forcedeth.c 192 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.64"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x000001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x000002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x000004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x000008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x000010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x000020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x000040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x000080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x000100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x000200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x000600 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_STATISTICS_V3 0x000e00 /* device supports hw statistics version 3 */
  86. #define DEV_HAS_TEST_EXTENDED 0x001000 /* device supports extended diagnostic test */
  87. #define DEV_HAS_MGMT_UNIT 0x002000 /* device supports management unit */
  88. #define DEV_HAS_CORRECT_MACADDR 0x004000 /* device supports correct mac address order */
  89. #define DEV_HAS_COLLISION_FIX 0x008000 /* device supports tx collision fix */
  90. #define DEV_HAS_PAUSEFRAME_TX_V1 0x010000 /* device supports tx pause frames version 1 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V2 0x020000 /* device supports tx pause frames version 2 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V3 0x040000 /* device supports tx pause frames version 3 */
  93. #define DEV_NEED_TX_LIMIT 0x080000 /* device needs to limit tx */
  94. #define DEV_HAS_GEAR_MODE 0x100000 /* device supports gear mode */
  95. enum {
  96. NvRegIrqStatus = 0x000,
  97. #define NVREG_IRQSTAT_MIIEVENT 0x040
  98. #define NVREG_IRQSTAT_MASK 0x83ff
  99. NvRegIrqMask = 0x004,
  100. #define NVREG_IRQ_RX_ERROR 0x0001
  101. #define NVREG_IRQ_RX 0x0002
  102. #define NVREG_IRQ_RX_NOBUF 0x0004
  103. #define NVREG_IRQ_TX_ERR 0x0008
  104. #define NVREG_IRQ_TX_OK 0x0010
  105. #define NVREG_IRQ_TIMER 0x0020
  106. #define NVREG_IRQ_LINK 0x0040
  107. #define NVREG_IRQ_RX_FORCED 0x0080
  108. #define NVREG_IRQ_TX_FORCED 0x0100
  109. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  110. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  111. #define NVREG_IRQMASK_CPU 0x0060
  112. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  113. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  114. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  115. NvRegUnknownSetupReg6 = 0x008,
  116. #define NVREG_UNKSETUP6_VAL 3
  117. /*
  118. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  119. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  120. */
  121. NvRegPollingInterval = 0x00c,
  122. #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
  123. #define NVREG_POLL_DEFAULT_CPU 13
  124. NvRegMSIMap0 = 0x020,
  125. NvRegMSIMap1 = 0x024,
  126. NvRegMSIIrqMask = 0x030,
  127. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  128. NvRegMisc1 = 0x080,
  129. #define NVREG_MISC1_PAUSE_TX 0x01
  130. #define NVREG_MISC1_HD 0x02
  131. #define NVREG_MISC1_FORCE 0x3b0f3c
  132. NvRegMacReset = 0x34,
  133. #define NVREG_MAC_RESET_ASSERT 0x0F3
  134. NvRegTransmitterControl = 0x084,
  135. #define NVREG_XMITCTL_START 0x01
  136. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  137. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  138. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  139. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  140. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  141. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  142. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  143. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  144. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  145. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  146. #define NVREG_XMITCTL_DATA_START 0x00100000
  147. #define NVREG_XMITCTL_DATA_READY 0x00010000
  148. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  149. NvRegTransmitterStatus = 0x088,
  150. #define NVREG_XMITSTAT_BUSY 0x01
  151. NvRegPacketFilterFlags = 0x8c,
  152. #define NVREG_PFF_PAUSE_RX 0x08
  153. #define NVREG_PFF_ALWAYS 0x7F0000
  154. #define NVREG_PFF_PROMISC 0x80
  155. #define NVREG_PFF_MYADDR 0x20
  156. #define NVREG_PFF_LOOPBACK 0x10
  157. NvRegOffloadConfig = 0x90,
  158. #define NVREG_OFFLOAD_HOMEPHY 0x601
  159. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  160. NvRegReceiverControl = 0x094,
  161. #define NVREG_RCVCTL_START 0x01
  162. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  163. NvRegReceiverStatus = 0x98,
  164. #define NVREG_RCVSTAT_BUSY 0x01
  165. NvRegSlotTime = 0x9c,
  166. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  167. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  168. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  169. #define NVREG_SLOTTIME_HALF 0x0000ff00
  170. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  171. #define NVREG_SLOTTIME_MASK 0x000000ff
  172. NvRegTxDeferral = 0xA0,
  173. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  174. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  175. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  176. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  177. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  178. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  179. NvRegRxDeferral = 0xA4,
  180. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  181. NvRegMacAddrA = 0xA8,
  182. NvRegMacAddrB = 0xAC,
  183. NvRegMulticastAddrA = 0xB0,
  184. #define NVREG_MCASTADDRA_FORCE 0x01
  185. NvRegMulticastAddrB = 0xB4,
  186. NvRegMulticastMaskA = 0xB8,
  187. #define NVREG_MCASTMASKA_NONE 0xffffffff
  188. NvRegMulticastMaskB = 0xBC,
  189. #define NVREG_MCASTMASKB_NONE 0xffff
  190. NvRegPhyInterface = 0xC0,
  191. #define PHY_RGMII 0x10000000
  192. NvRegBackOffControl = 0xC4,
  193. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  194. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  195. #define NVREG_BKOFFCTRL_SELECT 24
  196. #define NVREG_BKOFFCTRL_GEAR 12
  197. NvRegTxRingPhysAddr = 0x100,
  198. NvRegRxRingPhysAddr = 0x104,
  199. NvRegRingSizes = 0x108,
  200. #define NVREG_RINGSZ_TXSHIFT 0
  201. #define NVREG_RINGSZ_RXSHIFT 16
  202. NvRegTransmitPoll = 0x10c,
  203. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  204. NvRegLinkSpeed = 0x110,
  205. #define NVREG_LINKSPEED_FORCE 0x10000
  206. #define NVREG_LINKSPEED_10 1000
  207. #define NVREG_LINKSPEED_100 100
  208. #define NVREG_LINKSPEED_1000 50
  209. #define NVREG_LINKSPEED_MASK (0xFFF)
  210. NvRegUnknownSetupReg5 = 0x130,
  211. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  212. NvRegTxWatermark = 0x13c,
  213. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  214. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  215. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  216. NvRegTxRxControl = 0x144,
  217. #define NVREG_TXRXCTL_KICK 0x0001
  218. #define NVREG_TXRXCTL_BIT1 0x0002
  219. #define NVREG_TXRXCTL_BIT2 0x0004
  220. #define NVREG_TXRXCTL_IDLE 0x0008
  221. #define NVREG_TXRXCTL_RESET 0x0010
  222. #define NVREG_TXRXCTL_RXCHECK 0x0400
  223. #define NVREG_TXRXCTL_DESC_1 0
  224. #define NVREG_TXRXCTL_DESC_2 0x002100
  225. #define NVREG_TXRXCTL_DESC_3 0xc02200
  226. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  227. #define NVREG_TXRXCTL_VLANINS 0x00080
  228. NvRegTxRingPhysAddrHigh = 0x148,
  229. NvRegRxRingPhysAddrHigh = 0x14C,
  230. NvRegTxPauseFrame = 0x170,
  231. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  232. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  233. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  234. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  235. NvRegTxPauseFrameLimit = 0x174,
  236. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  237. NvRegMIIStatus = 0x180,
  238. #define NVREG_MIISTAT_ERROR 0x0001
  239. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  240. #define NVREG_MIISTAT_MASK_RW 0x0007
  241. #define NVREG_MIISTAT_MASK_ALL 0x000f
  242. NvRegMIIMask = 0x184,
  243. #define NVREG_MII_LINKCHANGE 0x0008
  244. NvRegAdapterControl = 0x188,
  245. #define NVREG_ADAPTCTL_START 0x02
  246. #define NVREG_ADAPTCTL_LINKUP 0x04
  247. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  248. #define NVREG_ADAPTCTL_RUNNING 0x100000
  249. #define NVREG_ADAPTCTL_PHYSHIFT 24
  250. NvRegMIISpeed = 0x18c,
  251. #define NVREG_MIISPEED_BIT8 (1<<8)
  252. #define NVREG_MIIDELAY 5
  253. NvRegMIIControl = 0x190,
  254. #define NVREG_MIICTL_INUSE 0x08000
  255. #define NVREG_MIICTL_WRITE 0x00400
  256. #define NVREG_MIICTL_ADDRSHIFT 5
  257. NvRegMIIData = 0x194,
  258. NvRegTxUnicast = 0x1a0,
  259. NvRegTxMulticast = 0x1a4,
  260. NvRegTxBroadcast = 0x1a8,
  261. NvRegWakeUpFlags = 0x200,
  262. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  263. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  264. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  265. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  266. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  267. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  268. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  269. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  270. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  271. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  272. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  273. NvRegMgmtUnitGetVersion = 0x204,
  274. #define NVREG_MGMTUNITGETVERSION 0x01
  275. NvRegMgmtUnitVersion = 0x208,
  276. #define NVREG_MGMTUNITVERSION 0x08
  277. NvRegPowerCap = 0x268,
  278. #define NVREG_POWERCAP_D3SUPP (1<<30)
  279. #define NVREG_POWERCAP_D2SUPP (1<<26)
  280. #define NVREG_POWERCAP_D1SUPP (1<<25)
  281. NvRegPowerState = 0x26c,
  282. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  283. #define NVREG_POWERSTATE_VALID 0x0100
  284. #define NVREG_POWERSTATE_MASK 0x0003
  285. #define NVREG_POWERSTATE_D0 0x0000
  286. #define NVREG_POWERSTATE_D1 0x0001
  287. #define NVREG_POWERSTATE_D2 0x0002
  288. #define NVREG_POWERSTATE_D3 0x0003
  289. NvRegMgmtUnitControl = 0x278,
  290. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  291. NvRegTxCnt = 0x280,
  292. NvRegTxZeroReXmt = 0x284,
  293. NvRegTxOneReXmt = 0x288,
  294. NvRegTxManyReXmt = 0x28c,
  295. NvRegTxLateCol = 0x290,
  296. NvRegTxUnderflow = 0x294,
  297. NvRegTxLossCarrier = 0x298,
  298. NvRegTxExcessDef = 0x29c,
  299. NvRegTxRetryErr = 0x2a0,
  300. NvRegRxFrameErr = 0x2a4,
  301. NvRegRxExtraByte = 0x2a8,
  302. NvRegRxLateCol = 0x2ac,
  303. NvRegRxRunt = 0x2b0,
  304. NvRegRxFrameTooLong = 0x2b4,
  305. NvRegRxOverflow = 0x2b8,
  306. NvRegRxFCSErr = 0x2bc,
  307. NvRegRxFrameAlignErr = 0x2c0,
  308. NvRegRxLenErr = 0x2c4,
  309. NvRegRxUnicast = 0x2c8,
  310. NvRegRxMulticast = 0x2cc,
  311. NvRegRxBroadcast = 0x2d0,
  312. NvRegTxDef = 0x2d4,
  313. NvRegTxFrame = 0x2d8,
  314. NvRegRxCnt = 0x2dc,
  315. NvRegTxPause = 0x2e0,
  316. NvRegRxPause = 0x2e4,
  317. NvRegRxDropFrame = 0x2e8,
  318. NvRegVlanControl = 0x300,
  319. #define NVREG_VLANCONTROL_ENABLE 0x2000
  320. NvRegMSIXMap0 = 0x3e0,
  321. NvRegMSIXMap1 = 0x3e4,
  322. NvRegMSIXIrqStatus = 0x3f0,
  323. NvRegPowerState2 = 0x600,
  324. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  325. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  326. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  327. };
  328. /* Big endian: should work, but is untested */
  329. struct ring_desc {
  330. __le32 buf;
  331. __le32 flaglen;
  332. };
  333. struct ring_desc_ex {
  334. __le32 bufhigh;
  335. __le32 buflow;
  336. __le32 txvlan;
  337. __le32 flaglen;
  338. };
  339. union ring_type {
  340. struct ring_desc* orig;
  341. struct ring_desc_ex* ex;
  342. };
  343. #define FLAG_MASK_V1 0xffff0000
  344. #define FLAG_MASK_V2 0xffffc000
  345. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  346. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  347. #define NV_TX_LASTPACKET (1<<16)
  348. #define NV_TX_RETRYERROR (1<<19)
  349. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  350. #define NV_TX_FORCED_INTERRUPT (1<<24)
  351. #define NV_TX_DEFERRED (1<<26)
  352. #define NV_TX_CARRIERLOST (1<<27)
  353. #define NV_TX_LATECOLLISION (1<<28)
  354. #define NV_TX_UNDERFLOW (1<<29)
  355. #define NV_TX_ERROR (1<<30)
  356. #define NV_TX_VALID (1<<31)
  357. #define NV_TX2_LASTPACKET (1<<29)
  358. #define NV_TX2_RETRYERROR (1<<18)
  359. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  360. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  361. #define NV_TX2_DEFERRED (1<<25)
  362. #define NV_TX2_CARRIERLOST (1<<26)
  363. #define NV_TX2_LATECOLLISION (1<<27)
  364. #define NV_TX2_UNDERFLOW (1<<28)
  365. /* error and valid are the same for both */
  366. #define NV_TX2_ERROR (1<<30)
  367. #define NV_TX2_VALID (1<<31)
  368. #define NV_TX2_TSO (1<<28)
  369. #define NV_TX2_TSO_SHIFT 14
  370. #define NV_TX2_TSO_MAX_SHIFT 14
  371. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  372. #define NV_TX2_CHECKSUM_L3 (1<<27)
  373. #define NV_TX2_CHECKSUM_L4 (1<<26)
  374. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  375. #define NV_RX_DESCRIPTORVALID (1<<16)
  376. #define NV_RX_MISSEDFRAME (1<<17)
  377. #define NV_RX_SUBSTRACT1 (1<<18)
  378. #define NV_RX_ERROR1 (1<<23)
  379. #define NV_RX_ERROR2 (1<<24)
  380. #define NV_RX_ERROR3 (1<<25)
  381. #define NV_RX_ERROR4 (1<<26)
  382. #define NV_RX_CRCERR (1<<27)
  383. #define NV_RX_OVERFLOW (1<<28)
  384. #define NV_RX_FRAMINGERR (1<<29)
  385. #define NV_RX_ERROR (1<<30)
  386. #define NV_RX_AVAIL (1<<31)
  387. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  388. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  389. #define NV_RX2_CHECKSUM_IP (0x10000000)
  390. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  391. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  392. #define NV_RX2_DESCRIPTORVALID (1<<29)
  393. #define NV_RX2_SUBSTRACT1 (1<<25)
  394. #define NV_RX2_ERROR1 (1<<18)
  395. #define NV_RX2_ERROR2 (1<<19)
  396. #define NV_RX2_ERROR3 (1<<20)
  397. #define NV_RX2_ERROR4 (1<<21)
  398. #define NV_RX2_CRCERR (1<<22)
  399. #define NV_RX2_OVERFLOW (1<<23)
  400. #define NV_RX2_FRAMINGERR (1<<24)
  401. /* error and avail are the same for both */
  402. #define NV_RX2_ERROR (1<<30)
  403. #define NV_RX2_AVAIL (1<<31)
  404. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  405. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  406. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  407. /* Miscelaneous hardware related defines: */
  408. #define NV_PCI_REGSZ_VER1 0x270
  409. #define NV_PCI_REGSZ_VER2 0x2d4
  410. #define NV_PCI_REGSZ_VER3 0x604
  411. #define NV_PCI_REGSZ_MAX 0x604
  412. /* various timeout delays: all in usec */
  413. #define NV_TXRX_RESET_DELAY 4
  414. #define NV_TXSTOP_DELAY1 10
  415. #define NV_TXSTOP_DELAY1MAX 500000
  416. #define NV_TXSTOP_DELAY2 100
  417. #define NV_RXSTOP_DELAY1 10
  418. #define NV_RXSTOP_DELAY1MAX 500000
  419. #define NV_RXSTOP_DELAY2 100
  420. #define NV_SETUP5_DELAY 5
  421. #define NV_SETUP5_DELAYMAX 50000
  422. #define NV_POWERUP_DELAY 5
  423. #define NV_POWERUP_DELAYMAX 5000
  424. #define NV_MIIBUSY_DELAY 50
  425. #define NV_MIIPHY_DELAY 10
  426. #define NV_MIIPHY_DELAYMAX 10000
  427. #define NV_MAC_RESET_DELAY 64
  428. #define NV_WAKEUPPATTERNS 5
  429. #define NV_WAKEUPMASKENTRIES 4
  430. /* General driver defaults */
  431. #define NV_WATCHDOG_TIMEO (5*HZ)
  432. #define RX_RING_DEFAULT 512
  433. #define TX_RING_DEFAULT 256
  434. #define RX_RING_MIN 128
  435. #define TX_RING_MIN 64
  436. #define RING_MAX_DESC_VER_1 1024
  437. #define RING_MAX_DESC_VER_2_3 16384
  438. /* rx/tx mac addr + type + vlan + align + slack*/
  439. #define NV_RX_HEADERS (64)
  440. /* even more slack. */
  441. #define NV_RX_ALLOC_PAD (64)
  442. /* maximum mtu size */
  443. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  444. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  445. #define OOM_REFILL (1+HZ/20)
  446. #define POLL_WAIT (1+HZ/100)
  447. #define LINK_TIMEOUT (3*HZ)
  448. #define STATS_INTERVAL (10*HZ)
  449. /*
  450. * desc_ver values:
  451. * The nic supports three different descriptor types:
  452. * - DESC_VER_1: Original
  453. * - DESC_VER_2: support for jumbo frames.
