eq.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721
  1. /*
  2. * Copyright (c) 2005, 2006, 2007, 2008 Mellanox Technologies. All rights reserved.
  3. * Copyright (c) 2005, 2006, 2007 Cisco Systems, Inc. All rights reserved.
  4. *
  5. * This software is available to you under a choice of one of two
  6. * licenses. You may choose to be licensed under the terms of the GNU
  7. * General Public License (GPL) Version 2, available from the file
  8. * COPYING in the main directory of this source tree, or the
  9. * OpenIB.org BSD license below:
  10. *
  11. * Redistribution and use in source and binary forms, with or
  12. * without modification, are permitted provided that the following
  13. * conditions are met:
  14. *
  15. * - Redistributions of source code must retain the above
  16. * copyright notice, this list of conditions and the following
  17. * disclaimer.
  18. *
  19. * - Redistributions in binary form must reproduce the above
  20. * copyright notice, this list of conditions and the following
  21. * disclaimer in the documentation and/or other materials
  22. * provided with the distribution.
  23. *
  24. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31. * SOFTWARE.
  32. */
  33. #include <linux/init.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/mm.h>
  36. #include <linux/dma-mapping.h>
  37. #include <linux/mlx4/cmd.h>
  38. #include "mlx4.h"
  39. #include "fw.h"
  40. enum {
  41. MLX4_NUM_ASYNC_EQE = 0x100,
  42. MLX4_NUM_SPARE_EQE = 0x80,
  43. MLX4_EQ_ENTRY_SIZE = 0x20
  44. };
  45. /*
  46. * Must be packed because start is 64 bits but only aligned to 32 bits.
  47. */
  48. struct mlx4_eq_context {
  49. __be32 flags;
  50. u16 reserved1[3];
  51. __be16 page_offset;
  52. u8 log_eq_size;
  53. u8 reserved2[4];
  54. u8 eq_period;
  55. u8 reserved3;
  56. u8 eq_max_count;
  57. u8 reserved4[3];
  58. u8 intr;
  59. u8 log_page_size;
  60. u8 reserved5[2];
  61. u8 mtt_base_addr_h;
  62. __be32 mtt_base_addr_l;
  63. u32 reserved6[2];
  64. __be32 consumer_index;
  65. __be32 producer_index;
  66. u32 reserved7[4];
  67. };
  68. #define MLX4_EQ_STATUS_OK ( 0 << 28)
  69. #define MLX4_EQ_STATUS_WRITE_FAIL (10 << 28)
  70. #define MLX4_EQ_OWNER_SW ( 0 << 24)
  71. #define MLX4_EQ_OWNER_HW ( 1 << 24)
  72. #define MLX4_EQ_FLAG_EC ( 1 << 18)
  73. #define MLX4_EQ_FLAG_OI ( 1 << 17)
  74. #define MLX4_EQ_STATE_ARMED ( 9 << 8)
  75. #define MLX4_EQ_STATE_FIRED (10 << 8)
  76. #define MLX4_EQ_STATE_ALWAYS_ARMED (11 << 8)
  77. #define MLX4_ASYNC_EVENT_MASK ((1ull << MLX4_EVENT_TYPE_PATH_MIG) | \
  78. (1ull << MLX4_EVENT_TYPE_COMM_EST) | \
  79. (1ull << MLX4_EVENT_TYPE_SQ_DRAINED) | \
  80. (1ull << MLX4_EVENT_TYPE_CQ_ERROR) | \
  81. (1ull << MLX4_EVENT_TYPE_WQ_CATAS_ERROR) | \
  82. (1ull << MLX4_EVENT_TYPE_EEC_CATAS_ERROR) | \
  83. (1ull << MLX4_EVENT_TYPE_PATH_MIG_FAILED) | \
  84. (1ull << MLX4_EVENT_TYPE_WQ_INVAL_REQ_ERROR) | \
  85. (1ull << MLX4_EVENT_TYPE_WQ_ACCESS_ERROR) | \
  86. (1ull << MLX4_EVENT_TYPE_PORT_CHANGE) | \
  87. (1ull << MLX4_EVENT_TYPE_ECC_DETECT) | \
  88. (1ull << MLX4_EVENT_TYPE_SRQ_CATAS_ERROR) | \
  89. (1ull << MLX4_EVENT_TYPE_SRQ_QP_LAST_WQE) | \
  90. (1ull << MLX4_EVENT_TYPE_SRQ_LIMIT) | \
  91. (1ull << MLX4_EVENT_TYPE_CMD))
  92. struct mlx4_eqe {
  93. u8 reserved1;
  94. u8 type;
  95. u8 reserved2;
  96. u8 subtype;
  97. union {
  98. u32 raw[6];
  99. struct {
