. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3161. printk("RCRFULL ");
  3162. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3163. printk("RBRFULL ");
  3164. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3165. printk("RBRLOGPAGE ");
  3166. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3167. printk("CFIGLOGPAGE ");
  3168. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3169. printk("DC_FIDO ");
  3170. printk(")\n");
  3171. }
  3172. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3173. {
  3174. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3175. int err = 0;
  3176. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3177. RX_DMA_CTL_STAT_PORT_FATAL))
  3178. err = -EINVAL;
  3179. if (err) {
  3180. dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
  3181. np->dev->name, rp->rx_channel,
  3182. (unsigned long long) stat);
  3183. niu_log_rxchan_errors(np, rp, stat);
  3184. }
  3185. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3186. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3187. return err;
  3188. }
  3189. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3190. u64 cs)
  3191. {
  3192. dev_err(np->device, PFX "%s: TX channel %u errors ( ",
  3193. np->dev->name, rp->tx_channel);
  3194. if (cs & TX_CS_MBOX_ERR)
  3195. printk("MBOX ");
  3196. if (cs & TX_CS_PKT_SIZE_ERR)
  3197. printk("PKT_SIZE ");
  3198. if (cs & TX_CS_TX_RING_OFLOW)
  3199. printk("TX_RING_OFLOW ");
  3200. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3201. printk("PREF_BUF_PAR ");
  3202. if (cs & TX_CS_NACK_PREF)
  3203. printk("NACK_PREF ");
  3204. if (cs & TX_CS_NACK_PKT_RD)
  3205. printk("NACK_PKT_RD ");
  3206. if (cs & TX_CS_CONF_PART_ERR)
  3207. printk("CONF_PART ");
  3208. if (cs & TX_CS_PKT_PRT_ERR)
  3209. printk("PKT_PTR ");
  3210. printk(")\n");
  3211. }
  3212. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3213. {
  3214. u64 cs, logh, logl;
  3215. cs = nr64(TX_CS(rp->tx_channel));
  3216. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3217. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3218. dev_err(np->device, PFX "%s: TX channel %u error, "
  3219. "cs[%llx] logh[%llx] logl[%llx]\n",
  3220. np->dev->name, rp->tx_channel,
  3221. (unsigned long long) cs,
  3222. (unsigned long long) logh,
  3223. (unsigned long long) logl);
  3224. niu_log_txchan_errors(np, rp, cs);
  3225. return -ENODEV;
  3226. }
  3227. static int niu_mif_interrupt(struct niu *np)
  3228. {
  3229. u64 mif_status = nr64(MIF_STATUS);
  3230. int phy_mdint = 0;
  3231. if (np->flags & NIU_FLAGS_XMAC) {
  3232. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3233. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3234. phy_mdint = 1;
  3235. }
  3236. dev_err(np->device, PFX "%s: MIF interrupt, "
  3237. "stat[%llx] phy_mdint(%d)\n",
  3238. np->dev->name, (unsigned long long) mif_status, phy_mdint);
  3239. return -ENODEV;
  3240. }
  3241. static void niu_xmac_interrupt(struct niu *np)
  3242. {
  3243. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3244. u64 val;
  3245. val = nr64_mac(XTXMAC_STATUS);
  3246. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3247. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3248. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3249. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3250. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3251. mp->tx_fifo_errors++;
  3252. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3253. mp->tx_overflow_errors++;
  3254. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3255. mp->tx_max_pkt_size_errors++;
  3256. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3257. mp->tx_underflow_errors++;
  3258. val = nr64_mac(XRXMAC_STATUS);
  3259. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3260. mp->rx_local_faults++;
  3261. if (val & XRXMAC_STATUS_RFLT_DET)
  3262. mp->rx_remote_faults++;
  3263. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3264. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3265. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3266. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3267. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3268. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3269. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3270. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3271. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3272. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3273. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3274. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3275. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3276. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3277. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3278. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3279. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3280. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3281. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3282. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3283. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3284. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3285. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3286. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3287. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3288. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3289. if (val & XRXMAC_STAT_MSK_RXOCTET_CNT_EXP)
  3290. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3291. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3292. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3293. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3294. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3295. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3296. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3297. if (val & XRXMAC_STATUS_RXUFLOW)
  3298. mp->rx_underflows++;
  3299. if (val & XRXMAC_STATUS_RXOFLOW)
  3300. mp->rx_overflows++;
  3301. val = nr64_mac(XMAC_FC_STAT);
  3302. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3303. mp->pause_off_state++;
  3304. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3305. mp->pause_on_state++;
  3306. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3307. mp->pause_received++;
  3308. }
  3309. static void niu_bmac_interrupt(struct niu *np)
  3310. {
  3311. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3312. u64 val;
  3313. val = nr64_mac(BTXMAC_STATUS);
  3314. if (val & BTXMAC_STATUS_UNDERRUN)
  3315. mp->tx_underflow_errors++;
  3316. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3317. mp->tx_max_pkt_size_errors++;
  3318. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3319. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3320. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3321. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3322. val = nr64_mac(BRXMAC_STATUS);
  3323. if (val & BRXMAC_STATUS_OVERFLOW)
  3324. mp->rx_overflows++;
  3325. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3326. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3327. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3328. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3329. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3330. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3331. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3332. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3333. val = nr64_mac(BMAC_CTRL_STATUS);
  3334. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3335. mp->pause_off_state++;
  3336. if (val & BMAC_CTRL_STATUS_PAUSE)
  3337. mp->pause_on_state++;
  3338. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3339. mp->pause_received++;
  3340. }
  3341. static int niu_mac_interrupt(struct niu *np)
  3342. {
  3343. if (np->flags & NIU_FLAGS_XMAC)
  3344. niu_xmac_interrupt(np);
  3345. else
  3346. niu_bmac_interrupt(np);
  3347. return 0;
  3348. }
  3349. static void niu_log_device_error(struct niu *np, u64 stat)
  3350. {
  3351. dev_err(np->device, PFX "%s: Core device errors ( ",
  3352. np->dev->name);
  3353. if (stat & SYS_ERR_MASK_META2)
  3354. printk("META2 ");
  3355. if (stat & SYS_ERR_MASK_META1)
  3356. printk("META1 ");
  3357. if (stat & SYS_ERR_MASK_PEU)
  3358. printk("PEU ");
  3359. if (stat & SYS_ERR_MASK_TXC)
  3360. printk("TXC ");
  3361. if (stat & SYS_ERR_MASK_RDMC)
  3362. printk("RDMC ");
  3363. if (stat & SYS_ERR_MASK_TDMC)
  3364. printk("TDMC ");
  3365. if (stat & SYS_ERR_MASK_ZCP)
  3366. printk("ZCP ");
  3367. if (stat & SYS_ERR_MASK_FFLP)
  3368. printk("FFLP ");
  3369. if (stat & SYS_ERR_MASK_IPP)
  3370. printk("IPP ");
  3371. if (stat & SYS_ERR_MASK_MAC)
  3372. printk("MAC ");
  3373. if (stat & SYS_ERR_MASK_SMX)
  3374. printk("SMX ");
  3375. printk(")\n");
  3376. }
  3377. static int niu_device_error(struct niu *np)
  3378. {
  3379. u64 stat = nr64(SYS_ERR_STAT);
  3380. dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
  3381. np->dev->name, (unsigned long long) stat);
  3382. niu_log_device_error(np, stat);
  3383. return -ENODEV;
  3384. }
  3385. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3386. u64 v0, u64 v1, u64 v2)
  3387. {
  3388. int i, err = 0;
  3389. lp->v0 = v0;
  3390. lp->v1 = v1;
  3391. lp->v2 = v2;
  3392. if (v1 & 0x00000000ffffffffULL) {
  3393. u32 rx_vec = (v1 & 0xffffffff);
  3394. for (i = 0; i < np->num_rx_rings; i++) {
  3395. struct rx_ring_info *rp = &np->rx_rings[i];
  3396. if (rx_vec & (1 << rp->rx_channel)) {
  3397. int r = niu_rx_error(np, rp);
  3398. if (r) {
  3399. err = r;
  3400. } else {
  3401. if (!v0)
  3402. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3403. RX_DMA_CTL_STAT_MEX);
  3404. }
  3405. }
  3406. }
  3407. }
  3408. if (v1 & 0x7fffffff00000000ULL) {
  3409. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3410. for (i = 0; i < np->num_tx_rings; i++) {
  3411. struct tx_ring_info *rp = &np->tx_rings[i];
  3412. if (tx_vec & (1 << rp->tx_channel)) {
  3413. int r = niu_tx_error(np, rp);
  3414. if (r)
  3415. err = r;
  3416. }
  3417. }
  3418. }
  3419. if ((v0 | v1) & 0x8000000000000000ULL) {
  3420. int r = niu_mif_interrupt(np);
  3421. if (r)
  3422. err = r;
  3423. }
  3424. if (v2) {
  3425. if (v2 & 0x01ef) {
  3426. int r = niu_mac_interrupt(np);
  3427. if (r)
  3428. err = r;
  3429. }
  3430. if (v2 & 0x0210) {
  3431. int r = niu_device_error(np);
  3432. if (r)
  3433. err = r;
  3434. }
  3435. }
  3436. if (err)
  3437. niu_enable_interrupts(np, 0);
  3438. return err;
  3439. }
  3440. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3441. int ldn)
  3442. {
  3443. struct rxdma_mailbox *mbox = rp->mbox;
  3444. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3445. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3446. RX_DMA_CTL_STAT_RCRTO);
  3447. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3448. niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
  3449. np->dev->name, (unsigned long long) stat);
  3450. }
  3451. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3452. int ldn)
  3453. {
  3454. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3455. niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
  3456. np->dev->name, (unsigned long long) rp->tx_cs);
  3457. }
  3458. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3459. {
  3460. struct niu_parent *parent = np->parent;
  3461. u32 rx_vec, tx_vec;
  3462. int i;
  3463. tx_vec = (v0 >> 32);
  3464. rx_vec = (v0 & 0xffffffff);
  3465. for (i = 0; i < np->num_rx_rings; i++) {
  3466. struct rx_ring_info *rp = &np->rx_rings[i];
  3467. int ldn = LDN_RXDMA(rp->rx_channel);
  3468. if (parent->ldg_map[ldn] != ldg)
  3469. continue;
  3470. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3471. if (rx_vec & (1 << rp->rx_channel))
  3472. niu_rxchan_intr(np, rp, ldn);
  3473. }
  3474. for (i = 0; i < np->num_tx_rings; i++) {
  3475. struct tx_ring_info *rp = &np->tx_rings[i];
  3476. int ldn = LDN_TXDMA(rp->tx_channel);
  3477. if (parent->ldg_map[ldn] != ldg)
  3478. continue;
  3479. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3480. if (tx_vec & (1 << rp->tx_channel))
  3481. niu_txchan_intr(np, rp, ldn);
  3482. }
  3483. }
  3484. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3485. u64 v0, u64 v1, u64 v2)
  3486. {
  3487. if (likely(napi_schedule_prep(&lp->napi))) {
  3488. lp->v0 = v0;
  3489. lp->v1 = v1;
  3490. lp->v2 = v2;
  3491. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3492. __napi_schedule(&lp->napi);
  3493. }
  3494. }
  3495. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3496. {
  3497. struct niu_ldg *lp = dev_id;
  3498. struct niu *np = lp->np;
  3499. int ldg = lp->ldg_num;
  3500. unsigned long flags;
  3501. u64 v0, v1, v2;
  3502. if (netif_msg_intr(np))
  3503. printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
  3504. lp, ldg);
  3505. spin_lock_irqsave(&np->lock, flags);
  3506. v0 = nr64(LDSV0(ldg));
  3507. v1 = nr64(LDSV1(ldg));
  3508. v2 = nr64(LDSV2(ldg));
  3509. if (netif_msg_intr(np))
  3510. printk("v0[%llx] v1[%llx] v2[%llx]\n",
  3511. (unsigned long long) v0,
  3512. (unsigned long long) v1,
  3513. (unsigned long long) v2);
  3514. if (unlikely(!v0 && !v1 && !v2)) {
  3515. spin_unlock_irqrestore(&np->lock, flags);
  3516. return IRQ_NONE;
  3517. }
  3518. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3519. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3520. if (err)
  3521. goto out;
  3522. }
  3523. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3524. niu_schedule_napi(np, lp, v0, v1, v2);
  3525. else
  3526. niu_ldg_rearm(np, lp, 1);
  3527. out:
  3528. spin_unlock_irqrestore(&np->lock, flags);
  3529. return IRQ_HANDLED;
  3530. }
  3531. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3532. {
  3533. if (rp->mbox) {
  3534. np->ops->free_coherent(np->device,
  3535. sizeof(struct rxdma_mailbox),
  3536. rp->mbox, rp->mbox_dma);
  3537. rp->mbox = NULL;
  3538. }
  3539. if (rp->rcr) {
  3540. np->ops->free_coherent(np->device,
  3541. MAX_RCR_RING_SIZE * sizeof(__le64),
  3542. rp->rcr, rp->rcr_dma);
  3543. rp->rcr = NULL;
  3544. rp->rcr_table_size = 0;
  3545. rp->rcr_index = 0;
  3546. }
  3547. if (rp->rbr) {
  3548. niu_rbr_free(np, rp);
  3549. np->ops->free_coherent(np->device,
  3550. MAX_RBR_RING_SIZE * sizeof(__le32),
  3551. rp->rbr, rp->rbr_dma);
  3552. rp->rbr = NULL;
  3553. rp->rbr_table_size = 0;
  3554. rp->rbr_index = 0;
  3555. }
  3556. kfree(rp->rxhash);
  3557. rp->rxhash = NULL;
  3558. }
  3559. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3560. {
  3561. if (rp->mbox) {
  3562. np->ops->free_coherent(np->device,
  3563. sizeof(struct txdma_mailbox),
  3564. rp->mbox, rp->mbox_dma);
  3565. rp->mbox = NULL;
  3566. }
  3567. if (rp->descr) {
  3568. int i;
  3569. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3570. if (rp->tx_buffs[i].skb)
  3571. (void) release_tx_packet(np, rp, i);
  3572. }
  3573. np->ops->free_coherent(np->device,
  3574. MAX_TX_RING_SIZE * sizeof(__le64),
  3575. rp->descr, rp->descr_dma);
  3576. rp->descr = NULL;
  3577. rp->pending = 0;
  3578. rp->prod = 0;
  3579. rp->cons = 0;
  3580. rp->wrap_bit = 0;
  3581. }
  3582. }
  3583. static void niu_free_channels(struct niu *np)
  3584. {
  3585. int i;
  3586. if (np->rx_rings) {
  3587. for (i = 0; i < np->num_rx_rings; i++) {
  3588. struct rx_ring_info *rp = &np->rx_rings[i];
  3589. niu_free_rx_ring_info(np, rp);
  3590. }
  3591. kfree(np->rx_rings);
  3592. np->rx_rings = NULL;
  3593. np->num_rx_rings = 0;
  3594. }
  3595. if (np->tx_rings) {
  3596. for (i = 0; i < np->num_tx_rings; i++) {
  3597. struct tx_ring_info *rp = &np->tx_rings[i];
  3598. niu_free_tx_ring_info(np, rp);
  3599. }
  3600. kfree(np->tx_rings);
  3601. np->tx_rings = NULL;
  3602. np->num_tx_rings = 0;
  3603. }
  3604. }
  3605. static int niu_alloc_rx_ring_info(struct niu *np,
  3606. struct rx_ring_info *rp)
  3607. {
  3608. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3609. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  3610. GFP_KERNEL);
  3611. if (!rp->rxhash)
  3612. return -ENOMEM;
  3613. rp->mbox = np->ops->alloc_coherent(np->device,
  3614. sizeof(struct rxdma_mailbox),
  3615. &rp->mbox_dma, GFP_KERNEL);
  3616. if (!rp->mbox)
  3617. return -ENOMEM;
  3618. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3619. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3620. "RXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3621. return -EINVAL;
  3622. }
  3623. rp->rcr = np->ops->alloc_coherent(np->device,
  3624. MAX_RCR_RING_SIZE * sizeof(__le64),
  3625. &rp->rcr_dma, GFP_KERNEL);
  3626. if (!rp->rcr)
  3627. return -ENOMEM;
  3628. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3629. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3630. "RXDMA RCR table %p\n", np->dev->name, rp->rcr);
  3631. return -EINVAL;
  3632. }
  3633. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3634. rp->rcr_index = 0;
  3635. rp->rbr = np->ops->alloc_coherent(np->device,
  3636. MAX_RBR_RING_SIZE * sizeof(__le32),
  3637. &rp->rbr_dma, GFP_KERNEL);
  3638. if (!rp->rbr)
  3639. return -ENOMEM;
  3640. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3641. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3642. "RXDMA RBR table %p\n", np->dev->name, rp->rbr);
  3643. return -EINVAL;
  3644. }
  3645. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3646. rp->rbr_index = 0;
  3647. rp->rbr_pending = 0;
  3648. return 0;
  3649. }
  3650. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3651. {
  3652. int mtu = np->dev->mtu;
  3653. /* These values are recommended by the HW designers for fair
  3654. * utilization of DRR amongst the rings.
  3655. */
  3656. rp->max_burst = mtu + 32;
  3657. if (rp->max_burst > 4096)
  3658. rp->max_burst = 4096;
  3659. }
  3660. static int niu_alloc_tx_ring_info(struct niu *np,
  3661. struct tx_ring_info *rp)
  3662. {
  3663. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3664. rp->mbox = np->ops->alloc_coherent(np->device,
  3665. sizeof(struct txdma_mailbox),
  3666. &rp->mbox_dma, GFP_KERNEL);
  3667. if (!rp->mbox)
  3668. return -ENOMEM;
  3669. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3670. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3671. "TXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3672. return -EINVAL;
  3673. }
  3674. rp->descr = np->ops->alloc_coherent(np->device,
  3675. MAX_TX_RING_SIZE * sizeof(__le64),
  3676. &rp->descr_dma, GFP_KERNEL);
  3677. if (!rp->descr)
  3678. return -ENOMEM;
  3679. if ((unsigned long)rp->descr & (64UL - 1)) {
  3680. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3681. "TXDMA descr table %p\n", np->dev->name, rp->descr);
  3682. return -EINVAL;
  3683. }
  3684. rp->pending = MAX_TX_RING_SIZE;
  3685. rp->prod = 0;
  3686. rp->cons = 0;
  3687. rp->wrap_bit = 0;
  3688. /* XXX make these configurable... XXX */
  3689. rp->mark_freq = rp->pending / 4;
  3690. niu_set_max_burst(np, rp);
  3691. return 0;
  3692. }
  3693. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3694. {
  3695. u16 bss;
  3696. bss = min(PAGE_SHIFT, 15);
  3697. rp->rbr_block_size = 1 << bss;
  3698. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3699. rp->rbr_sizes[0] = 256;
  3700. rp->rbr_sizes[1] = 1024;
  3701. if (np->dev->mtu > ETH_DATA_LEN) {
  3702. switch (PAGE_SIZE) {
  3703. case 4 * 1024:
  3704. rp->rbr_sizes[2] = 4096;
  3705. break;
  3706. default:
  3707. rp->rbr_sizes[2] = 8192;
  3708. break;
  3709. }
  3710. } else {
  3711. rp->rbr_sizes[2] = 2048;
  3712. }
  3713. rp->rbr_sizes[3] = rp->rbr_block_size;
  3714. }
  3715. static int niu_alloc_channels(struct niu *np)
  3716. {
  3717. struct niu_parent *parent = np->parent;
  3718. int first_rx_channel, first_tx_channel;
  3719. int i, port, err;
  3720. port = np->port;
  3721. first_rx_channel = first_tx_channel = 0;
  3722. for (i = 0; i < port; i++) {
  3723. first_rx_channel += parent->rxchan_per_port[i];
  3724. first_tx_channel += parent->txchan_per_port[i];
  3725. }
  3726. np->num_rx_rings = parent->rxchan_per_port[port];
  3727. np->num_tx_rings = parent->txchan_per_port[port];
  3728. np->dev->real_num_tx_queues = np->num_tx_rings;
  3729. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  3730. GFP_KERNEL);
  3731. err = -ENOMEM;
  3732. if (!np->rx_rings)
  3733. goto out_err;
  3734. for (i = 0; i < np->num_rx_rings; i++) {
  3735. struct rx_ring_info *rp = &np->rx_rings[i];
  3736. rp->np = np;
  3737. rp->rx_channel = first_rx_channel + i;
  3738. err = niu_alloc_rx_ring_info(np, rp);
  3739. if (err)
  3740. goto out_err;
  3741. niu_size_rbr(np, rp);
  3742. /* XXX better defaults, configurable, etc... XXX */
  3743. rp->nonsyn_window = 64;
  3744. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3745. rp->syn_window = 64;
  3746. rp->syn_threshold = rp->rcr_table_size - 64;
  3747. rp->rcr_pkt_threshold = 16;
  3748. rp->rcr_timeout = 8;
  3749. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3750. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3751. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3752. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3753. if (err)
  3754. return err;
  3755. }
  3756. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  3757. GFP_KERNEL);
  3758. err = -ENOMEM;
  3759. if (!np->tx_rings)
  3760. goto out_err;
  3761. for (i = 0; i < np->num_tx_rings; i++) {
  3762. struct tx_ring_info *rp = &np->tx_rings[i];
  3763. rp->np = np;
  3764. rp->tx_channel = first_tx_channel + i;
  3765. err = niu_alloc_tx_ring_info(np, rp);
  3766. if (err)
  3767. goto out_err;
  3768. }
  3769. return 0;
  3770. out_err:
  3771. niu_free_channels(np);
  3772. return err;
  3773. }
  3774. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3775. {
  3776. int limit = 1000;
  3777. while (--limit > 0) {
  3778. u64 val = nr64(TX_CS(channel));
  3779. if (val & TX_CS_SNG_STATE)
  3780. return 0;
  3781. }
  3782. return -ENODEV;
  3783. }
  3784. static int niu_tx_channel_stop(struct niu *np, int channel)
  3785. {
  3786. u64 val = nr64(TX_CS(channel));
  3787. val |= TX_CS_STOP_N_GO;
  3788. nw64(TX_CS(channel), val);
  3789. return niu_tx_cs_sng_poll(np, channel);
  3790. }
  3791. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3792. {
  3793. int limit = 1000;
  3794. while (--limit > 0) {
  3795. u64 val = nr64(TX_CS(channel));
  3796. if (!(val & TX_CS_RST))
  3797. return 0;
  3798. }
  3799. return -ENODEV;
  3800. }
  3801. static int niu_tx_channel_reset(struct niu *np, int channel)
  3802. {
  3803. u64 val = nr64(TX_CS(channel));
  3804. int err;
  3805. val |= TX_CS_RST;
  3806. nw64(TX_CS(channel), val);
  3807. err = niu_tx_cs_reset_poll(np, channel);
  3808. if (!err)
  3809. nw64(TX_RING_KICK(channel), 0);
  3810. return err;
  3811. }
  3812. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3813. {
  3814. u64 val;
  3815. nw64(TX_LOG_MASK1(channel), 0);
  3816. nw64(TX_LOG_VAL1(channel), 0);
  3817. nw64(TX_LOG_MASK2(channel), 0);
  3818. nw64(TX_LOG_VAL2(channel), 0);
  3819. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3820. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3821. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3822. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3823. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3824. nw64(TX_LOG_PAGE_VLD(channel), val);
  3825. /* XXX TXDMA 32bit mode? XXX */
  3826. return 0;
  3827. }
  3828. static void niu_txc_enable_port(struct niu *np, int on)
  3829. {
  3830. unsigned long flags;
  3831. u64 val, mask;
  3832. niu_lock_parent(np, flags);
  3833. val = nr64(TXC_CONTROL);
  3834. mask = (u64)1 << np->port;
  3835. if (on) {
  3836. val |= TXC_CONTROL_ENABLE | mask;
  3837. } else {
  3838. val &= ~mask;
  3839. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3840. val &= ~TXC_CONTROL_ENABLE;
  3841. }
  3842. nw64(TXC_CONTROL, val);
  3843. niu_unlock_parent(np, flags);
  3844. }
  3845. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3846. {
  3847. unsigned long flags;
  3848. u64 val;
  3849. niu_lock_parent(np, flags);
  3850. val = nr64(TXC_INT_MASK);
  3851. val &= ~TXC_INT_MASK_VAL(np->port);
  3852. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3853. niu_unlock_parent(np, flags);
  3854. }
  3855. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3856. {
  3857. u64 val = 0;
  3858. if (on) {
  3859. int i;
  3860. for (i = 0; i < np->num_tx_rings; i++)
  3861. val |= (1 << np->tx_rings[i].tx_channel);
  3862. }
  3863. nw64(TXC_PORT_DMA(np->port), val);
  3864. }
  3865. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3866. {
  3867. int err, channel = rp->tx_channel;
  3868. u64 val, ring_len;
  3869. err = niu_tx_channel_stop(np, channel);
  3870. if (err)
  3871. return err;
  3872. err = niu_tx_channel_reset(np, channel);
  3873. if (err)
  3874. return err;
  3875. err = niu_tx_channel_lpage_init(np, channel);
  3876. if (err)
  3877. return err;
  3878. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3879. nw64(TX_ENT_MSK(channel), 0);
  3880. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3881. TX_RNG_CFIG_STADDR)) {
  3882. dev_err(np->device, PFX "%s: TX ring channel %d "
  3883. "DMA addr (%llx) is not aligned.\n",
  3884. np->dev->name, channel,
  3885. (unsigned long long) rp->descr_dma);
  3886. return -EINVAL;
  3887. }
  3888. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3889. * blocks. rp->pending is the number of TX descriptors in
  3890. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3891. * to get the proper value the chip wants.