  454. * - DESC_VER_3: 64-bit format.
  455. */
  456. #define DESC_VER_1 1
  457. #define DESC_VER_2 2
  458. #define DESC_VER_3 3
  459. /* PHY defines */
  460. #define PHY_OUI_MARVELL 0x5043
  461. #define PHY_OUI_CICADA 0x03f1
  462. #define PHY_OUI_VITESSE 0x01c1
  463. #define PHY_OUI_REALTEK 0x0732
  464. #define PHY_OUI_REALTEK2 0x0020
  465. #define PHYID1_OUI_MASK 0x03ff
  466. #define PHYID1_OUI_SHFT 6
  467. #define PHYID2_OUI_MASK 0xfc00
  468. #define PHYID2_OUI_SHFT 10
  469. #define PHYID2_MODEL_MASK 0x03f0
  470. #define PHY_MODEL_REALTEK_8211 0x0110
  471. #define PHY_REV_MASK 0x0001
  472. #define PHY_REV_REALTEK_8211B 0x0000
  473. #define PHY_REV_REALTEK_8211C 0x0001
  474. #define PHY_MODEL_REALTEK_8201 0x0200
  475. #define PHY_MODEL_MARVELL_E3016 0x0220
  476. #define PHY_MARVELL_E3016_INITMASK 0x0300
  477. #define PHY_CICADA_INIT1 0x0f000
  478. #define PHY_CICADA_INIT2 0x0e00
  479. #define PHY_CICADA_INIT3 0x01000
  480. #define PHY_CICADA_INIT4 0x0200
  481. #define PHY_CICADA_INIT5 0x0004
  482. #define PHY_CICADA_INIT6 0x02000
  483. #define PHY_VITESSE_INIT_REG1 0x1f
  484. #define PHY_VITESSE_INIT_REG2 0x10
  485. #define PHY_VITESSE_INIT_REG3 0x11
  486. #define PHY_VITESSE_INIT_REG4 0x12
  487. #define PHY_VITESSE_INIT_MSK1 0xc
  488. #define PHY_VITESSE_INIT_MSK2 0x0180
  489. #define PHY_VITESSE_INIT1 0x52b5
  490. #define PHY_VITESSE_INIT2 0xaf8a
  491. #define PHY_VITESSE_INIT3 0x8
  492. #define PHY_VITESSE_INIT4 0x8f8a
  493. #define PHY_VITESSE_INIT5 0xaf86
  494. #define PHY_VITESSE_INIT6 0x8f86
  495. #define PHY_VITESSE_INIT7 0xaf82
  496. #define PHY_VITESSE_INIT8 0x0100
  497. #define PHY_VITESSE_INIT9 0x8f82
  498. #define PHY_VITESSE_INIT10 0x0
  499. #define PHY_REALTEK_INIT_REG1 0x1f
  500. #define PHY_REALTEK_INIT_REG2 0x19
  501. #define PHY_REALTEK_INIT_REG3 0x13
  502. #define PHY_REALTEK_INIT_REG4 0x14
  503. #define PHY_REALTEK_INIT_REG5 0x18
  504. #define PHY_REALTEK_INIT_REG6 0x11
  505. #define PHY_REALTEK_INIT_REG7 0x01
  506. #define PHY_REALTEK_INIT1 0x0000
  507. #define PHY_REALTEK_INIT2 0x8e00
  508. #define PHY_REALTEK_INIT3 0x0001
  509. #define PHY_REALTEK_INIT4 0xad17
  510. #define PHY_REALTEK_INIT5 0xfb54
  511. #define PHY_REALTEK_INIT6 0xf5c7
  512. #define PHY_REALTEK_INIT7 0x1000
  513. #define PHY_REALTEK_INIT8 0x0003
  514. #define PHY_REALTEK_INIT9 0x0008
  515. #define PHY_REALTEK_INIT10 0x0005
  516. #define PHY_REALTEK_INIT11 0x0200
  517. #define PHY_REALTEK_INIT_MSK1 0x0003
  518. #define PHY_GIGABIT 0x0100
  519. #define PHY_TIMEOUT 0x1
  520. #define PHY_ERROR 0x2
  521. #define PHY_100 0x1
  522. #define PHY_1000 0x2
  523. #define PHY_HALF 0x100
  524. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  525. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  526. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  527. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  528. #define NV_PAUSEFRAME_RX_REQ 0x0010
  529. #define NV_PAUSEFRAME_TX_REQ 0x0020
  530. #define NV_PAUSEFRAME_AUTONEG 0x0040
  531. /* MSI/MSI-X defines */
  532. #define NV_MSI_X_MAX_VECTORS 8
  533. #define NV_MSI_X_VECTORS_MASK 0x000f
  534. #define NV_MSI_CAPABLE 0x0010
  535. #define NV_MSI_X_CAPABLE 0x0020
  536. #define NV_MSI_ENABLED 0x0040
  537. #define NV_MSI_X_ENABLED 0x0080
  538. #define NV_MSI_X_VECTOR_ALL 0x0
  539. #define NV_MSI_X_VECTOR_RX 0x0
  540. #define NV_MSI_X_VECTOR_TX 0x1
  541. #define NV_MSI_X_VECTOR_OTHER 0x2
  542. #define NV_MSI_PRIV_OFFSET 0x68
  543. #define NV_MSI_PRIV_VALUE 0xffffffff
  544. #define NV_RESTART_TX 0x1
  545. #define NV_RESTART_RX 0x2
  546. #define NV_TX_LIMIT_COUNT 16
  547. #define NV_DYNAMIC_THRESHOLD 4
  548. #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
  549. /* statistics */
  550. struct nv_ethtool_str {
  551. char name[ETH_GSTRING_LEN];
  552. };
  553. static const struct nv_ethtool_str nv_estats_str[] = {
  554. { "tx_bytes" },
  555. { "tx_zero_rexmt" },
  556. { "tx_one_rexmt" },
  557. { "tx_many_rexmt" },
  558. { "tx_late_collision" },
  559. { "tx_fifo_errors" },
  560. { "tx_carrier_errors" },
  561. { "tx_excess_deferral" },
  562. { "tx_retry_error" },
  563. { "rx_frame_error" },
  564. { "rx_extra_byte" },
  565. { "rx_late_collision" },
  566. { "rx_runt" },
  567. { "rx_frame_too_long" },
  568. { "rx_over_errors" },
  569. { "rx_crc_errors" },
  570. { "rx_frame_align_error" },
  571. { "rx_length_error" },
  572. { "rx_unicast" },
  573. { "rx_multicast" },
  574. { "rx_broadcast" },
  575. { "rx_packets" },
  576. { "rx_errors_total" },
  577. { "tx_errors_total" },
  578. /* version 2 stats */
  579. { "tx_deferral" },
  580. { "tx_packets" },
  581. { "rx_bytes" },
  582. { "tx_pause" },
  583. { "rx_pause" },
  584. { "rx_drop_frame" },
  585. /* version 3 stats */
  586. { "tx_unicast" },
  587. { "tx_multicast" },
  588. { "tx_broadcast" }
  589. };
  590. struct nv_ethtool_stats {
  591. u64 tx_bytes;
  592. u64 tx_zero_rexmt;
  593. u64 tx_one_rexmt;
  594. u64 tx_many_rexmt;
  595. u64 tx_late_collision;
  596. u64 tx_fifo_errors;
  597. u64 tx_carrier_errors;
  598. u64 tx_excess_deferral;
  599. u64 tx_retry_error;
  600. u64 rx_frame_error;
  601. u64 rx_extra_byte;
  602. u64 rx_late_collision;
  603. u64 rx_runt;
  604. u64 rx_frame_too_long;
  605. u64 rx_over_errors;
  606. u64 rx_crc_errors;
  607. u64 rx_frame_align_error;
  608. u64 rx_length_error;
  609. u64 rx_unicast;
  610. u64 rx_multicast;
  611. u64 rx_broadcast;
  612. u64 rx_packets;
  613. u64 rx_errors_total;
  614. u64 tx_errors_total;
  615. /* version 2 stats */
  616. u64 tx_deferral;
  617. u64 tx_packets;
  618. u64 rx_bytes;
  619. u64 tx_pause;
  620. u64 rx_pause;
  621. u64 rx_drop_frame;
  622. /* version 3 stats */
  623. u64 tx_unicast;
  624. u64 tx_multicast;
  625. u64 tx_broadcast;
  626. };
  627. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  628. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  629. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  630. /* diagnostics */
  631. #define NV_TEST_COUNT_BASE 3
  632. #define NV_TEST_COUNT_EXTENDED 4
  633. static const struct nv_ethtool_str nv_etests_str[] = {
  634. { "link (online/offline)" },
  635. { "register (offline) " },
  636. { "interrupt (offline) " },
  637. { "loopback (offline) " }
  638. };
  639. struct register_test {
  640. __u32 reg;
  641. __u32 mask;
  642. };
  643. static const struct register_test nv_registers_test[] = {
  644. { NvRegUnknownSetupReg6, 0x01 },
  645. { NvRegMisc1, 0x03c },
  646. { NvRegOffloadConfig, 0x03ff },
  647. { NvRegMulticastAddrA, 0xffffffff },
  648. { NvRegTxWatermark, 0x0ff },
  649. { NvRegWakeUpFlags, 0x07777 },
  650. { 0,0 }
  651. };
  652. struct nv_skb_map {
  653. struct sk_buff *skb;
  654. dma_addr_t dma;
  655. unsigned int dma_len;
  656. struct ring_desc_ex *first_tx_desc;
  657. struct nv_skb_map *next_tx_ctx;
  658. };
  659. /*
  660. * SMP locking:
  661. * All hardware access under netdev_priv(dev)->lock, except the performance
  662. * critical parts:
  663. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  664. * by the arch code for interrupts.
  665. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  666. * needs netdev_priv(dev)->lock :-(
  667. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  668. */
  669. /* in dev: base, irq */
  670. struct fe_priv {
  671. spinlock_t lock;
  672. struct net_device *dev;
  673. struct napi_struct napi;
  674. /* General data:
  675. * Locking: spin_lock(&np->lock); */
  676. struct nv_ethtool_stats estats;
  677. int in_shutdown;
  678. u32 linkspeed;
  679. int duplex;
  680. int autoneg;
  681. int fixed_mode;
  682. int phyaddr;
  683. int wolenabled;
  684. unsigned int phy_oui;
  685. unsigned int phy_model;
  686. unsigned int phy_rev;
  687. u16 gigabit;
  688. int intr_test;
  689. int recover_error;
  690. int quiet_count;
  691. /* General data: RO fields */
  692. dma_addr_t ring_addr;
  693. struct pci_dev *pci_dev;
  694. u32 orig_mac[2];
  695. u32 events;
  696. u32 irqmask;
  697. u32 desc_ver;
  698. u32 txrxctl_bits;
  699. u32 vlanctl_bits;
  700. u32 driver_data;
  701. u32 device_id;
  702. u32 register_size;
  703. int rx_csum;
  704. u32 mac_in_use;
  705. int mgmt_version;
  706. int mgmt_sema;
  707. void __iomem *base;
  708. /* rx specific fields.
  709. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  710. */
  711. union ring_type get_rx, put_rx, first_rx, last_rx;
  712. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  713. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  714. struct nv_skb_map *rx_skb;
  715. union ring_type rx_ring;
  716. unsigned int rx_buf_sz;
  717. unsigned int pkt_limit;
  718. struct timer_list oom_kick;
  719. struct timer_list nic_poll;
  720. struct timer_list stats_poll;
  721. u32 nic_poll_irq;
  722. int rx_ring_size;
  723. /* media detection workaround.
  724. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  725. */
  726. int need_linktimer;
  727. unsigned long link_timeout;
  728. /*
  729. * tx specific fields.