  100. __be32 cqn;
  101. } __attribute__((packed)) comp;
  102. struct {
  103. u16 reserved1;
  104. __be16 token;
  105. u32 reserved2;
  106. u8 reserved3[3];
  107. u8 status;
  108. __be64 out_param;
  109. } __attribute__((packed)) cmd;
  110. struct {
  111. __be32 qpn;
  112. } __attribute__((packed)) qp;
  113. struct {
  114. __be32 srqn;
  115. } __attribute__((packed)) srq;
  116. struct {
  117. __be32 cqn;
  118. u32 reserved1;
  119. u8 reserved2[3];
  120. u8 syndrome;
  121. } __attribute__((packed)) cq_err;
  122. struct {
  123. u32 reserved1[2];
  124. __be32 port;
  125. } __attribute__((packed)) port_change;
  126. } event;
  127. u8 reserved3[3];
  128. u8 owner;
  129. } __attribute__((packed));
  130. static void eq_set_ci(struct mlx4_eq *eq, int req_not)
  131. {
  132. __raw_writel((__force u32) cpu_to_be32((eq->cons_index & 0xffffff) |
  133. req_not << 31),
  134. eq->doorbell);
  135. /* We still want ordering, just not swabbing, so add a barrier */
  136. mb();
  137. }
  138. static struct mlx4_eqe *get_eqe(struct mlx4_eq *eq, u32 entry)
  139. {
  140. unsigned long off = (entry & (eq->nent - 1)) * MLX4_EQ_ENTRY_SIZE;
  141. return eq->page_list[off / PAGE_SIZE].buf + off % PAGE_SIZE;
  142. }
  143. static struct mlx4_eqe *next_eqe_sw(struct mlx4_eq *eq)
  144. {
  145. struct mlx4_eqe *eqe = get_eqe(eq, eq->cons_index);
  146. return !!(eqe->owner & 0x80) ^ !!(eq->cons_index & eq->nent) ? NULL : eqe;
  147. }
  148. static int mlx4_eq_int(struct mlx4_dev *dev, struct mlx4_eq *eq)
  149. {
  150. struct mlx4_eqe *eqe;
  151. int cqn;
  152. int eqes_found = 0;
  153. int set_ci = 0;
  154. int port;
  155. while ((eqe = next_eqe_sw(eq))) {
  156. /*
  157. * Make sure we read EQ entry contents after we've
  158. * checked the ownership bit.
  159. */
  160. rmb();
  161. switch (eqe->type) {
  162. case MLX4_EVENT_TYPE_COMP:
  163. cqn = be32_to_cpu(eqe->event.comp.cqn) & 0xffffff;
  164. mlx4_cq_completion(dev, cqn);
  165. break;
  166. case MLX4_EVENT_TYPE_PATH_MIG:
  167. case MLX4_EVENT_TYPE_COMM_EST:
  168. case MLX4_EVENT_TYPE_SQ_DRAINED:
  169. case MLX4_EVENT_TYPE_SRQ_QP_LAST_WQE:
  170. case MLX4_EVENT_TYPE_WQ_CATAS_ERROR:
  171. case MLX4_EVENT_TYPE_PATH_MIG_FAILED:
  172. case MLX4_EVENT_TYPE_WQ_INVAL_REQ_ERROR:
  173. case MLX4_EVENT_TYPE_WQ_ACCESS_ERROR:
  174. mlx4_qp_event(dev, be32_to_cpu(eqe->event.qp.qpn) & 0xffffff,
  175. eqe->type);
  176. break;
  177. case MLX4_EVENT_TYPE_SRQ_LIMIT:
  178. case MLX4_EVENT_TYPE_SRQ_CATAS_ERROR:
  179. mlx4_srq_event(dev, be32_to_cpu(eqe->event.srq.srqn) & 0xffffff,
  180. eqe->type);
  181. break;
  182. case MLX4_EVENT_TYPE_CMD:
  183. mlx4_cmd_event(dev,
  184. be16_to_cpu(eqe->event.cmd.token),
  185. eqe->event.cmd.status,
  186. be64_to_cpu(eqe->event.cmd.out_param));
  187. break;
  188. case MLX4_EVENT_TYPE_PORT_CHANGE:
  189. port = be32_to_cpu(eqe->event.port_change.port) >> 28;
  190. if (eqe->subtype == MLX4_PORT_CHANGE_SUBTYPE_DOWN) {
  191. mlx4_dispatch_event(dev, MLX4_DEV_EVENT_PORT_DOWN,
  192. port);
  193. mlx4_priv(dev)->sense.do_sense_port[port] = 1;
  194. } else {
  195. mlx4_dispatch_event(dev, MLX4_DEV_EVENT_PORT_UP,
  196. port);
  197. mlx4_priv(dev)->sense.do_sense_port[port] = 0;
  198. }
  199. break;
  200. case MLX4_EVENT_TYPE_CQ_ERROR:
  201. mlx4_warn(dev, "CQ %s on CQN %06x\n",
  202. eqe->event.cq_err.syndrome == 1 ?