  3892. */
  3893. ring_len = (rp->pending / 8);
  3894. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3895. rp->descr_dma);
  3896. nw64(TX_RNG_CFIG(channel), val);
  3897. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3898. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3899. dev_err(np->device, PFX "%s: TX ring channel %d "
  3900. "MBOX addr (%llx) is has illegal bits.\n",
  3901. np->dev->name, channel,
  3902. (unsigned long long) rp->mbox_dma);
  3903. return -EINVAL;
  3904. }
  3905. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3906. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3907. nw64(TX_CS(channel), 0);
  3908. rp->last_pkt_cnt = 0;
  3909. return 0;
  3910. }
  3911. static void niu_init_rdc_groups(struct niu *np)
  3912. {
  3913. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3914. int i, first_table_num = tp->first_table_num;
  3915. for (i = 0; i < tp->num_tables; i++) {
  3916. struct rdc_table *tbl = &tp->tables[i];
  3917. int this_table = first_table_num + i;
  3918. int slot;
  3919. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3920. nw64(RDC_TBL(this_table, slot),
  3921. tbl->rxdma_channel[slot]);
  3922. }
  3923. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3924. }
  3925. static void niu_init_drr_weight(struct niu *np)
  3926. {
  3927. int type = phy_decode(np->parent->port_phy, np->port);
  3928. u64 val;
  3929. switch (type) {
  3930. case PORT_TYPE_10G:
  3931. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3932. break;
  3933. case PORT_TYPE_1G:
  3934. default:
  3935. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3936. break;
  3937. }
  3938. nw64(PT_DRR_WT(np->port), val);
  3939. }
  3940. static int niu_init_hostinfo(struct niu *np)
  3941. {
  3942. struct niu_parent *parent = np->parent;
  3943. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3944. int i, err, num_alt = niu_num_alt_addr(np);
  3945. int first_rdc_table = tp->first_table_num;
  3946. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3947. if (err)
  3948. return err;
  3949. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3950. if (err)
  3951. return err;
  3952. for (i = 0; i < num_alt; i++) {
  3953. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3954. if (err)
  3955. return err;
  3956. }
  3957. return 0;
  3958. }
  3959. static int niu_rx_channel_reset(struct niu *np, int channel)
  3960. {
  3961. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3962. RXDMA_CFIG1_RST, 1000, 10,
  3963. "RXDMA_CFIG1");
  3964. }
  3965. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3966. {
  3967. u64 val;
  3968. nw64(RX_LOG_MASK1(channel), 0);
  3969. nw64(RX_LOG_VAL1(channel), 0);
  3970. nw64(RX_LOG_MASK2(channel), 0);
  3971. nw64(RX_LOG_VAL2(channel), 0);
  3972. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3973. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3974. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3975. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3976. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3977. nw64(RX_LOG_PAGE_VLD(channel), val);
  3978. return 0;
  3979. }
  3980. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3981. {
  3982. u64 val;
  3983. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3984. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3985. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3986. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3987. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3988. }
  3989. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3990. {
  3991. u64 val = 0;
  3992. *ret = 0;
  3993. switch (rp->rbr_block_size) {
  3994. case 4 * 1024:
  3995. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3996. break;
  3997. case 8 * 1024:
  3998. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3999. break;
  4000. case 16 * 1024:
  4001. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4002. break;
  4003. case 32 * 1024:
  4004. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4005. break;
  4006. default:
  4007. return -EINVAL;
  4008. }
  4009. val |= RBR_CFIG_B_VLD2;
  4010. switch (rp->rbr_sizes[2]) {
  4011. case 2 * 1024:
  4012. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4013. break;
  4014. case 4 * 1024:
  4015. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4016. break;
  4017. case 8 * 1024:
  4018. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4019. break;
  4020. case 16 * 1024:
  4021. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4022. break;
  4023. default:
  4024. return -EINVAL;
  4025. }
  4026. val |= RBR_CFIG_B_VLD1;
  4027. switch (rp->rbr_sizes[1]) {
  4028. case 1 * 1024:
  4029. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4030. break;
  4031. case 2 * 1024:
  4032. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4033. break;
  4034. case 4 * 1024:
  4035. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4036. break;
  4037. case 8 * 1024:
  4038. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4039. break;
  4040. default:
  4041. return -EINVAL;
  4042. }
  4043. val |= RBR_CFIG_B_VLD0;
  4044. switch (rp->rbr_sizes[0]) {
  4045. case 256:
  4046. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4047. break;
  4048. case 512:
  4049. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4050. break;
  4051. case 1 * 1024:
  4052. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4053. break;
  4054. case 2 * 1024:
  4055. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4056. break;
  4057. default:
  4058. return -EINVAL;
  4059. }
  4060. *ret = val;
  4061. return 0;
  4062. }
  4063. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4064. {
  4065. u64 val = nr64(RXDMA_CFIG1(channel));
  4066. int limit;
  4067. if (on)
  4068. val |= RXDMA_CFIG1_EN;
  4069. else
  4070. val &= ~RXDMA_CFIG1_EN;
  4071. nw64(RXDMA_CFIG1(channel), val);
  4072. limit = 1000;
  4073. while (--limit > 0) {
  4074. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4075. break;
  4076. udelay(10);
  4077. }
  4078. if (limit <= 0)
  4079. return -ENODEV;
  4080. return 0;
  4081. }
  4082. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4083. {
  4084. int err, channel = rp->rx_channel;
  4085. u64 val;
  4086. err = niu_rx_channel_reset(np, channel);
  4087. if (err)
  4088. return err;
  4089. err = niu_rx_channel_lpage_init(np, channel);
  4090. if (err)
  4091. return err;
  4092. niu_rx_channel_wred_init(np, rp);
  4093. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4094. nw64(RX_DMA_CTL_STAT(channel),
  4095. (RX_DMA_CTL_STAT_MEX |
  4096. RX_DMA_CTL_STAT_RCRTHRES |
  4097. RX_DMA_CTL_STAT_RCRTO |
  4098. RX_DMA_CTL_STAT_RBR_EMPTY));
  4099. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4100. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  4101. nw64(RBR_CFIG_A(channel),
  4102. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4103. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4104. err = niu_compute_rbr_cfig_b(rp, &val);
  4105. if (err)
  4106. return err;
  4107. nw64(RBR_CFIG_B(channel), val);
  4108. nw64(RCRCFIG_A(channel),
  4109. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4110. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4111. nw64(RCRCFIG_B(channel),
  4112. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4113. RCRCFIG_B_ENTOUT |
  4114. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4115. err = niu_enable_rx_channel(np, channel, 1);
  4116. if (err)
  4117. return err;
  4118. nw64(RBR_KICK(channel), rp->rbr_index);
  4119. val = nr64(RX_DMA_CTL_STAT(channel));
  4120. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4121. nw64(RX_DMA_CTL_STAT(channel), val);
  4122. return 0;
  4123. }
  4124. static int niu_init_rx_channels(struct niu *np)
  4125. {
  4126. unsigned long flags;
  4127. u64 seed = jiffies_64;
  4128. int err, i;
  4129. niu_lock_parent(np, flags);
  4130. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4131. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4132. niu_unlock_parent(np, flags);
  4133. /* XXX RXDMA 32bit mode? XXX */
  4134. niu_init_rdc_groups(np);
  4135. niu_init_drr_weight(np);
  4136. err = niu_init_hostinfo(np);
  4137. if (err)
  4138. return err;
  4139. for (i = 0; i < np->num_rx_rings; i++) {
  4140. struct rx_ring_info *rp = &np->rx_rings[i];
  4141. err = niu_init_one_rx_channel(np, rp);
  4142. if (err)
  4143. return err;
  4144. }
  4145. return 0;
  4146. }
  4147. static int niu_set_ip_frag_rule(struct niu *np)
  4148. {
  4149. struct niu_parent *parent = np->parent;
  4150. struct niu_classifier *cp = &np->clas;
  4151. struct niu_tcam_entry *tp;
  4152. int index, err;
  4153. index = cp->tcam_top;
  4154. tp = &parent->tcam[index];
  4155. /* Note that the noport bit is the same in both ipv4 and
  4156. * ipv6 format TCAM entries.
  4157. */
  4158. memset(tp, 0, sizeof(*tp));
  4159. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4160. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4161. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4162. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4163. err = tcam_write(np, index, tp->key, tp->key_mask);
  4164. if (err)
  4165. return err;
  4166. err = tcam_assoc_write(np, index, tp->assoc_data);
  4167. if (err)
  4168. return err;
  4169. tp->valid = 1;
  4170. cp->tcam_valid_entries++;
  4171. return 0;
  4172. }
  4173. static int niu_init_classifier_hw(struct niu *np)
  4174. {
  4175. struct niu_parent *parent = np->parent;
  4176. struct niu_classifier *cp = &np->clas;
  4177. int i, err;
  4178. nw64(H1POLY, cp->h1_init);
  4179. nw64(H2POLY, cp->h2_init);
  4180. err = niu_init_hostinfo(np);
  4181. if (err)
  4182. return err;
  4183. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4184. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4185. vlan_tbl_write(np, i, np->port,
  4186. vp->vlan_pref, vp->rdc_num);
  4187. }
  4188. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4189. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4190. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4191. ap->rdc_num, ap->mac_pref);
  4192. if (err)
  4193. return err;
  4194. }
  4195. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4196. int index = i - CLASS_CODE_USER_PROG1;
  4197. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4198. if (err)
  4199. return err;
  4200. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4201. if (err)
  4202. return err;
  4203. }
  4204. err = niu_set_ip_frag_rule(np);
  4205. if (err)
  4206. return err;
  4207. tcam_enable(np, 1);
  4208. return 0;
  4209. }
  4210. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4211. {
  4212. nw64(ZCP_RAM_DATA0, data[0]);
  4213. nw64(ZCP_RAM_DATA1, data[1]);
  4214. nw64(ZCP_RAM_DATA2, data[2]);
  4215. nw64(ZCP_RAM_DATA3, data[3]);
  4216. nw64(ZCP_RAM_DATA4, data[4]);
  4217. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4218. nw64(ZCP_RAM_ACC,
  4219. (ZCP_RAM_ACC_WRITE |
  4220. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4221. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4222. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4223. 1000, 100);
  4224. }
  4225. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4226. {
  4227. int err;
  4228. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4229. 1000, 100);
  4230. if (err) {
  4231. dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
  4232. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4233. (unsigned long long) nr64(ZCP_RAM_ACC));
  4234. return err;
  4235. }
  4236. nw64(ZCP_RAM_ACC,
  4237. (ZCP_RAM_ACC_READ |
  4238. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4239. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4240. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4241. 1000, 100);
  4242. if (err) {
  4243. dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
  4244. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4245. (unsigned long long) nr64(ZCP_RAM_ACC));
  4246. return err;
  4247. }
  4248. data[0] = nr64(ZCP_RAM_DATA0);
  4249. data[1] = nr64(ZCP_RAM_DATA1);
  4250. data[2] = nr64(ZCP_RAM_DATA2);
  4251. data[3] = nr64(ZCP_RAM_DATA3);
  4252. data[4] = nr64(ZCP_RAM_DATA4);
  4253. return 0;
  4254. }
  4255. static void niu_zcp_cfifo_reset(struct niu *np)
  4256. {
  4257. u64 val = nr64(RESET_CFIFO);
  4258. val |= RESET_CFIFO_RST(np->port);
  4259. nw64(RESET_CFIFO, val);
  4260. udelay(10);
  4261. val &= ~RESET_CFIFO_RST(np->port);
  4262. nw64(RESET_CFIFO, val);
  4263. }
  4264. static int niu_init_zcp(struct niu *np)
  4265. {
  4266. u64 data[5], rbuf[5];
  4267. int i, max, err;
  4268. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4269. if (np->port == 0 || np->port == 1)
  4270. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4271. else
  4272. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4273. } else
  4274. max = NIU_CFIFO_ENTRIES;
  4275. data[0] = 0;
  4276. data[1] = 0;
  4277. data[2] = 0;
  4278. data[3] = 0;
  4279. data[4] = 0;
  4280. for (i = 0; i < max; i++) {
  4281. err = niu_zcp_write(np, i, data);
  4282. if (err)
  4283. return err;
  4284. err = niu_zcp_read(np, i, rbuf);
  4285. if (err)
  4286. return err;
  4287. }
  4288. niu_zcp_cfifo_reset(np);
  4289. nw64(CFIFO_ECC(np->port), 0);
  4290. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4291. (void) nr64(ZCP_INT_STAT);
  4292. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4293. return 0;
  4294. }
  4295. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4296. {
  4297. u64 val = nr64_ipp(IPP_CFIG);
  4298. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4299. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4300. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4301. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4302. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4303. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4304. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4305. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4306. }
  4307. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4308. {
  4309. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4310. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4311. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4312. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4313. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4314. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4315. }
  4316. static int niu_ipp_reset(struct niu *np)
  4317. {
  4318. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4319. 1000, 100, "IPP_CFIG");
  4320. }
  4321. static int niu_init_ipp(struct niu *np)
  4322. {
  4323. u64 data[5], rbuf[5], val;
  4324. int i, max, err;
  4325. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4326. if (np->port == 0 || np->port == 1)
  4327. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4328. else
  4329. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4330. } else
  4331. max = NIU_DFIFO_ENTRIES;
  4332. data[0] = 0;
  4333. data[1] = 0;
  4334. data[2] = 0;
  4335. data[3] = 0;
  4336. data[4] = 0;
  4337. for (i = 0; i < max; i++) {
  4338. niu_ipp_write(np, i, data);
  4339. niu_ipp_read(np, i, rbuf);
  4340. }
  4341. (void) nr64_ipp(IPP_INT_STAT);
  4342. (void) nr64_ipp(IPP_INT_STAT);
  4343. err = niu_ipp_reset(np);
  4344. if (err)
  4345. return err;
  4346. (void) nr64_ipp(IPP_PKT_DIS);
  4347. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4348. (void) nr64_ipp(IPP_ECC);
  4349. (void) nr64_ipp(IPP_INT_STAT);
  4350. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4351. val = nr64_ipp(IPP_CFIG);
  4352. val &= ~IPP_CFIG_IP_MAX_PKT;
  4353. val |= (IPP_CFIG_IPP_ENABLE |
  4354. IPP_CFIG_DFIFO_ECC_EN |
  4355. IPP_CFIG_DROP_BAD_CRC |
  4356. IPP_CFIG_CKSUM_EN |
  4357. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4358. nw64_ipp(IPP_CFIG, val);
  4359. return 0;
  4360. }
  4361. static void niu_handle_led(struct niu *np, int status)
  4362. {
  4363. u64 val;
  4364. val = nr64_mac(XMAC_CONFIG);
  4365. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4366. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4367. if (status) {
  4368. val |= XMAC_CONFIG_LED_POLARITY;
  4369. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4370. } else {
  4371. val |= XMAC_CONFIG_FORCE_LED_ON;
  4372. val &= ~XMAC_CONFIG_LED_POLARITY;
  4373. }
  4374. }
  4375. nw64_mac(XMAC_CONFIG, val);
  4376. }
  4377. static void niu_init_xif_xmac(struct niu *np)
  4378. {
  4379. struct niu_link_config *lp = &np->link_config;
  4380. u64 val;
  4381. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4382. val = nr64(MIF_CONFIG);
  4383. val |= MIF_CONFIG_ATCA_GE;
  4384. nw64(MIF_CONFIG, val);
  4385. }
  4386. val = nr64_mac(XMAC_CONFIG);
  4387. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4388. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4389. if (lp->loopback_mode == LOOPBACK_MAC) {
  4390. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4391. val |= XMAC_CONFIG_LOOPBACK;
  4392. } else {
  4393. val &= ~XMAC_CONFIG_LOOPBACK;
  4394. }
  4395. if (np->flags & NIU_FLAGS_10G) {
  4396. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4397. } else {
  4398. val |= XMAC_CONFIG_LFS_DISABLE;
  4399. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4400. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4401. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4402. else
  4403. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4404. }
  4405. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4406. if (lp->active_speed == SPEED_100)
  4407. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4408. else
  4409. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4410. nw64_mac(XMAC_CONFIG, val);
  4411. val = nr64_mac(XMAC_CONFIG);
  4412. val &= ~XMAC_CONFIG_MODE_MASK;
  4413. if (np->flags & NIU_FLAGS_10G) {
  4414. val |= XMAC_CONFIG_MODE_XGMII;
  4415. } else {
  4416. if (lp->active_speed == SPEED_1000)
  4417. val |= XMAC_CONFIG_MODE_GMII;
  4418. else
  4419. val |= XMAC_CONFIG_MODE_MII;
  4420. }
  4421. nw64_mac(XMAC_CONFIG, val);
  4422. }
  4423. static void niu_init_xif_bmac(struct niu *np)
  4424. {
  4425. struct niu_link_config *lp = &np->link_config;
  4426. u64 val;
  4427. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4428. if (lp->loopback_mode == LOOPBACK_MAC)
  4429. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4430. else
  4431. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4432. if (lp->active_speed == SPEED_1000)
  4433. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4434. else
  4435. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4436. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4437. BMAC_XIF_CONFIG_LED_POLARITY);
  4438. if (!(np->flags & NIU_FLAGS_10G) &&
  4439. !(np->flags & NIU_FLAGS_FIBER) &&
  4440. lp->active_speed == SPEED_100)
  4441. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4442. else
  4443. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4444. nw64_mac(BMAC_XIF_CONFIG, val);
  4445. }
  4446. static void niu_init_xif(struct niu *np)
  4447. {
  4448. if (np->flags & NIU_FLAGS_XMAC)
  4449. niu_init_xif_xmac(np);
  4450. else
  4451. niu_init_xif_bmac(np);
  4452. }
  4453. static void niu_pcs_mii_reset(struct niu *np)
  4454. {
  4455. int limit = 1000;
  4456. u64 val = nr64_pcs(PCS_MII_CTL);
  4457. val |= PCS_MII_CTL_RST;
  4458. nw64_pcs(PCS_MII_CTL, val);
  4459. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4460. udelay(100);
  4461. val = nr64_pcs(PCS_MII_CTL);
  4462. }
  4463. }
  4464. static void niu_xpcs_reset(struct niu *np)
  4465. {
  4466. int limit = 1000;
  4467. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4468. val |= XPCS_CONTROL1_RESET;
  4469. nw64_xpcs(XPCS_CONTROL1, val);
  4470. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4471. udelay(100);
  4472. val = nr64_xpcs(XPCS_CONTROL1);
  4473. }
  4474. }
  4475. static int niu_init_pcs(struct niu *np)
  4476. {
  4477. struct niu_link_config *lp = &np->link_config;
  4478. u64 val;
  4479. switch (np->flags & (NIU_FLAGS_10G |
  4480. NIU_FLAGS_FIBER |
  4481. NIU_FLAGS_XCVR_SERDES)) {
  4482. case NIU_FLAGS_FIBER:
  4483. /* 1G fiber */
  4484. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4485. nw64_pcs(PCS_DPATH_MODE, 0);
  4486. niu_pcs_mii_reset(np);
  4487. break;
  4488. case NIU_FLAGS_10G:
  4489. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4490. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4491. /* 10G SERDES */
  4492. if (!(np->flags & NIU_FLAGS_XMAC))
  4493. return -EINVAL;
  4494. /* 10G copper or fiber */
  4495. val = nr64_mac(XMAC_CONFIG);
  4496. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4497. nw64_mac(XMAC_CONFIG, val);
  4498. niu_xpcs_reset(np);
  4499. val = nr64_xpcs(XPCS_CONTROL1);
  4500. if (lp->loopback_mode == LOOPBACK_PHY)
  4501. val |= XPCS_CONTROL1_LOOPBACK;
  4502. else
  4503. val &= ~XPCS_CONTROL1_LOOPBACK;
  4504. nw64_xpcs(XPCS_CONTROL1, val);
  4505. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4506. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4507. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4508. break;
  4509. case NIU_FLAGS_XCVR_SERDES:
  4510. /* 1G SERDES */
  4511. niu_pcs_mii_reset(np);
  4512. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4513. nw64_pcs(PCS_DPATH_MODE, 0);
  4514. break;
  4515. case 0:
  4516. /* 1G copper */
  4517. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4518. /* 1G RGMII FIBER */
  4519. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4520. niu_pcs_mii_reset(np);
  4521. break;
  4522. default:
  4523. return -EINVAL;
  4524. }
  4525. return 0;
  4526. }
  4527. static int niu_reset_tx_xmac(struct niu *np)
  4528. {
  4529. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4530. (XTXMAC_SW_RST_REG_RS |
  4531. XTXMAC_SW_RST_SOFT_RST),
  4532. 1000, 100, "XTXMAC_SW_RST");
  4533. }
  4534. static int niu_reset_tx_bmac(struct niu *np)
  4535. {
  4536. int limit;
  4537. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4538. limit = 1000;
  4539. while (--limit >= 0) {
  4540. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4541. break;
  4542. udelay(100);
  4543. }
  4544. if (limit < 0) {
  4545. dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
  4546. "BTXMAC_SW_RST[%llx]\n",
  4547. np->port,
  4548. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4549. return -ENODEV;
  4550. }
  4551. return 0;
  4552. }
  4553. static int niu_reset_tx_mac(struct niu *np)
  4554. {
  4555. if (np->flags & NIU_FLAGS_XMAC)
  4556. return niu_reset_tx_xmac(np);
  4557. else
  4558. return niu_reset_tx_bmac(np);
  4559. }
  4560. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4561. {
  4562. u64 val;
  4563. val = nr64_mac(XMAC_MIN);
  4564. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4565. XMAC_MIN_RX_MIN_PKT_SIZE);
  4566. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4567. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4568. nw64_mac(XMAC_MIN, val);
  4569. nw64_mac(XMAC_MAX, max);
  4570. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4571. val = nr64_mac(XMAC_IPG);
  4572. if (np->flags & NIU_FLAGS_10G) {
  4573. val &= ~XMAC_IPG_IPG_XGMII;
  4574. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4575. } else {
  4576. val &= ~XMAC_IPG_IPG_MII_GMII;
  4577. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4578. }
  4579. nw64_mac(XMAC_IPG, val);
  4580. val = nr64_mac(XMAC_CONFIG);
  4581. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4582. XMAC_CONFIG_STRETCH_MODE |
  4583. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4584. XMAC_CONFIG_TX_ENABLE);
  4585. nw64_mac(XMAC_CONFIG, val);
  4586. nw64_mac(TXMAC_FRM_CNT, 0);
  4587. nw64_mac(TXMAC_BYTE_CNT, 0);
  4588. }
  4589. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4590. {
  4591. u64 val;
  4592. nw64_mac(BMAC_MIN_FRAME, min);
  4593. nw64_mac(BMAC_MAX_FRAME, max);
  4594. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4595. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4596. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4597. val = nr64_mac(BTXMAC_CONFIG);
  4598. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4599. BTXMAC_CONFIG_ENABLE);
  4600. nw64_mac(BTXMAC_CONFIG, val);
  4601. }
  4602. static void niu_init_tx_mac(struct niu *np)
  4603. {
  4604. u64 min, max;
  4605. min = 64;
  4606. if (np->dev->mtu > ETH_DATA_LEN)
  4607. max = 9216;
  4608. else
  4609. max = 1522;
  4610. /* The XMAC_MIN register only accepts values for TX min which
  4611. * have the low 3 bits cleared.