  730. */
  731. union ring_type get_tx, put_tx, first_tx, last_tx;
  732. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  733. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  734. struct nv_skb_map *tx_skb;
  735. union ring_type tx_ring;
  736. u32 tx_flags;
  737. int tx_ring_size;
  738. int tx_limit;
  739. u32 tx_pkts_in_progress;
  740. struct nv_skb_map *tx_change_owner;
  741. struct nv_skb_map *tx_end_flip;
  742. int tx_stop;
  743. /* vlan fields */
  744. struct vlan_group *vlangrp;
  745. /* msi/msi-x fields */
  746. u32 msi_flags;
  747. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  748. /* flow control */
  749. u32 pause_flags;
  750. /* power saved state */
  751. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  752. /* for different msi-x irq type */
  753. char name_rx[IFNAMSIZ + 3]; /* -rx */
  754. char name_tx[IFNAMSIZ + 3]; /* -tx */
  755. char name_other[IFNAMSIZ + 6]; /* -other */
  756. };
  757. /*
  758. * Maximum number of loops until we assume that a bit in the irq mask
  759. * is stuck. Overridable with module param.
  760. */
  761. static int max_interrupt_work = 4;
  762. /*
  763. * Optimization can be either throuput mode or cpu mode
  764. *
  765. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  766. * CPU Mode: Interrupts are controlled by a timer.
  767. */
  768. enum {
  769. NV_OPTIMIZATION_MODE_THROUGHPUT,
  770. NV_OPTIMIZATION_MODE_CPU,
  771. NV_OPTIMIZATION_MODE_DYNAMIC
  772. };
  773. static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
  774. /*
  775. * Poll interval for timer irq
  776. *
  777. * This interval determines how frequent an interrupt is generated.
  778. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  779. * Min = 0, and Max = 65535
  780. */
  781. static int poll_interval = -1;
  782. /*
  783. * MSI interrupts
  784. */
  785. enum {
  786. NV_MSI_INT_DISABLED,
  787. NV_MSI_INT_ENABLED
  788. };
  789. static int msi = NV_MSI_INT_ENABLED;
  790. /*
  791. * MSIX interrupts
  792. */
  793. enum {
  794. NV_MSIX_INT_DISABLED,
  795. NV_MSIX_INT_ENABLED
  796. };
  797. static int msix = NV_MSIX_INT_ENABLED;
  798. /*
  799. * DMA 64bit
  800. */
  801. enum {
  802. NV_DMA_64BIT_DISABLED,
  803. NV_DMA_64BIT_ENABLED
  804. };
  805. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  806. /*
  807. * Crossover Detection
  808. * Realtek 8201 phy + some OEM boards do not work properly.
  809. */
  810. enum {
  811. NV_CROSSOVER_DETECTION_DISABLED,
  812. NV_CROSSOVER_DETECTION_ENABLED
  813. };
  814. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  815. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  816. {
  817. return netdev_priv(dev);
  818. }
  819. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  820. {
  821. return ((struct fe_priv *)netdev_priv(dev))->base;
  822. }
  823. static inline void pci_push(u8 __iomem *base)
  824. {
  825. /* force out pending posted writes */
  826. readl(base);
  827. }
  828. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  829. {
  830. return le32_to_cpu(prd->flaglen)
  831. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  832. }
  833. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  834. {
  835. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  836. }
  837. static bool nv_optimized(struct fe_priv *np)
  838. {
  839. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  840. return false;
  841. return true;
  842. }
  843. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  844. int delay, int delaymax, const char *msg)
  845. {
  846. u8 __iomem *base = get_hwbase(dev);
  847. pci_push(base);
  848. do {
  849. udelay(delay);
  850. delaymax -= delay;
  851. if (delaymax < 0) {
  852. if (msg)
  853. printk("%s", msg);
  854. return 1;
  855. }
  856. } while ((readl(base + offset) & mask) != target);
  857. return 0;
  858. }
  859. #define NV_SETUP_RX_RING 0x01
  860. #define NV_SETUP_TX_RING 0x02
  861. static inline u32 dma_low(dma_addr_t addr)
  862. {
  863. return addr;
  864. }
  865. static inline u32 dma_high(dma_addr_t addr)
  866. {
  867. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  868. }
  869. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  870. {
  871. struct fe_priv *np = get_nvpriv(dev);
  872. u8 __iomem *base = get_hwbase(dev);
  873. if (!nv_optimized(np)) {
  874. if (rxtx_flags & NV_SETUP_RX_RING) {
  875. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  876. }
  877. if (rxtx_flags & NV_SETUP_TX_RING) {
  878. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  879. }
  880. } else {
  881. if (rxtx_flags & NV_SETUP_RX_RING) {
  882. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  883. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  884. }
  885. if (rxtx_flags & NV_SETUP_TX_RING) {
  886. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  887. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  888. }
  889. }
  890. }
  891. static void free_rings(struct net_device *dev)
  892. {
  893. struct fe_priv *np = get_nvpriv(dev);
  894. if (!nv_optimized(np)) {
  895. if (np->rx_ring.orig)
  896. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  897. np->rx_ring.orig, np->ring_addr);
  898. } else {
  899. if (np->rx_ring.ex)
  900. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  901. np->rx_ring.ex, np->ring_addr);
  902. }
  903. if (np->rx_skb)
  904. kfree(np->rx_skb);
  905. if (np->tx_skb)
  906. kfree(np->tx_skb);
  907. }
  908. static int using_multi_irqs(struct net_device *dev)
  909. {
  910. struct fe_priv *np = get_nvpriv(dev);
  911. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  912. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  913. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  914. return 0;
  915. else
  916. return 1;
  917. }
  918. static void nv_enable_irq(struct net_device *dev)
  919. {
  920. struct fe_priv *np = get_nvpriv(dev);
  921. if (!using_multi_irqs(dev)) {
  922. if (np->msi_flags & NV_MSI_X_ENABLED)
  923. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  924. else
  925. enable_irq(np->pci_dev->irq);
  926. } else {
  927. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  928. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  929. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  930. }
  931. }
  932. static void nv_disable_irq(struct net_device *dev)
  933. {
  934. struct fe_priv *np = get_nvpriv(dev);
  935. if (!using_multi_irqs(dev)) {
  936. if (np->msi_flags & NV_MSI_X_ENABLED)
  937. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  938. else
  939. disable_irq(np->pci_dev->irq);
  940. } else {
  941. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  942. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  943. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  944. }
  945. }
  946. /* In MSIX mode, a write to irqmask behaves as XOR */
  947. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  948. {
  949. u8 __iomem *base = get_hwbase(dev);
  950. writel(mask, base + NvRegIrqMask);
  951. }
  952. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  953. {
  954. struct fe_priv *np = get_nvpriv(dev);
  955. u8 __iomem *base = get_hwbase(dev);
  956. if (np->msi_flags & NV_MSI_X_ENABLED) {
  957. writel(mask, base + NvRegIrqMask);
  958. } else {
  959. if (np->msi_flags & NV_MSI_ENABLED)
  960. writel(0, base + NvRegMSIIrqMask);
  961. writel(0, base + NvRegIrqMask);
  962. }
  963. }
  964. static void nv_napi_enable(struct net_device *dev)
  965. {
  966. #ifdef CONFIG_FORCEDETH_NAPI
  967. struct fe_priv *np = get_nvpriv(dev);
  968. napi_enable(&np->napi);
  969. #endif
  970. }
  971. static void nv_napi_disable(struct net_device *dev)
  972. {
  973. #ifdef CONFIG_FORCEDETH_NAPI
  974. struct fe_priv *np = get_nvpriv(dev);
  975. napi_disable(&np->napi);
  976. #endif
  977. }
  978. #define MII_READ (-1)
  979. /* mii_rw: read/write a register on the PHY.
  980. *
  981. * Caller must guarantee serialization
  982. */
  983. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  984. {
  985. u8 __iomem *base = get_hwbase(dev);
  986. u32 reg;
  987. int retval;
  988. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  989. reg = readl(base + NvRegMIIControl);
  990. if (reg & NVREG_MIICTL_INUSE) {
  991. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  992. udelay(NV_MIIBUSY_DELAY);
  993. }
  994. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  995. if (value != MII_READ) {
  996. writel(value, base + NvRegMIIData);
  997. reg |= NVREG_MIICTL_WRITE;
  998. }
  999. writel(reg, base + NvRegMIIControl);
  1000. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  1001. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  1002. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  1003. dev->name, miireg, addr);
  1004. retval = -1;
  1005. } else if (value != MII_READ) {
  1006. /* it was a write operation - fewer failures are detectable */
  1007. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1008. dev->name, value, miireg, addr);
  1009. retval = 0;
  1010. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1011. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  1012. dev->name, miireg, addr);
  1013. retval = -1;
  1014. } else {
  1015. retval = readl(base + NvRegMIIData);
  1016. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1017. dev->name, miireg, addr, retval);
  1018. }
  1019. return retval;
  1020. }
  1021. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1022. {
  1023. struct fe_priv *np = netdev_priv(dev);
  1024. u32 miicontrol;
  1025. unsigned int tries = 0;
  1026. miicontrol = BMCR_RESET | bmcr_setup;
  1027. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1028. return -1;
  1029. }
  1030. /* wait for 500ms */
  1031. msleep(500);
  1032. /* must wait till reset is deasserted */
  1033. while (miicontrol & BMCR_RESET) {
  1034. msleep(10);
  1035. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1036. /* FIXME: 100 tries seem excessive */
  1037. if (tries++ > 100)
  1038. return -1;
  1039. }
  1040. return 0;
  1041. }
  1042. static int phy_init(struct net_device *dev)
  1043. {
  1044. struct fe_priv *np = get_nvpriv(dev);
  1045. u8 __iomem *base = get_hwbase(dev);
  1046. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1047. /* phy errata for E3016 phy */
  1048. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1049. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1050. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1051. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1052. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1053. return PHY_ERROR;
  1054. }
  1055. }
  1056. if (np->phy_oui == PHY_OUI_REALTEK) {
  1057. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1058. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1059. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1060. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1061. return PHY_ERROR;
  1062. }
  1063. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1064. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1065. return PHY_ERROR;
  1066. }
  1067. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1068. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1069. return PHY_ERROR;
  1070. }
  1071. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1072. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1073. return PHY_ERROR;
  1074. }
  1075. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1076. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1077. return PHY_ERROR;
  1078. }
  1079. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1080. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1081. return PHY_ERROR;
  1082. }
  1083. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1084. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1085. return PHY_ERROR;
  1086. }
  1087. }
  1088. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1089. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1090. u32 powerstate = readl(base + NvRegPowerState2);
  1091. /* need to perform hw phy reset */
  1092. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1093. writel(powerstate, base + NvRegPowerState2);
  1094. msleep(25);
  1095. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1096. writel(powerstate, base + NvRegPowerState2);
  1097. msleep(25);
  1098. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1099. reg |= PHY_REALTEK_INIT9;
  1100. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1101. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1102. return PHY_ERROR;
  1103. }
  1104. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1105. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1106. return PHY_ERROR;
  1107. }
  1108. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1109. if (!(reg & PHY_REALTEK_INIT11)) {
  1110. reg |= PHY_REALTEK_INIT11;
  1111. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1112. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1113. return PHY_ERROR;
  1114. }
  1115. }
  1116. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1117. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1118. return PHY_ERROR;
  1119. }
  1120. }
  1121. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1122. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1123. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1124. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1125. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1126. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1127. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1128. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1129. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1130. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1131. phy_reserved |= PHY_REALTEK_INIT7;
  1132. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1133. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1134. return PHY_ERROR;
  1135. }
  1136. }
  1137. }
  1138. }
  1139. /* set advertise register */
  1140. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1141. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1142. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1143. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1144. return PHY_ERROR;
  1145. }
  1146. /* get phy interface type */
  1147. phyinterface = readl(base + NvRegPhyInterface);
  1148. /* see if gigabit phy */
  1149. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1150. if (mii_status & PHY_GIGABIT) {
  1151. np->gigabit = PHY_GIGABIT;
  1152. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1153. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1154. if (phyinterface & PHY_RGMII)
  1155. mii_control_1000 |= ADVERTISE_1000FULL;
  1156. else
  1157. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1158. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1159. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1160. return PHY_ERROR;
  1161. }
  1162. }
  1163. else
  1164. np->gigabit = 0;
  1165. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1166. mii_control |= BMCR_ANENABLE;
  1167. if (np->phy_oui == PHY_OUI_REALTEK &&
  1168. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1169. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1170. /* start autoneg since we already performed hw reset above */
  1171. mii_control |= BMCR_ANRESTART;
  1172. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1173. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1174. return PHY_ERROR;
  1175. }
  1176. } else {
  1177. /* reset the phy
  1178. * (certain phys need bmcr to be setup with reset)
  1179. */
  1180. if (phy_reset(dev, mii_control)) {
  1181. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1182. return PHY_ERROR;
  1183. }
  1184. }
  1185. /* phy vendor specific configuration */
  1186. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1187. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1188. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1189. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1190. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1191. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1192. return PHY_ERROR;
  1193. }
  1194. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1195. phy_reserved |= PHY_CICADA_INIT5;
  1196. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1197. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1198. return PHY_ERROR;
  1199. }
  1200. }
  1201. if (np->phy_oui == PHY_OUI_CICADA) {
  1202. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1203. phy_reserved |= PHY_CICADA_INIT6;
  1204. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1205. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1206. return PHY_ERROR;
  1207. }
  1208. }
  1209. if (np->phy_oui == PHY_OUI_VITESSE) {
  1210. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1211. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1212. return PHY_ERROR;
  1213. }
  1214. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1215. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1216. return PHY_ERROR;
  1217. }
  1218. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1219. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1220. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1221. return PHY_ERROR;
  1222. }
  1223. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1224. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1225. phy_reserved |= PHY_VITESSE_INIT3;
  1226. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1227. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1228. return PHY_ERROR;
  1229. }
  1230. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1231. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1232. return PHY_ERROR;
  1233. }
  1234. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1235. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1236. return PHY_ERROR;
  1237. }
  1238. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1239. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1240. phy_reserved |= PHY_VITESSE_INIT3;
  1241. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1242. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1243. return PHY_ERROR;
  1244. }
  1245. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1246. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1247. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1248. return PHY_ERROR;
  1249. }
  1250. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1251. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1252. return PHY_ERROR;
  1253. }
  1254. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1255. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1256. return PHY_ERROR;
  1257. }
  1258. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1259. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1260. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1261. return PHY_ERROR;
  1262. }
  1263. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1264. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1265. phy_reserved |= PHY_VITESSE_INIT8;
  1266. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1267. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1268. return PHY_ERROR;
  1269. }
  1270. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1271. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1272. return PHY_ERROR;
  1273. }
  1274. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1275. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1276. return PHY_ERROR;
  1277. }
  1278. }
  1279. if (np->phy_oui == PHY_OUI_REALTEK) {
  1280. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1281. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1282. /* reset could have cleared these out, set them back */
  1283. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1284. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1285. return PHY_ERROR;