  203. "overrun" : "access violation",
  204. be32_to_cpu(eqe->event.cq_err.cqn) & 0xffffff);
  205. mlx4_cq_event(dev, be32_to_cpu(eqe->event.cq_err.cqn),
  206. eqe->type);
  207. break;
  208. case MLX4_EVENT_TYPE_EQ_OVERFLOW:
  209. mlx4_warn(dev, "EQ overrun on EQN %d\n", eq->eqn);
  210. break;
  211. case MLX4_EVENT_TYPE_EEC_CATAS_ERROR:
  212. case MLX4_EVENT_TYPE_ECC_DETECT:
  213. default:
  214. mlx4_warn(dev, "Unhandled event %02x(%02x) on EQ %d at index %u\n",
  215. eqe->type, eqe->subtype, eq->eqn, eq->cons_index);
  216. break;
  217. };
  218. ++eq->cons_index;
  219. eqes_found = 1;
  220. ++set_ci;
  221. /*
  222. * The HCA will think the queue has overflowed if we
  223. * don't tell it we've been processing events. We
  224. * create our EQs with MLX4_NUM_SPARE_EQE extra
  225. * entries, so we must update our consumer index at
  226. * least that often.
  227. */
  228. if (unlikely(set_ci >= MLX4_NUM_SPARE_EQE)) {
  229. eq_set_ci(eq, 0);
  230. set_ci = 0;
  231. }
  232. }
  233. eq_set_ci(eq, 1);
  234. return eqes_found;
  235. }
  236. static irqreturn_t mlx4_interrupt(int irq, void *dev_ptr)
  237. {
  238. struct mlx4_dev *dev = dev_ptr;
  239. struct mlx4_priv *priv = mlx4_priv(dev);
  240. int work = 0;
  241. int i;
  242. writel(priv->eq_table.clr_mask, priv->eq_table.clr_int);
  243. for (i = 0; i < dev->caps.num_comp_vectors + 1; ++i)
  244. work |= mlx4_eq_int(dev, &priv->eq_table.eq[i]);
  245. return IRQ_RETVAL(work);
  246. }
  247. static irqreturn_t mlx4_msi_x_interrupt(int irq, void *eq_ptr)
  248. {
  249. struct mlx4_eq *eq = eq_ptr;
  250. struct mlx4_dev *dev = eq->dev;
  251. mlx4_eq_int(dev, eq);
  252. /* MSI-X vectors always belong to us */
  253. return IRQ_HANDLED;
  254. }
  255. static int mlx4_MAP_EQ(struct mlx4_dev *dev, u64 event_mask, int unmap,
  256. int eq_num)
  257. {
  258. return mlx4_cmd(dev, event_mask, (unmap << 31) | eq_num,
  259. 0, MLX4_CMD_MAP_EQ, MLX4_CMD_TIME_CLASS_B);
  260. }
  261. static int mlx4_SW2HW_EQ(struct mlx4_dev *dev, struct mlx4_cmd_mailbox *mailbox,
  262. int eq_num)
  263. {
  264. return mlx4_cmd(dev, mailbox->dma, eq_num, 0, MLX4_CMD_SW2HW_EQ,
  265. MLX4_CMD_TIME_CLASS_A);
  266. }
  267. static int mlx4_HW2SW_EQ(struct mlx4_dev *dev, struct mlx4_cmd_mailbox *mailbox,
  268. int eq_num)
  269. {
  270. return mlx4_cmd_box(dev, 0, mailbox->dma, eq_num, 0, MLX4_CMD_HW2SW_EQ,
  271. MLX4_CMD_TIME_CLASS_A);
  272. }
  273. static int mlx4_num_eq_uar(struct mlx4_dev *dev)
  274. {
  275. /*
  276. * Each UAR holds 4 EQ doorbells. To figure out how many UARs
  277. * we need to map, take the difference of highest index and
  278. * the lowest index we'll use and add 1.