  4612. */
  4613. BUILD_BUG_ON(min & 0x7);
  4614. if (np->flags & NIU_FLAGS_XMAC)
  4615. niu_init_tx_xmac(np, min, max);
  4616. else
  4617. niu_init_tx_bmac(np, min, max);
  4618. }
  4619. static int niu_reset_rx_xmac(struct niu *np)
  4620. {
  4621. int limit;
  4622. nw64_mac(XRXMAC_SW_RST,
  4623. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4624. limit = 1000;
  4625. while (--limit >= 0) {
  4626. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4627. XRXMAC_SW_RST_SOFT_RST)))
  4628. break;
  4629. udelay(100);
  4630. }
  4631. if (limit < 0) {
  4632. dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
  4633. "XRXMAC_SW_RST[%llx]\n",
  4634. np->port,
  4635. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4636. return -ENODEV;
  4637. }
  4638. return 0;
  4639. }
  4640. static int niu_reset_rx_bmac(struct niu *np)
  4641. {
  4642. int limit;
  4643. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4644. limit = 1000;
  4645. while (--limit >= 0) {
  4646. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4647. break;
  4648. udelay(100);
  4649. }
  4650. if (limit < 0) {
  4651. dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
  4652. "BRXMAC_SW_RST[%llx]\n",
  4653. np->port,
  4654. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4655. return -ENODEV;
  4656. }
  4657. return 0;
  4658. }
  4659. static int niu_reset_rx_mac(struct niu *np)
  4660. {
  4661. if (np->flags & NIU_FLAGS_XMAC)
  4662. return niu_reset_rx_xmac(np);
  4663. else
  4664. return niu_reset_rx_bmac(np);
  4665. }
  4666. static void niu_init_rx_xmac(struct niu *np)
  4667. {
  4668. struct niu_parent *parent = np->parent;
  4669. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4670. int first_rdc_table = tp->first_table_num;
  4671. unsigned long i;
  4672. u64 val;
  4673. nw64_mac(XMAC_ADD_FILT0, 0);
  4674. nw64_mac(XMAC_ADD_FILT1, 0);
  4675. nw64_mac(XMAC_ADD_FILT2, 0);
  4676. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4677. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4678. for (i = 0; i < MAC_NUM_HASH; i++)
  4679. nw64_mac(XMAC_HASH_TBL(i), 0);
  4680. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4681. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4682. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4683. val = nr64_mac(XMAC_CONFIG);
  4684. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4685. XMAC_CONFIG_PROMISCUOUS |
  4686. XMAC_CONFIG_PROMISC_GROUP |
  4687. XMAC_CONFIG_ERR_CHK_DIS |
  4688. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4689. XMAC_CONFIG_RESERVED_MULTICAST |
  4690. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4691. XMAC_CONFIG_ADDR_FILTER_EN |
  4692. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4693. XMAC_CONFIG_STRIP_CRC |
  4694. XMAC_CONFIG_PASS_FLOW_CTRL |
  4695. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4696. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4697. nw64_mac(XMAC_CONFIG, val);
  4698. nw64_mac(RXMAC_BT_CNT, 0);
  4699. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4700. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4701. nw64_mac(RXMAC_FRAG_CNT, 0);
  4702. nw64_mac(RXMAC_HIST_CNT1, 0);
  4703. nw64_mac(RXMAC_HIST_CNT2, 0);
  4704. nw64_mac(RXMAC_HIST_CNT3, 0);
  4705. nw64_mac(RXMAC_HIST_CNT4, 0);
  4706. nw64_mac(RXMAC_HIST_CNT5, 0);
  4707. nw64_mac(RXMAC_HIST_CNT6, 0);
  4708. nw64_mac(RXMAC_HIST_CNT7, 0);
  4709. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4710. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4711. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4712. nw64_mac(LINK_FAULT_CNT, 0);
  4713. }
  4714. static void niu_init_rx_bmac(struct niu *np)
  4715. {
  4716. struct niu_parent *parent = np->parent;
  4717. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4718. int first_rdc_table = tp->first_table_num;
  4719. unsigned long i;
  4720. u64 val;
  4721. nw64_mac(BMAC_ADD_FILT0, 0);
  4722. nw64_mac(BMAC_ADD_FILT1, 0);
  4723. nw64_mac(BMAC_ADD_FILT2, 0);
  4724. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4725. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4726. for (i = 0; i < MAC_NUM_HASH; i++)
  4727. nw64_mac(BMAC_HASH_TBL(i), 0);
  4728. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4729. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4730. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4731. val = nr64_mac(BRXMAC_CONFIG);
  4732. val &= ~(BRXMAC_CONFIG_ENABLE |
  4733. BRXMAC_CONFIG_STRIP_PAD |
  4734. BRXMAC_CONFIG_STRIP_FCS |
  4735. BRXMAC_CONFIG_PROMISC |
  4736. BRXMAC_CONFIG_PROMISC_GRP |
  4737. BRXMAC_CONFIG_ADDR_FILT_EN |
  4738. BRXMAC_CONFIG_DISCARD_DIS);
  4739. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4740. nw64_mac(BRXMAC_CONFIG, val);
  4741. val = nr64_mac(BMAC_ADDR_CMPEN);
  4742. val |= BMAC_ADDR_CMPEN_EN0;
  4743. nw64_mac(BMAC_ADDR_CMPEN, val);
  4744. }
  4745. static void niu_init_rx_mac(struct niu *np)
  4746. {
  4747. niu_set_primary_mac(np, np->dev->dev_addr);
  4748. if (np->flags & NIU_FLAGS_XMAC)
  4749. niu_init_rx_xmac(np);
  4750. else
  4751. niu_init_rx_bmac(np);
  4752. }
  4753. static void niu_enable_tx_xmac(struct niu *np, int on)
  4754. {
  4755. u64 val = nr64_mac(XMAC_CONFIG);
  4756. if (on)
  4757. val |= XMAC_CONFIG_TX_ENABLE;
  4758. else
  4759. val &= ~XMAC_CONFIG_TX_ENABLE;
  4760. nw64_mac(XMAC_CONFIG, val);
  4761. }
  4762. static void niu_enable_tx_bmac(struct niu *np, int on)
  4763. {
  4764. u64 val = nr64_mac(BTXMAC_CONFIG);
  4765. if (on)
  4766. val |= BTXMAC_CONFIG_ENABLE;
  4767. else
  4768. val &= ~BTXMAC_CONFIG_ENABLE;
  4769. nw64_mac(BTXMAC_CONFIG, val);
  4770. }
  4771. static void niu_enable_tx_mac(struct niu *np, int on)
  4772. {
  4773. if (np->flags & NIU_FLAGS_XMAC)
  4774. niu_enable_tx_xmac(np, on);
  4775. else
  4776. niu_enable_tx_bmac(np, on);
  4777. }
  4778. static void niu_enable_rx_xmac(struct niu *np, int on)
  4779. {
  4780. u64 val = nr64_mac(XMAC_CONFIG);
  4781. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4782. XMAC_CONFIG_PROMISCUOUS);
  4783. if (np->flags & NIU_FLAGS_MCAST)
  4784. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4785. if (np->flags & NIU_FLAGS_PROMISC)
  4786. val |= XMAC_CONFIG_PROMISCUOUS;
  4787. if (on)
  4788. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4789. else
  4790. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4791. nw64_mac(XMAC_CONFIG, val);
  4792. }
  4793. static void niu_enable_rx_bmac(struct niu *np, int on)
  4794. {
  4795. u64 val = nr64_mac(BRXMAC_CONFIG);
  4796. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4797. BRXMAC_CONFIG_PROMISC);
  4798. if (np->flags & NIU_FLAGS_MCAST)
  4799. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4800. if (np->flags & NIU_FLAGS_PROMISC)
  4801. val |= BRXMAC_CONFIG_PROMISC;
  4802. if (on)
  4803. val |= BRXMAC_CONFIG_ENABLE;
  4804. else
  4805. val &= ~BRXMAC_CONFIG_ENABLE;
  4806. nw64_mac(BRXMAC_CONFIG, val);
  4807. }
  4808. static void niu_enable_rx_mac(struct niu *np, int on)
  4809. {
  4810. if (np->flags & NIU_FLAGS_XMAC)
  4811. niu_enable_rx_xmac(np, on);
  4812. else
  4813. niu_enable_rx_bmac(np, on);
  4814. }
  4815. static int niu_init_mac(struct niu *np)
  4816. {
  4817. int err;
  4818. niu_init_xif(np);
  4819. err = niu_init_pcs(np);
  4820. if (err)
  4821. return err;
  4822. err = niu_reset_tx_mac(np);
  4823. if (err)
  4824. return err;
  4825. niu_init_tx_mac(np);
  4826. err = niu_reset_rx_mac(np);
  4827. if (err)
  4828. return err;
  4829. niu_init_rx_mac(np);
  4830. /* This looks hookey but the RX MAC reset we just did will
  4831. * undo some of the state we setup in niu_init_tx_mac() so we
  4832. * have to call it again. In particular, the RX MAC reset will
  4833. * set the XMAC_MAX register back to it's default value.
  4834. */
  4835. niu_init_tx_mac(np);
  4836. niu_enable_tx_mac(np, 1);
  4837. niu_enable_rx_mac(np, 1);
  4838. return 0;
  4839. }
  4840. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4841. {
  4842. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4843. }
  4844. static void niu_stop_tx_channels(struct niu *np)
  4845. {
  4846. int i;
  4847. for (i = 0; i < np->num_tx_rings; i++) {
  4848. struct tx_ring_info *rp = &np->tx_rings[i];
  4849. niu_stop_one_tx_channel(np, rp);
  4850. }
  4851. }
  4852. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4853. {
  4854. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4855. }
  4856. static void niu_reset_tx_channels(struct niu *np)
  4857. {
  4858. int i;
  4859. for (i = 0; i < np->num_tx_rings; i++) {
  4860. struct tx_ring_info *rp = &np->tx_rings[i];
  4861. niu_reset_one_tx_channel(np, rp);
  4862. }
  4863. }
  4864. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4865. {
  4866. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4867. }
  4868. static void niu_stop_rx_channels(struct niu *np)
  4869. {
  4870. int i;
  4871. for (i = 0; i < np->num_rx_rings; i++) {
  4872. struct rx_ring_info *rp = &np->rx_rings[i];
  4873. niu_stop_one_rx_channel(np, rp);
  4874. }
  4875. }
  4876. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4877. {
  4878. int channel = rp->rx_channel;
  4879. (void) niu_rx_channel_reset(np, channel);
  4880. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4881. nw64(RX_DMA_CTL_STAT(channel), 0);
  4882. (void) niu_enable_rx_channel(np, channel, 0);
  4883. }
  4884. static void niu_reset_rx_channels(struct niu *np)
  4885. {
  4886. int i;
  4887. for (i = 0; i < np->num_rx_rings; i++) {
  4888. struct rx_ring_info *rp = &np->rx_rings[i];
  4889. niu_reset_one_rx_channel(np, rp);
  4890. }
  4891. }
  4892. static void niu_disable_ipp(struct niu *np)
  4893. {
  4894. u64 rd, wr, val;
  4895. int limit;
  4896. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4897. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4898. limit = 100;
  4899. while (--limit >= 0 && (rd != wr)) {
  4900. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4901. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4902. }
  4903. if (limit < 0 &&
  4904. (rd != 0 && wr != 1)) {
  4905. dev_err(np->device, PFX "%s: IPP would not quiesce, "
  4906. "rd_ptr[%llx] wr_ptr[%llx]\n",
  4907. np->dev->name,
  4908. (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
  4909. (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
  4910. }
  4911. val = nr64_ipp(IPP_CFIG);
  4912. val &= ~(IPP_CFIG_IPP_ENABLE |
  4913. IPP_CFIG_DFIFO_ECC_EN |
  4914. IPP_CFIG_DROP_BAD_CRC |
  4915. IPP_CFIG_CKSUM_EN);
  4916. nw64_ipp(IPP_CFIG, val);
  4917. (void) niu_ipp_reset(np);
  4918. }
  4919. static int niu_init_hw(struct niu *np)
  4920. {
  4921. int i, err;
  4922. niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
  4923. niu_txc_enable_port(np, 1);
  4924. niu_txc_port_dma_enable(np, 1);
  4925. niu_txc_set_imask(np, 0);
  4926. niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
  4927. for (i = 0; i < np->num_tx_rings; i++) {
  4928. struct tx_ring_info *rp = &np->tx_rings[i];
  4929. err = niu_init_one_tx_channel(np, rp);
  4930. if (err)
  4931. return err;
  4932. }
  4933. niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
  4934. err = niu_init_rx_channels(np);
  4935. if (err)
  4936. goto out_uninit_tx_channels;
  4937. niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
  4938. err = niu_init_classifier_hw(np);
  4939. if (err)
  4940. goto out_uninit_rx_channels;
  4941. niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
  4942. err = niu_init_zcp(np);
  4943. if (err)
  4944. goto out_uninit_rx_channels;
  4945. niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
  4946. err = niu_init_ipp(np);
  4947. if (err)
  4948. goto out_uninit_rx_channels;
  4949. niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
  4950. err = niu_init_mac(np);
  4951. if (err)
  4952. goto out_uninit_ipp;
  4953. return 0;
  4954. out_uninit_ipp:
  4955. niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
  4956. niu_disable_ipp(np);
  4957. out_uninit_rx_channels:
  4958. niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
  4959. niu_stop_rx_channels(np);
  4960. niu_reset_rx_channels(np);
  4961. out_uninit_tx_channels:
  4962. niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
  4963. niu_stop_tx_channels(np);
  4964. niu_reset_tx_channels(np);
  4965. return err;
  4966. }
  4967. static void niu_stop_hw(struct niu *np)
  4968. {
  4969. niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
  4970. niu_enable_interrupts(np, 0);
  4971. niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
  4972. niu_enable_rx_mac(np, 0);
  4973. niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
  4974. niu_disable_ipp(np);
  4975. niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
  4976. niu_stop_tx_channels(np);
  4977. niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
  4978. niu_stop_rx_channels(np);
  4979. niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
  4980. niu_reset_tx_channels(np);
  4981. niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
  4982. niu_reset_rx_channels(np);
  4983. }
  4984. static void niu_set_irq_name(struct niu *np)
  4985. {
  4986. int port = np->port;
  4987. int i, j = 1;
  4988. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4989. if (port == 0) {
  4990. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4991. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4992. j = 3;
  4993. }
  4994. for (i = 0; i < np->num_ldg - j; i++) {
  4995. if (i < np->num_rx_rings)
  4996. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4997. np->dev->name, i);
  4998. else if (i < np->num_tx_rings + np->num_rx_rings)
  4999. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  5000. i - np->num_rx_rings);
  5001. }
  5002. }
  5003. static int niu_request_irq(struct niu *np)
  5004. {
  5005. int i, j, err;
  5006. niu_set_irq_name(np);
  5007. err = 0;
  5008. for (i = 0; i < np->num_ldg; i++) {
  5009. struct niu_ldg *lp = &np->ldg[i];
  5010. err = request_irq(lp->irq, niu_interrupt,
  5011. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  5012. np->irq_name[i], lp);
  5013. if (err)
  5014. goto out_free_irqs;
  5015. }
  5016. return 0;
  5017. out_free_irqs:
  5018. for (j = 0; j < i; j++) {
  5019. struct niu_ldg *lp = &np->ldg[j];
  5020. free_irq(lp->irq, lp);
  5021. }
  5022. return err;
  5023. }
  5024. static void niu_free_irq(struct niu *np)
  5025. {
  5026. int i;
  5027. for (i = 0; i < np->num_ldg; i++) {
  5028. struct niu_ldg *lp = &np->ldg[i];
  5029. free_irq(lp->irq, lp);
  5030. }
  5031. }
  5032. static void niu_enable_napi(struct niu *np)
  5033. {
  5034. int i;
  5035. for (i = 0; i < np->num_ldg; i++)
  5036. napi_enable(&np->ldg[i].napi);
  5037. }
  5038. static void niu_disable_napi(struct niu *np)
  5039. {
  5040. int i;
  5041. for (i = 0; i < np->num_ldg; i++)
  5042. napi_disable(&np->ldg[i].napi);
  5043. }
  5044. static int niu_open(struct net_device *dev)
  5045. {
  5046. struct niu *np = netdev_priv(dev);
  5047. int err;
  5048. netif_carrier_off(dev);
  5049. err = niu_alloc_channels(np);
  5050. if (err)
  5051. goto out_err;
  5052. err = niu_enable_interrupts(np, 0);
  5053. if (err)
  5054. goto out_free_channels;
  5055. err = niu_request_irq(np);
  5056. if (err)
  5057. goto out_free_channels;
  5058. niu_enable_napi(np);
  5059. spin_lock_irq(&np->lock);
  5060. err = niu_init_hw(np);
  5061. if (!err) {
  5062. init_timer(&np->timer);
  5063. np->timer.expires = jiffies + HZ;
  5064. np->timer.data = (unsigned long) np;
  5065. np->timer.function = niu_timer;
  5066. err = niu_enable_interrupts(np, 1);
  5067. if (err)
  5068. niu_stop_hw(np);
  5069. }
  5070. spin_unlock_irq(&np->lock);
  5071. if (err) {
  5072. niu_disable_napi(np);
  5073. goto out_free_irq;
  5074. }
  5075. netif_tx_start_all_queues(dev);
  5076. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5077. netif_carrier_on(dev);
  5078. add_timer(&np->timer);
  5079. return 0;
  5080. out_free_irq:
  5081. niu_free_irq(np);
  5082. out_free_channels:
  5083. niu_free_channels(np);
  5084. out_err:
  5085. return err;
  5086. }
  5087. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5088. {
  5089. cancel_work_sync(&np->reset_task);
  5090. niu_disable_napi(np);
  5091. netif_tx_stop_all_queues(dev);
  5092. del_timer_sync(&np->timer);
  5093. spin_lock_irq(&np->lock);
  5094. niu_stop_hw(np);
  5095. spin_unlock_irq(&np->lock);
  5096. }
  5097. static int niu_close(struct net_device *dev)
  5098. {
  5099. struct niu *np = netdev_priv(dev);
  5100. niu_full_shutdown(np, dev);
  5101. niu_free_irq(np);
  5102. niu_free_channels(np);
  5103. niu_handle_led(np, 0);
  5104. return 0;
  5105. }
  5106. static void niu_sync_xmac_stats(struct niu *np)
  5107. {
  5108. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5109. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5110. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5111. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5112. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5113. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5114. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5115. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5116. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5117. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5118. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5119. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5120. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5121. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5122. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5123. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5124. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5125. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5126. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5127. }
  5128. static void niu_sync_bmac_stats(struct niu *np)
  5129. {
  5130. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5131. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5132. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5133. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5134. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5135. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5136. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5137. }
  5138. static void niu_sync_mac_stats(struct niu *np)
  5139. {
  5140. if (np->flags & NIU_FLAGS_XMAC)
  5141. niu_sync_xmac_stats(np);
  5142. else
  5143. niu_sync_bmac_stats(np);
  5144. }
  5145. static void niu_get_rx_stats(struct niu *np)
  5146. {
  5147. unsigned long pkts, dropped, errors, bytes;
  5148. int i;
  5149. pkts = dropped = errors = bytes = 0;
  5150. for (i = 0; i < np->num_rx_rings; i++) {
  5151. struct rx_ring_info *rp = &np->rx_rings[i];
  5152. niu_sync_rx_discard_stats(np, rp, 0);
  5153. pkts += rp->rx_packets;
  5154. bytes += rp->rx_bytes;
  5155. dropped += rp->rx_dropped;
  5156. errors += rp->rx_errors;
  5157. }
  5158. np->dev->stats.rx_packets = pkts;
  5159. np->dev->stats.rx_bytes = bytes;
  5160. np->dev->stats.rx_dropped = dropped;
  5161. np->dev->stats.rx_errors = errors;
  5162. }
  5163. static void niu_get_tx_stats(struct niu *np)
  5164. {
  5165. unsigned long pkts, errors, bytes;
  5166. int i;
  5167. pkts = errors = bytes = 0;
  5168. for (i = 0; i < np->num_tx_rings; i++) {
  5169. struct tx_ring_info *rp = &np->tx_rings[i];
  5170. pkts += rp->tx_packets;
  5171. bytes += rp->tx_bytes;
  5172. errors += rp->tx_errors;
  5173. }
  5174. np->dev->stats.tx_packets = pkts;
  5175. np->dev->stats.tx_bytes = bytes;
  5176. np->dev->stats.tx_errors = errors;
  5177. }
  5178. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  5179. {
  5180. struct niu *np = netdev_priv(dev);
  5181. niu_get_rx_stats(np);
  5182. niu_get_tx_stats(np);
  5183. return &dev->stats;
  5184. }
  5185. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5186. {
  5187. int i;
  5188. for (i = 0; i < 16; i++)
  5189. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5190. }
  5191. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5192. {
  5193. int i;
  5194. for (i = 0; i < 16; i++)
  5195. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5196. }
  5197. static void niu_load_hash(struct niu *np, u16 *hash)
  5198. {
  5199. if (np->flags & NIU_FLAGS_XMAC)
  5200. niu_load_hash_xmac(np, hash);
  5201. else
  5202. niu_load_hash_bmac(np, hash);
  5203. }
  5204. static void niu_set_rx_mode(struct net_device *dev)
  5205. {
  5206. struct niu *np = netdev_priv(dev);
  5207. int i, alt_cnt, err;
  5208. struct dev_addr_list *addr;
  5209. unsigned long flags;
  5210. u16 hash[16] = { 0, };
  5211. spin_lock_irqsave(&np->lock, flags);
  5212. niu_enable_rx_mac(np, 0);
  5213. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5214. if (dev->flags & IFF_PROMISC)
  5215. np->flags |= NIU_FLAGS_PROMISC;
  5216. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
  5217. np->flags |= NIU_FLAGS_MCAST;
  5218. alt_cnt = dev->uc_count;
  5219. if (alt_cnt > niu_num_alt_addr(np)) {
  5220. alt_cnt = 0;
  5221. np->flags |= NIU_FLAGS_PROMISC;
  5222. }
  5223. if (alt_cnt) {
  5224. int index = 0;
  5225. for (addr = dev->uc_list; addr; addr = addr->next) {
  5226. err = niu_set_alt_mac(np, index,
  5227. addr->da_addr);
  5228. if (err)
  5229. printk(KERN_WARNING PFX "%s: Error %d "
  5230. "adding alt mac %d\n",
  5231. dev->name, err, index);
  5232. err = niu_enable_alt_mac(np, index, 1);
  5233. if (err)
  5234. printk(KERN_WARNING PFX "%s: Error %d "
  5235. "enabling alt mac %d\n",
  5236. dev->name, err, index);
  5237. index++;
  5238. }
  5239. } else {
  5240. int alt_start;
  5241. if (np->flags & NIU_FLAGS_XMAC)
  5242. alt_start = 0;
  5243. else
  5244. alt_start = 1;
  5245. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5246. err = niu_enable_alt_mac(np, i, 0);
  5247. if (err)
  5248. printk(KERN_WARNING PFX "%s: Error %d "
  5249. "disabling alt mac %d\n",
  5250. dev->name, err, i);
  5251. }
  5252. }
  5253. if (dev->flags & IFF_ALLMULTI) {
  5254. for (i = 0; i < 16; i++)
  5255. hash[i] = 0xffff;
  5256. } else if (dev->mc_count > 0) {
  5257. for (addr = dev->mc_list; addr; addr = addr->next) {
  5258. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  5259. crc >>= 24;
  5260. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5261. }
  5262. }
  5263. if (np->flags & NIU_FLAGS_MCAST)
  5264. niu_load_hash(np, hash);
  5265. niu_enable_rx_mac(np, 1);
  5266. spin_unlock_irqrestore(&np->lock, flags);
  5267. }
  5268. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5269. {
  5270. struct niu *np = netdev_priv(dev);
  5271. struct sockaddr *addr = p;
  5272. unsigned long flags;
  5273. if (!is_valid_ether_addr(addr->sa_data))
  5274. return -EINVAL;
  5275. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5276. if (!netif_running(dev))
  5277. return 0;
  5278. spin_lock_irqsave(&np->lock, flags);
  5279. niu_enable_rx_mac(np, 0);
  5280. niu_set_primary_mac(np, dev->dev_addr);
  5281. niu_enable_rx_mac(np, 1);
  5282. spin_unlock_irqrestore(&np->lock, flags);
  5283. return 0;
  5284. }
  5285. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5286. {
  5287. return -EOPNOTSUPP;
  5288. }
  5289. static void niu_netif_stop(struct niu *np)
  5290. {
  5291. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5292. niu_disable_napi(np);
  5293. netif_tx_disable(np->dev);
  5294. }
  5295. static void niu_netif_start(struct niu *np)
  5296. {
  5297. /* NOTE: unconditional netif_wake_queue is only appropriate
  5298. * so long as all callers are assured to have free tx slots
  5299. * (such as after niu_init_hw).