  1286. }
  1287. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1288. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1289. return PHY_ERROR;
  1290. }
  1291. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1292. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1293. return PHY_ERROR;
  1294. }
  1295. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1296. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1297. return PHY_ERROR;
  1298. }
  1299. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1300. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1301. return PHY_ERROR;
  1302. }
  1303. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1304. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1305. return PHY_ERROR;
  1306. }
  1307. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1308. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1309. return PHY_ERROR;
  1310. }
  1311. }
  1312. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1313. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1314. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1315. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1316. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1317. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1318. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1319. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1320. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1321. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1322. phy_reserved |= PHY_REALTEK_INIT7;
  1323. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1324. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1325. return PHY_ERROR;
  1326. }
  1327. }
  1328. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1329. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1330. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1331. return PHY_ERROR;
  1332. }
  1333. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1334. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1335. phy_reserved |= PHY_REALTEK_INIT3;
  1336. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1337. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1338. return PHY_ERROR;
  1339. }
  1340. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1341. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1342. return PHY_ERROR;
  1343. }
  1344. }
  1345. }
  1346. }
  1347. /* some phys clear out pause advertisment on reset, set it back */
  1348. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1349. /* restart auto negotiation, power down phy */
  1350. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1351. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE | BMCR_PDOWN);
  1352. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1353. return PHY_ERROR;
  1354. }
  1355. return 0;
  1356. }
  1357. static void nv_start_rx(struct net_device *dev)
  1358. {
  1359. struct fe_priv *np = netdev_priv(dev);
  1360. u8 __iomem *base = get_hwbase(dev);
  1361. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1362. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1363. /* Already running? Stop it. */
  1364. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1365. rx_ctrl &= ~NVREG_RCVCTL_START;
  1366. writel(rx_ctrl, base + NvRegReceiverControl);
  1367. pci_push(base);
  1368. }
  1369. writel(np->linkspeed, base + NvRegLinkSpeed);
  1370. pci_push(base);
  1371. rx_ctrl |= NVREG_RCVCTL_START;
  1372. if (np->mac_in_use)
  1373. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1374. writel(rx_ctrl, base + NvRegReceiverControl);
  1375. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1376. dev->name, np->duplex, np->linkspeed);
  1377. pci_push(base);
  1378. }
  1379. static void nv_stop_rx(struct net_device *dev)
  1380. {
  1381. struct fe_priv *np = netdev_priv(dev);
  1382. u8 __iomem *base = get_hwbase(dev);
  1383. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1384. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1385. if (!np->mac_in_use)
  1386. rx_ctrl &= ~NVREG_RCVCTL_START;
  1387. else
  1388. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1389. writel(rx_ctrl, base + NvRegReceiverControl);
  1390. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1391. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1392. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1393. udelay(NV_RXSTOP_DELAY2);
  1394. if (!np->mac_in_use)
  1395. writel(0, base + NvRegLinkSpeed);
  1396. }
  1397. static void nv_start_tx(struct net_device *dev)
  1398. {
  1399. struct fe_priv *np = netdev_priv(dev);
  1400. u8 __iomem *base = get_hwbase(dev);
  1401. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1402. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1403. tx_ctrl |= NVREG_XMITCTL_START;
  1404. if (np->mac_in_use)
  1405. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1406. writel(tx_ctrl, base + NvRegTransmitterControl);
  1407. pci_push(base);
  1408. }
  1409. static void nv_stop_tx(struct net_device *dev)
  1410. {
  1411. struct fe_priv *np = netdev_priv(dev);
  1412. u8 __iomem *base = get_hwbase(dev);
  1413. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1414. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1415. if (!np->mac_in_use)
  1416. tx_ctrl &= ~NVREG_XMITCTL_START;
  1417. else
  1418. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1419. writel(tx_ctrl, base + NvRegTransmitterControl);
  1420. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1421. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1422. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1423. udelay(NV_TXSTOP_DELAY2);
  1424. if (!np->mac_in_use)
  1425. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1426. base + NvRegTransmitPoll);
  1427. }
  1428. static void nv_start_rxtx(struct net_device *dev)
  1429. {
  1430. nv_start_rx(dev);
  1431. nv_start_tx(dev);
  1432. }
  1433. static void nv_stop_rxtx(struct net_device *dev)
  1434. {
  1435. nv_stop_rx(dev);
  1436. nv_stop_tx(dev);
  1437. }
  1438. static void nv_txrx_reset(struct net_device *dev)
  1439. {
  1440. struct fe_priv *np = netdev_priv(dev);
  1441. u8 __iomem *base = get_hwbase(dev);
  1442. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1443. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1444. pci_push(base);
  1445. udelay(NV_TXRX_RESET_DELAY);
  1446. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1447. pci_push(base);
  1448. }
  1449. static void nv_mac_reset(struct net_device *dev)
  1450. {
  1451. struct fe_priv *np = netdev_priv(dev);
  1452. u8 __iomem *base = get_hwbase(dev);
  1453. u32 temp1, temp2, temp3;
  1454. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1455. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1456. pci_push(base);
  1457. /* save registers since they will be cleared on reset */
  1458. temp1 = readl(base + NvRegMacAddrA);
  1459. temp2 = readl(base + NvRegMacAddrB);
  1460. temp3 = readl(base + NvRegTransmitPoll);
  1461. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1462. pci_push(base);
  1463. udelay(NV_MAC_RESET_DELAY);
  1464. writel(0, base + NvRegMacReset);
  1465. pci_push(base);
  1466. udelay(NV_MAC_RESET_DELAY);
  1467. /* restore saved registers */
  1468. writel(temp1, base + NvRegMacAddrA);
  1469. writel(temp2, base + NvRegMacAddrB);
  1470. writel(temp3, base + NvRegTransmitPoll);
  1471. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1472. pci_push(base);
  1473. }
  1474. static void nv_get_hw_stats(struct net_device *dev)
  1475. {
  1476. struct fe_priv *np = netdev_priv(dev);
  1477. u8 __iomem *base = get_hwbase(dev);
  1478. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1479. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1480. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1481. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1482. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1483. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1484. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1485. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1486. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1487. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1488. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1489. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1490. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1491. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1492. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1493. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1494. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1495. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1496. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1497. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1498. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1499. np->estats.rx_packets =
  1500. np->estats.rx_unicast +
  1501. np->estats.rx_multicast +
  1502. np->estats.rx_broadcast;
  1503. np->estats.rx_errors_total =
  1504. np->estats.rx_crc_errors +
  1505. np->estats.rx_over_errors +
  1506. np->estats.rx_frame_error +
  1507. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1508. np->estats.rx_late_collision +
  1509. np->estats.rx_runt +
  1510. np->estats.rx_frame_too_long;
  1511. np->estats.tx_errors_total =
  1512. np->estats.tx_late_collision +
  1513. np->estats.tx_fifo_errors +
  1514. np->estats.tx_carrier_errors +
  1515. np->estats.tx_excess_deferral +
  1516. np->estats.tx_retry_error;
  1517. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1518. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1519. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1520. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1521. np->estats.tx_pause += readl(base + NvRegTxPause);
  1522. np->estats.rx_pause += readl(base + NvRegRxPause);
  1523. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1524. }
  1525. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1526. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1527. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1528. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1529. }
  1530. }
  1531. /*
  1532. * nv_get_stats: dev->get_stats function
  1533. * Get latest stats value from the nic.
  1534. * Called with read_lock(&dev_base_lock) held for read -
  1535. * only synchronized against unregister_netdevice.
  1536. */
  1537. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1538. {
  1539. struct fe_priv *np = netdev_priv(dev);
  1540. /* If the nic supports hw counters then retrieve latest values */
  1541. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1542. nv_get_hw_stats(dev);
  1543. /* copy to net_device stats */
  1544. dev->stats.tx_bytes = np->estats.tx_bytes;
  1545. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1546. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1547. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1548. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1549. dev->stats.rx_errors = np->estats.rx_errors_total;
  1550. dev->stats.tx_errors = np->estats.tx_errors_total;
  1551. }
  1552. return &dev->stats;
  1553. }
  1554. /*
  1555. * nv_alloc_rx: fill rx ring entries.
  1556. * Return 1 if the allocations for the skbs failed and the
  1557. * rx engine is without Available descriptors
  1558. */
  1559. static int nv_alloc_rx(struct net_device *dev)
  1560. {
  1561. struct fe_priv *np = netdev_priv(dev);
  1562. struct ring_desc* less_rx;
  1563. less_rx = np->get_rx.orig;
  1564. if (less_rx-- == np->first_rx.orig)
  1565. less_rx = np->last_rx.orig;
  1566. while (np->put_rx.orig != less_rx) {
  1567. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1568. if (skb) {
  1569. np->put_rx_ctx->skb = skb;
  1570. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1571. skb->data,
  1572. skb_tailroom(skb),
  1573. PCI_DMA_FROMDEVICE);
  1574. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1575. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1576. wmb();
  1577. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1578. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1579. np->put_rx.orig = np->first_rx.orig;
  1580. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1581. np->put_rx_ctx = np->first_rx_ctx;
  1582. } else {
  1583. return 1;
  1584. }
  1585. }
  1586. return 0;
  1587. }
  1588. static int nv_alloc_rx_optimized(struct net_device *dev)
  1589. {
  1590. struct fe_priv *np = netdev_priv(dev);
  1591. struct ring_desc_ex* less_rx;
  1592. less_rx = np->get_rx.ex;
  1593. if (less_rx-- == np->first_rx.ex)
  1594. less_rx = np->last_rx.ex;
  1595. while (np->put_rx.ex != less_rx) {
  1596. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1597. if (skb) {
  1598. np->put_rx_ctx->skb = skb;
  1599. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1600. skb->data,
  1601. skb_tailroom(skb),
  1602. PCI_DMA_FROMDEVICE);
  1603. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1604. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1605. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1606. wmb();
  1607. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1608. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1609. np->put_rx.ex = np->first_rx.ex;
  1610. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1611. np->put_rx_ctx = np->first_rx_ctx;
  1612. } else {
  1613. return 1;
  1614. }
  1615. }
  1616. return 0;
  1617. }
  1618. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1619. #ifdef CONFIG_FORCEDETH_NAPI
  1620. static void nv_do_rx_refill(unsigned long data)
  1621. {
  1622. struct net_device *dev = (struct net_device *) data;
  1623. struct fe_priv *np = netdev_priv(dev);
  1624. /* Just reschedule NAPI rx processing */
  1625. napi_schedule(&np->napi);
  1626. }
  1627. #else
  1628. static void nv_do_rx_refill(unsigned long data)
  1629. {
  1630. struct net_device *dev = (struct net_device *) data;
  1631. struct fe_priv *np = netdev_priv(dev);
  1632. int retcode;
  1633. if (!using_multi_irqs(dev)) {
  1634. if (np->msi_flags & NV_MSI_X_ENABLED)
  1635. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1636. else
  1637. disable_irq(np->pci_dev->irq);
  1638. } else {
  1639. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1640. }
  1641. if (!nv_optimized(np))
  1642. retcode = nv_alloc_rx(dev);
  1643. else
  1644. retcode = nv_alloc_rx_optimized(dev);
  1645. if (retcode) {
  1646. spin_lock_irq(&np->lock);
  1647. if (!np->in_shutdown)
  1648. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1649. spin_unlock_irq(&np->lock);
  1650. }
  1651. if (!using_multi_irqs(dev)) {
  1652. if (np->msi_flags & NV_MSI_X_ENABLED)
  1653. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1654. else
  1655. enable_irq(np->pci_dev->irq);
  1656. } else {
  1657. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1658. }
  1659. }
  1660. #endif
  1661. static void nv_init_rx(struct net_device *dev)
  1662. {
  1663. struct fe_priv *np = netdev_priv(dev);
  1664. int i;
  1665. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1666. if (!nv_optimized(np))
  1667. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1668. else
  1669. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1670. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1671. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1672. for (i = 0; i < np->rx_ring_size; i++) {
  1673. if (!nv_optimized(np)) {
  1674. np->rx_ring.orig[i].flaglen = 0;
  1675. np->rx_ring.orig[i].buf = 0;
  1676. } else {
  1677. np->rx_ring.ex[i].flaglen = 0;
  1678. np->rx_ring.ex[i].txvlan = 0;
  1679. np->rx_ring.ex[i].bufhigh = 0;
  1680. np->rx_ring.ex[i].buflow = 0;
  1681. }
  1682. np->rx_skb[i].skb = NULL;
  1683. np->rx_skb[i].dma = 0;
  1684. }
  1685. }
  1686. static void nv_init_tx(struct net_device *dev)
  1687. {
  1688. struct fe_priv *np = netdev_priv(dev);
  1689. int i;
  1690. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1691. if (!nv_optimized(np))
  1692. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1693. else
  1694. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1695. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1696. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1697. np->tx_pkts_in_progress = 0;
  1698. np->tx_change_owner = NULL;
  1699. np->tx_end_flip = NULL;
  1700. for (i = 0; i < np->tx_ring_size; i++) {
  1701. if (!nv_optimized(np)) {
  1702. np->tx_ring.orig[i].flaglen = 0;
  1703. np->tx_ring.orig[i].buf = 0;
  1704. } else {
  1705. np->tx_ring.ex[i].flaglen = 0;
  1706. np->tx_ring.ex[i].txvlan = 0;
  1707. np->tx_ring.ex[i].bufhigh = 0;
  1708. np->tx_ring.ex[i].buflow = 0;
  1709. }
  1710. np->tx_skb[i].skb = NULL;
  1711. np->tx_skb[i].dma = 0;
  1712. np->tx_skb[i].dma_len = 0;
  1713. np->tx_skb[i].first_tx_desc = NULL;
  1714. np->tx_skb[i].next_tx_ctx = NULL;
  1715. }
  1716. }
  1717. static int nv_init_ring(struct net_device *dev)
  1718. {
  1719. struct fe_priv *np = netdev_priv(dev);
  1720. nv_init_tx(dev);
  1721. nv_init_rx(dev);
  1722. if (!nv_optimized(np))
  1723. return nv_alloc_rx(dev);
  1724. else
  1725. return nv_alloc_rx_optimized(dev);
  1726. }
  1727. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1728. {
  1729. struct fe_priv *np = netdev_priv(dev);
  1730. if (tx_skb->dma) {
  1731. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1732. tx_skb->dma_len,
  1733. PCI_DMA_TODEVICE);
  1734. tx_skb->dma = 0;
  1735. }
  1736. if (tx_skb->skb) {
  1737. dev_kfree_skb_any(tx_skb->skb);
  1738. tx_skb->skb = NULL;
  1739. return 1;
  1740. } else {
  1741. return 0;
  1742. }
  1743. }
  1744. static void nv_drain_tx(struct net_device *dev)
  1745. {
  1746. struct fe_priv *np = netdev_priv(dev);
  1747. unsigned int i;
  1748. for (i = 0; i < np->tx_ring_size; i++) {
  1749. if (!nv_optimized(np)) {
  1750. np->tx_ring.orig[i].flaglen = 0;
  1751. np->tx_ring.orig[i].buf = 0;
  1752. } else {
  1753. np->tx_ring.ex[i].flaglen = 0;
  1754. np->tx_ring.ex[i].txvlan = 0;
  1755. np->tx_ring.ex[i].bufhigh = 0;
  1756. np->tx_ring.ex[i].buflow = 0;
  1757. }
  1758. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1759. dev->stats.tx_dropped++;
  1760. np->tx_skb[i].dma = 0;
  1761. np->tx_skb[i].dma_len = 0;
  1762. np->tx_skb[i].first_tx_desc = NULL;
  1763. np->tx_skb[i].next_tx_ctx = NULL;
  1764. }
  1765. np->tx_pkts_in_progress = 0;
  1766. np->tx_change_owner = NULL;
  1767. np->tx_end_flip = NULL;
  1768. }
  1769. static void nv_drain_rx(struct net_device *dev)
  1770. {
  1771. struct fe_priv *np = netdev_priv(dev);
  1772. int i;
  1773. for (i = 0; i < np->rx_ring_size; i++) {
  1774. if (!nv_optimized(np)) {
  1775. np->rx_ring.orig[i].flaglen = 0;
  1776. np->rx_ring.orig[i].buf = 0;
  1777. } else {
  1778. np->rx_ring.ex[i].flaglen = 0;
  1779. np->rx_ring.ex[i].txvlan = 0;
  1780. np->rx_ring.ex[i].bufhigh = 0;
  1781. np->rx_ring.ex[i].buflow = 0;
  1782. }
  1783. wmb();
  1784. if (np->rx_skb[i].skb) {
  1785. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1786. (skb_end_pointer(np->rx_skb[i].skb) -
  1787. np->rx_skb[i].skb->data),
  1788. PCI_DMA_FROMDEVICE);
  1789. dev_kfree_skb(np->rx_skb[i].skb);
  1790. np->rx_skb[i].skb = NULL;
  1791. }
  1792. }
  1793. }
  1794. static void nv_drain_rxtx(struct net_device *dev)
  1795. {
  1796. nv_drain_tx(dev);
  1797. nv_drain_rx(dev);
  1798. }
  1799. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1800. {
  1801. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1802. }
  1803. static void nv_legacybackoff_reseed(struct net_device *dev)
  1804. {
  1805. u8 __iomem *base = get_hwbase(dev);
  1806. u32 reg;
  1807. u32 low;
  1808. int tx_status = 0;
  1809. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1810. get_random_bytes(&low, sizeof(low));
  1811. reg |= low & NVREG_SLOTTIME_MASK;
  1812. /* Need to stop tx before change takes effect.