  279. */
  280. return (dev->caps.num_comp_vectors + 1 + dev->caps.reserved_eqs) / 4 -
  281. dev->caps.reserved_eqs / 4 + 1;
  282. }
  283. static void __iomem *mlx4_get_eq_uar(struct mlx4_dev *dev, struct mlx4_eq *eq)
  284. {
  285. struct mlx4_priv *priv = mlx4_priv(dev);
  286. int index;
  287. index = eq->eqn / 4 - dev->caps.reserved_eqs / 4;
  288. if (!priv->eq_table.uar_map[index]) {
  289. priv->eq_table.uar_map[index] =
  290. ioremap(pci_resource_start(dev->pdev, 2) +
  291. ((eq->eqn / 4) << PAGE_SHIFT),
  292. PAGE_SIZE);
  293. if (!priv->eq_table.uar_map[index]) {
  294. mlx4_err(dev, "Couldn't map EQ doorbell for EQN 0x%06x\n",
  295. eq->eqn);
  296. return NULL;
  297. }
  298. }
  299. return priv->eq_table.uar_map[index] + 0x800 + 8 * (eq->eqn % 4);
  300. }
  301. static int mlx4_create_eq(struct mlx4_dev *dev, int nent,
  302. u8 intr, struct mlx4_eq *eq)
  303. {
  304. struct mlx4_priv *priv = mlx4_priv(dev);
  305. struct mlx4_cmd_mailbox *mailbox;
  306. struct mlx4_eq_context *eq_context;
  307. int npages;
  308. u64 *dma_list = NULL;
  309. dma_addr_t t;
  310. u64 mtt_addr;
  311. int err = -ENOMEM;
  312. int i;
  313. eq->dev = dev;
  314. eq->nent = roundup_pow_of_two(max(nent, 2));
  315. npages = PAGE_ALIGN(eq->nent * MLX4_EQ_ENTRY_SIZE) / PAGE_SIZE;
  316. eq->page_list = kmalloc(npages * sizeof *eq->page_list,
  317. GFP_KERNEL);
  318. if (!eq->page_list)
  319. goto err_out;
  320. for (i = 0; i < npages; ++i)
  321. eq->page_list[i].buf = NULL;
  322. dma_list = kmalloc(npages * sizeof *dma_list, GFP_KERNEL);
  323. if (!dma_list)
  324. goto err_out_free;
  325. mailbox = mlx4_alloc_cmd_mailbox(dev);
  326. if (IS_ERR(mailbox))
  327. goto err_out_free;
  328. eq_context = mailbox->buf;
  329. for (i = 0; i < npages; ++i) {
  330. eq->page_list[i].buf = dma_alloc_coherent(&dev->pdev->dev,
  331. PAGE_SIZE, &t, GFP_KERNEL);
  332. if (!eq->page_list[i].buf)
  333. goto err_out_free_pages;
  334. dma_list[i] = t;
  335. eq->page_list[i].map = t;
  336. memset(eq->page_list[i].buf, 0, PAGE_SIZE);
  337. }
  338. eq->eqn = mlx4_bitmap_alloc(&priv->eq_table.bitmap);
  339. if (eq->eqn == -1)
  340. goto err_out_free_pages;
  341. eq->doorbell = mlx4_get_eq_uar(dev, eq);
  342. if (!eq->doorbell) {
  343. err = -ENOMEM;
  344. goto err_out_free_eq;
  345. }
  346. err = mlx4_mtt_init(dev, npages, PAGE_SHIFT, &eq->mtt);
  347. if (err)
  348. goto err_out_free_eq;
  349. err = mlx4_write_mtt(dev, &eq->mtt, 0, npages, dma_list);
  350. if (err)
  351. goto err_out_free_mtt;
  352. memset(eq_context, 0, sizeof *eq_context);
  353. eq_context->flags = cpu_to_be32(MLX4_EQ_STATUS_OK |
  354. MLX4_EQ_STATE_ARMED);
  355. eq_context->log_eq_size = ilog2(eq->nent);
  356. eq_context->intr = intr;
  357. eq_context->log_page_size = PAGE_SHIFT - MLX4_ICM_PAGE_SHIFT;
  358. mtt_addr = mlx4_mtt_addr(dev, &eq->mtt);
  359. eq_context->mtt_base_addr_h = mtt_addr >> 32;
  360. eq_context->mtt_base_addr_l = cpu_to_be32(mtt_addr & 0xffffffff);
  361. err = mlx4_SW2HW_EQ(dev, mailbox, eq->eqn);
  362. if (err) {
  363. mlx4_warn(dev, "SW2HW_EQ failed (%d)\n", err);
  364. goto err_out_free_mtt;