  5300. */
  5301. netif_tx_wake_all_queues(np->dev);
  5302. niu_enable_napi(np);
  5303. niu_enable_interrupts(np, 1);
  5304. }
  5305. static void niu_reset_buffers(struct niu *np)
  5306. {
  5307. int i, j, k, err;
  5308. if (np->rx_rings) {
  5309. for (i = 0; i < np->num_rx_rings; i++) {
  5310. struct rx_ring_info *rp = &np->rx_rings[i];
  5311. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5312. struct page *page;
  5313. page = rp->rxhash[j];
  5314. while (page) {
  5315. struct page *next =
  5316. (struct page *) page->mapping;
  5317. u64 base = page->index;
  5318. base = base >> RBR_DESCR_ADDR_SHIFT;
  5319. rp->rbr[k++] = cpu_to_le32(base);
  5320. page = next;
  5321. }
  5322. }
  5323. for (; k < MAX_RBR_RING_SIZE; k++) {
  5324. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5325. if (unlikely(err))
  5326. break;
  5327. }
  5328. rp->rbr_index = rp->rbr_table_size - 1;
  5329. rp->rcr_index = 0;
  5330. rp->rbr_pending = 0;
  5331. rp->rbr_refill_pending = 0;
  5332. }
  5333. }
  5334. if (np->tx_rings) {
  5335. for (i = 0; i < np->num_tx_rings; i++) {
  5336. struct tx_ring_info *rp = &np->tx_rings[i];
  5337. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5338. if (rp->tx_buffs[j].skb)
  5339. (void) release_tx_packet(np, rp, j);
  5340. }
  5341. rp->pending = MAX_TX_RING_SIZE;
  5342. rp->prod = 0;
  5343. rp->cons = 0;
  5344. rp->wrap_bit = 0;
  5345. }
  5346. }
  5347. }
  5348. static void niu_reset_task(struct work_struct *work)
  5349. {
  5350. struct niu *np = container_of(work, struct niu, reset_task);
  5351. unsigned long flags;
  5352. int err;
  5353. spin_lock_irqsave(&np->lock, flags);
  5354. if (!netif_running(np->dev)) {
  5355. spin_unlock_irqrestore(&np->lock, flags);
  5356. return;
  5357. }
  5358. spin_unlock_irqrestore(&np->lock, flags);
  5359. del_timer_sync(&np->timer);
  5360. niu_netif_stop(np);
  5361. spin_lock_irqsave(&np->lock, flags);
  5362. niu_stop_hw(np);
  5363. spin_unlock_irqrestore(&np->lock, flags);
  5364. niu_reset_buffers(np);
  5365. spin_lock_irqsave(&np->lock, flags);
  5366. err = niu_init_hw(np);
  5367. if (!err) {
  5368. np->timer.expires = jiffies + HZ;
  5369. add_timer(&np->timer);
  5370. niu_netif_start(np);
  5371. }
  5372. spin_unlock_irqrestore(&np->lock, flags);
  5373. }
  5374. static void niu_tx_timeout(struct net_device *dev)
  5375. {
  5376. struct niu *np = netdev_priv(dev);
  5377. dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
  5378. dev->name);
  5379. schedule_work(&np->reset_task);
  5380. }
  5381. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5382. u64 mapping, u64 len, u64 mark,
  5383. u64 n_frags)
  5384. {
  5385. __le64 *desc = &rp->descr[index];
  5386. *desc = cpu_to_le64(mark |
  5387. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5388. (len << TX_DESC_TR_LEN_SHIFT) |
  5389. (mapping & TX_DESC_SAD));
  5390. }
  5391. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5392. u64 pad_bytes, u64 len)
  5393. {
  5394. u16 eth_proto, eth_proto_inner;
  5395. u64 csum_bits, l3off, ihl, ret;
  5396. u8 ip_proto;
  5397. int ipv6;
  5398. eth_proto = be16_to_cpu(ehdr->h_proto);
  5399. eth_proto_inner = eth_proto;
  5400. if (eth_proto == ETH_P_8021Q) {
  5401. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5402. __be16 val = vp->h_vlan_encapsulated_proto;
  5403. eth_proto_inner = be16_to_cpu(val);
  5404. }
  5405. ipv6 = ihl = 0;
  5406. switch (skb->protocol) {
  5407. case cpu_to_be16(ETH_P_IP):
  5408. ip_proto = ip_hdr(skb)->protocol;
  5409. ihl = ip_hdr(skb)->ihl;
  5410. break;
  5411. case cpu_to_be16(ETH_P_IPV6):
  5412. ip_proto = ipv6_hdr(skb)->nexthdr;
  5413. ihl = (40 >> 2);
  5414. ipv6 = 1;
  5415. break;
  5416. default:
  5417. ip_proto = ihl = 0;
  5418. break;
  5419. }
  5420. csum_bits = TXHDR_CSUM_NONE;
  5421. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5422. u64 start, stuff;
  5423. csum_bits = (ip_proto == IPPROTO_TCP ?
  5424. TXHDR_CSUM_TCP :
  5425. (ip_proto == IPPROTO_UDP ?
  5426. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5427. start = skb_transport_offset(skb) -
  5428. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5429. stuff = start + skb->csum_offset;
  5430. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5431. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5432. }
  5433. l3off = skb_network_offset(skb) -
  5434. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5435. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5436. (len << TXHDR_LEN_SHIFT) |
  5437. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5438. (ihl << TXHDR_IHL_SHIFT) |
  5439. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  5440. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5441. (ipv6 ? TXHDR_IP_VER : 0) |
  5442. csum_bits);
  5443. return ret;
  5444. }
  5445. static int niu_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5446. {
  5447. struct niu *np = netdev_priv(dev);
  5448. unsigned long align, headroom;
  5449. struct netdev_queue *txq;
  5450. struct tx_ring_info *rp;
  5451. struct tx_pkt_hdr *tp;
  5452. unsigned int len, nfg;
  5453. struct ethhdr *ehdr;
  5454. int prod, i, tlen;
  5455. u64 mapping, mrk;
  5456. i = skb_get_queue_mapping(skb);
  5457. rp = &np->tx_rings[i];
  5458. txq = netdev_get_tx_queue(dev, i);
  5459. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5460. netif_tx_stop_queue(txq);
  5461. dev_err(np->device, PFX "%s: BUG! Tx ring full when "
  5462. "queue awake!\n", dev->name);
  5463. rp->tx_errors++;
  5464. return NETDEV_TX_BUSY;
  5465. }
  5466. if (skb->len < ETH_ZLEN) {
  5467. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5468. if (skb_pad(skb, pad_bytes))
  5469. goto out;
  5470. skb_put(skb, pad_bytes);
  5471. }
  5472. len = sizeof(struct tx_pkt_hdr) + 15;
  5473. if (skb_headroom(skb) < len) {
  5474. struct sk_buff *skb_new;
  5475. skb_new = skb_realloc_headroom(skb, len);
  5476. if (!skb_new) {
  5477. rp->tx_errors++;
  5478. goto out_drop;
  5479. }
  5480. kfree_skb(skb);
  5481. skb = skb_new;
  5482. } else
  5483. skb_orphan(skb);
  5484. align = ((unsigned long) skb->data & (16 - 1));
  5485. headroom = align + sizeof(struct tx_pkt_hdr);
  5486. ehdr = (struct ethhdr *) skb->data;
  5487. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5488. len = skb->len - sizeof(struct tx_pkt_hdr);
  5489. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5490. tp->resv = 0;
  5491. len = skb_headlen(skb);
  5492. mapping = np->ops->map_single(np->device, skb->data,
  5493. len, DMA_TO_DEVICE);
  5494. prod = rp->prod;
  5495. rp->tx_buffs[prod].skb = skb;
  5496. rp->tx_buffs[prod].mapping = mapping;
  5497. mrk = TX_DESC_SOP;
  5498. if (++rp->mark_counter == rp->mark_freq) {
  5499. rp->mark_counter = 0;
  5500. mrk |= TX_DESC_MARK;
  5501. rp->mark_pending++;
  5502. }
  5503. tlen = len;
  5504. nfg = skb_shinfo(skb)->nr_frags;
  5505. while (tlen > 0) {
  5506. tlen -= MAX_TX_DESC_LEN;
  5507. nfg++;
  5508. }
  5509. while (len > 0) {
  5510. unsigned int this_len = len;
  5511. if (this_len > MAX_TX_DESC_LEN)
  5512. this_len = MAX_TX_DESC_LEN;
  5513. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5514. mrk = nfg = 0;
  5515. prod = NEXT_TX(rp, prod);
  5516. mapping += this_len;
  5517. len -= this_len;
  5518. }
  5519. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5520. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5521. len = frag->size;
  5522. mapping = np->ops->map_page(np->device, frag->page,
  5523. frag->page_offset, len,
  5524. DMA_TO_DEVICE);
  5525. rp->tx_buffs[prod].skb = NULL;
  5526. rp->tx_buffs[prod].mapping = mapping;
  5527. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5528. prod = NEXT_TX(rp, prod);
  5529. }
  5530. if (prod < rp->prod)
  5531. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5532. rp->prod = prod;
  5533. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5534. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5535. netif_tx_stop_queue(txq);
  5536. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5537. netif_tx_wake_queue(txq);
  5538. }
  5539. dev->trans_start = jiffies;
  5540. out:
  5541. return NETDEV_TX_OK;
  5542. out_drop:
  5543. rp->tx_errors++;
  5544. kfree_skb(skb);
  5545. goto out;
  5546. }
  5547. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5548. {
  5549. struct niu *np = netdev_priv(dev);
  5550. int err, orig_jumbo, new_jumbo;
  5551. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5552. return -EINVAL;
  5553. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5554. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5555. dev->mtu = new_mtu;
  5556. if (!netif_running(dev) ||
  5557. (orig_jumbo == new_jumbo))
  5558. return 0;
  5559. niu_full_shutdown(np, dev);
  5560. niu_free_channels(np);
  5561. niu_enable_napi(np);
  5562. err = niu_alloc_channels(np);
  5563. if (err)
  5564. return err;
  5565. spin_lock_irq(&np->lock);
  5566. err = niu_init_hw(np);
  5567. if (!err) {
  5568. init_timer(&np->timer);
  5569. np->timer.expires = jiffies + HZ;
  5570. np->timer.data = (unsigned long) np;
  5571. np->timer.function = niu_timer;
  5572. err = niu_enable_interrupts(np, 1);
  5573. if (err)
  5574. niu_stop_hw(np);
  5575. }
  5576. spin_unlock_irq(&np->lock);
  5577. if (!err) {
  5578. netif_tx_start_all_queues(dev);
  5579. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5580. netif_carrier_on(dev);
  5581. add_timer(&np->timer);
  5582. }
  5583. return err;
  5584. }
  5585. static void niu_get_drvinfo(struct net_device *dev,
  5586. struct ethtool_drvinfo *info)
  5587. {
  5588. struct niu *np = netdev_priv(dev);
  5589. struct niu_vpd *vpd = &np->vpd;
  5590. strcpy(info->driver, DRV_MODULE_NAME);
  5591. strcpy(info->version, DRV_MODULE_VERSION);
  5592. sprintf(info->fw_version, "%d.%d",
  5593. vpd->fcode_major, vpd->fcode_minor);
  5594. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5595. strcpy(info->bus_info, pci_name(np->pdev));
  5596. }
  5597. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5598. {
  5599. struct niu *np = netdev_priv(dev);
  5600. struct niu_link_config *lp;
  5601. lp = &np->link_config;
  5602. memset(cmd, 0, sizeof(*cmd));
  5603. cmd->phy_address = np->phy_addr;
  5604. cmd->supported = lp->supported;
  5605. cmd->advertising = lp->active_advertising;
  5606. cmd->autoneg = lp->active_autoneg;
  5607. cmd->speed = lp->active_speed;
  5608. cmd->duplex = lp->active_duplex;
  5609. cmd->port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5610. cmd->transceiver = (np->flags & NIU_FLAGS_XCVR_SERDES) ?
  5611. XCVR_EXTERNAL : XCVR_INTERNAL;
  5612. return 0;
  5613. }
  5614. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5615. {
  5616. struct niu *np = netdev_priv(dev);
  5617. struct niu_link_config *lp = &np->link_config;
  5618. lp->advertising = cmd->advertising;
  5619. lp->speed = cmd->speed;
  5620. lp->duplex = cmd->duplex;
  5621. lp->autoneg = cmd->autoneg;
  5622. return niu_init_link(np);
  5623. }
  5624. static u32 niu_get_msglevel(struct net_device *dev)
  5625. {
  5626. struct niu *np = netdev_priv(dev);
  5627. return np->msg_enable;
  5628. }
  5629. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5630. {
  5631. struct niu *np = netdev_priv(dev);
  5632. np->msg_enable = value;
  5633. }
  5634. static int niu_nway_reset(struct net_device *dev)
  5635. {
  5636. struct niu *np = netdev_priv(dev);
  5637. if (np->link_config.autoneg)
  5638. return niu_init_link(np);
  5639. return 0;
  5640. }
  5641. static int niu_get_eeprom_len(struct net_device *dev)
  5642. {
  5643. struct niu *np = netdev_priv(dev);
  5644. return np->eeprom_len;
  5645. }
  5646. static int niu_get_eeprom(struct net_device *dev,
  5647. struct ethtool_eeprom *eeprom, u8 *data)
  5648. {
  5649. struct niu *np = netdev_priv(dev);
  5650. u32 offset, len, val;
  5651. offset = eeprom->offset;
  5652. len = eeprom->len;
  5653. if (offset + len < offset)
  5654. return -EINVAL;
  5655. if (offset >= np->eeprom_len)
  5656. return -EINVAL;
  5657. if (offset + len > np->eeprom_len)
  5658. len = eeprom->len = np->eeprom_len - offset;
  5659. if (offset & 3) {
  5660. u32 b_offset, b_count;
  5661. b_offset = offset & 3;
  5662. b_count = 4 - b_offset;
  5663. if (b_count > len)
  5664. b_count = len;
  5665. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5666. memcpy(data, ((char *)&val) + b_offset, b_count);
  5667. data += b_count;
  5668. len -= b_count;
  5669. offset += b_count;
  5670. }
  5671. while (len >= 4) {
  5672. val = nr64(ESPC_NCR(offset / 4));
  5673. memcpy(data, &val, 4);
  5674. data += 4;
  5675. len -= 4;
  5676. offset += 4;
  5677. }
  5678. if (len) {
  5679. val = nr64(ESPC_NCR(offset / 4));
  5680. memcpy(data, &val, len);
  5681. }
  5682. return 0;
  5683. }
  5684. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5685. {
  5686. switch (flow_type) {
  5687. case TCP_V4_FLOW:
  5688. case TCP_V6_FLOW:
  5689. *pid = IPPROTO_TCP;
  5690. break;
  5691. case UDP_V4_FLOW:
  5692. case UDP_V6_FLOW:
  5693. *pid = IPPROTO_UDP;
  5694. break;
  5695. case SCTP_V4_FLOW:
  5696. case SCTP_V6_FLOW:
  5697. *pid = IPPROTO_SCTP;
  5698. break;
  5699. case AH_V4_FLOW:
  5700. case AH_V6_FLOW:
  5701. *pid = IPPROTO_AH;
  5702. break;
  5703. case ESP_V4_FLOW:
  5704. case ESP_V6_FLOW:
  5705. *pid = IPPROTO_ESP;
  5706. break;
  5707. default:
  5708. *pid = 0;
  5709. break;
  5710. }
  5711. }
  5712. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5713. {
  5714. switch (class) {
  5715. case CLASS_CODE_TCP_IPV4:
  5716. *flow_type = TCP_V4_FLOW;
  5717. break;
  5718. case CLASS_CODE_UDP_IPV4:
  5719. *flow_type = UDP_V4_FLOW;
  5720. break;
  5721. case CLASS_CODE_AH_ESP_IPV4:
  5722. *flow_type = AH_V4_FLOW;
  5723. break;
  5724. case CLASS_CODE_SCTP_IPV4:
  5725. *flow_type = SCTP_V4_FLOW;
  5726. break;
  5727. case CLASS_CODE_TCP_IPV6:
  5728. *flow_type = TCP_V6_FLOW;
  5729. break;
  5730. case CLASS_CODE_UDP_IPV6:
  5731. *flow_type = UDP_V6_FLOW;
  5732. break;
  5733. case CLASS_CODE_AH_ESP_IPV6:
  5734. *flow_type = AH_V6_FLOW;
  5735. break;
  5736. case CLASS_CODE_SCTP_IPV6:
  5737. *flow_type = SCTP_V6_FLOW;
  5738. break;
  5739. case CLASS_CODE_USER_PROG1:
  5740. case CLASS_CODE_USER_PROG2:
  5741. case CLASS_CODE_USER_PROG3:
  5742. case CLASS_CODE_USER_PROG4:
  5743. *flow_type = IP_USER_FLOW;
  5744. break;
  5745. default:
  5746. return 0;
  5747. }
  5748. return 1;
  5749. }
  5750. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5751. {
  5752. switch (flow_type) {
  5753. case TCP_V4_FLOW:
  5754. *class = CLASS_CODE_TCP_IPV4;
  5755. break;
  5756. case UDP_V4_FLOW:
  5757. *class = CLASS_CODE_UDP_IPV4;
  5758. break;
  5759. case AH_V4_FLOW:
  5760. case ESP_V4_FLOW:
  5761. *class = CLASS_CODE_AH_ESP_IPV4;
  5762. break;
  5763. case SCTP_V4_FLOW:
  5764. *class = CLASS_CODE_SCTP_IPV4;
  5765. break;
  5766. case TCP_V6_FLOW:
  5767. *class = CLASS_CODE_TCP_IPV6;
  5768. break;
  5769. case UDP_V6_FLOW:
  5770. *class = CLASS_CODE_UDP_IPV6;
  5771. break;
  5772. case AH_V6_FLOW:
  5773. case ESP_V6_FLOW:
  5774. *class = CLASS_CODE_AH_ESP_IPV6;
  5775. break;
  5776. case SCTP_V6_FLOW:
  5777. *class = CLASS_CODE_SCTP_IPV6;
  5778. break;
  5779. default:
  5780. return 0;
  5781. }
  5782. return 1;
  5783. }
  5784. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5785. {
  5786. u64 ethflow = 0;
  5787. if (flow_key & FLOW_KEY_L2DA)
  5788. ethflow |= RXH_L2DA;
  5789. if (flow_key & FLOW_KEY_VLAN)
  5790. ethflow |= RXH_VLAN;
  5791. if (flow_key & FLOW_KEY_IPSA)
  5792. ethflow |= RXH_IP_SRC;
  5793. if (flow_key & FLOW_KEY_IPDA)
  5794. ethflow |= RXH_IP_DST;
  5795. if (flow_key & FLOW_KEY_PROTO)
  5796. ethflow |= RXH_L3_PROTO;
  5797. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5798. ethflow |= RXH_L4_B_0_1;
  5799. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5800. ethflow |= RXH_L4_B_2_3;
  5801. return ethflow;
  5802. }
  5803. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5804. {
  5805. u64 key = 0;
  5806. if (ethflow & RXH_L2DA)
  5807. key |= FLOW_KEY_L2DA;
  5808. if (ethflow & RXH_VLAN)
  5809. key |= FLOW_KEY_VLAN;
  5810. if (ethflow & RXH_IP_SRC)
  5811. key |= FLOW_KEY_IPSA;
  5812. if (ethflow & RXH_IP_DST)
  5813. key |= FLOW_KEY_IPDA;
  5814. if (ethflow & RXH_L3_PROTO)
  5815. key |= FLOW_KEY_PROTO;
  5816. if (ethflow & RXH_L4_B_0_1)
  5817. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5818. if (ethflow & RXH_L4_B_2_3)
  5819. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5820. *flow_key = key;
  5821. return 1;
  5822. }
  5823. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5824. {
  5825. u64 class;
  5826. nfc->data = 0;
  5827. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5828. return -EINVAL;
  5829. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5830. TCAM_KEY_DISC)
  5831. nfc->data = RXH_DISCARD;
  5832. else
  5833. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5834. CLASS_CODE_USER_PROG1]);
  5835. return 0;
  5836. }
  5837. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5838. struct ethtool_rx_flow_spec *fsp)
  5839. {
  5840. fsp->h_u.tcp_ip4_spec.ip4src = (tp->key[3] & TCAM_V4KEY3_SADDR) >>
  5841. TCAM_V4KEY3_SADDR_SHIFT;
  5842. fsp->h_u.tcp_ip4_spec.ip4dst = (tp->key[3] & TCAM_V4KEY3_DADDR) >>
  5843. TCAM_V4KEY3_DADDR_SHIFT;
  5844. fsp->m_u.tcp_ip4_spec.ip4src = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >>
  5845. TCAM_V4KEY3_SADDR_SHIFT;
  5846. fsp->m_u.tcp_ip4_spec.ip4dst = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >>
  5847. TCAM_V4KEY3_DADDR_SHIFT;
  5848. fsp->h_u.tcp_ip4_spec.ip4src =
  5849. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4src);
  5850. fsp->m_u.tcp_ip4_spec.ip4src =
  5851. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4src);
  5852. fsp->h_u.tcp_ip4_spec.ip4dst =
  5853. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4dst);
  5854. fsp->m_u.tcp_ip4_spec.ip4dst =
  5855. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4dst);
  5856. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5857. TCAM_V4KEY2_TOS_SHIFT;
  5858. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5859. TCAM_V4KEY2_TOS_SHIFT;
  5860. switch (fsp->flow_type) {
  5861. case TCP_V4_FLOW:
  5862. case UDP_V4_FLOW:
  5863. case SCTP_V4_FLOW:
  5864. fsp->h_u.tcp_ip4_spec.psrc =
  5865. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5866. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5867. fsp->h_u.tcp_ip4_spec.pdst =
  5868. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5869. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5870. fsp->m_u.tcp_ip4_spec.psrc =
  5871. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5872. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5873. fsp->m_u.tcp_ip4_spec.pdst =
  5874. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5875. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5876. fsp->h_u.tcp_ip4_spec.psrc =
  5877. cpu_to_be16(fsp->h_u.tcp_ip4_spec.psrc);
  5878. fsp->h_u.tcp_ip4_spec.pdst =
  5879. cpu_to_be16(fsp->h_u.tcp_ip4_spec.pdst);
  5880. fsp->m_u.tcp_ip4_spec.psrc =
  5881. cpu_to_be16(fsp->m_u.tcp_ip4_spec.psrc);
  5882. fsp->m_u.tcp_ip4_spec.pdst =
  5883. cpu_to_be16(fsp->m_u.tcp_ip4_spec.pdst);
  5884. break;
  5885. case AH_V4_FLOW:
  5886. case ESP_V4_FLOW:
  5887. fsp->h_u.ah_ip4_spec.spi =
  5888. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5889. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5890. fsp->m_u.ah_ip4_spec.spi =
  5891. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5892. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5893. fsp->h_u.ah_ip4_spec.spi =
  5894. cpu_to_be32(fsp->h_u.ah_ip4_spec.spi);
  5895. fsp->m_u.ah_ip4_spec.spi =
  5896. cpu_to_be32(fsp->m_u.ah_ip4_spec.spi);
  5897. break;
  5898. case IP_USER_FLOW:
  5899. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5900. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5901. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5902. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5903. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5904. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5905. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5906. cpu_to_be32(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  5907. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5908. cpu_to_be32(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  5909. fsp->h_u.usr_ip4_spec.proto =
  5910. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5911. TCAM_V4KEY2_PROTO_SHIFT;
  5912. fsp->m_u.usr_ip4_spec.proto =
  5913. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5914. TCAM_V4KEY2_PROTO_SHIFT;
  5915. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5916. break;
  5917. default:
  5918. break;
  5919. }
  5920. }
  5921. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5922. struct ethtool_rxnfc *nfc)
  5923. {
  5924. struct niu_parent *parent = np->parent;
  5925. struct niu_tcam_entry *tp;
  5926. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5927. u16 idx;
  5928. u64 class;
  5929. int ret = 0;
  5930. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5931. tp = &parent->tcam[idx];
  5932. if (!tp->valid) {
  5933. pr_info(PFX "niu%d: %s entry [%d] invalid for idx[%d]\n",