  1813. * Caller has already gained np->lock.
  1814. */
  1815. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1816. if (tx_status)
  1817. nv_stop_tx(dev);
  1818. nv_stop_rx(dev);
  1819. writel(reg, base + NvRegSlotTime);
  1820. if (tx_status)
  1821. nv_start_tx(dev);
  1822. nv_start_rx(dev);
  1823. }
  1824. /* Gear Backoff Seeds */
  1825. #define BACKOFF_SEEDSET_ROWS 8
  1826. #define BACKOFF_SEEDSET_LFSRS 15
  1827. /* Known Good seed sets */
  1828. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1829. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1830. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1831. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1832. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1833. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1834. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1835. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1836. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1837. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1838. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1839. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1840. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1841. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1842. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1843. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1844. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1845. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1846. static void nv_gear_backoff_reseed(struct net_device *dev)
  1847. {
  1848. u8 __iomem *base = get_hwbase(dev);
  1849. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1850. u32 temp, seedset, combinedSeed;
  1851. int i;
  1852. /* Setup seed for free running LFSR */
  1853. /* We are going to read the time stamp counter 3 times
  1854. and swizzle bits around to increase randomness */
  1855. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1856. miniseed1 &= 0x0fff;
  1857. if (miniseed1 == 0)
  1858. miniseed1 = 0xabc;
  1859. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1860. miniseed2 &= 0x0fff;
  1861. if (miniseed2 == 0)
  1862. miniseed2 = 0xabc;
  1863. miniseed2_reversed =
  1864. ((miniseed2 & 0xF00) >> 8) |
  1865. (miniseed2 & 0x0F0) |
  1866. ((miniseed2 & 0x00F) << 8);
  1867. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1868. miniseed3 &= 0x0fff;
  1869. if (miniseed3 == 0)
  1870. miniseed3 = 0xabc;
  1871. miniseed3_reversed =
  1872. ((miniseed3 & 0xF00) >> 8) |
  1873. (miniseed3 & 0x0F0) |
  1874. ((miniseed3 & 0x00F) << 8);
  1875. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1876. (miniseed2 ^ miniseed3_reversed);
  1877. /* Seeds can not be zero */
  1878. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1879. combinedSeed |= 0x08;
  1880. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1881. combinedSeed |= 0x8000;
  1882. /* No need to disable tx here */
  1883. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1884. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1885. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1886. writel(temp,base + NvRegBackOffControl);
  1887. /* Setup seeds for all gear LFSRs. */
  1888. get_random_bytes(&seedset, sizeof(seedset));
  1889. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1890. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1891. {
  1892. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1893. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1894. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1895. writel(temp, base + NvRegBackOffControl);
  1896. }
  1897. }
  1898. /*
  1899. * nv_start_xmit: dev->hard_start_xmit function
  1900. * Called with netif_tx_lock held.
  1901. */
  1902. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1903. {
  1904. struct fe_priv *np = netdev_priv(dev);
  1905. u32 tx_flags = 0;
  1906. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1907. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1908. unsigned int i;
  1909. u32 offset = 0;
  1910. u32 bcnt;
  1911. u32 size = skb->len-skb->data_len;
  1912. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1913. u32 empty_slots;
  1914. struct ring_desc* put_tx;
  1915. struct ring_desc* start_tx;
  1916. struct ring_desc* prev_tx;
  1917. struct nv_skb_map* prev_tx_ctx;
  1918. unsigned long flags;
  1919. /* add fragments to entries count */
  1920. for (i = 0; i < fragments; i++) {
  1921. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1922. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1923. }
  1924. spin_lock_irqsave(&np->lock, flags);
  1925. empty_slots = nv_get_empty_tx_slots(np);
  1926. if (unlikely(empty_slots <= entries)) {
  1927. netif_stop_queue(dev);
  1928. np->tx_stop = 1;
  1929. spin_unlock_irqrestore(&np->lock, flags);
  1930. return NETDEV_TX_BUSY;
  1931. }
  1932. spin_unlock_irqrestore(&np->lock, flags);
  1933. start_tx = put_tx = np->put_tx.orig;
  1934. /* setup the header buffer */
  1935. do {
  1936. prev_tx = put_tx;
  1937. prev_tx_ctx = np->put_tx_ctx;
  1938. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1939. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1940. PCI_DMA_TODEVICE);
  1941. np->put_tx_ctx->dma_len = bcnt;
  1942. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1943. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1944. tx_flags = np->tx_flags;
  1945. offset += bcnt;
  1946. size -= bcnt;
  1947. if (unlikely(put_tx++ == np->last_tx.orig))
  1948. put_tx = np->first_tx.orig;
  1949. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1950. np->put_tx_ctx = np->first_tx_ctx;
  1951. } while (size);
  1952. /* setup the fragments */
  1953. for (i = 0; i < fragments; i++) {
  1954. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1955. u32 size = frag->size;
  1956. offset = 0;
  1957. do {
  1958. prev_tx = put_tx;
  1959. prev_tx_ctx = np->put_tx_ctx;
  1960. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1961. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1962. PCI_DMA_TODEVICE);
  1963. np->put_tx_ctx->dma_len = bcnt;
  1964. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1965. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1966. offset += bcnt;
  1967. size -= bcnt;
  1968. if (unlikely(put_tx++ == np->last_tx.orig))
  1969. put_tx = np->first_tx.orig;
  1970. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1971. np->put_tx_ctx = np->first_tx_ctx;
  1972. } while (size);
  1973. }
  1974. /* set last fragment flag */
  1975. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1976. /* save skb in this slot's context area */
  1977. prev_tx_ctx->skb = skb;
  1978. if (skb_is_gso(skb))
  1979. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1980. else
  1981. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1982. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1983. spin_lock_irqsave(&np->lock, flags);
  1984. /* set tx flags */
  1985. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1986. np->put_tx.orig = put_tx;
  1987. spin_unlock_irqrestore(&np->lock, flags);
  1988. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1989. dev->name, entries, tx_flags_extra);
  1990. {
  1991. int j;
  1992. for (j=0; j<64; j++) {
  1993. if ((j%16) == 0)
  1994. dprintk("\n%03x:", j);
  1995. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1996. }
  1997. dprintk("\n");
  1998. }
  1999. dev->trans_start = jiffies;
  2000. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2001. return NETDEV_TX_OK;
  2002. }
  2003. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  2004. {
  2005. struct fe_priv *np = netdev_priv(dev);
  2006. u32 tx_flags = 0;
  2007. u32 tx_flags_extra;
  2008. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  2009. unsigned int i;
  2010. u32 offset = 0;
  2011. u32 bcnt;
  2012. u32 size = skb->len-skb->data_len;
  2013. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2014. u32 empty_slots;
  2015. struct ring_desc_ex* put_tx;
  2016. struct ring_desc_ex* start_tx;
  2017. struct ring_desc_ex* prev_tx;
  2018. struct nv_skb_map* prev_tx_ctx;
  2019. struct nv_skb_map* start_tx_ctx;
  2020. unsigned long flags;
  2021. /* add fragments to entries count */
  2022. for (i = 0; i < fragments; i++) {
  2023. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  2024. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2025. }
  2026. spin_lock_irqsave(&np->lock, flags);
  2027. empty_slots = nv_get_empty_tx_slots(np);
  2028. if (unlikely(empty_slots <= entries)) {
  2029. netif_stop_queue(dev);
  2030. np->tx_stop = 1;
  2031. spin_unlock_irqrestore(&np->lock, flags);
  2032. return NETDEV_TX_BUSY;
  2033. }
  2034. spin_unlock_irqrestore(&np->lock, flags);
  2035. start_tx = put_tx = np->put_tx.ex;
  2036. start_tx_ctx = np->put_tx_ctx;
  2037. /* setup the header buffer */
  2038. do {
  2039. prev_tx = put_tx;
  2040. prev_tx_ctx = np->put_tx_ctx;
  2041. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2042. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2043. PCI_DMA_TODEVICE);
  2044. np->put_tx_ctx->dma_len = bcnt;
  2045. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2046. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2047. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2048. tx_flags = NV_TX2_VALID;
  2049. offset += bcnt;
  2050. size -= bcnt;
  2051. if (unlikely(put_tx++ == np->last_tx.ex))
  2052. put_tx = np->first_tx.ex;
  2053. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2054. np->put_tx_ctx = np->first_tx_ctx;
  2055. } while (size);
  2056. /* setup the fragments */
  2057. for (i = 0; i < fragments; i++) {
  2058. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2059. u32 size = frag->size;
  2060. offset = 0;
  2061. do {
  2062. prev_tx = put_tx;
  2063. prev_tx_ctx = np->put_tx_ctx;
  2064. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2065. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2066. PCI_DMA_TODEVICE);
  2067. np->put_tx_ctx->dma_len = bcnt;
  2068. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2069. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2070. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2071. offset += bcnt;
  2072. size -= bcnt;
  2073. if (unlikely(put_tx++ == np->last_tx.ex))
  2074. put_tx = np->first_tx.ex;
  2075. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2076. np->put_tx_ctx = np->first_tx_ctx;
  2077. } while (size);
  2078. }
  2079. /* set last fragment flag */
  2080. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2081. /* save skb in this slot's context area */
  2082. prev_tx_ctx->skb = skb;
  2083. if (skb_is_gso(skb))
  2084. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2085. else
  2086. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2087. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2088. /* vlan tag */
  2089. if (likely(!np->vlangrp)) {
  2090. start_tx->txvlan = 0;
  2091. } else {
  2092. if (vlan_tx_tag_present(skb))
  2093. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2094. else
  2095. start_tx->txvlan = 0;
  2096. }
  2097. spin_lock_irqsave(&np->lock, flags);
  2098. if (np->tx_limit) {
  2099. /* Limit the number of outstanding tx. Setup all fragments, but
  2100. * do not set the VALID bit on the first descriptor. Save a pointer
  2101. * to that descriptor and also for next skb_map element.
  2102. */
  2103. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2104. if (!np->tx_change_owner)
  2105. np->tx_change_owner = start_tx_ctx;
  2106. /* remove VALID bit */
  2107. tx_flags &= ~NV_TX2_VALID;
  2108. start_tx_ctx->first_tx_desc = start_tx;
  2109. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2110. np->tx_end_flip = np->put_tx_ctx;
  2111. } else {
  2112. np->tx_pkts_in_progress++;
  2113. }
  2114. }
  2115. /* set tx flags */
  2116. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2117. np->put_tx.ex = put_tx;
  2118. spin_unlock_irqrestore(&np->lock, flags);
  2119. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2120. dev->name, entries, tx_flags_extra);
  2121. {
  2122. int j;
  2123. for (j=0; j<64; j++) {
  2124. if ((j%16) == 0)
  2125. dprintk("\n%03x:", j);
  2126. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2127. }
  2128. dprintk("\n");
  2129. }
  2130. dev->trans_start = jiffies;
  2131. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2132. return NETDEV_TX_OK;
  2133. }
  2134. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2135. {
  2136. struct fe_priv *np = netdev_priv(dev);
  2137. np->tx_pkts_in_progress--;
  2138. if (np->tx_change_owner) {
  2139. np->tx_change_owner->first_tx_desc->flaglen |=
  2140. cpu_to_le32(NV_TX2_VALID);
  2141. np->tx_pkts_in_progress++;
  2142. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2143. if (np->tx_change_owner == np->tx_end_flip)
  2144. np->tx_change_owner = NULL;
  2145. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2146. }
  2147. }
  2148. /*
  2149. * nv_tx_done: check for completed packets, release the skbs.
  2150. *
  2151. * Caller must own np->lock.