  365. }
  366. kfree(dma_list);
  367. mlx4_free_cmd_mailbox(dev, mailbox);
  368. eq->cons_index = 0;
  369. return err;
  370. err_out_free_mtt:
  371. mlx4_mtt_cleanup(dev, &eq->mtt);
  372. err_out_free_eq:
  373. mlx4_bitmap_free(&priv->eq_table.bitmap, eq->eqn);
  374. err_out_free_pages:
  375. for (i = 0; i < npages; ++i)
  376. if (eq->page_list[i].buf)
  377. dma_free_coherent(&dev->pdev->dev, PAGE_SIZE,
  378. eq->page_list[i].buf,
  379. eq->page_list[i].map);
  380. mlx4_free_cmd_mailbox(dev, mailbox);
  381. err_out_free:
  382. kfree(eq->page_list);
  383. kfree(dma_list);
  384. err_out:
  385. return err;
  386. }
  387. static void mlx4_free_eq(struct mlx4_dev *dev,
  388. struct mlx4_eq *eq)
  389. {
  390. struct mlx4_priv *priv = mlx4_priv(dev);
  391. struct mlx4_cmd_mailbox *mailbox;
  392. int err;
  393. int npages = PAGE_ALIGN(MLX4_EQ_ENTRY_SIZE * eq->nent) / PAGE_SIZE;
  394. int i;
  395. mailbox = mlx4_alloc_cmd_mailbox(dev);
  396. if (IS_ERR(mailbox))
  397. return;
  398. err = mlx4_HW2SW_EQ(dev, mailbox, eq->eqn);
  399. if (err)
  400. mlx4_warn(dev, "HW2SW_EQ failed (%d)\n", err);
  401. if (0) {
  402. mlx4_dbg(dev, "Dumping EQ context %02x:\n", eq->eqn);
  403. for (i = 0; i < sizeof (struct mlx4_eq_context) / 4; ++i) {
  404. if (i % 4 == 0)
  405. printk("[%02x] ", i * 4);
  406. printk(" %08x", be32_to_cpup(mailbox->buf + i * 4));
  407. if ((i + 1) % 4 == 0)
  408. printk("\n");
  409. }
  410. }
  411. mlx4_mtt_cleanup(dev, &eq->mtt);
  412. for (i = 0; i < npages; ++i)
  413. pci_free_consistent(dev->pdev, PAGE_SIZE,
  414. eq->page_list[i].buf,
  415. eq->page_list[i].map);
  416. kfree(eq->page_list);
  417. mlx4_bitmap_free(&priv->eq_table.bitmap, eq->eqn);
  418. mlx4_free_cmd_mailbox(dev, mailbox);
  419. }
  420. static void mlx4_free_irqs(struct mlx4_dev *dev)
  421. {
  422. struct mlx4_eq_table *eq_table = &mlx4_priv(dev)->eq_table;
  423. int i;
  424. if (eq_table->have_irq)
  425. free_irq(dev->pdev->irq, dev);
  426. for (i = 0; i < dev->caps.num_comp_vectors + 1; ++i)
  427. if (eq_table->eq[i].have_irq)
  428. free_irq(eq_table->eq[i].irq, eq_table->eq + i);
  429. kfree(eq_table->irq_names);
  430. }
  431. static int mlx4_map_clr_int(struct mlx4_dev *dev)
  432. {
  433. struct mlx4_priv *priv = mlx4_priv(dev);
  434. priv->clr_base = ioremap(pci_resource_start(dev->pdev, priv->fw.clr_int_bar) +
  435. priv->fw.clr_int_base, MLX4_CLR_INT_SIZE);
  436. if (!priv->clr_base) {
  437. mlx4_err(dev, "Couldn't map interrupt clear register, aborting.\n");
  438. return -ENOMEM;
  439. }
  440. return 0;
  441. }
  442. static void mlx4_unmap_clr_int(struct mlx4_dev *dev)
  443. {
  444. struct mlx4_priv *priv = mlx4_priv(dev);
  445. iounmap(priv->clr_base);
  446. }
  447. int mlx4_map_eq_icm(struct mlx4_dev *dev, u64 icm_virt)
  448. {
  449. struct mlx4_priv *priv = mlx4_priv(dev);
  450. int ret;
  451. /*
  452. * We assume that mapping one page is enough for the whole EQ
  453. * context table. This is fine with all current HCAs, because
  454. * we only use 32 EQs and each EQ uses 64 bytes of context
  455. * memory, or 1 KB total.