  5934. parent->index, np->dev->name, (u16)nfc->fs.location, idx);
  5935. return -EINVAL;
  5936. }
  5937. /* fill the flow spec entry */
  5938. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5939. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5940. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5941. if (ret < 0) {
  5942. pr_info(PFX "niu%d: %s niu_class_to_ethflow failed\n",
  5943. parent->index, np->dev->name);
  5944. ret = -EINVAL;
  5945. goto out;
  5946. }
  5947. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5948. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5949. TCAM_V4KEY2_PROTO_SHIFT;
  5950. if (proto == IPPROTO_ESP) {
  5951. if (fsp->flow_type == AH_V4_FLOW)
  5952. fsp->flow_type = ESP_V4_FLOW;
  5953. else
  5954. fsp->flow_type = ESP_V6_FLOW;
  5955. }
  5956. }
  5957. switch (fsp->flow_type) {
  5958. case TCP_V4_FLOW:
  5959. case UDP_V4_FLOW:
  5960. case SCTP_V4_FLOW:
  5961. case AH_V4_FLOW:
  5962. case ESP_V4_FLOW:
  5963. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5964. break;
  5965. case TCP_V6_FLOW:
  5966. case UDP_V6_FLOW:
  5967. case SCTP_V6_FLOW:
  5968. case AH_V6_FLOW:
  5969. case ESP_V6_FLOW:
  5970. /* Not yet implemented */
  5971. ret = -EINVAL;
  5972. break;
  5973. case IP_USER_FLOW:
  5974. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5975. break;
  5976. default:
  5977. ret = -EINVAL;
  5978. break;
  5979. }
  5980. if (ret < 0)
  5981. goto out;
  5982. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  5983. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  5984. else
  5985. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  5986. TCAM_ASSOCDATA_OFFSET_SHIFT;
  5987. /* put the tcam size here */
  5988. nfc->data = tcam_get_size(np);
  5989. out:
  5990. return ret;
  5991. }
  5992. static int niu_get_ethtool_tcam_all(struct niu *np,
  5993. struct ethtool_rxnfc *nfc,
  5994. u32 *rule_locs)
  5995. {
  5996. struct niu_parent *parent = np->parent;
  5997. struct niu_tcam_entry *tp;
  5998. int i, idx, cnt;
  5999. u16 n_entries;
  6000. unsigned long flags;
  6001. /* put the tcam size here */
  6002. nfc->data = tcam_get_size(np);
  6003. niu_lock_parent(np, flags);
  6004. n_entries = nfc->rule_cnt;
  6005. for (cnt = 0, i = 0; i < nfc->data; i++) {
  6006. idx = tcam_get_index(np, i);
  6007. tp = &parent->tcam[idx];
  6008. if (!tp->valid)
  6009. continue;
  6010. rule_locs[cnt] = i;
  6011. cnt++;
  6012. }
  6013. niu_unlock_parent(np, flags);
  6014. if (n_entries != cnt) {
  6015. /* print warning, this should not happen */
  6016. pr_info(PFX "niu%d: %s In niu_get_ethtool_tcam_all, "
  6017. "n_entries[%d] != cnt[%d]!!!\n\n",
  6018. np->parent->index, np->dev->name, n_entries, cnt);
  6019. }
  6020. return 0;
  6021. }
  6022. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  6023. void *rule_locs)
  6024. {
  6025. struct niu *np = netdev_priv(dev);
  6026. int ret = 0;
  6027. switch (cmd->cmd) {
  6028. case ETHTOOL_GRXFH:
  6029. ret = niu_get_hash_opts(np, cmd);
  6030. break;
  6031. case ETHTOOL_GRXRINGS:
  6032. cmd->data = np->num_rx_rings;
  6033. break;
  6034. case ETHTOOL_GRXCLSRLCNT:
  6035. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6036. break;
  6037. case ETHTOOL_GRXCLSRULE:
  6038. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6039. break;
  6040. case ETHTOOL_GRXCLSRLALL:
  6041. ret = niu_get_ethtool_tcam_all(np, cmd, (u32 *)rule_locs);
  6042. break;
  6043. default:
  6044. ret = -EINVAL;
  6045. break;
  6046. }
  6047. return ret;
  6048. }
  6049. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6050. {
  6051. u64 class;
  6052. u64 flow_key = 0;
  6053. unsigned long flags;
  6054. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6055. return -EINVAL;
  6056. if (class < CLASS_CODE_USER_PROG1 ||
  6057. class > CLASS_CODE_SCTP_IPV6)
  6058. return -EINVAL;
  6059. if (nfc->data & RXH_DISCARD) {
  6060. niu_lock_parent(np, flags);
  6061. flow_key = np->parent->tcam_key[class -
  6062. CLASS_CODE_USER_PROG1];
  6063. flow_key |= TCAM_KEY_DISC;
  6064. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6065. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6066. niu_unlock_parent(np, flags);
  6067. return 0;
  6068. } else {
  6069. /* Discard was set before, but is not set now */
  6070. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6071. TCAM_KEY_DISC) {
  6072. niu_lock_parent(np, flags);
  6073. flow_key = np->parent->tcam_key[class -
  6074. CLASS_CODE_USER_PROG1];
  6075. flow_key &= ~TCAM_KEY_DISC;
  6076. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6077. flow_key);
  6078. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6079. flow_key;
  6080. niu_unlock_parent(np, flags);
  6081. }
  6082. }
  6083. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6084. return -EINVAL;
  6085. niu_lock_parent(np, flags);
  6086. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6087. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6088. niu_unlock_parent(np, flags);
  6089. return 0;
  6090. }
  6091. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6092. struct niu_tcam_entry *tp,
  6093. int l2_rdc_tab, u64 class)
  6094. {
  6095. u8 pid = 0;
  6096. u32 sip, dip, sipm, dipm, spi, spim;
  6097. u16 sport, dport, spm, dpm;
  6098. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6099. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6100. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6101. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6102. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6103. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6104. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6105. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6106. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6107. tp->key[3] |= dip;
  6108. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6109. tp->key_mask[3] |= dipm;
  6110. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6111. TCAM_V4KEY2_TOS_SHIFT);
  6112. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6113. TCAM_V4KEY2_TOS_SHIFT);
  6114. switch (fsp->flow_type) {
  6115. case TCP_V4_FLOW:
  6116. case UDP_V4_FLOW:
  6117. case SCTP_V4_FLOW:
  6118. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6119. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6120. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6121. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6122. tp->key[2] |= (((u64)sport << 16) | dport);
  6123. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6124. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6125. break;
  6126. case AH_V4_FLOW:
  6127. case ESP_V4_FLOW:
  6128. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6129. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6130. tp->key[2] |= spi;
  6131. tp->key_mask[2] |= spim;
  6132. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6133. break;
  6134. case IP_USER_FLOW:
  6135. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6136. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6137. tp->key[2] |= spi;
  6138. tp->key_mask[2] |= spim;
  6139. pid = fsp->h_u.usr_ip4_spec.proto;
  6140. break;
  6141. default:
  6142. break;
  6143. }
  6144. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6145. if (pid) {
  6146. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6147. }
  6148. }
  6149. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6150. struct ethtool_rxnfc *nfc)
  6151. {
  6152. struct niu_parent *parent = np->parent;
  6153. struct niu_tcam_entry *tp;
  6154. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6155. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6156. int l2_rdc_table = rdc_table->first_table_num;
  6157. u16 idx;
  6158. u64 class;
  6159. unsigned long flags;
  6160. int err, ret;
  6161. ret = 0;
  6162. idx = nfc->fs.location;
  6163. if (idx >= tcam_get_size(np))
  6164. return -EINVAL;
  6165. if (fsp->flow_type == IP_USER_FLOW) {
  6166. int i;
  6167. int add_usr_cls = 0;
  6168. int ipv6 = 0;
  6169. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6170. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6171. niu_lock_parent(np, flags);
  6172. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6173. if (parent->l3_cls[i]) {
  6174. if (uspec->proto == parent->l3_cls_pid[i]) {
  6175. class = parent->l3_cls[i];
  6176. parent->l3_cls_refcnt[i]++;
  6177. add_usr_cls = 1;
  6178. break;
  6179. }
  6180. } else {
  6181. /* Program new user IP class */
  6182. switch (i) {
  6183. case 0:
  6184. class = CLASS_CODE_USER_PROG1;
  6185. break;
  6186. case 1:
  6187. class = CLASS_CODE_USER_PROG2;
  6188. break;
  6189. case 2:
  6190. class = CLASS_CODE_USER_PROG3;
  6191. break;
  6192. case 3:
  6193. class = CLASS_CODE_USER_PROG4;
  6194. break;
  6195. default:
  6196. break;
  6197. }
  6198. if (uspec->ip_ver == ETH_RX_NFC_IP6)
  6199. ipv6 = 1;
  6200. ret = tcam_user_ip_class_set(np, class, ipv6,
  6201. uspec->proto,
  6202. uspec->tos,
  6203. umask->tos);
  6204. if (ret)
  6205. goto out;
  6206. ret = tcam_user_ip_class_enable(np, class, 1);
  6207. if (ret)
  6208. goto out;
  6209. parent->l3_cls[i] = class;
  6210. parent->l3_cls_pid[i] = uspec->proto;
  6211. parent->l3_cls_refcnt[i]++;
  6212. add_usr_cls = 1;
  6213. break;
  6214. }
  6215. }
  6216. if (!add_usr_cls) {
  6217. pr_info(PFX "niu%d: %s niu_add_ethtool_tcam_entry: "
  6218. "Could not find/insert class for pid %d\n",
  6219. parent->index, np->dev->name, uspec->proto);
  6220. ret = -EINVAL;
  6221. goto out;
  6222. }
  6223. niu_unlock_parent(np, flags);
  6224. } else {
  6225. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6226. return -EINVAL;
  6227. }
  6228. }
  6229. niu_lock_parent(np, flags);
  6230. idx = tcam_get_index(np, idx);
  6231. tp = &parent->tcam[idx];
  6232. memset(tp, 0, sizeof(*tp));
  6233. /* fill in the tcam key and mask */
  6234. switch (fsp->flow_type) {
  6235. case TCP_V4_FLOW:
  6236. case UDP_V4_FLOW:
  6237. case SCTP_V4_FLOW:
  6238. case AH_V4_FLOW:
  6239. case ESP_V4_FLOW:
  6240. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6241. break;
  6242. case TCP_V6_FLOW:
  6243. case UDP_V6_FLOW:
  6244. case SCTP_V6_FLOW:
  6245. case AH_V6_FLOW:
  6246. case ESP_V6_FLOW:
  6247. /* Not yet implemented */
  6248. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6249. "flow %d for IPv6 not implemented\n\n",
  6250. parent->index, np->dev->name, fsp->flow_type);
  6251. ret = -EINVAL;
  6252. goto out;
  6253. case IP_USER_FLOW:
  6254. if (fsp->h_u.usr_ip4_spec.ip_ver == ETH_RX_NFC_IP4) {
  6255. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table,
  6256. class);
  6257. } else {
  6258. /* Not yet implemented */
  6259. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6260. "usr flow for IPv6 not implemented\n\n",
  6261. parent->index, np->dev->name);
  6262. ret = -EINVAL;
  6263. goto out;
  6264. }
  6265. break;
  6266. default:
  6267. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6268. "Unknown flow type %d\n\n",
  6269. parent->index, np->dev->name, fsp->flow_type);
  6270. ret = -EINVAL;
  6271. goto out;
  6272. }
  6273. /* fill in the assoc data */
  6274. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6275. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6276. } else {
  6277. if (fsp->ring_cookie >= np->num_rx_rings) {
  6278. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6279. "Invalid RX ring %lld\n\n",
  6280. parent->index, np->dev->name,
  6281. (long long) fsp->ring_cookie);
  6282. ret = -EINVAL;
  6283. goto out;
  6284. }
  6285. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6286. (fsp->ring_cookie <<
  6287. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6288. }
  6289. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6290. if (err) {
  6291. ret = -EINVAL;
  6292. goto out;
  6293. }
  6294. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6295. if (err) {
  6296. ret = -EINVAL;
  6297. goto out;
  6298. }
  6299. /* validate the entry */
  6300. tp->valid = 1;
  6301. np->clas.tcam_valid_entries++;
  6302. out:
  6303. niu_unlock_parent(np, flags);
  6304. return ret;
  6305. }
  6306. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6307. {
  6308. struct niu_parent *parent = np->parent;
  6309. struct niu_tcam_entry *tp;
  6310. u16 idx;
  6311. unsigned long flags;
  6312. u64 class;
  6313. int ret = 0;
  6314. if (loc >= tcam_get_size(np))
  6315. return -EINVAL;
  6316. niu_lock_parent(np, flags);
  6317. idx = tcam_get_index(np, loc);
  6318. tp = &parent->tcam[idx];
  6319. /* if the entry is of a user defined class, then update*/
  6320. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6321. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6322. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6323. int i;
  6324. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6325. if (parent->l3_cls[i] == class) {
  6326. parent->l3_cls_refcnt[i]--;
  6327. if (!parent->l3_cls_refcnt[i]) {
  6328. /* disable class */
  6329. ret = tcam_user_ip_class_enable(np,
  6330. class,
  6331. 0);
  6332. if (ret)
  6333. goto out;
  6334. parent->l3_cls[i] = 0;
  6335. parent->l3_cls_pid[i] = 0;
  6336. }
  6337. break;
  6338. }
  6339. }
  6340. if (i == NIU_L3_PROG_CLS) {
  6341. pr_info(PFX "niu%d: %s In niu_del_ethtool_tcam_entry,"
  6342. "Usr class 0x%llx not found \n",
  6343. parent->index, np->dev->name,
  6344. (unsigned long long) class);
  6345. ret = -EINVAL;
  6346. goto out;
  6347. }
  6348. }
  6349. ret = tcam_flush(np, idx);
  6350. if (ret)
  6351. goto out;
  6352. /* invalidate the entry */
  6353. tp->valid = 0;
  6354. np->clas.tcam_valid_entries--;
  6355. out:
  6356. niu_unlock_parent(np, flags);
  6357. return ret;
  6358. }
  6359. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6360. {
  6361. struct niu *np = netdev_priv(dev);
  6362. int ret = 0;
  6363. switch (cmd->cmd) {
  6364. case ETHTOOL_SRXFH:
  6365. ret = niu_set_hash_opts(np, cmd);
  6366. break;
  6367. case ETHTOOL_SRXCLSRLINS:
  6368. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6369. break;
  6370. case ETHTOOL_SRXCLSRLDEL:
  6371. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6372. break;
  6373. default:
  6374. ret = -EINVAL;
  6375. break;
  6376. }
  6377. return ret;
  6378. }
  6379. static const struct {
  6380. const char string[ETH_GSTRING_LEN];
  6381. } niu_xmac_stat_keys[] = {
  6382. { "tx_frames" },
  6383. { "tx_bytes" },
  6384. { "tx_fifo_errors" },
  6385. { "tx_overflow_errors" },
  6386. { "tx_max_pkt_size_errors" },
  6387. { "tx_underflow_errors" },
  6388. { "rx_local_faults" },
  6389. { "rx_remote_faults" },
  6390. { "rx_link_faults" },
  6391. { "rx_align_errors" },
  6392. { "rx_frags" },
  6393. { "rx_mcasts" },
  6394. { "rx_bcasts" },
  6395. { "rx_hist_cnt1" },
  6396. { "rx_hist_cnt2" },
  6397. { "rx_hist_cnt3" },
  6398. { "rx_hist_cnt4" },
  6399. { "rx_hist_cnt5" },
  6400. { "rx_hist_cnt6" },
  6401. { "rx_hist_cnt7" },
  6402. { "rx_octets" },
  6403. { "rx_code_violations" },
  6404. { "rx_len_errors" },
  6405. { "rx_crc_errors" },
  6406. { "rx_underflows" },
  6407. { "rx_overflows" },
  6408. { "pause_off_state" },
  6409. { "pause_on_state" },
  6410. { "pause_received" },
  6411. };
  6412. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6413. static const struct {
  6414. const char string[ETH_GSTRING_LEN];
  6415. } niu_bmac_stat_keys[] = {
  6416. { "tx_underflow_errors" },
  6417. { "tx_max_pkt_size_errors" },
  6418. { "tx_bytes" },
  6419. { "tx_frames" },
  6420. { "rx_overflows" },
  6421. { "rx_frames" },
  6422. { "rx_align_errors" },
  6423. { "rx_crc_errors" },
  6424. { "rx_len_errors" },
  6425. { "pause_off_state" },
  6426. { "pause_on_state" },
  6427. { "pause_received" },
  6428. };
  6429. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6430. static const struct {
  6431. const char string[ETH_GSTRING_LEN];
  6432. } niu_rxchan_stat_keys[] = {
  6433. { "rx_channel" },
  6434. { "rx_packets" },
  6435. { "rx_bytes" },
  6436. { "rx_dropped" },
  6437. { "rx_errors" },
  6438. };
  6439. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6440. static const struct {
  6441. const char string[ETH_GSTRING_LEN];
  6442. } niu_txchan_stat_keys[] = {
  6443. { "tx_channel" },
  6444. { "tx_packets" },
  6445. { "tx_bytes" },
  6446. { "tx_errors" },
  6447. };
  6448. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6449. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6450. {
  6451. struct niu *np = netdev_priv(dev);
  6452. int i;
  6453. if (stringset != ETH_SS_STATS)
  6454. return;
  6455. if (np->flags & NIU_FLAGS_XMAC) {
  6456. memcpy(data, niu_xmac_stat_keys,
  6457. sizeof(niu_xmac_stat_keys));
  6458. data += sizeof(niu_xmac_stat_keys);
  6459. } else {
  6460. memcpy(data, niu_bmac_stat_keys,
  6461. sizeof(niu_bmac_stat_keys));
  6462. data += sizeof(niu_bmac_stat_keys);
  6463. }
  6464. for (i = 0; i < np->num_rx_rings; i++) {
  6465. memcpy(data, niu_rxchan_stat_keys,
  6466. sizeof(niu_rxchan_stat_keys));
  6467. data += sizeof(niu_rxchan_stat_keys);
  6468. }
  6469. for (i = 0; i < np->num_tx_rings; i++) {
  6470. memcpy(data, niu_txchan_stat_keys,
  6471. sizeof(niu_txchan_stat_keys));
  6472. data += sizeof(niu_txchan_stat_keys);
  6473. }
  6474. }
  6475. static int niu_get_stats_count(struct net_device *dev)
  6476. {
  6477. struct niu *np = netdev_priv(dev);
  6478. return ((np->flags & NIU_FLAGS_XMAC ?
  6479. NUM_XMAC_STAT_KEYS :
  6480. NUM_BMAC_STAT_KEYS) +
  6481. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6482. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  6483. }
  6484. static void niu_get_ethtool_stats(struct net_device *dev,
  6485. struct ethtool_stats *stats, u64 *data)
  6486. {
  6487. struct niu *np = netdev_priv(dev);
  6488. int i;
  6489. niu_sync_mac_stats(np);
  6490. if (np->flags & NIU_FLAGS_XMAC) {
  6491. memcpy(data, &np->mac_stats.xmac,
  6492. sizeof(struct niu_xmac_stats));
  6493. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6494. } else {
  6495. memcpy(data, &np->mac_stats.bmac,
  6496. sizeof(struct niu_bmac_stats));
  6497. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6498. }
  6499. for (i = 0; i < np->num_rx_rings; i++) {
  6500. struct rx_ring_info *rp = &np->rx_rings[i];
  6501. niu_sync_rx_discard_stats(np, rp, 0);
  6502. data[0] = rp->rx_channel;
  6503. data[1] = rp->rx_packets;
  6504. data[2] = rp->rx_bytes;
  6505. data[3] = rp->rx_dropped;
  6506. data[4] = rp->rx_errors;
  6507. data += 5;
  6508. }
  6509. for (i = 0; i < np->num_tx_rings; i++) {
  6510. struct tx_ring_info *rp = &np->tx_rings[i];
  6511. data[0] = rp->tx_channel;
  6512. data[1] = rp->tx_packets;
  6513. data[2] = rp->tx_bytes;
  6514. data[3] = rp->tx_errors;
  6515. data += 4;
  6516. }
  6517. }
  6518. static u64 niu_led_state_save(struct niu *np)
  6519. {
  6520. if (np->flags & NIU_FLAGS_XMAC)
  6521. return nr64_mac(XMAC_CONFIG);
  6522. else
  6523. return nr64_mac(BMAC_XIF_CONFIG);
  6524. }
  6525. static void niu_led_state_restore(struct niu *np, u64 val)
  6526. {
  6527. if (np->flags & NIU_FLAGS_XMAC)
  6528. nw64_mac(XMAC_CONFIG, val);
  6529. else
  6530. nw64_mac(BMAC_XIF_CONFIG, val);
  6531. }
  6532. static void niu_force_led(struct niu *np, int on)
  6533. {
  6534. u64 val, reg, bit;
  6535. if (np->flags & NIU_FLAGS_XMAC) {
  6536. reg = XMAC_CONFIG;
  6537. bit = XMAC_CONFIG_FORCE_LED_ON;
  6538. } else {
  6539. reg = BMAC_XIF_CONFIG;
  6540. bit = BMAC_XIF_CONFIG_LINK_LED;
  6541. }
  6542. val = nr64_mac(reg);
  6543. if (on)
  6544. val |= bit;
  6545. else
  6546. val &= ~bit;
  6547. nw64_mac(reg, val);
  6548. }
  6549. static int niu_phys_id(struct net_device *dev, u32 data)
  6550. {
  6551. struct niu *np = netdev_priv(dev);
  6552. u64 orig_led_state;
  6553. int i;
  6554. if (!netif_running(dev))
  6555. return -EAGAIN;
  6556. if (data == 0)
  6557. data = 2;
  6558. orig_led_state = niu_led_state_save(np);
  6559. for (i = 0; i < (data * 2); i++) {
  6560. int on = ((i % 2) == 0);
  6561. niu_force_led(np, on);
  6562. if (msleep_interruptible(500))
  6563. break;
  6564. }
  6565. niu_led_state_restore(np, orig_led_state);
  6566. return 0;
  6567. }
  6568. static const struct ethtool_ops niu_ethtool_ops = {
  6569. .get_drvinfo = niu_get_drvinfo,
  6570. .get_link = ethtool_op_get_link,
  6571. .get_msglevel = niu_get_msglevel,
  6572. .set_msglevel = niu_set_msglevel,
  6573. .nway_reset = niu_nway_reset,
  6574. .get_eeprom_len = niu_get_eeprom_len,
  6575. .get_eeprom = niu_get_eeprom,
  6576. .get_settings = niu_get_settings,
  6577. .set_settings = niu_set_settings,
  6578. .get_strings = niu_get_strings,
  6579. .get_stats_count = niu_get_stats_count,
  6580. .get_ethtool_stats = niu_get_ethtool_stats,
  6581. .phys_id = niu_phys_id,
  6582. .get_rxnfc = niu_get_nfc,
  6583. .set_rxnfc = niu_set_nfc,
  6584. };
  6585. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6586. int ldg, int ldn)
  6587. {
  6588. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6589. return -EINVAL;
  6590. if (ldn < 0 || ldn > LDN_MAX)
  6591. return -EINVAL;
  6592. parent->ldg_map[ldn] = ldg;
  6593. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6594. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6595. * the firmware, and we're not supposed to change them.