  2152. */
  2153. static int nv_tx_done(struct net_device *dev, int limit)
  2154. {
  2155. struct fe_priv *np = netdev_priv(dev);
  2156. u32 flags;
  2157. int tx_work = 0;
  2158. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2159. while ((np->get_tx.orig != np->put_tx.orig) &&
  2160. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2161. (tx_work < limit)) {
  2162. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2163. dev->name, flags);
  2164. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2165. np->get_tx_ctx->dma_len,
  2166. PCI_DMA_TODEVICE);
  2167. np->get_tx_ctx->dma = 0;
  2168. if (np->desc_ver == DESC_VER_1) {
  2169. if (flags & NV_TX_LASTPACKET) {
  2170. if (flags & NV_TX_ERROR) {
  2171. if (flags & NV_TX_UNDERFLOW)
  2172. dev->stats.tx_fifo_errors++;
  2173. if (flags & NV_TX_CARRIERLOST)
  2174. dev->stats.tx_carrier_errors++;
  2175. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2176. nv_legacybackoff_reseed(dev);
  2177. dev->stats.tx_errors++;
  2178. } else {
  2179. dev->stats.tx_packets++;
  2180. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2181. }
  2182. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2183. np->get_tx_ctx->skb = NULL;
  2184. tx_work++;
  2185. }
  2186. } else {
  2187. if (flags & NV_TX2_LASTPACKET) {
  2188. if (flags & NV_TX2_ERROR) {
  2189. if (flags & NV_TX2_UNDERFLOW)
  2190. dev->stats.tx_fifo_errors++;
  2191. if (flags & NV_TX2_CARRIERLOST)
  2192. dev->stats.tx_carrier_errors++;
  2193. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2194. nv_legacybackoff_reseed(dev);
  2195. dev->stats.tx_errors++;
  2196. } else {
  2197. dev->stats.tx_packets++;
  2198. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2199. }
  2200. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2201. np->get_tx_ctx->skb = NULL;
  2202. tx_work++;
  2203. }
  2204. }
  2205. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2206. np->get_tx.orig = np->first_tx.orig;
  2207. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2208. np->get_tx_ctx = np->first_tx_ctx;
  2209. }
  2210. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2211. np->tx_stop = 0;
  2212. netif_wake_queue(dev);
  2213. }
  2214. return tx_work;
  2215. }
  2216. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2217. {
  2218. struct fe_priv *np = netdev_priv(dev);
  2219. u32 flags;
  2220. int tx_work = 0;
  2221. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2222. while ((np->get_tx.ex != np->put_tx.ex) &&
  2223. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2224. (tx_work < limit)) {
  2225. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2226. dev->name, flags);
  2227. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2228. np->get_tx_ctx->dma_len,
  2229. PCI_DMA_TODEVICE);
  2230. np->get_tx_ctx->dma = 0;
  2231. if (flags & NV_TX2_LASTPACKET) {
  2232. if (!(flags & NV_TX2_ERROR))
  2233. dev->stats.tx_packets++;
  2234. else {
  2235. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2236. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2237. nv_gear_backoff_reseed(dev);
  2238. else
  2239. nv_legacybackoff_reseed(dev);
  2240. }
  2241. }
  2242. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2243. np->get_tx_ctx->skb = NULL;
  2244. tx_work++;
  2245. if (np->tx_limit) {
  2246. nv_tx_flip_ownership(dev);
  2247. }
  2248. }
  2249. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2250. np->get_tx.ex = np->first_tx.ex;
  2251. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2252. np->get_tx_ctx = np->first_tx_ctx;
  2253. }
  2254. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2255. np->tx_stop = 0;
  2256. netif_wake_queue(dev);
  2257. }
  2258. return tx_work;
  2259. }
  2260. /*
  2261. * nv_tx_timeout: dev->tx_timeout function
  2262. * Called with netif_tx_lock held.
  2263. */
  2264. static void nv_tx_timeout(struct net_device *dev)
  2265. {
  2266. struct fe_priv *np = netdev_priv(dev);
  2267. u8 __iomem *base = get_hwbase(dev);
  2268. u32 status;
  2269. if (np->msi_flags & NV_MSI_X_ENABLED)
  2270. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2271. else
  2272. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2273. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2274. {
  2275. int i;
  2276. printk(KERN_INFO "%s: Ring at %lx\n",
  2277. dev->name, (unsigned long)np->ring_addr);
  2278. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2279. for (i=0;i<=np->register_size;i+= 32) {
  2280. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2281. i,
  2282. readl(base + i + 0), readl(base + i + 4),
  2283. readl(base + i + 8), readl(base + i + 12),
  2284. readl(base + i + 16), readl(base + i + 20),
  2285. readl(base + i + 24), readl(base + i + 28));
  2286. }
  2287. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2288. for (i=0;i<np->tx_ring_size;i+= 4) {
  2289. if (!nv_optimized(np)) {
  2290. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2291. i,
  2292. le32_to_cpu(np->tx_ring.orig[i].buf),
  2293. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2294. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2295. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2296. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2297. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2298. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2299. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2300. } else {
  2301. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2302. i,
  2303. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2304. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2305. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2306. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2307. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2308. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2309. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2310. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2311. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2312. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2313. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2314. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2315. }
  2316. }
  2317. }
  2318. spin_lock_irq(&np->lock);
  2319. /* 1) stop tx engine */
  2320. nv_stop_tx(dev);
  2321. /* 2) check that the packets were not sent already: */
  2322. if (!nv_optimized(np))
  2323. nv_tx_done(dev, np->tx_ring_size);
  2324. else
  2325. nv_tx_done_optimized(dev, np->tx_ring_size);
  2326. /* 3) if there are dead entries: clear everything */
  2327. if (np->get_tx_ctx != np->put_tx_ctx) {
  2328. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  2329. nv_drain_tx(dev);
  2330. nv_init_tx(dev);
  2331. setup_hw_rings(dev, NV_SETUP_TX_RING);
  2332. }
  2333. netif_wake_queue(dev);
  2334. /* 4) restart tx engine */
  2335. nv_start_tx(dev);
  2336. spin_unlock_irq(&np->lock);
  2337. }
  2338. /*
  2339. * Called when the nic notices a mismatch between the actual data len on the
  2340. * wire and the len indicated in the 802 header
  2341. */
  2342. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2343. {
  2344. int hdrlen; /* length of the 802 header */
  2345. int protolen; /* length as stored in the proto field */
  2346. /* 1) calculate len according to header */
  2347. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2348. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2349. hdrlen = VLAN_HLEN;
  2350. } else {
  2351. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2352. hdrlen = ETH_HLEN;
  2353. }
  2354. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2355. dev->name, datalen, protolen, hdrlen);
  2356. if (protolen > ETH_DATA_LEN)
  2357. return datalen; /* Value in proto field not a len, no checks possible */
  2358. protolen += hdrlen;
  2359. /* consistency checks: */
  2360. if (datalen > ETH_ZLEN) {
  2361. if (datalen >= protolen) {
  2362. /* more data on wire than in 802 header, trim of
  2363. * additional data.
  2364. */
  2365. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2366. dev->name, protolen);
  2367. return protolen;
  2368. } else {
  2369. /* less data on wire than mentioned in header.
  2370. * Discard the packet.
  2371. */
  2372. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2373. dev->name);
  2374. return -1;
  2375. }
  2376. } else {
  2377. /* short packet. Accept only if 802 values are also short */
  2378. if (protolen > ETH_ZLEN) {
  2379. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2380. dev->name);
  2381. return -1;
  2382. }
  2383. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2384. dev->name, datalen);
  2385. return datalen;
  2386. }
  2387. }
  2388. static int nv_rx_process(struct net_device *dev, int limit)
  2389. {
  2390. struct fe_priv *np = netdev_priv(dev);
  2391. u32 flags;
  2392. int rx_work = 0;
  2393. struct sk_buff *skb;
  2394. int len;
  2395. while((np->get_rx.orig != np->put_rx.orig) &&
  2396. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2397. (rx_work < limit)) {
  2398. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2399. dev->name, flags);
  2400. /*
  2401. * the packet is for us - immediately tear down the pci mapping.
  2402. * TODO: check if a prefetch of the first cacheline improves
  2403. * the performance.
  2404. */
  2405. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2406. np->get_rx_ctx->dma_len,
  2407. PCI_DMA_FROMDEVICE);
  2408. skb = np->get_rx_ctx->skb;
  2409. np->get_rx_ctx->skb = NULL;
  2410. {
  2411. int j;
  2412. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2413. for (j=0; j<64; j++) {
  2414. if ((j%16) == 0)
  2415. dprintk("\n%03x:", j);
  2416. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2417. }
  2418. dprintk("\n");
  2419. }
  2420. /* look at what we actually got: */
  2421. if (np->desc_ver == DESC_VER_1) {
  2422. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2423. len = flags & LEN_MASK_V1;
  2424. if (unlikely(flags & NV_RX_ERROR)) {
  2425. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2426. len = nv_getlen(dev, skb->data, len);
  2427. if (len < 0) {
  2428. dev->stats.rx_errors++;
  2429. dev_kfree_skb(skb);
  2430. goto next_pkt;
  2431. }
  2432. }
  2433. /* framing errors are soft errors */
  2434. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2435. if (flags & NV_RX_SUBSTRACT1) {
  2436. len--;
  2437. }
  2438. }
  2439. /* the rest are hard errors */
  2440. else {
  2441. if (flags & NV_RX_MISSEDFRAME)
  2442. dev->stats.rx_missed_errors++;
  2443. if (flags & NV_RX_CRCERR)
  2444. dev->stats.rx_crc_errors++;
  2445. if (flags & NV_RX_OVERFLOW)
  2446. dev->stats.rx_over_errors++;
  2447. dev->stats.rx_errors++;
  2448. dev_kfree_skb(skb);
  2449. goto next_pkt;
  2450. }
  2451. }
  2452. } else {
  2453. dev_kfree_skb(skb);
  2454. goto next_pkt;
  2455. }
  2456. } else {
  2457. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2458. len = flags & LEN_MASK_V2;
  2459. if (unlikely(flags & NV_RX2_ERROR)) {
  2460. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2461. len = nv_getlen(dev, skb->data, len);
  2462. if (len < 0) {
  2463. dev->stats.rx_errors++;
  2464. dev_kfree_skb(skb);
  2465. goto next_pkt;
  2466. }
  2467. }
  2468. /* framing errors are soft errors */
  2469. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2470. if (flags & NV_RX2_SUBSTRACT1) {
  2471. len--;
  2472. }
  2473. }
  2474. /* the rest are hard errors */
  2475. else {
  2476. if (flags & NV_RX2_CRCERR)
  2477. dev->stats.rx_crc_errors++;
  2478. if (flags & NV_RX2_OVERFLOW)
  2479. dev->stats.rx_over_errors++;
  2480. dev->stats.rx_errors++;
  2481. dev_kfree_skb(skb);
  2482. goto next_pkt;
  2483. }
  2484. }
  2485. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2486. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2487. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2488. } else {
  2489. dev_kfree_skb(skb);
  2490. goto next_pkt;
  2491. }
  2492. }
  2493. /* got a valid packet - forward it to the network core */
  2494. skb_put(skb, len);
  2495. skb->protocol = eth_type_trans(skb, dev);
  2496. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2497. dev->name, len, skb->protocol);
  2498. #ifdef CONFIG_FORCEDETH_NAPI
  2499. netif_receive_skb(skb);
  2500. #else
  2501. netif_rx(skb);
  2502. #endif
  2503. dev->stats.rx_packets++;
  2504. dev->stats.rx_bytes += len;
  2505. next_pkt:
  2506. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2507. np->get_rx.orig = np->first_rx.orig;
  2508. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2509. np->get_rx_ctx = np->first_rx_ctx;
  2510. rx_work++;
  2511. }
  2512. return rx_work;
  2513. }
  2514. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2515. {
  2516. struct fe_priv *np = netdev_priv(dev);
  2517. u32 flags;
  2518. u32 vlanflags = 0;
  2519. int rx_work = 0;
  2520. struct sk_buff *skb;
  2521. int len;
  2522. while((np->get_rx.ex != np->put_rx.ex) &&
  2523. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2524. (rx_work < limit)) {
  2525. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2526. dev->name, flags);
  2527. /*
  2528. * the packet is for us - immediately tear down the pci mapping.
  2529. * TODO: check if a prefetch of the first cacheline improves
  2530. * the performance.
  2531. */
  2532. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2533. np->get_rx_ctx->dma_len,
  2534. PCI_DMA_FROMDEVICE);
  2535. skb = np->get_rx_ctx->skb;
  2536. np->get_rx_ctx->skb = NULL;
  2537. {
  2538. int j;
  2539. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2540. for (j=0; j<64; j++) {
  2541. if ((j%16) == 0)
  2542. dprintk("\n%03x:", j);
  2543. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2544. }
  2545. dprintk("\n");
  2546. }
  2547. /* look at what we actually got: */
  2548. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2549. len = flags & LEN_MASK_V2;
  2550. if (unlikely(flags & NV_RX2_ERROR)) {
  2551. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2552. len = nv_getlen(dev, skb->data, len);
  2553. if (len < 0) {
  2554. dev_kfree_skb(skb);
  2555. goto next_pkt;
  2556. }
  2557. }
  2558. /* framing errors are soft errors */
  2559. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2560. if (flags & NV_RX2_SUBSTRACT1) {
  2561. len--;
  2562. }
  2563. }
  2564. /* the rest are hard errors */
  2565. else {
  2566. dev_kfree_skb(skb);
  2567. goto next_pkt;
  2568. }
  2569. }
  2570. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2571. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2572. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2573. /* got a valid packet - forward it to the network core */
  2574. skb_put(skb, len);
  2575. skb->protocol = eth_type_trans(skb, dev);
  2576. prefetch(skb->data);
  2577. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2578. dev->name, len, skb->protocol);
  2579. if (likely(!np->vlangrp)) {
  2580. #ifdef CONFIG_FORCEDETH_NAPI
  2581. netif_receive_skb(skb);
  2582. #else
  2583. netif_rx(skb);
  2584. #endif
  2585. } else {
  2586. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2587. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2588. #ifdef CONFIG_FORCEDETH_NAPI
  2589. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2590. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2591. #else
  2592. vlan_hwaccel_rx(skb, np->vlangrp,
  2593. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2594. #endif
  2595. } else {
  2596. #ifdef CONFIG_FORCEDETH_NAPI
  2597. netif_receive_skb(skb);
  2598. #else
  2599. netif_rx(skb);
  2600. #endif
  2601. }
  2602. }
  2603. dev->stats.rx_packets++;
  2604. dev->stats.rx_bytes += len;
  2605. } else {
  2606. dev_kfree_skb(skb);
  2607. }
  2608. next_pkt:
  2609. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2610. np->get_rx.ex = np->first_rx.ex;
  2611. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2612. np->get_rx_ctx = np->first_rx_ctx;
  2613. rx_work++;
  2614. }
  2615. return rx_work;
  2616. }
  2617. static void set_bufsize(struct net_device *dev)
  2618. {
  2619. struct fe_priv *np = netdev_priv(dev);
  2620. if (dev->mtu <= ETH_DATA_LEN)
  2621. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2622. else
  2623. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2624. }
  2625. /*
  2626. * nv_change_mtu: dev->change_mtu function
  2627. * Called with dev_base_lock held for read.