  456. */
  457. priv->eq_table.icm_virt = icm_virt;
  458. priv->eq_table.icm_page = alloc_page(GFP_HIGHUSER);
  459. if (!priv->eq_table.icm_page)
  460. return -ENOMEM;
  461. priv->eq_table.icm_dma = pci_map_page(dev->pdev, priv->eq_table.icm_page, 0,
  462. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  463. if (pci_dma_mapping_error(dev->pdev, priv->eq_table.icm_dma)) {
  464. __free_page(priv->eq_table.icm_page);
  465. return -ENOMEM;
  466. }
  467. ret = mlx4_MAP_ICM_page(dev, priv->eq_table.icm_dma, icm_virt);
  468. if (ret) {
  469. pci_unmap_page(dev->pdev, priv->eq_table.icm_dma, PAGE_SIZE,
  470. PCI_DMA_BIDIRECTIONAL);
  471. __free_page(priv->eq_table.icm_page);
  472. }
  473. return ret;
  474. }
  475. void mlx4_unmap_eq_icm(struct mlx4_dev *dev)
  476. {
  477. struct mlx4_priv *priv = mlx4_priv(dev);
  478. mlx4_UNMAP_ICM(dev, priv->eq_table.icm_virt, 1);
  479. pci_unmap_page(dev->pdev, priv->eq_table.icm_dma, PAGE_SIZE,
  480. PCI_DMA_BIDIRECTIONAL);
  481. __free_page(priv->eq_table.icm_page);
  482. }
  483. int mlx4_alloc_eq_table(struct mlx4_dev *dev)
  484. {
  485. struct mlx4_priv *priv = mlx4_priv(dev);
  486. priv->eq_table.eq = kcalloc(dev->caps.num_eqs - dev->caps.reserved_eqs,
  487. sizeof *priv->eq_table.eq, GFP_KERNEL);
  488. if (!priv->eq_table.eq)
  489. return -ENOMEM;
  490. return 0;
  491. }
  492. void mlx4_free_eq_table(struct mlx4_dev *dev)
  493. {
  494. kfree(mlx4_priv(dev)->eq_table.eq);
  495. }
  496. int mlx4_init_eq_table(struct mlx4_dev *dev)
  497. {
  498. struct mlx4_priv *priv = mlx4_priv(dev);
  499. int err;
  500. int i;
  501. priv->eq_table.uar_map = kcalloc(sizeof *priv->eq_table.uar_map,
  502. mlx4_num_eq_uar(dev), GFP_KERNEL);
  503. if (!priv->eq_table.uar_map) {
  504. err = -ENOMEM;
  505. goto err_out_free;
  506. }
  507. err = mlx4_bitmap_init(&priv->eq_table.bitmap, dev->caps.num_eqs,
  508. dev->caps.num_eqs - 1, dev->caps.reserved_eqs, 0);
  509. if (err)
  510. goto err_out_free;
  511. for (i = 0; i < mlx4_num_eq_uar(dev); ++i)
  512. priv->eq_table.uar_map[i] = NULL;
  513. err = mlx4_map_clr_int(dev);
  514. if (err)
  515. goto err_out_bitmap;
  516. priv->eq_table.clr_mask =
  517. swab32(1 << (priv->eq_table.inta_pin & 31));
  518. priv->eq_table.clr_int = priv->clr_base +
  519. (priv->eq_table.inta_pin < 32 ? 4 : 0);
  520. priv->eq_table.irq_names = kmalloc(16 * dev->caps.num_comp_vectors, GFP_KERNEL);
  521. if (!priv->eq_table.irq_names) {
  522. err = -ENOMEM;
  523. goto err_out_bitmap;
  524. }
  525. for (i = 0; i < dev->caps.num_comp_vectors; ++i) {
  526. err = mlx4_create_eq(dev, dev->caps.num_cqs + MLX4_NUM_SPARE_EQE,