  6596. * Validate the mapping, because if it's wrong we probably
  6597. * won't get any interrupts and that's painful to debug.
  6598. */
  6599. if (nr64(LDG_NUM(ldn)) != ldg) {
  6600. dev_err(np->device, PFX "Port %u, mis-matched "
  6601. "LDG assignment "
  6602. "for ldn %d, should be %d is %llu\n",
  6603. np->port, ldn, ldg,
  6604. (unsigned long long) nr64(LDG_NUM(ldn)));
  6605. return -EINVAL;
  6606. }
  6607. } else
  6608. nw64(LDG_NUM(ldn), ldg);
  6609. return 0;
  6610. }
  6611. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6612. {
  6613. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6614. return -EINVAL;
  6615. nw64(LDG_TIMER_RES, res);
  6616. return 0;
  6617. }
  6618. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6619. {
  6620. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6621. (func < 0 || func > 3) ||
  6622. (vector < 0 || vector > 0x1f))
  6623. return -EINVAL;
  6624. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6625. return 0;
  6626. }
  6627. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  6628. {
  6629. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6630. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6631. int limit;
  6632. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6633. return -EINVAL;
  6634. frame = frame_base;
  6635. nw64(ESPC_PIO_STAT, frame);
  6636. limit = 64;
  6637. do {
  6638. udelay(5);
  6639. frame = nr64(ESPC_PIO_STAT);
  6640. if (frame & ESPC_PIO_STAT_READ_END)
  6641. break;
  6642. } while (limit--);
  6643. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6644. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  6645. (unsigned long long) frame);
  6646. return -ENODEV;
  6647. }
  6648. frame = frame_base;
  6649. nw64(ESPC_PIO_STAT, frame);
  6650. limit = 64;
  6651. do {
  6652. udelay(5);
  6653. frame = nr64(ESPC_PIO_STAT);
  6654. if (frame & ESPC_PIO_STAT_READ_END)
  6655. break;
  6656. } while (limit--);
  6657. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6658. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  6659. (unsigned long long) frame);
  6660. return -ENODEV;
  6661. }
  6662. frame = nr64(ESPC_PIO_STAT);
  6663. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6664. }
  6665. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  6666. {
  6667. int err = niu_pci_eeprom_read(np, off);
  6668. u16 val;
  6669. if (err < 0)
  6670. return err;
  6671. val = (err << 8);
  6672. err = niu_pci_eeprom_read(np, off + 1);
  6673. if (err < 0)
  6674. return err;
  6675. val |= (err & 0xff);
  6676. return val;
  6677. }
  6678. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6679. {
  6680. int err = niu_pci_eeprom_read(np, off);
  6681. u16 val;
  6682. if (err < 0)
  6683. return err;
  6684. val = (err & 0xff);
  6685. err = niu_pci_eeprom_read(np, off + 1);
  6686. if (err < 0)
  6687. return err;
  6688. val |= (err & 0xff) << 8;
  6689. return val;
  6690. }
  6691. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  6692. u32 off,
  6693. char *namebuf,
  6694. int namebuf_len)
  6695. {
  6696. int i;
  6697. for (i = 0; i < namebuf_len; i++) {
  6698. int err = niu_pci_eeprom_read(np, off + i);
  6699. if (err < 0)
  6700. return err;
  6701. *namebuf++ = err;
  6702. if (!err)
  6703. break;
  6704. }
  6705. if (i >= namebuf_len)
  6706. return -EINVAL;
  6707. return i + 1;
  6708. }
  6709. static void __devinit niu_vpd_parse_version(struct niu *np)
  6710. {
  6711. struct niu_vpd *vpd = &np->vpd;
  6712. int len = strlen(vpd->version) + 1;
  6713. const char *s = vpd->version;
  6714. int i;
  6715. for (i = 0; i < len - 5; i++) {
  6716. if (!strncmp(s + i, "FCode ", 5))
  6717. break;
  6718. }
  6719. if (i >= len - 5)
  6720. return;
  6721. s += i + 5;
  6722. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6723. niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6724. vpd->fcode_major, vpd->fcode_minor);
  6725. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6726. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6727. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6728. np->flags |= NIU_FLAGS_VPD_VALID;
  6729. }
  6730. /* ESPC_PIO_EN_ENABLE must be set */
  6731. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  6732. u32 start, u32 end)
  6733. {
  6734. unsigned int found_mask = 0;
  6735. #define FOUND_MASK_MODEL 0x00000001
  6736. #define FOUND_MASK_BMODEL 0x00000002
  6737. #define FOUND_MASK_VERS 0x00000004
  6738. #define FOUND_MASK_MAC 0x00000008
  6739. #define FOUND_MASK_NMAC 0x00000010
  6740. #define FOUND_MASK_PHY 0x00000020
  6741. #define FOUND_MASK_ALL 0x0000003f
  6742. niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
  6743. start, end);
  6744. while (start < end) {
  6745. int len, err, instance, type, prop_len;
  6746. char namebuf[64];
  6747. u8 *prop_buf;
  6748. int max_len;
  6749. if (found_mask == FOUND_MASK_ALL) {
  6750. niu_vpd_parse_version(np);
  6751. return 1;
  6752. }
  6753. err = niu_pci_eeprom_read(np, start + 2);
  6754. if (err < 0)
  6755. return err;
  6756. len = err;
  6757. start += 3;
  6758. instance = niu_pci_eeprom_read(np, start);
  6759. type = niu_pci_eeprom_read(np, start + 3);
  6760. prop_len = niu_pci_eeprom_read(np, start + 4);
  6761. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6762. if (err < 0)
  6763. return err;
  6764. prop_buf = NULL;
  6765. max_len = 0;
  6766. if (!strcmp(namebuf, "model")) {
  6767. prop_buf = np->vpd.model;
  6768. max_len = NIU_VPD_MODEL_MAX;
  6769. found_mask |= FOUND_MASK_MODEL;
  6770. } else if (!strcmp(namebuf, "board-model")) {
  6771. prop_buf = np->vpd.board_model;
  6772. max_len = NIU_VPD_BD_MODEL_MAX;
  6773. found_mask |= FOUND_MASK_BMODEL;
  6774. } else if (!strcmp(namebuf, "version")) {
  6775. prop_buf = np->vpd.version;
  6776. max_len = NIU_VPD_VERSION_MAX;
  6777. found_mask |= FOUND_MASK_VERS;
  6778. } else if (!strcmp(namebuf, "local-mac-address")) {
  6779. prop_buf = np->vpd.local_mac;
  6780. max_len = ETH_ALEN;
  6781. found_mask |= FOUND_MASK_MAC;
  6782. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6783. prop_buf = &np->vpd.mac_num;
  6784. max_len = 1;
  6785. found_mask |= FOUND_MASK_NMAC;
  6786. } else if (!strcmp(namebuf, "phy-type")) {
  6787. prop_buf = np->vpd.phy_type;
  6788. max_len = NIU_VPD_PHY_TYPE_MAX;
  6789. found_mask |= FOUND_MASK_PHY;
  6790. }
  6791. if (max_len && prop_len > max_len) {
  6792. dev_err(np->device, PFX "Property '%s' length (%d) is "
  6793. "too long.\n", namebuf, prop_len);
  6794. return -EINVAL;
  6795. }
  6796. if (prop_buf) {
  6797. u32 off = start + 5 + err;
  6798. int i;
  6799. niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
  6800. "len[%d]\n", namebuf, prop_len);
  6801. for (i = 0; i < prop_len; i++)
  6802. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6803. }
  6804. start += len;
  6805. }
  6806. return 0;
  6807. }
  6808. /* ESPC_PIO_EN_ENABLE must be set */
  6809. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  6810. {
  6811. u32 offset;
  6812. int err;
  6813. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6814. if (err < 0)
  6815. return;
  6816. offset = err + 3;
  6817. while (start + offset < ESPC_EEPROM_SIZE) {
  6818. u32 here = start + offset;
  6819. u32 end;
  6820. err = niu_pci_eeprom_read(np, here);
  6821. if (err != 0x90)
  6822. return;
  6823. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6824. if (err < 0)
  6825. return;
  6826. here = start + offset + 3;
  6827. end = start + offset + err;
  6828. offset += err;
  6829. err = niu_pci_vpd_scan_props(np, here, end);
  6830. if (err < 0 || err == 1)
  6831. return;
  6832. }
  6833. }
  6834. /* ESPC_PIO_EN_ENABLE must be set */
  6835. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  6836. {
  6837. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6838. int err;
  6839. while (start < end) {
  6840. ret = start;
  6841. /* ROM header signature? */
  6842. err = niu_pci_eeprom_read16(np, start + 0);
  6843. if (err != 0x55aa)
  6844. return 0;
  6845. /* Apply offset to PCI data structure. */
  6846. err = niu_pci_eeprom_read16(np, start + 23);
  6847. if (err < 0)
  6848. return 0;
  6849. start += err;
  6850. /* Check for "PCIR" signature. */
  6851. err = niu_pci_eeprom_read16(np, start + 0);
  6852. if (err != 0x5043)
  6853. return 0;
  6854. err = niu_pci_eeprom_read16(np, start + 2);
  6855. if (err != 0x4952)
  6856. return 0;
  6857. /* Check for OBP image type. */
  6858. err = niu_pci_eeprom_read(np, start + 20);
  6859. if (err < 0)
  6860. return 0;
  6861. if (err != 0x01) {
  6862. err = niu_pci_eeprom_read(np, ret + 2);
  6863. if (err < 0)
  6864. return 0;
  6865. start = ret + (err * 512);
  6866. continue;
  6867. }
  6868. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6869. if (err < 0)
  6870. return err;
  6871. ret += err;
  6872. err = niu_pci_eeprom_read(np, ret + 0);
  6873. if (err != 0x82)
  6874. return 0;
  6875. return ret;
  6876. }
  6877. return 0;
  6878. }
  6879. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  6880. const char *phy_prop)
  6881. {
  6882. if (!strcmp(phy_prop, "mif")) {
  6883. /* 1G copper, MII */
  6884. np->flags &= ~(NIU_FLAGS_FIBER |
  6885. NIU_FLAGS_10G);
  6886. np->mac_xcvr = MAC_XCVR_MII;
  6887. } else if (!strcmp(phy_prop, "xgf")) {
  6888. /* 10G fiber, XPCS */
  6889. np->flags |= (NIU_FLAGS_10G |
  6890. NIU_FLAGS_FIBER);
  6891. np->mac_xcvr = MAC_XCVR_XPCS;
  6892. } else if (!strcmp(phy_prop, "pcs")) {
  6893. /* 1G fiber, PCS */
  6894. np->flags &= ~NIU_FLAGS_10G;
  6895. np->flags |= NIU_FLAGS_FIBER;
  6896. np->mac_xcvr = MAC_XCVR_PCS;
  6897. } else if (!strcmp(phy_prop, "xgc")) {
  6898. /* 10G copper, XPCS */
  6899. np->flags |= NIU_FLAGS_10G;
  6900. np->flags &= ~NIU_FLAGS_FIBER;
  6901. np->mac_xcvr = MAC_XCVR_XPCS;
  6902. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6903. /* 10G Serdes or 1G Serdes, default to 10G */
  6904. np->flags |= NIU_FLAGS_10G;
  6905. np->flags &= ~NIU_FLAGS_FIBER;
  6906. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6907. np->mac_xcvr = MAC_XCVR_XPCS;
  6908. } else {
  6909. return -EINVAL;
  6910. }
  6911. return 0;
  6912. }
  6913. static int niu_pci_vpd_get_nports(struct niu *np)
  6914. {
  6915. int ports = 0;
  6916. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6917. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6918. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6919. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6920. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6921. ports = 4;
  6922. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6923. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6924. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6925. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6926. ports = 2;
  6927. }
  6928. return ports;
  6929. }
  6930. static void __devinit niu_pci_vpd_validate(struct niu *np)
  6931. {
  6932. struct net_device *dev = np->dev;
  6933. struct niu_vpd *vpd = &np->vpd;
  6934. u8 val8;
  6935. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6936. dev_err(np->device, PFX "VPD MAC invalid, "
  6937. "falling back to SPROM.\n");
  6938. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6939. return;
  6940. }
  6941. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6942. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6943. np->flags |= NIU_FLAGS_10G;
  6944. np->flags &= ~NIU_FLAGS_FIBER;
  6945. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6946. np->mac_xcvr = MAC_XCVR_PCS;
  6947. if (np->port > 1) {
  6948. np->flags |= NIU_FLAGS_FIBER;
  6949. np->flags &= ~NIU_FLAGS_10G;
  6950. }
  6951. if (np->flags & NIU_FLAGS_10G)
  6952. np->mac_xcvr = MAC_XCVR_XPCS;
  6953. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6954. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6955. NIU_FLAGS_HOTPLUG_PHY);
  6956. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6957. dev_err(np->device, PFX "Illegal phy string [%s].\n",
  6958. np->vpd.phy_type);
  6959. dev_err(np->device, PFX "Falling back to SPROM.\n");
  6960. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6961. return;
  6962. }
  6963. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  6964. val8 = dev->perm_addr[5];
  6965. dev->perm_addr[5] += np->port;
  6966. if (dev->perm_addr[5] < val8)
  6967. dev->perm_addr[4]++;
  6968. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6969. }
  6970. static int __devinit niu_pci_probe_sprom(struct niu *np)
  6971. {
  6972. struct net_device *dev = np->dev;
  6973. int len, i;
  6974. u64 val, sum;
  6975. u8 val8;
  6976. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6977. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6978. len = val / 4;
  6979. np->eeprom_len = len;
  6980. niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
  6981. sum = 0;
  6982. for (i = 0; i < len; i++) {
  6983. val = nr64(ESPC_NCR(i));
  6984. sum += (val >> 0) & 0xff;
  6985. sum += (val >> 8) & 0xff;
  6986. sum += (val >> 16) & 0xff;
  6987. sum += (val >> 24) & 0xff;
  6988. }
  6989. niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6990. if ((sum & 0xff) != 0xab) {
  6991. dev_err(np->device, PFX "Bad SPROM checksum "
  6992. "(%x, should be 0xab)\n", (int) (sum & 0xff));
  6993. return -EINVAL;
  6994. }
  6995. val = nr64(ESPC_PHY_TYPE);
  6996. switch (np->port) {
  6997. case 0:
  6998. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6999. ESPC_PHY_TYPE_PORT0_SHIFT;
  7000. break;
  7001. case 1:
  7002. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  7003. ESPC_PHY_TYPE_PORT1_SHIFT;
  7004. break;
  7005. case 2:
  7006. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  7007. ESPC_PHY_TYPE_PORT2_SHIFT;
  7008. break;
  7009. case 3:
  7010. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  7011. ESPC_PHY_TYPE_PORT3_SHIFT;
  7012. break;
  7013. default:
  7014. dev_err(np->device, PFX "Bogus port number %u\n",
  7015. np->port);
  7016. return -EINVAL;
  7017. }
  7018. niudbg(PROBE, "SPROM: PHY type %x\n", val8);
  7019. switch (val8) {
  7020. case ESPC_PHY_TYPE_1G_COPPER:
  7021. /* 1G copper, MII */
  7022. np->flags &= ~(NIU_FLAGS_FIBER |
  7023. NIU_FLAGS_10G);
  7024. np->mac_xcvr = MAC_XCVR_MII;
  7025. break;
  7026. case ESPC_PHY_TYPE_1G_FIBER:
  7027. /* 1G fiber, PCS */
  7028. np->flags &= ~NIU_FLAGS_10G;
  7029. np->flags |= NIU_FLAGS_FIBER;
  7030. np->mac_xcvr = MAC_XCVR_PCS;
  7031. break;
  7032. case ESPC_PHY_TYPE_10G_COPPER:
  7033. /* 10G copper, XPCS */
  7034. np->flags |= NIU_FLAGS_10G;
  7035. np->flags &= ~NIU_FLAGS_FIBER;
  7036. np->mac_xcvr = MAC_XCVR_XPCS;
  7037. break;
  7038. case ESPC_PHY_TYPE_10G_FIBER:
  7039. /* 10G fiber, XPCS */
  7040. np->flags |= (NIU_FLAGS_10G |
  7041. NIU_FLAGS_FIBER);
  7042. np->mac_xcvr = MAC_XCVR_XPCS;
  7043. break;
  7044. default:
  7045. dev_err(np->device, PFX "Bogus SPROM phy type %u\n", val8);
  7046. return -EINVAL;
  7047. }
  7048. val = nr64(ESPC_MAC_ADDR0);
  7049. niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
  7050. (unsigned long long) val);
  7051. dev->perm_addr[0] = (val >> 0) & 0xff;
  7052. dev->perm_addr[1] = (val >> 8) & 0xff;
  7053. dev->perm_addr[2] = (val >> 16) & 0xff;
  7054. dev->perm_addr[3] = (val >> 24) & 0xff;
  7055. val = nr64(ESPC_MAC_ADDR1);
  7056. niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
  7057. (unsigned long long) val);
  7058. dev->perm_addr[4] = (val >> 0) & 0xff;
  7059. dev->perm_addr[5] = (val >> 8) & 0xff;
  7060. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7061. dev_err(np->device, PFX "SPROM MAC address invalid\n");
  7062. dev_err(np->device, PFX "[ \n");
  7063. for (i = 0; i < 6; i++)
  7064. printk("%02x ", dev->perm_addr[i]);
  7065. printk("]\n");
  7066. return -EINVAL;
  7067. }
  7068. val8 = dev->perm_addr[5];
  7069. dev->perm_addr[5] += np->port;
  7070. if (dev->perm_addr[5] < val8)
  7071. dev->perm_addr[4]++;
  7072. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7073. val = nr64(ESPC_MOD_STR_LEN);
  7074. niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
  7075. (unsigned long long) val);
  7076. if (val >= 8 * 4)
  7077. return -EINVAL;
  7078. for (i = 0; i < val; i += 4) {
  7079. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7080. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7081. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7082. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7083. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7084. }
  7085. np->vpd.model[val] = '\0';
  7086. val = nr64(ESPC_BD_MOD_STR_LEN);
  7087. niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
  7088. (unsigned long long) val);
  7089. if (val >= 4 * 4)
  7090. return -EINVAL;
  7091. for (i = 0; i < val; i += 4) {
  7092. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7093. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7094. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7095. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7096. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7097. }
  7098. np->vpd.board_model[val] = '\0';
  7099. np->vpd.mac_num =
  7100. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7101. niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
  7102. np->vpd.mac_num);
  7103. return 0;
  7104. }
  7105. static int __devinit niu_get_and_validate_port(struct niu *np)
  7106. {
  7107. struct niu_parent *parent = np->parent;
  7108. if (np->port <= 1)
  7109. np->flags |= NIU_FLAGS_XMAC;
  7110. if (!parent->num_ports) {
  7111. if (parent->plat_type == PLAT_TYPE_NIU) {
  7112. parent->num_ports = 2;
  7113. } else {
  7114. parent->num_ports = niu_pci_vpd_get_nports(np);
  7115. if (!parent->num_ports) {
  7116. /* Fall back to SPROM as last resort.
  7117. * This will fail on most cards.
  7118. */
  7119. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7120. ESPC_NUM_PORTS_MACS_VAL;
  7121. /* All of the current probing methods fail on
  7122. * Maramba on-board parts.
  7123. */
  7124. if (!parent->num_ports)
  7125. parent->num_ports = 4;
  7126. }
  7127. }
  7128. }
  7129. niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
  7130. np->port, parent->num_ports);
  7131. if (np->port >= parent->num_ports)
  7132. return -ENODEV;
  7133. return 0;
  7134. }
  7135. static int __devinit phy_record(struct niu_parent *parent,
  7136. struct phy_probe_info *p,
  7137. int dev_id_1, int dev_id_2, u8 phy_port,
  7138. int type)
  7139. {
  7140. u32 id = (dev_id_1 << 16) | dev_id_2;
  7141. u8 idx;
  7142. if (dev_id_1 < 0 || dev_id_2 < 0)
  7143. return 0;
  7144. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7145. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7146. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011) &&
  7147. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8706))
  7148. return 0;
  7149. } else {
  7150. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7151. return 0;
  7152. }
  7153. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7154. parent->index, id,
  7155. (type == PHY_TYPE_PMA_PMD ?
  7156. "PMA/PMD" :
  7157. (type == PHY_TYPE_PCS ?