  2628. */
  2629. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2630. {
  2631. struct fe_priv *np = netdev_priv(dev);
  2632. int old_mtu;
  2633. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2634. return -EINVAL;
  2635. old_mtu = dev->mtu;
  2636. dev->mtu = new_mtu;
  2637. /* return early if the buffer sizes will not change */
  2638. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2639. return 0;
  2640. if (old_mtu == new_mtu)
  2641. return 0;
  2642. /* synchronized against open : rtnl_lock() held by caller */
  2643. if (netif_running(dev)) {
  2644. u8 __iomem *base = get_hwbase(dev);
  2645. /*
  2646. * It seems that the nic preloads valid ring entries into an
  2647. * internal buffer. The procedure for flushing everything is
  2648. * guessed, there is probably a simpler approach.
  2649. * Changing the MTU is a rare event, it shouldn't matter.
  2650. */
  2651. nv_disable_irq(dev);
  2652. nv_napi_disable(dev);
  2653. netif_tx_lock_bh(dev);
  2654. netif_addr_lock(dev);
  2655. spin_lock(&np->lock);
  2656. /* stop engines */
  2657. nv_stop_rxtx(dev);
  2658. nv_txrx_reset(dev);
  2659. /* drain rx queue */
  2660. nv_drain_rxtx(dev);
  2661. /* reinit driver view of the rx queue */
  2662. set_bufsize(dev);
  2663. if (nv_init_ring(dev)) {
  2664. if (!np->in_shutdown)
  2665. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2666. }
  2667. /* reinit nic view of the rx queue */
  2668. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2669. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2670. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2671. base + NvRegRingSizes);
  2672. pci_push(base);
  2673. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2674. pci_push(base);
  2675. /* restart rx engine */
  2676. nv_start_rxtx(dev);
  2677. spin_unlock(&np->lock);
  2678. netif_addr_unlock(dev);
  2679. netif_tx_unlock_bh(dev);
  2680. nv_napi_enable(dev);
  2681. nv_enable_irq(dev);
  2682. }
  2683. return 0;
  2684. }
  2685. static void nv_copy_mac_to_hw(struct net_device *dev)
  2686. {
  2687. u8 __iomem *base = get_hwbase(dev);
  2688. u32 mac[2];
  2689. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2690. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2691. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2692. writel(mac[0], base + NvRegMacAddrA);
  2693. writel(mac[1], base + NvRegMacAddrB);
  2694. }
  2695. /*
  2696. * nv_set_mac_address: dev->set_mac_address function
  2697. * Called with rtnl_lock() held.
  2698. */
  2699. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2700. {
  2701. struct fe_priv *np = netdev_priv(dev);
  2702. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2703. if (!is_valid_ether_addr(macaddr->sa_data))
  2704. return -EADDRNOTAVAIL;
  2705. /* synchronized against open : rtnl_lock() held by caller */
  2706. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2707. if (netif_running(dev)) {
  2708. netif_tx_lock_bh(dev);
  2709. netif_addr_lock(dev);
  2710. spin_lock_irq(&np->lock);
  2711. /* stop rx engine */
  2712. nv_stop_rx(dev);
  2713. /* set mac address */
  2714. nv_copy_mac_to_hw(dev);
  2715. /* restart rx engine */
  2716. nv_start_rx(dev);
  2717. spin_unlock_irq(&np->lock);
  2718. netif_addr_unlock(dev);
  2719. netif_tx_unlock_bh(dev);
  2720. } else {
  2721. nv_copy_mac_to_hw(dev);
  2722. }
  2723. return 0;
  2724. }
  2725. /*
  2726. * nv_set_multicast: dev->set_multicast function
  2727. * Called with netif_tx_lock held.
  2728. */
  2729. static void nv_set_multicast(struct net_device *dev)
  2730. {
  2731. struct fe_priv *np = netdev_priv(dev);
  2732. u8 __iomem *base = get_hwbase(dev);
  2733. u32 addr[2];
  2734. u32 mask[2];
  2735. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2736. memset(addr, 0, sizeof(addr));
  2737. memset(mask, 0, sizeof(mask));
  2738. if (dev->flags & IFF_PROMISC) {
  2739. pff |= NVREG_PFF_PROMISC;
  2740. } else {
  2741. pff |= NVREG_PFF_MYADDR;
  2742. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2743. u32 alwaysOff[2];
  2744. u32 alwaysOn[2];
  2745. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2746. if (dev->flags & IFF_ALLMULTI) {
  2747. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2748. } else {
  2749. struct dev_mc_list *walk;
  2750. walk = dev->mc_list;
  2751. while (walk != NULL) {
  2752. u32 a, b;
  2753. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2754. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2755. alwaysOn[0] &= a;
  2756. alwaysOff[0] &= ~a;
  2757. alwaysOn[1] &= b;
  2758. alwaysOff[1] &= ~b;
  2759. walk = walk->next;
  2760. }
  2761. }
  2762. addr[0] = alwaysOn[0];
  2763. addr[1] = alwaysOn[1];
  2764. mask[0] = alwaysOn[0] | alwaysOff[0];
  2765. mask[1] = alwaysOn[1] | alwaysOff[1];
  2766. } else {
  2767. mask[0] = NVREG_MCASTMASKA_NONE;
  2768. mask[1] = NVREG_MCASTMASKB_NONE;
  2769. }
  2770. }
  2771. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2772. pff |= NVREG_PFF_ALWAYS;
  2773. spin_lock_irq(&np->lock);
  2774. nv_stop_rx(dev);
  2775. writel(addr[0], base + NvRegMulticastAddrA);
  2776. writel(addr[1], base + NvRegMulticastAddrB);
  2777. writel(mask[0], base + NvRegMulticastMaskA);
  2778. writel(mask[1], base + NvRegMulticastMaskB);
  2779. writel(pff, base + NvRegPacketFilterFlags);
  2780. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2781. dev->name);
  2782. nv_start_rx(dev);
  2783. spin_unlock_irq(&np->lock);
  2784. }
  2785. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2786. {
  2787. struct fe_priv *np = netdev_priv(dev);
  2788. u8 __iomem *base = get_hwbase(dev);
  2789. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2790. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2791. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2792. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2793. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2794. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2795. } else {
  2796. writel(pff, base + NvRegPacketFilterFlags);
  2797. }
  2798. }
  2799. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2800. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2801. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2802. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2803. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2804. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2805. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2806. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2807. /* limit the number of tx pause frames to a default of 8 */
  2808. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2809. }
  2810. writel(pause_enable, base + NvRegTxPauseFrame);
  2811. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2812. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2813. } else {
  2814. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2815. writel(regmisc, base + NvRegMisc1);
  2816. }
  2817. }
  2818. }
  2819. /**
  2820. * nv_update_linkspeed: Setup the MAC according to the link partner
  2821. * @dev: Network device to be configured
  2822. *
  2823. * The function queries the PHY and checks if there is a link partner.
  2824. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2825. * set to 10 MBit HD.
  2826. *
  2827. * The function returns 0 if there is no link partner and 1 if there is
  2828. * a good link partner.
  2829. */
  2830. static int nv_update_linkspeed(struct net_device *dev)
  2831. {
  2832. struct fe_priv *np = netdev_priv(dev);
  2833. u8 __iomem *base = get_hwbase(dev);
  2834. int adv = 0;
  2835. int lpa = 0;
  2836. int adv_lpa, adv_pause, lpa_pause;
  2837. int newls = np->linkspeed;
  2838. int newdup = np->duplex;
  2839. int mii_status;
  2840. int retval = 0;
  2841. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2842. u32 txrxFlags = 0;
  2843. u32 phy_exp;
  2844. /* BMSR_LSTATUS is latched, read it twice:
  2845. * we want the current value.
  2846. */
  2847. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2848. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2849. if (!(mii_status & BMSR_LSTATUS)) {
  2850. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2851. dev->name);
  2852. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2853. newdup = 0;
  2854. retval = 0;
  2855. goto set_speed;
  2856. }
  2857. if (np->autoneg == 0) {
  2858. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2859. dev->name, np->fixed_mode);
  2860. if (np->fixed_mode & LPA_100FULL) {
  2861. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2862. newdup = 1;
  2863. } else if (np->fixed_mode & LPA_100HALF) {
  2864. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2865. newdup = 0;
  2866. } else if (np->fixed_mode & LPA_10FULL) {
  2867. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2868. newdup = 1;
  2869. } else {
  2870. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2871. newdup = 0;
  2872. }
  2873. retval = 1;
  2874. goto set_speed;
  2875. }
  2876. /* check auto negotiation is complete */
  2877. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2878. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2879. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2880. newdup = 0;
  2881. retval = 0;
  2882. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2883. goto set_speed;
  2884. }
  2885. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2886. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2887. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2888. dev->name, adv, lpa);
  2889. retval = 1;
  2890. if (np->gigabit == PHY_GIGABIT) {
  2891. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2892. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2893. if ((control_1000 & ADVERTISE_1000FULL) &&
  2894. (status_1000 & LPA_1000FULL)) {
  2895. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2896. dev->name);
  2897. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2898. newdup = 1;
  2899. goto set_speed;
  2900. }
  2901. }
  2902. /* FIXME: handle parallel detection properly */
  2903. adv_lpa = lpa & adv;
  2904. if (adv_lpa & LPA_100FULL) {
  2905. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2906. newdup = 1;
  2907. } else if (adv_lpa & LPA_100HALF) {
  2908. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2909. newdup = 0;
  2910. } else if (adv_lpa & LPA_10FULL) {
  2911. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2912. newdup = 1;
  2913. } else if (adv_lpa & LPA_10HALF) {
  2914. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2915. newdup = 0;
  2916. } else {
  2917. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2918. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2919. newdup = 0;
  2920. }
  2921. set_speed:
  2922. if (np->duplex == newdup && np->linkspeed == newls)
  2923. return retval;
  2924. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2925. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2926. np->duplex = newdup;
  2927. np->linkspeed = newls;
  2928. /* The transmitter and receiver must be restarted for safe update */
  2929. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2930. txrxFlags |= NV_RESTART_TX;
  2931. nv_stop_tx(dev);
  2932. }
  2933. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2934. txrxFlags |= NV_RESTART_RX;
  2935. nv_stop_rx(dev);
  2936. }
  2937. if (np->gigabit == PHY_GIGABIT) {
  2938. phyreg = readl(base + NvRegSlotTime);
  2939. phyreg &= ~(0x3FF00);
  2940. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2941. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2942. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2943. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2944. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2945. writel(phyreg, base + NvRegSlotTime);
  2946. }
  2947. phyreg = readl(base + NvRegPhyInterface);
  2948. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2949. if (np->duplex == 0)
  2950. phyreg |= PHY_HALF;
  2951. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2952. phyreg |= PHY_100;
  2953. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2954. phyreg |= PHY_1000;
  2955. writel(phyreg, base + NvRegPhyInterface);
  2956. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2957. if (phyreg & PHY_RGMII) {
  2958. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2959. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2960. } else {
  2961. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2962. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2963. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2964. else
  2965. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2966. } else {
  2967. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2968. }
  2969. }
  2970. } else {
  2971. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2972. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2973. else
  2974. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2975. }
  2976. writel(txreg, base + NvRegTxDeferral);
  2977. if (np->desc_ver == DESC_VER_1) {
  2978. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2979. } else {
  2980. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2981. txreg = NVREG_TX_WM_DESC2_3_1000;
  2982. else
  2983. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2984. }
  2985. writel(txreg, base + NvRegTxWatermark);
  2986. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2987. base + NvRegMisc1);
  2988. pci_push(base);
  2989. writel(np->linkspeed, base + NvRegLinkSpeed);
  2990. pci_push(base);
  2991. pause_flags = 0;
  2992. /* setup pause frame */
  2993. if (np->duplex != 0) {
  2994. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2995. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2996. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2997. switch (adv_pause) {
  2998. case ADVERTISE_PAUSE_CAP:
  2999. if (lpa_pause & LPA_PAUSE_CAP) {
  3000. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3001. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3002. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3003. }
  3004. break;
  3005. case ADVERTISE_PAUSE_ASYM:
  3006. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  3007. {
  3008. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3009. }
  3010. break;
  3011. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  3012. if (lpa_pause & LPA_PAUSE_CAP)
  3013. {
  3014. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3015. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3016. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3017. }
  3018. if (lpa_pause == LPA_PAUSE_ASYM)
  3019. {
  3020. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3021. }
  3022. break;
  3023. }
  3024. } else {
  3025. pause_flags = np->pause_flags;
  3026. }
  3027. }
  3028. nv_update_pause(dev, pause_flags);
  3029. if (txrxFlags & NV_RESTART_TX)
  3030. nv_start_tx(dev);
  3031. if (txrxFlags & NV_RESTART_RX)
  3032. nv_start_rx(dev);
  3033. return retval;
  3034. }
  3035. static void nv_linkchange(struct net_device *dev)
  3036. {
  3037. if (nv_update_linkspeed(dev)) {
  3038. if (!netif_carrier_ok(dev)) {
  3039. netif_carrier_on(dev);
  3040. printk(KERN_INFO "%s: link up.\n", dev->name);
  3041. nv_start_rx(dev);
  3042. }
  3043. } else {
  3044. if (netif_carrier_ok(dev)) {
  3045. netif_carrier_off(dev);
  3046. printk(KERN_INFO "%s: link down.\n", dev->name);
  3047. nv_stop_rx(dev);
  3048. }
  3049. }
  3050. }
  3051. static void nv_link_irq(struct net_device *dev)
  3052. {
  3053. u8 __iomem *base = get_hwbase(dev);
  3054. u32 miistat;
  3055. miistat = readl(base + NvRegMIIStatus);
  3056. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3057. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3058. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3059. nv_linkchange(dev);
  3060. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3061. }
  3062. static void nv_msi_workaround(struct fe_priv *np)
  3063. {
  3064. /* Need to toggle the msi irq mask within the ethernet device,
  3065. * otherwise, future interrupts will not be detected.