  527. (dev->flags & MLX4_FLAG_MSI_X) ? i : 0,
  528. &priv->eq_table.eq[i]);
  529. if (err)
  530. goto err_out_unmap;
  531. }
  532. err = mlx4_create_eq(dev, MLX4_NUM_ASYNC_EQE + MLX4_NUM_SPARE_EQE,
  533. (dev->flags & MLX4_FLAG_MSI_X) ? dev->caps.num_comp_vectors : 0,
  534. &priv->eq_table.eq[dev->caps.num_comp_vectors]);
  535. if (err)
  536. goto err_out_comp;
  537. if (dev->flags & MLX4_FLAG_MSI_X) {
  538. static const char async_eq_name[] = "mlx4-async";
  539. const char *eq_name;
  540. for (i = 0; i < dev->caps.num_comp_vectors + 1; ++i) {
  541. if (i < dev->caps.num_comp_vectors) {
  542. snprintf(priv->eq_table.irq_names + i * 16, 16,
  543. "mlx4-comp-%d", i);
  544. eq_name = priv->eq_table.irq_names + i * 16;
  545. } else
  546. eq_name = async_eq_name;
  547. err = request_irq(priv->eq_table.eq[i].irq,
  548. mlx4_msi_x_interrupt, 0, eq_name,
  549. priv->eq_table.eq + i);
  550. if (err)
  551. goto err_out_async;
  552. priv->eq_table.eq[i].have_irq = 1;
  553. }
  554. } else {
  555. err = request_irq(dev->pdev->irq, mlx4_interrupt,
  556. IRQF_SHARED, DRV_NAME, dev);
  557. if (err)
  558. goto err_out_async;
  559. priv->eq_table.have_irq = 1;
  560. }
  561. err = mlx4_MAP_EQ(dev, MLX4_ASYNC_EVENT_MASK, 0,
  562. priv->eq_table.eq[dev->caps.num_comp_vectors].eqn);
  563. if (err)
  564. mlx4_warn(dev, "MAP_EQ for async EQ %d failed (%d)\n",
  565. priv->eq_table.eq[dev->caps.num_comp_vectors].eqn, err);
  566. for (i = 0; i < dev->caps.num_comp_vectors + 1; ++i)
  567. eq_set_ci(&priv->eq_table.eq[i], 1);
  568. return 0;
  569. err_out_async:
  570. mlx4_free_eq(dev, &priv->eq_table.eq[dev->caps.num_comp_vectors]);
  571. err_out_comp:
  572. i = dev->caps.num_comp_vectors - 1;
  573. err_out_unmap:
  574. while (i >= 0) {
  575. mlx4_free_eq(dev, &priv->eq_table.eq[i]);
  576. --i;
  577. }
  578. mlx4_unmap_clr_int(dev);
  579. mlx4_free_irqs(dev);
  580. err_out_bitmap:
  581. mlx4_bitmap_cleanup(&priv->eq_table.bitmap);
  582. err_out_free:
  583. kfree(priv->eq_table.uar_map);
  584. return err;
  585. }
  586. void mlx4_cleanup_eq_table(struct mlx4_dev *dev)
  587. {
  588. struct mlx4_priv *priv = mlx4_priv(dev);
  589. int i;
  590. mlx4_MAP_EQ(dev, MLX4_ASYNC_EVENT_MASK, 1,
  591. priv->eq_table.eq[dev->caps.num_comp_vectors].eqn);
  592. mlx4_free_irqs(dev);
  593. for (i = 0; i < dev->caps.num_comp_vectors + 1; ++i)
  594. mlx4_free_eq(dev, &priv->eq_table.eq[i]);
  595. mlx4_unmap_clr_int(dev);
  596. for (i = 0; i < mlx4_num_eq_uar(dev); ++i)
  597. if (priv->eq_table.uar_map[i])
  598. iounmap(priv->eq_table.uar_map[i]);
  599. mlx4_bitmap_cleanup(&priv->eq_table.bitmap);
  600. kfree(priv->eq_table.uar_map);
  601. }