  7158. "PCS" : "MII")),
  7159. phy_port);
  7160. if (p->cur[type] >= NIU_MAX_PORTS) {
  7161. printk(KERN_ERR PFX "Too many PHY ports.\n");
  7162. return -EINVAL;
  7163. }
  7164. idx = p->cur[type];
  7165. p->phy_id[type][idx] = id;
  7166. p->phy_port[type][idx] = phy_port;
  7167. p->cur[type] = idx + 1;
  7168. return 0;
  7169. }
  7170. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  7171. {
  7172. int i;
  7173. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7174. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7175. return 1;
  7176. }
  7177. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7178. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7179. return 1;
  7180. }
  7181. return 0;
  7182. }
  7183. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  7184. {
  7185. int port, cnt;
  7186. cnt = 0;
  7187. *lowest = 32;
  7188. for (port = 8; port < 32; port++) {
  7189. if (port_has_10g(p, port)) {
  7190. if (!cnt)
  7191. *lowest = port;
  7192. cnt++;
  7193. }
  7194. }
  7195. return cnt;
  7196. }
  7197. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  7198. {
  7199. *lowest = 32;
  7200. if (p->cur[PHY_TYPE_MII])
  7201. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7202. return p->cur[PHY_TYPE_MII];
  7203. }
  7204. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  7205. {
  7206. int num_ports = parent->num_ports;
  7207. int i;
  7208. for (i = 0; i < num_ports; i++) {
  7209. parent->rxchan_per_port[i] = (16 / num_ports);
  7210. parent->txchan_per_port[i] = (16 / num_ports);
  7211. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  7212. "[%u TX chans]\n",
  7213. parent->index, i,
  7214. parent->rxchan_per_port[i],
  7215. parent->txchan_per_port[i]);
  7216. }
  7217. }
  7218. static void __devinit niu_divide_channels(struct niu_parent *parent,
  7219. int num_10g, int num_1g)
  7220. {
  7221. int num_ports = parent->num_ports;
  7222. int rx_chans_per_10g, rx_chans_per_1g;
  7223. int tx_chans_per_10g, tx_chans_per_1g;
  7224. int i, tot_rx, tot_tx;
  7225. if (!num_10g || !num_1g) {
  7226. rx_chans_per_10g = rx_chans_per_1g =
  7227. (NIU_NUM_RXCHAN / num_ports);
  7228. tx_chans_per_10g = tx_chans_per_1g =
  7229. (NIU_NUM_TXCHAN / num_ports);
  7230. } else {
  7231. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7232. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7233. (rx_chans_per_1g * num_1g)) /
  7234. num_10g;
  7235. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7236. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7237. (tx_chans_per_1g * num_1g)) /
  7238. num_10g;
  7239. }
  7240. tot_rx = tot_tx = 0;
  7241. for (i = 0; i < num_ports; i++) {
  7242. int type = phy_decode(parent->port_phy, i);
  7243. if (type == PORT_TYPE_10G) {
  7244. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7245. parent->txchan_per_port[i] = tx_chans_per_10g;
  7246. } else {
  7247. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7248. parent->txchan_per_port[i] = tx_chans_per_1g;
  7249. }
  7250. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  7251. "[%u TX chans]\n",
  7252. parent->index, i,
  7253. parent->rxchan_per_port[i],
  7254. parent->txchan_per_port[i]);
  7255. tot_rx += parent->rxchan_per_port[i];
  7256. tot_tx += parent->txchan_per_port[i];
  7257. }
  7258. if (tot_rx > NIU_NUM_RXCHAN) {
  7259. printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
  7260. "resetting to one per port.\n",
  7261. parent->index, tot_rx);
  7262. for (i = 0; i < num_ports; i++)
  7263. parent->rxchan_per_port[i] = 1;
  7264. }
  7265. if (tot_tx > NIU_NUM_TXCHAN) {
  7266. printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
  7267. "resetting to one per port.\n",
  7268. parent->index, tot_tx);
  7269. for (i = 0; i < num_ports; i++)
  7270. parent->txchan_per_port[i] = 1;
  7271. }
  7272. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7273. printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
  7274. "RX[%d] TX[%d]\n",
  7275. parent->index, tot_rx, tot_tx);
  7276. }
  7277. }
  7278. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  7279. int num_10g, int num_1g)
  7280. {
  7281. int i, num_ports = parent->num_ports;
  7282. int rdc_group, rdc_groups_per_port;
  7283. int rdc_channel_base;
  7284. rdc_group = 0;
  7285. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7286. rdc_channel_base = 0;
  7287. for (i = 0; i < num_ports; i++) {
  7288. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7289. int grp, num_channels = parent->rxchan_per_port[i];
  7290. int this_channel_offset;
  7291. tp->first_table_num = rdc_group;
  7292. tp->num_tables = rdc_groups_per_port;
  7293. this_channel_offset = 0;
  7294. for (grp = 0; grp < tp->num_tables; grp++) {
  7295. struct rdc_table *rt = &tp->tables[grp];
  7296. int slot;
  7297. pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
  7298. parent->index, i, tp->first_table_num + grp);
  7299. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7300. rt->rxdma_channel[slot] =
  7301. rdc_channel_base + this_channel_offset;
  7302. printk("%d ", rt->rxdma_channel[slot]);
  7303. if (++this_channel_offset == num_channels)
  7304. this_channel_offset = 0;
  7305. }
  7306. printk("]\n");
  7307. }
  7308. parent->rdc_default[i] = rdc_channel_base;
  7309. rdc_channel_base += num_channels;
  7310. rdc_group += rdc_groups_per_port;
  7311. }
  7312. }
  7313. static int __devinit fill_phy_probe_info(struct niu *np,
  7314. struct niu_parent *parent,
  7315. struct phy_probe_info *info)
  7316. {
  7317. unsigned long flags;
  7318. int port, err;
  7319. memset(info, 0, sizeof(*info));
  7320. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7321. niu_lock_parent(np, flags);
  7322. err = 0;
  7323. for (port = 8; port < 32; port++) {
  7324. int dev_id_1, dev_id_2;
  7325. dev_id_1 = mdio_read(np, port,
  7326. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7327. dev_id_2 = mdio_read(np, port,
  7328. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7329. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7330. PHY_TYPE_PMA_PMD);
  7331. if (err)
  7332. break;
  7333. dev_id_1 = mdio_read(np, port,
  7334. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7335. dev_id_2 = mdio_read(np, port,
  7336. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7337. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7338. PHY_TYPE_PCS);
  7339. if (err)
  7340. break;
  7341. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7342. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7343. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7344. PHY_TYPE_MII);
  7345. if (err)
  7346. break;
  7347. }
  7348. niu_unlock_parent(np, flags);
  7349. return err;
  7350. }
  7351. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  7352. {
  7353. struct phy_probe_info *info = &parent->phy_probe_info;
  7354. int lowest_10g, lowest_1g;
  7355. int num_10g, num_1g;
  7356. u32 val;
  7357. int err;
  7358. num_10g = num_1g = 0;
  7359. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7360. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7361. num_10g = 0;
  7362. num_1g = 2;
  7363. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7364. parent->num_ports = 4;
  7365. val = (phy_encode(PORT_TYPE_1G, 0) |
  7366. phy_encode(PORT_TYPE_1G, 1) |
  7367. phy_encode(PORT_TYPE_1G, 2) |
  7368. phy_encode(PORT_TYPE_1G, 3));
  7369. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7370. num_10g = 2;
  7371. num_1g = 0;
  7372. parent->num_ports = 2;
  7373. val = (phy_encode(PORT_TYPE_10G, 0) |
  7374. phy_encode(PORT_TYPE_10G, 1));
  7375. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7376. (parent->plat_type == PLAT_TYPE_NIU)) {
  7377. /* this is the Monza case */
  7378. if (np->flags & NIU_FLAGS_10G) {
  7379. val = (phy_encode(PORT_TYPE_10G, 0) |
  7380. phy_encode(PORT_TYPE_10G, 1));
  7381. } else {
  7382. val = (phy_encode(PORT_TYPE_1G, 0) |
  7383. phy_encode(PORT_TYPE_1G, 1));
  7384. }
  7385. } else {
  7386. err = fill_phy_probe_info(np, parent, info);
  7387. if (err)
  7388. return err;
  7389. num_10g = count_10g_ports(info, &lowest_10g);
  7390. num_1g = count_1g_ports(info, &lowest_1g);
  7391. switch ((num_10g << 4) | num_1g) {
  7392. case 0x24:
  7393. if (lowest_1g == 10)
  7394. parent->plat_type = PLAT_TYPE_VF_P0;
  7395. else if (lowest_1g == 26)
  7396. parent->plat_type = PLAT_TYPE_VF_P1;
  7397. else
  7398. goto unknown_vg_1g_port;
  7399. /* fallthru */
  7400. case 0x22:
  7401. val = (phy_encode(PORT_TYPE_10G, 0) |
  7402. phy_encode(PORT_TYPE_10G, 1) |
  7403. phy_encode(PORT_TYPE_1G, 2) |
  7404. phy_encode(PORT_TYPE_1G, 3));
  7405. break;
  7406. case 0x20:
  7407. val = (phy_encode(PORT_TYPE_10G, 0) |
  7408. phy_encode(PORT_TYPE_10G, 1));
  7409. break;
  7410. case 0x10:
  7411. val = phy_encode(PORT_TYPE_10G, np->port);
  7412. break;
  7413. case 0x14:
  7414. if (lowest_1g == 10)
  7415. parent->plat_type = PLAT_TYPE_VF_P0;
  7416. else if (lowest_1g == 26)
  7417. parent->plat_type = PLAT_TYPE_VF_P1;
  7418. else
  7419. goto unknown_vg_1g_port;
  7420. /* fallthru */
  7421. case 0x13:
  7422. if ((lowest_10g & 0x7) == 0)
  7423. val = (phy_encode(PORT_TYPE_10G, 0) |
  7424. phy_encode(PORT_TYPE_1G, 1) |
  7425. phy_encode(PORT_TYPE_1G, 2) |
  7426. phy_encode(PORT_TYPE_1G, 3));
  7427. else
  7428. val = (phy_encode(PORT_TYPE_1G, 0) |
  7429. phy_encode(PORT_TYPE_10G, 1) |
  7430. phy_encode(PORT_TYPE_1G, 2) |
  7431. phy_encode(PORT_TYPE_1G, 3));
  7432. break;
  7433. case 0x04:
  7434. if (lowest_1g == 10)
  7435. parent->plat_type = PLAT_TYPE_VF_P0;
  7436. else if (lowest_1g == 26)
  7437. parent->plat_type = PLAT_TYPE_VF_P1;
  7438. else
  7439. goto unknown_vg_1g_port;
  7440. val = (phy_encode(PORT_TYPE_1G, 0) |
  7441. phy_encode(PORT_TYPE_1G, 1) |
  7442. phy_encode(PORT_TYPE_1G, 2) |
  7443. phy_encode(PORT_TYPE_1G, 3));
  7444. break;
  7445. default:
  7446. printk(KERN_ERR PFX "Unsupported port config "
  7447. "10G[%d] 1G[%d]\n",
  7448. num_10g, num_1g);
  7449. return -EINVAL;
  7450. }
  7451. }
  7452. parent->port_phy = val;
  7453. if (parent->plat_type == PLAT_TYPE_NIU)
  7454. niu_n2_divide_channels(parent);
  7455. else
  7456. niu_divide_channels(parent, num_10g, num_1g);
  7457. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7458. return 0;
  7459. unknown_vg_1g_port:
  7460. printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
  7461. lowest_1g);
  7462. return -EINVAL;
  7463. }
  7464. static int __devinit niu_probe_ports(struct niu *np)
  7465. {
  7466. struct niu_parent *parent = np->parent;
  7467. int err, i;
  7468. niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
  7469. parent->port_phy);
  7470. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7471. err = walk_phys(np, parent);
  7472. if (err)
  7473. return err;
  7474. niu_set_ldg_timer_res(np, 2);
  7475. for (i = 0; i <= LDN_MAX; i++)
  7476. niu_ldn_irq_enable(np, i, 0);
  7477. }
  7478. if (parent->port_phy == PORT_PHY_INVALID)
  7479. return -EINVAL;
  7480. return 0;
  7481. }
  7482. static int __devinit niu_classifier_swstate_init(struct niu *np)
  7483. {
  7484. struct niu_classifier *cp = &np->clas;
  7485. niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
  7486. np->parent->tcam_num_entries);
  7487. cp->tcam_top = (u16) np->port;
  7488. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7489. cp->h1_init = 0xffffffff;
  7490. cp->h2_init = 0xffff;
  7491. return fflp_early_init(np);
  7492. }
  7493. static void __devinit niu_link_config_init(struct niu *np)
  7494. {
  7495. struct niu_link_config *lp = &np->link_config;
  7496. lp->advertising = (ADVERTISED_10baseT_Half |
  7497. ADVERTISED_10baseT_Full |
  7498. ADVERTISED_100baseT_Half |
  7499. ADVERTISED_100baseT_Full |
  7500. ADVERTISED_1000baseT_Half |
  7501. ADVERTISED_1000baseT_Full |
  7502. ADVERTISED_10000baseT_Full |
  7503. ADVERTISED_Autoneg);
  7504. lp->speed = lp->active_speed = SPEED_INVALID;
  7505. lp->duplex = DUPLEX_FULL;
  7506. lp->active_duplex = DUPLEX_INVALID;
  7507. lp->autoneg = 1;
  7508. #if 0
  7509. lp->loopback_mode = LOOPBACK_MAC;
  7510. lp->active_speed = SPEED_10000;
  7511. lp->active_duplex = DUPLEX_FULL;
  7512. #else
  7513. lp->loopback_mode = LOOPBACK_DISABLED;
  7514. #endif
  7515. }
  7516. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  7517. {
  7518. switch (np->port) {
  7519. case 0:
  7520. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7521. np->ipp_off = 0x00000;
  7522. np->pcs_off = 0x04000;
  7523. np->xpcs_off = 0x02000;
  7524. break;
  7525. case 1:
  7526. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7527. np->ipp_off = 0x08000;
  7528. np->pcs_off = 0x0a000;
  7529. np->xpcs_off = 0x08000;
  7530. break;
  7531. case 2:
  7532. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7533. np->ipp_off = 0x04000;
  7534. np->pcs_off = 0x0e000;
  7535. np->xpcs_off = ~0UL;
  7536. break;
  7537. case 3:
  7538. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7539. np->ipp_off = 0x0c000;
  7540. np->pcs_off = 0x12000;
  7541. np->xpcs_off = ~0UL;
  7542. break;
  7543. default:
  7544. dev_err(np->device, PFX "Port %u is invalid, cannot "
  7545. "compute MAC block offset.\n", np->port);
  7546. return -EINVAL;
  7547. }
  7548. return 0;
  7549. }
  7550. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7551. {
  7552. struct msix_entry msi_vec[NIU_NUM_LDG];
  7553. struct niu_parent *parent = np->parent;
  7554. struct pci_dev *pdev = np->pdev;
  7555. int i, num_irqs, err;
  7556. u8 first_ldg;
  7557. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7558. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7559. ldg_num_map[i] = first_ldg + i;
  7560. num_irqs = (parent->rxchan_per_port[np->port] +
  7561. parent->txchan_per_port[np->port] +
  7562. (np->port == 0 ? 3 : 1));
  7563. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7564. retry:
  7565. for (i = 0; i < num_irqs; i++) {
  7566. msi_vec[i].vector = 0;
  7567. msi_vec[i].entry = i;
  7568. }
  7569. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  7570. if (err < 0) {
  7571. np->flags &= ~NIU_FLAGS_MSIX;
  7572. return;
  7573. }
  7574. if (err > 0) {
  7575. num_irqs = err;
  7576. goto retry;
  7577. }
  7578. np->flags |= NIU_FLAGS_MSIX;
  7579. for (i = 0; i < num_irqs; i++)
  7580. np->ldg[i].irq = msi_vec[i].vector;
  7581. np->num_ldg = num_irqs;
  7582. }
  7583. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7584. {
  7585. #ifdef CONFIG_SPARC64
  7586. struct of_device *op = np->op;
  7587. const u32 *int_prop;
  7588. int i;
  7589. int_prop = of_get_property(op->node, "interrupts", NULL);
  7590. if (!int_prop)
  7591. return -ENODEV;
  7592. for (i = 0; i < op->num_irqs; i++) {
  7593. ldg_num_map[i] = int_prop[i];
  7594. np->ldg[i].irq = op->irqs[i];
  7595. }
  7596. np->num_ldg = op->num_irqs;
  7597. return 0;
  7598. #else
  7599. return -EINVAL;
  7600. #endif
  7601. }
  7602. static int __devinit niu_ldg_init(struct niu *np)
  7603. {
  7604. struct niu_parent *parent = np->parent;
  7605. u8 ldg_num_map[NIU_NUM_LDG];
  7606. int first_chan, num_chan;
  7607. int i, err, ldg_rotor;
  7608. u8 port;
  7609. np->num_ldg = 1;
  7610. np->ldg[0].irq = np->dev->irq;
  7611. if (parent->plat_type == PLAT_TYPE_NIU) {
  7612. err = niu_n2_irq_init(np, ldg_num_map);
  7613. if (err)
  7614. return err;
  7615. } else
  7616. niu_try_msix(np, ldg_num_map);
  7617. port = np->port;
  7618. for (i = 0; i < np->num_ldg; i++) {
  7619. struct niu_ldg *lp = &np->ldg[i];
  7620. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7621. lp->np = np;
  7622. lp->ldg_num = ldg_num_map[i];
  7623. lp->timer = 2; /* XXX */
  7624. /* On N2 NIU the firmware has setup the SID mappings so they go
  7625. * to the correct values that will route the LDG to the proper
  7626. * interrupt in the NCU interrupt table.
  7627. */
  7628. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7629. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7630. if (err)
  7631. return err;
  7632. }
  7633. }
  7634. /* We adopt the LDG assignment ordering used by the N2 NIU
  7635. * 'interrupt' properties because that simplifies a lot of
  7636. * things. This ordering is:
  7637. *
  7638. * MAC
  7639. * MIF (if port zero)
  7640. * SYSERR (if port zero)
  7641. * RX channels
  7642. * TX channels
  7643. */
  7644. ldg_rotor = 0;
  7645. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7646. LDN_MAC(port));
  7647. if (err)
  7648. return err;
  7649. ldg_rotor++;
  7650. if (ldg_rotor == np->num_ldg)
  7651. ldg_rotor = 0;
  7652. if (port == 0) {
  7653. err = niu_ldg_assign_ldn(np, parent,
  7654. ldg_num_map[ldg_rotor],
  7655. LDN_MIF);
  7656. if (err)
  7657. return err;
  7658. ldg_rotor++;
  7659. if (ldg_rotor == np->num_ldg)
  7660. ldg_rotor = 0;
  7661. err = niu_ldg_assign_ldn(np, parent,
  7662. ldg_num_map[ldg_rotor],
  7663. LDN_DEVICE_ERROR);
  7664. if (err)
  7665. return err;
  7666. ldg_rotor++;
  7667. if (ldg_rotor == np->num_ldg)
  7668. ldg_rotor = 0;
  7669. }
  7670. first_chan = 0;
  7671. for (i = 0; i < port; i++)
  7672. first_chan += parent->rxchan_per_port[port];
  7673. num_chan = parent->rxchan_per_port[port];
  7674. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7675. err = niu_ldg_assign_ldn(np, parent,
  7676. ldg_num_map[ldg_rotor],
  7677. LDN_RXDMA(i));
  7678. if (err)
  7679. return err;
  7680. ldg_rotor++;
  7681. if (ldg_rotor == np->num_ldg)
  7682. ldg_rotor = 0;
  7683. }
  7684. first_chan = 0;
  7685. for (i = 0; i < port; i++)
  7686. first_chan += parent->txchan_per_port[port];
  7687. num_chan = parent->txchan_per_port[port];
  7688. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7689. err = niu_ldg_assign_ldn(np, parent,
  7690. ldg_num_map[ldg_rotor],
  7691. LDN_TXDMA(i));
  7692. if (err)
  7693. return err;
  7694. ldg_rotor++;
  7695. if (ldg_rotor == np->num_ldg)
  7696. ldg_rotor = 0;
  7697. }
  7698. return 0;
  7699. }
  7700. static void __devexit niu_ldg_free(struct niu *np)
  7701. {
  7702. if (np->flags & NIU_FLAGS_MSIX)
  7703. pci_disable_msix(np->pdev);
  7704. }
  7705. static int __devinit niu_get_of_props(struct niu *np)
  7706. {
  7707. #ifdef CONFIG_SPARC64
  7708. struct net_device *dev = np->dev;
  7709. struct device_node *dp;
  7710. const char *phy_type;
  7711. const u8 *mac_addr;
  7712. const char *model;
  7713. int prop_len;
  7714. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7715. dp = np->op->node;
  7716. else
  7717. dp = pci_device_to_OF_node(np->pdev);
  7718. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7719. if (!phy_type) {
  7720. dev_err(np->device, PFX "%s: OF node lacks "
  7721. "phy-type property\n",
  7722. dp->full_name);
  7723. return -EINVAL;
  7724. }
  7725. if (!strcmp(phy_type, "none"))
  7726. return -ENODEV;
  7727. strcpy(np->vpd.phy_type, phy_type);
  7728. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7729. dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
  7730. dp->full_name, np->vpd.phy_type);
  7731. return -EINVAL;
  7732. }
  7733. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7734. if (!mac_addr) {
  7735. dev_err(np->device, PFX "%s: OF node lacks "
  7736. "local-mac-address property\n",
  7737. dp->full_name);
  7738. return -EINVAL;
  7739. }
  7740. if (prop_len != dev->addr_len) {
  7741. dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
  7742. "is wrong.\n",
  7743. dp->full_name, prop_len);
  7744. }
  7745. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  7746. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7747. int i;
  7748. dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
  7749. dp->full_name);
  7750. dev_err(np->device, PFX "%s: [ \n",
  7751. dp->full_name);
  7752. for (i = 0; i < 6; i++)
  7753. printk("%02x ", dev->perm_addr[i]);
  7754. printk("]\n");
  7755. return -EINVAL;
  7756. }
  7757. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7758. model = of_get_property(dp, "model", &prop_len);
  7759. if (model)
  7760. strcpy(np->vpd.model, model);
  7761. return 0;
  7762. #else
  7763. return -EINVAL;
  7764. #endif
  7765. }
  7766. static int __devinit niu_get_invariants(struct niu *np)
  7767. {
  7768. int err, have_props;
  7769. u32 offset;
  7770. err = niu_get_of_props(np);
  7771. if (err == -ENODEV)
  7772. return err;
  7773. have_props = !err;
  7774. err = niu_init_mac_ipp_pcs_base(np);
  7775. if (err)
  7776. return err;
  7777. if (have_props) {
  7778. err = niu_get_and_validate_port(np);
  7779. if (err)
  7780. return err;
  7781. } else {
  7782. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7783. return -EINVAL;
  7784. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7785. offset = niu_pci_vpd_offset(np);
  7786. niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
  7787. offset);
  7788. if (offset)
  7789. niu_pci_vpd_fetch(np, offset);
  7790. nw64(ESPC_PIO_EN, 0);
  7791. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7792. niu_pci_vpd_validate(np);
  7793. err = niu_get_and_validate_port(np);
  7794. if (err)
  7795. return err;
  7796. }
  7797. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7798. err = niu_get_and_validate_port(np);
  7799. if (err)
  7800. return err;
  7801. err = niu_pci_probe_sprom(np);
  7802. if (err)
  7803. return err;
  7804. }
  7805. }
  7806. err = niu_probe_ports(np);
  7807. if (err)
  7808. return err;
  7809. niu_ldg_init(np);
  7810. niu_classifier_swstate_init(np);
  7811. niu_link_config_init(np);
  7812. err = niu_determine_phy_disposition(np);
  7813. if (!err)
  7814. err = niu_init_link(np);
  7815. return err;
  7816. }
  7817. static LIST_HEAD(niu_parent_list);
  7818. static DEFINE_MUTEX(niu_parent_lock);
  7819. static int niu_parent_index;
  7820. static ssize_t show_port_phy(struct device *dev,
  7821. struct device_attribute *attr, char *buf)
  7822. {
  7823. struct platform_device *plat_dev = to_platform_device(dev);
  7824. struct niu_parent *p = plat_dev->dev.platform_data;
  7825. u32 port_phy = p->port_phy;
  7826. char *orig_buf = buf;
  7827. int i;
  7828. if (port_phy == PORT_PHY_UNKNOWN ||
  7829. port_phy == PORT_PHY_INVALID)
  7830. return 0;
  7831. for (i = 0; i < p->num_ports; i++) {
  7832. const char *type_str;
  7833. int type;
  7834. type = phy_decode(port_phy, i);
  7835. if (type == PORT_TYPE_10G)
  7836. type_str = "10G";
  7837. else
  7838. type_str = "1G";
  7839. buf += sprintf(buf,
  7840. (i == 0) ? "%s" : " %s",
  7841. type_str);
  7842. }
  7843. buf += sprintf(buf, "\n");
  7844. return buf - orig_buf;
  7845. }
  7846. static ssize_t show_plat_type(struct device *dev,
  7847. struct device_attribute *attr, char *buf)
  7848. {
  7849. struct platform_device *plat_dev = to_platform_device(dev);
  7850. struct niu_parent *p = plat_dev->dev.platform_data;
  7851. const char *type_str;
  7852. switch (p->plat_type) {
  7853. case PLAT_TYPE_ATLAS:
  7854. type_str = "atlas";
  7855. break;
  7856. case PLAT_TYPE_NIU:
  7857. type_str = "niu";
  7858. break;
  7859. case PLAT_TYPE_VF_P0:
  7860. type_str = "vf_p0";
  7861. break;
  7862. case PLAT_TYPE_VF_P1:
  7863. type_str = "vf_p1";
  7864. break;
  7865. default:
  7866. type_str = "unknown";
  7867. break;
  7868. }
  7869. return sprintf(buf, "%s\n", type_str);
  7870. }
  7871. static ssize_t __show_chan_per_port(struct device *dev,
  7872. struct device_attribute *attr, char *buf,
  7873. int rx)
  7874. {
  7875. struct platform_device *plat_dev = to_platform_device(dev);
  7876. struct niu_parent *p = plat_dev->dev.platform_data;
  7877. char *orig_buf = buf;
  7878. u8 *arr;
  7879. int i;
  7880. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7881. for (i = 0; i < p->num_ports; i++) {
  7882. buf += sprintf(buf,
  7883. (i == 0) ? "%d" : " %d",
  7884. arr[i]);
  7885. }
  7886. buf += sprintf(buf, "\n");
  7887. return buf - orig_buf;
  7888. }
  7889. static ssize_t show_rxchan_per_port(struct device *dev,
  7890. struct device_attribute *attr, char *buf)
  7891. {
  7892. return __show_chan_per_port(dev, attr, buf, 1);
  7893. }
  7894. static ssize_t show_txchan_per_port(struct device *dev,
  7895. struct device_attribute *attr, char *buf)
  7896. {
  7897. return __show_chan_per_port(dev, attr, buf, 1);
  7898. }
  7899. static ssize_t show_num_ports(struct device *dev,
  7900. struct device_attribute *attr, char *buf)
  7901. {
  7902. struct platform_device *plat_dev = to_platform_device(dev);
  7903. struct niu_parent *p = plat_dev->dev.platform_data;
  7904. return sprintf(buf, "%d\n", p->num_ports);
  7905. }
  7906. static struct device_attribute niu_parent_attributes[] = {
  7907. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7908. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7909. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7910. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7911. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7912. {}
  7913. };
  7914. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  7915. union niu_parent_id *id,
  7916. u8 ptype)
  7917. {
  7918. struct platform_device *plat_dev;
  7919. struct niu_parent *p;
  7920. int i;
  7921. niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
  7922. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  7923. NULL, 0);
  7924. if (IS_ERR(plat_dev))
  7925. return NULL;
  7926. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  7927. int err = device_create_file(&plat_dev->dev,
  7928. &niu_parent_attributes[i]);
  7929. if (err)
  7930. goto fail_unregister;
  7931. }
  7932. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7933. if (!p)
  7934. goto fail_unregister;
  7935. p->index = niu_parent_index++;
  7936. plat_dev->dev.platform_data = p;
  7937. p->plat_dev = plat_dev;
  7938. memcpy(&p->id, id, sizeof(*id));
  7939. p->plat_type = ptype;
  7940. INIT_LIST_HEAD(&p->list);
  7941. atomic_set(&p->refcnt, 0);
  7942. list_add(&p->list, &niu_parent_list);
  7943. spin_lock_init(&p->lock);
  7944. p->rxdma_clock_divider = 7500;
  7945. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7946. if (p->plat_type == PLAT_TYPE_NIU)
  7947. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7948. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7949. int index = i - CLASS_CODE_USER_PROG1;
  7950. p->tcam_key[index] = TCAM_KEY_TSEL;
  7951. p->flow_key[index] = (FLOW_KEY_IPSA |
  7952. FLOW_KEY_IPDA |
  7953. FLOW_KEY_PROTO |
  7954. (FLOW_KEY_L4_BYTE12 <<
  7955. FLOW_KEY_L4_0_SHIFT) |
  7956. (FLOW_KEY_L4_BYTE12 <<
  7957. FLOW_KEY_L4_1_SHIFT));
  7958. }
  7959. for (i = 0; i < LDN_MAX + 1; i++)
  7960. p->ldg_map[i] = LDG_INVALID;
  7961. return p;
  7962. fail_unregister:
  7963. platform_device_unregister(plat_dev);
  7964. return NULL;
  7965. }
  7966. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  7967. union niu_parent_id *id,
  7968. u8 ptype)
  7969. {
  7970. struct niu_parent *p, *tmp;
  7971. int port = np->port;
  7972. niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
  7973. ptype, port);
  7974. mutex_lock(&niu_parent_lock);
  7975. p = NULL;
  7976. list_for_each_entry(tmp, &niu_parent_list, list) {
  7977. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7978. p = tmp;
  7979. break;
  7980. }
  7981. }
  7982. if (!p)
  7983. p = niu_new_parent(np, id, ptype);
  7984. if (p) {
  7985. char port_name[6];
  7986. int err;
  7987. sprintf(port_name, "port%d", port);
  7988. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7989. &np->device->kobj,
  7990. port_name);
  7991. if (!err) {
  7992. p->ports[port] = np;
  7993. atomic_inc(&p->refcnt);
  7994. }
  7995. }
  7996. mutex_unlock(&niu_parent_lock);
  7997. return p;
  7998. }
  7999. static void niu_put_parent(struct niu *np)
  8000. {
  8001. struct niu_parent *p = np->parent;
  8002. u8 port = np->port;
  8003. char port_name[6];
  8004. BUG_ON(!p || p->ports[port] != np);
  8005. niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
  8006. sprintf(port_name, "port%d", port);
  8007. mutex_lock(&niu_parent_lock);
  8008. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  8009. p->ports[port] = NULL;
  8010. np->parent = NULL;
  8011. if (atomic_dec_and_test(&p->refcnt)) {
  8012. list_del(&p->list);
  8013. platform_device_unregister(p->plat_dev);
  8014. }
  8015. mutex_unlock(&niu_parent_lock);
  8016. }
  8017. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  8018. u64 *handle, gfp_t flag)
  8019. {
  8020. dma_addr_t dh;
  8021. void *ret;
  8022. ret = dma_alloc_coherent(dev, size, &dh, flag);
  8023. if (ret)
  8024. *handle = dh;
  8025. return ret;
  8026. }
  8027. static void niu_pci_free_coherent(struct device *dev, size_t size,
  8028. void *cpu_addr, u64 handle)
  8029. {
  8030. dma_free_coherent(dev, size, cpu_addr, handle);
  8031. }
  8032. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  8033. unsigned long offset, size_t size,
  8034. enum dma_data_direction direction)
  8035. {
  8036. return dma_map_page(dev, page, offset, size, direction);
  8037. }
  8038. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  8039. size_t size, enum dma_data_direction direction)
  8040. {
  8041. dma_unmap_page(dev, dma_address, size, direction);
  8042. }
  8043. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  8044. size_t size,
  8045. enum dma_data_direction direction)
  8046. {
  8047. return dma_map_single(dev, cpu_addr, size, direction);
  8048. }
  8049. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  8050. size_t size,
  8051. enum dma_data_direction direction)
  8052. {
  8053. dma_unmap_single(dev, dma_address, size, direction);
  8054. }
  8055. static const struct niu_ops niu_pci_ops = {
  8056. .alloc_coherent = niu_pci_alloc_coherent,
  8057. .free_coherent = niu_pci_free_coherent,
  8058. .map_page = niu_pci_map_page,
  8059. .unmap_page = niu_pci_unmap_page,
  8060. .map_single = niu_pci_map_single,
  8061. .unmap_single = niu_pci_unmap_single,
  8062. };
  8063. static void __devinit niu_driver_version(void)
  8064. {
  8065. static int niu_version_printed;
  8066. if (niu_version_printed++ == 0)
  8067. pr_info("%s", version);
  8068. }
  8069. static struct net_device * __devinit niu_alloc_and_init(
  8070. struct device *gen_dev, struct pci_dev *pdev,
  8071. struct of_device *op, const struct niu_ops *ops,
  8072. u8 port)
  8073. {
  8074. struct net_device *dev;
  8075. struct niu *np;
  8076. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8077. if (!dev) {
  8078. dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
  8079. return NULL;
  8080. }
  8081. SET_NETDEV_DEV(dev, gen_dev);
  8082. np = netdev_priv(dev);
  8083. np->dev = dev;
  8084. np->pdev = pdev;
  8085. np->op = op;
  8086. np->device = gen_dev;
  8087. np->ops = ops;
  8088. np->msg_enable = niu_debug;
  8089. spin_lock_init(&np->lock);
  8090. INIT_WORK(&np->reset_task, niu_reset_task);
  8091. np->port = port;
  8092. return dev;
  8093. }
  8094. static const struct net_device_ops niu_netdev_ops = {
  8095. .ndo_open = niu_open,
  8096. .ndo_stop = niu_close,
  8097. .ndo_start_xmit = niu_start_xmit,
  8098. .ndo_get_stats = niu_get_stats,
  8099. .ndo_set_multicast_list = niu_set_rx_mode,
  8100. .ndo_validate_addr = eth_validate_addr,
  8101. .ndo_set_mac_address = niu_set_mac_addr,
  8102. .ndo_do_ioctl = niu_ioctl,
  8103. .ndo_tx_timeout = niu_tx_timeout,
  8104. .ndo_change_mtu = niu_change_mtu,
  8105. };
  8106. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  8107. {
  8108. dev->netdev_ops = &niu_netdev_ops;
  8109. dev->ethtool_ops = &niu_ethtool_ops;
  8110. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8111. }
  8112. static void __devinit niu_device_announce(struct niu *np)
  8113. {
  8114. struct net_device *dev = np->dev;
  8115. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8116. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8117. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8118. dev->name,
  8119. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8120. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8121. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8122. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8123. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8124. np->vpd.phy_type);
  8125. } else {
  8126. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8127. dev->name,
  8128. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8129. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8130. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8131. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8132. "COPPER")),
  8133. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8134. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8135. np->vpd.phy_type);
  8136. }
  8137. }
  8138. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  8139. const struct pci_device_id *ent)
  8140. {
  8141. union niu_parent_id parent_id;
  8142. struct net_device *dev;
  8143. struct niu *np;
  8144. int err, pos;
  8145. u64 dma_mask;
  8146. u16 val16;
  8147. niu_driver_version();
  8148. err = pci_enable_device(pdev);
  8149. if (err) {
  8150. dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
  8151. "aborting.\n");
  8152. return err;
  8153. }
  8154. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8155. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8156. dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
  8157. "base addresses, aborting.\n");
  8158. err = -ENODEV;
  8159. goto err_out_disable_pdev;
  8160. }
  8161. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8162. if (err) {
  8163. dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
  8164. "aborting.\n");
  8165. goto err_out_disable_pdev;
  8166. }
  8167. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  8168. if (pos <= 0) {
  8169. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  8170. "aborting.\n");
  8171. goto err_out_free_res;
  8172. }
  8173. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8174. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8175. if (!dev) {
  8176. err = -ENOMEM;
  8177. goto err_out_free_res;
  8178. }
  8179. np = netdev_priv(dev);
  8180. memset(&parent_id, 0, sizeof(parent_id));
  8181. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8182. parent_id.pci.bus = pdev->bus->number;
  8183. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8184. np->parent = niu_get_parent(np, &parent_id,
  8185. PLAT_TYPE_ATLAS);
  8186. if (!np->parent) {
  8187. err = -ENOMEM;
  8188. goto err_out_free_dev;
  8189. }
  8190. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  8191. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  8192. val16 |= (PCI_EXP_DEVCTL_CERE |
  8193. PCI_EXP_DEVCTL_NFERE |
  8194. PCI_EXP_DEVCTL_FERE |
  8195. PCI_EXP_DEVCTL_URRE |
  8196. PCI_EXP_DEVCTL_RELAX_EN);
  8197. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  8198. dma_mask = DMA_44BIT_MASK;
  8199. err = pci_set_dma_mask(pdev, dma_mask);
  8200. if (!err) {
  8201. dev->features |= NETIF_F_HIGHDMA;
  8202. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8203. if (err) {
  8204. dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
  8205. "DMA for consistent allocations, "
  8206. "aborting.\n");
  8207. goto err_out_release_parent;
  8208. }
  8209. }
  8210. if (err || dma_mask == DMA_BIT_MASK(32)) {
  8211. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8212. if (err) {
  8213. dev_err(&pdev->dev, PFX "No usable DMA configuration, "
  8214. "aborting.\n");
  8215. goto err_out_release_parent;
  8216. }
  8217. }
  8218. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8219. np->regs = pci_ioremap_bar(pdev, 0);
  8220. if (!np->regs) {
  8221. dev_err(&pdev->dev, PFX "Cannot map device registers, "
  8222. "aborting.\n");
  8223. err = -ENOMEM;
  8224. goto err_out_release_parent;
  8225. }
  8226. pci_set_master(pdev);
  8227. pci_save_state(pdev);
  8228. dev->irq = pdev->irq;
  8229. niu_assign_netdev_ops(dev);
  8230. err = niu_get_invariants(np);
  8231. if (err) {
  8232. if (err != -ENODEV)
  8233. dev_err(&pdev->dev, PFX "Problem fetching invariants "
  8234. "of chip, aborting.\n");
  8235. goto err_out_iounmap;
  8236. }
  8237. err = register_netdev(dev);
  8238. if (err) {
  8239. dev_err(&pdev->dev, PFX "Cannot register net device, "
  8240. "aborting.\n");
  8241. goto err_out_iounmap;
  8242. }
  8243. pci_set_drvdata(pdev, dev);
  8244. niu_device_announce(np);
  8245. return 0;
  8246. err_out_iounmap:
  8247. if (np->regs) {
  8248. iounmap(np->regs);
  8249. np->regs = NULL;
  8250. }
  8251. err_out_release_parent:
  8252. niu_put_parent(np);
  8253. err_out_free_dev:
  8254. free_netdev(dev);
  8255. err_out_free_res:
  8256. pci_release_regions(pdev);
  8257. err_out_disable_pdev:
  8258. pci_disable_device(pdev);
  8259. pci_set_drvdata(pdev, NULL);
  8260. return err;
  8261. }
  8262. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  8263. {
  8264. struct net_device *dev = pci_get_drvdata(pdev);
  8265. if (dev) {
  8266. struct niu *np = netdev_priv(dev);
  8267. unregister_netdev(dev);
  8268. if (np->regs) {
  8269. iounmap(np->regs);
  8270. np->regs = NULL;
  8271. }
  8272. niu_ldg_free(np);
  8273. niu_put_parent(np);
  8274. free_netdev(dev);
  8275. pci_release_regions(pdev);
  8276. pci_disable_device(pdev);
  8277. pci_set_drvdata(pdev, NULL);
  8278. }
  8279. }
  8280. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8281. {
  8282. struct net_device *dev = pci_get_drvdata(pdev);
  8283. struct niu *np = netdev_priv(dev);
  8284. unsigned long flags;
  8285. if (!netif_running(dev))
  8286. return 0;
  8287. flush_scheduled_work();
  8288. niu_netif_stop(np);
  8289. del_timer_sync(&np->timer);
  8290. spin_lock_irqsave(&np->lock, flags);
  8291. niu_enable_interrupts(np, 0);
  8292. spin_unlock_irqrestore(&np->lock, flags);
  8293. netif_device_detach(dev);
  8294. spin_lock_irqsave(&np->lock, flags);
  8295. niu_stop_hw(np);
  8296. spin_unlock_irqrestore(&np->lock, flags);
  8297. pci_save_state(pdev);
  8298. return 0;
  8299. }
  8300. static int niu_resume(struct pci_dev *pdev)
  8301. {
  8302. struct net_device *dev = pci_get_drvdata(pdev);
  8303. struct niu *np = netdev_priv(dev);
  8304. unsigned long flags;
  8305. int err;
  8306. if (!netif_running(dev))
  8307. return 0;
  8308. pci_restore_state(pdev);
  8309. netif_device_attach(dev);
  8310. spin_lock_irqsave(&np->lock, flags);
  8311. err = niu_init_hw(np);
  8312. if (!err) {
  8313. np->timer.expires = jiffies + HZ;
  8314. add_timer(&np->timer);
  8315. niu_netif_start(np);
  8316. }
  8317. spin_unlock_irqrestore(&np->lock, flags);
  8318. return err;
  8319. }
  8320. static struct pci_driver niu_pci_driver = {
  8321. .name = DRV_MODULE_NAME,
  8322. .id_table = niu_pci_tbl,
  8323. .probe = niu_pci_init_one,
  8324. .remove = __devexit_p(niu_pci_remove_one),
  8325. .suspend = niu_suspend,
  8326. .resume = niu_resume,
  8327. };
  8328. #ifdef CONFIG_SPARC64
  8329. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8330. u64 *dma_addr, gfp_t flag)
  8331. {
  8332. unsigned long order = get_order(size);
  8333. unsigned long page = __get_free_pages(flag, order);
  8334. if (page == 0UL)
  8335. return NULL;
  8336. memset((char *)page, 0, PAGE_SIZE << order);
  8337. *dma_addr = __pa(page);
  8338. return (void *) page;
  8339. }
  8340. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8341. void *cpu_addr, u64 handle)
  8342. {
  8343. unsigned long order = get_order(size);
  8344. free_pages((unsigned long) cpu_addr, order);
  8345. }
  8346. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8347. unsigned long offset, size_t size,
  8348. enum dma_data_direction direction)
  8349. {
  8350. return page_to_phys(page) + offset;
  8351. }
  8352. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8353. size_t size, enum dma_data_direction direction)
  8354. {
  8355. /* Nothing to do. */
  8356. }
  8357. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8358. size_t size,
  8359. enum dma_data_direction direction)
  8360. {
  8361. return __pa(cpu_addr);
  8362. }
  8363. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8364. size_t size,
  8365. enum dma_data_direction direction)
  8366. {
  8367. /* Nothing to do. */
  8368. }
  8369. static const struct niu_ops niu_phys_ops = {
  8370. .alloc_coherent = niu_phys_alloc_coherent,
  8371. .free_coherent = niu_phys_free_coherent,
  8372. .map_page = niu_phys_map_page,
  8373. .unmap_page = niu_phys_unmap_page,
  8374. .map_single = niu_phys_map_single,
  8375. .unmap_single = niu_phys_unmap_single,
  8376. };
  8377. static unsigned long res_size(struct resource *r)
  8378. {
  8379. return r->end - r->start + 1UL;
  8380. }
  8381. static int __devinit niu_of_probe(struct of_device *op,
  8382. const struct of_device_id *match)
  8383. {
  8384. union niu_parent_id parent_id;
  8385. struct net_device *dev;
  8386. struct niu *np;
  8387. const u32 *reg;
  8388. int err;
  8389. niu_driver_version();
  8390. reg = of_get_property(op->node, "reg", NULL);
  8391. if (!reg) {
  8392. dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
  8393. op->node->full_name);
  8394. return -ENODEV;
  8395. }
  8396. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8397. &niu_phys_ops, reg[0] & 0x1);
  8398. if (!dev) {
  8399. err = -ENOMEM;
  8400. goto err_out;
  8401. }
  8402. np = netdev_priv(dev);
  8403. memset(&parent_id, 0, sizeof(parent_id));
  8404. parent_id.of = of_get_parent(op->node);
  8405. np->parent = niu_get_parent(np, &parent_id,
  8406. PLAT_TYPE_NIU);
  8407. if (!np->parent) {
  8408. err = -ENOMEM;
  8409. goto err_out_free_dev;
  8410. }
  8411. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8412. np->regs = of_ioremap(&op->resource[1], 0,
  8413. res_size(&op->resource[1]),
  8414. "niu regs");
  8415. if (!np->regs) {
  8416. dev_err(&op->dev, PFX "Cannot map device registers, "
  8417. "aborting.\n");
  8418. err = -ENOMEM;
  8419. goto err_out_release_parent;
  8420. }
  8421. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8422. res_size(&op->resource[2]),
  8423. "niu vregs-1");
  8424. if (!np->vir_regs_1) {
  8425. dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
  8426. "aborting.\n");
  8427. err = -ENOMEM;
  8428. goto err_out_iounmap;
  8429. }
  8430. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8431. res_size(&op->resource[3]),
  8432. "niu vregs-2");
  8433. if (!np->vir_regs_2) {
  8434. dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
  8435. "aborting.\n");
  8436. err = -ENOMEM;
  8437. goto err_out_iounmap;
  8438. }
  8439. niu_assign_netdev_ops(dev);
  8440. err = niu_get_invariants(np);
  8441. if (err) {
  8442. if (err != -ENODEV)
  8443. dev_err(&op->dev, PFX "Problem fetching invariants "
  8444. "of chip, aborting.\n");
  8445. goto err_out_iounmap;
  8446. }
  8447. err = register_netdev(dev);
  8448. if (err) {
  8449. dev_err(&op->dev, PFX "Cannot register net device, "
  8450. "aborting.\n");
  8451. goto err_out_iounmap;
  8452. }
  8453. dev_set_drvdata(&op->dev, dev);
  8454. niu_device_announce(np);
  8455. return 0;
  8456. err_out_iounmap:
  8457. if (np->vir_regs_1) {
  8458. of_iounmap(&op->resource[2], np->vir_regs_1,
  8459. res_size(&op->resource[2]));
  8460. np->vir_regs_1 = NULL;
  8461. }
  8462. if (np->vir_regs_2) {
  8463. of_iounmap(&op->resource[3], np->vir_regs_2,
  8464. res_size(&op->resource[3]));
  8465. np->vir_regs_2 = NULL;
  8466. }
  8467. if (np->regs) {
  8468. of_iounmap(&op->resource[1], np->regs,
  8469. res_size(&op->resource[1]));
  8470. np->regs = NULL;
  8471. }
  8472. err_out_release_parent:
  8473. niu_put_parent(np);
  8474. err_out_free_dev:
  8475. free_netdev(dev);
  8476. err_out:
  8477. return err;
  8478. }
  8479. static int __devexit niu_of_remove(struct of_device *op)
  8480. {
  8481. struct net_device *dev = dev_get_drvdata(&op->dev);
  8482. if (dev) {
  8483. struct niu *np = netdev_priv(dev);
  8484. unregister_netdev(dev);
  8485. if (np->vir_regs_1) {
  8486. of_iounmap(&op->resource[2], np->vir_regs_1,
  8487. res_size(&op->resource[2]));
  8488. np->vir_regs_1 = NULL;
  8489. }
  8490. if (np->vir_regs_2) {
  8491. of_iounmap(&op->resource[3], np->vir_regs_2,
  8492. res_size(&op->resource[3]));
  8493. np->vir_regs_2 = NULL;
  8494. }
  8495. if (np->regs) {
  8496. of_iounmap(&op->resource[1], np->regs,
  8497. res_size(&op->resource[1]));
  8498. np->regs = NULL;
  8499. }
  8500. niu_ldg_free(np);
  8501. niu_put_parent(np);
  8502. free_netdev(dev);
  8503. dev_set_drvdata(&op->dev, NULL);
  8504. }
  8505. return 0;
  8506. }
  8507. static const struct of_device_id niu_match[] = {
  8508. {
  8509. .name = "network",
  8510. .compatible = "SUNW,niusl",
  8511. },
  8512. {},
  8513. };
  8514. MODULE_DEVICE_TABLE(of, niu_match);
  8515. static struct of_platform_driver niu_of_driver = {
  8516. .name = "niu",
  8517. .match_table = niu_match,
  8518. .probe = niu_of_probe,
  8519. .remove = __devexit_p(niu_of_remove),
  8520. };
  8521. #endif /* CONFIG_SPARC64 */
  8522. static int __init niu_init(void)
  8523. {
  8524. int err = 0;
  8525. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8526. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8527. #ifdef CONFIG_SPARC64
  8528. err = of_register_driver(&niu_of_driver, &of_bus_type);
  8529. #endif
  8530. if (!err) {
  8531. err = pci_register_driver(&niu_pci_driver);
  8532. #ifdef CONFIG_SPARC64
  8533. if (err)
  8534. of_unregister_driver(&niu_of_driver);
  8535. #endif
  8536. }
  8537. return err;
  8538. }
  8539. static void __exit niu_exit(void)
  8540. {
  8541. pci_unregister_driver(&niu_pci_driver);
  8542. #ifdef CONFIG_SPARC64
  8543. of_unregister_driver(&niu_of_driver);
  8544. #endif
  8545. }
  8546. module_init(niu_init);
  8547. module_exit(niu_exit);