  3066. */
  3067. if (np->msi_flags & NV_MSI_ENABLED) {
  3068. u8 __iomem *base = np->base;
  3069. writel(0, base + NvRegMSIIrqMask);
  3070. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3071. }
  3072. }
  3073. static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
  3074. {
  3075. struct fe_priv *np = netdev_priv(dev);
  3076. if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
  3077. if (total_work > NV_DYNAMIC_THRESHOLD) {
  3078. /* transition to poll based interrupts */
  3079. np->quiet_count = 0;
  3080. if (np->irqmask != NVREG_IRQMASK_CPU) {
  3081. np->irqmask = NVREG_IRQMASK_CPU;
  3082. return 1;
  3083. }
  3084. } else {
  3085. if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
  3086. np->quiet_count++;
  3087. } else {
  3088. /* reached a period of low activity, switch
  3089. to per tx/rx packet interrupts */
  3090. if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
  3091. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3092. return 1;
  3093. }
  3094. }
  3095. }
  3096. }
  3097. return 0;
  3098. }
  3099. static irqreturn_t nv_nic_irq(int foo, void *data)
  3100. {
  3101. struct net_device *dev = (struct net_device *) data;
  3102. struct fe_priv *np = netdev_priv(dev);
  3103. u8 __iomem *base = get_hwbase(dev);
  3104. #ifndef CONFIG_FORCEDETH_NAPI
  3105. int total_work = 0;
  3106. int loop_count = 0;
  3107. #endif
  3108. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3109. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3110. np->events = readl(base + NvRegIrqStatus);
  3111. writel(np->events, base + NvRegIrqStatus);
  3112. } else {
  3113. np->events = readl(base + NvRegMSIXIrqStatus);
  3114. writel(np->events, base + NvRegMSIXIrqStatus);
  3115. }
  3116. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3117. if (!(np->events & np->irqmask))
  3118. return IRQ_NONE;
  3119. nv_msi_workaround(np);
  3120. #ifdef CONFIG_FORCEDETH_NAPI
  3121. napi_schedule(&np->napi);
  3122. /* Disable furthur irq's
  3123. (msix not enabled with napi) */
  3124. writel(0, base + NvRegIrqMask);
  3125. #else
  3126. do
  3127. {
  3128. int work = 0;
  3129. if ((work = nv_rx_process(dev, RX_WORK_PER_LOOP))) {
  3130. if (unlikely(nv_alloc_rx(dev))) {
  3131. spin_lock(&np->lock);
  3132. if (!np->in_shutdown)
  3133. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3134. spin_unlock(&np->lock);
  3135. }
  3136. }
  3137. spin_lock(&np->lock);
  3138. work += nv_tx_done(dev, TX_WORK_PER_LOOP);
  3139. spin_unlock(&np->lock);
  3140. if (!work)
  3141. break;
  3142. total_work += work;
  3143. loop_count++;
  3144. }
  3145. while (loop_count < max_interrupt_work);
  3146. if (nv_change_interrupt_mode(dev, total_work)) {
  3147. /* setup new irq mask */
  3148. writel(np->irqmask, base + NvRegIrqMask);
  3149. }
  3150. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3151. spin_lock(&np->lock);
  3152. nv_link_irq(dev);
  3153. spin_unlock(&np->lock);
  3154. }
  3155. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3156. spin_lock(&np->lock);
  3157. nv_linkchange(dev);
  3158. spin_unlock(&np->lock);
  3159. np->link_timeout = jiffies + LINK_TIMEOUT;
  3160. }
  3161. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3162. spin_lock(&np->lock);
  3163. /* disable interrupts on the nic */
  3164. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3165. writel(0, base + NvRegIrqMask);
  3166. else
  3167. writel(np->irqmask, base + NvRegIrqMask);
  3168. pci_push(base);
  3169. if (!np->in_shutdown) {
  3170. np->nic_poll_irq = np->irqmask;
  3171. np->recover_error = 1;
  3172. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3173. }
  3174. spin_unlock(&np->lock);
  3175. }
  3176. #endif
  3177. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3178. return IRQ_HANDLED;
  3179. }
  3180. /**
  3181. * All _optimized functions are used to help increase performance
  3182. * (reduce CPU and increase throughput). They use descripter version 3,
  3183. * compiler directives, and reduce memory accesses.
  3184. */
  3185. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3186. {
  3187. struct net_device *dev = (struct net_device *) data;
  3188. struct fe_priv *np = netdev_priv(dev);
  3189. u8 __iomem *base = get_hwbase(dev);
  3190. #ifndef CONFIG_FORCEDETH_NAPI
  3191. int total_work = 0;
  3192. int loop_count = 0;
  3193. #endif
  3194. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3195. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3196. np->events = readl(base + NvRegIrqStatus);
  3197. writel(np->events, base + NvRegIrqStatus);
  3198. } else {
  3199. np->events = readl(base + NvRegMSIXIrqStatus);
  3200. writel(np->events, base + NvRegMSIXIrqStatus);
  3201. }
  3202. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3203. if (!(np->events & np->irqmask))
  3204. return IRQ_NONE;
  3205. nv_msi_workaround(np);
  3206. #ifdef CONFIG_FORCEDETH_NAPI
  3207. napi_schedule(&np->napi);
  3208. /* Disable furthur irq's
  3209. (msix not enabled with napi) */
  3210. writel(0, base + NvRegIrqMask);
  3211. #else
  3212. do
  3213. {
  3214. int work = 0;
  3215. if ((work = nv_rx_process_optimized(dev, RX_WORK_PER_LOOP))) {
  3216. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3217. spin_lock(&np->lock);
  3218. if (!np->in_shutdown)
  3219. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3220. spin_unlock(&np->lock);
  3221. }
  3222. }
  3223. spin_lock(&np->lock);
  3224. work += nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3225. spin_unlock(&np->lock);
  3226. if (!work)
  3227. break;
  3228. total_work += work;
  3229. loop_count++;
  3230. }
  3231. while (loop_count < max_interrupt_work);
  3232. if (nv_change_interrupt_mode(dev, total_work)) {
  3233. /* setup new irq mask */
  3234. writel(np->irqmask, base + NvRegIrqMask);
  3235. }
  3236. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3237. spin_lock(&np->lock);
  3238. nv_link_irq(dev);
  3239. spin_unlock(&np->lock);
  3240. }
  3241. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3242. spin_lock(&np->lock);
  3243. nv_linkchange(dev);
  3244. spin_unlock(&np->lock);
  3245. np->link_timeout = jiffies + LINK_TIMEOUT;
  3246. }
  3247. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3248. spin_lock(&np->lock);
  3249. /* disable interrupts on the nic */
  3250. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3251. writel(0, base + NvRegIrqMask);
  3252. else
  3253. writel(np->irqmask, base + NvRegIrqMask);
  3254. pci_push(base);
  3255. if (!np->in_shutdown) {
  3256. np->nic_poll_irq = np->irqmask;
  3257. np->recover_error = 1;
  3258. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3259. }
  3260. spin_unlock(&np->lock);
  3261. }
  3262. #endif
  3263. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3264. return IRQ_HANDLED;
  3265. }
  3266. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3267. {
  3268. struct net_device *dev = (struct net_device *) data;
  3269. struct fe_priv *np = netdev_priv(dev);
  3270. u8 __iomem *base = get_hwbase(dev);
  3271. u32 events;
  3272. int i;
  3273. unsigned long flags;
  3274. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3275. for (i=0; ; i++) {
  3276. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3277. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3278. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3279. if (!(events & np->irqmask))
  3280. break;
  3281. spin_lock_irqsave(&np->lock, flags);
  3282. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3283. spin_unlock_irqrestore(&np->lock, flags);
  3284. if (unlikely(i > max_interrupt_work)) {
  3285. spin_lock_irqsave(&np->lock, flags);
  3286. /* disable interrupts on the nic */
  3287. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3288. pci_push(base);
  3289. if (!np->in_shutdown) {
  3290. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3291. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3292. }
  3293. spin_unlock_irqrestore(&np->lock, flags);
  3294. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3295. break;
  3296. }
  3297. }
  3298. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3299. return IRQ_RETVAL(i);
  3300. }
  3301. #ifdef CONFIG_FORCEDETH_NAPI
  3302. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3303. {
  3304. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3305. struct net_device *dev = np->dev;
  3306. u8 __iomem *base = get_hwbase(dev);
  3307. unsigned long flags;
  3308. int retcode;
  3309. int tx_work, rx_work;
  3310. if (!nv_optimized(np)) {
  3311. spin_lock_irqsave(&np->lock, flags);
  3312. tx_work = nv_tx_done(dev, np->tx_ring_size);
  3313. spin_unlock_irqrestore(&np->lock, flags);
  3314. rx_work = nv_rx_process(dev, budget);
  3315. retcode = nv_alloc_rx(dev);
  3316. } else {
  3317. spin_lock_irqsave(&np->lock, flags);
  3318. tx_work = nv_tx_done_optimized(dev, np->tx_ring_size);
  3319. spin_unlock_irqrestore(&np->lock, flags);
  3320. rx_work = nv_rx_process_optimized(dev, budget);
  3321. retcode = nv_alloc_rx_optimized(dev);
  3322. }
  3323. if (retcode) {
  3324. spin_lock_irqsave(&np->lock, flags);
  3325. if (!np->in_shutdown)
  3326. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3327. spin_unlock_irqrestore(&np->lock, flags);
  3328. }
  3329. nv_change_interrupt_mode(dev, tx_work + rx_work);
  3330. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3331. spin_lock_irqsave(&np->lock, flags);
  3332. nv_link_irq(dev);
  3333. spin_unlock_irqrestore(&np->lock, flags);
  3334. }
  3335. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3336. spin_lock_irqsave(&np->lock, flags);
  3337. nv_linkchange(dev);
  3338. spin_unlock_irqrestore(&np->lock, flags);
  3339. np->link_timeout = jiffies + LINK_TIMEOUT;
  3340. }
  3341. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3342. spin_lock_irqsave(&np->lock, flags);
  3343. if (!np->in_shutdown) {
  3344. np->nic_poll_irq = np->irqmask;
  3345. np->recover_error = 1;
  3346. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3347. }
  3348. spin_unlock_irqrestore(&np->lock, flags);
  3349. napi_complete(napi);
  3350. return rx_work;
  3351. }
  3352. if (rx_work < budget) {
  3353. /* re-enable interrupts
  3354. (msix not enabled in napi) */
  3355. napi_complete(napi);
  3356. writel(np->irqmask, base + NvRegIrqMask);
  3357. }
  3358. return rx_work;
  3359. }
  3360. #endif
  3361. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3362. {
  3363. struct net_device *dev = (struct net_device *) data;
  3364. struct fe_priv *np = netdev_priv(dev);
  3365. u8 __iomem *base = get_hwbase(dev);
  3366. u32 events;
  3367. int i;
  3368. unsigned long flags;
  3369. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3370. for (i=0; ; i++) {
  3371. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3372. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3373. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3374. if (!(events & np->irqmask))
  3375. break;
  3376. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3377. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3378. spin_lock_irqsave(&np->lock, flags);
  3379. if (!np->in_shutdown)
  3380. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3381. spin_unlock_irqrestore(&np->lock, flags);
  3382. }
  3383. }
  3384. if (unlikely(i > max_interrupt_work)) {
  3385. spin_lock_irqsave(&np->lock, flags);
  3386. /* disable interrupts on the nic */
  3387. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3388. pci_push(base);
  3389. if (!np->in_shutdown) {
  3390. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3391. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3392. }
  3393. spin_unlock_irqrestore(&np->lock, flags);
  3394. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3395. break;
  3396. }
  3397. }
  3398. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3399. return IRQ_RETVAL(i);
  3400. }
  3401. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3402. {
  3403. struct net_device *dev = (struct net_device *) data;
  3404. struct fe_priv *np = netdev_priv(dev);
  3405. u8 __iomem *base = get_hwbase(dev);
  3406. u32 events;
  3407. int i;
  3408. unsigned long flags;
  3409. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3410. for (i=0; ; i++) {
  3411. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3412. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3413. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3414. if (!(events & np->irqmask))
  3415. break;
  3416. /* check tx in case we reached max loop limit in tx isr */
  3417. spin_lock_irqsave(&np->lock, flags);
  3418. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3419. spin_unlock_irqrestore(&np->lock, flags);
  3420. if (events & NVREG_IRQ_LINK) {
  3421. spin_lock_irqsave(&np->lock, flags);
  3422. nv_link_irq(dev);
  3423. spin_unlock_irqrestore(&np->lock, flags);
  3424. }
  3425. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3426. spin_lock_irqsave(&np->lock, flags);
  3427. nv_linkchange(dev);
  3428. spin_unlock_irqrestore(&np->lock, flags);
  3429. np->link_timeout = jiffies + LINK_TIMEOUT;
  3430. }
  3431. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3432. spin_lock_irq(&np->lock);
  3433. /* disable interrupts on the nic */
  3434. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3435. pci_push(base);
  3436. if (!np->in_shutdown) {
  3437. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3438. np->recover_error = 1;
  3439. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3440. }
  3441. spin_unlock_irq(&np->lock);
  3442. break;
  3443. }
  3444. if (unlikely(i > max_interrupt_work)) {
  3445. spin_lock_irqsave(&np->lock, flags);
  3446. /* disable interrupts on the nic */
  3447. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3448. pci_push(base);
  3449. if (!np->in_shutdown) {
  3450. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3451. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3452. }
  3453. spin_unlock_irqrestore(&np->lock, flags);
  3454. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3455. break;
  3456. }
  3457. }
  3458. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3459. return IRQ_RETVAL(i);
  3460. }
  3461. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3462. {
  3463. struct net_device *dev = (struct net_device *) data;
  3464. struct fe_priv *np = netdev_priv(dev);
  3465. u8 __iomem *base = get_hwbase(dev);
  3466. u32 events;
  3467. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3468. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3469. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3470. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3471. } else {
  3472. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3473. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3474. }
  3475. pci_push(base);
  3476. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3477. if (!(events & NVREG_IRQ_TIMER))
  3478. return IRQ_RETVAL(0);
  3479. nv_msi_workaround(np);
  3480. spin_lock(&np->lock);
  3481. np->intr_test = 1;
  3482. spin_unlock(&np->lock);
  3483. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3484. return IRQ_RETVAL(1);
  3485. }
  3486. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3487. {
  3488. u8 __iomem *base = get_hwbase(dev);
  3489. int i;
  3490. u32 msixmap = 0;
  3491. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3492. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3493. * the remaining 8 interrupts.
  3494. */
  3495. for (i = 0; i < 8; i++) {
  3496. if ((irqmask >> i) & 0x1) {
  3497. msixmap |= vector << (i << 2);
  3498. }
  3499. }
  3500. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3501. msixmap = 0;
  3502. for (i = 0; i < 8; i++) {
  3503. if ((irqmask >> (i + 8)) & 0x1) {
  3504. msixmap |= vector << (i << 2);
  3505. }
  3506. }
  3507. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3508. }
  3509. static int nv_request_irq(struct net_device *dev, int intr_test)
  3510. {
  3511. struct fe_priv *np = get_nvpriv(dev);
  3512. u8 __iomem *base = get_hwbase(dev);
  3513. int ret = 1;
  3514. int i;
  3515. irqreturn_t (*handler)(int foo, void *data);
  3516. if (intr_test) {
  3517. handler = nv_nic_irq_test;
  3518. } else {
  3519. if (nv_optimized(np))
  3520. handler = nv_nic_irq_optimized;
  3521. else
  3522. handler = nv_nic_irq;
  3523. }
  3524. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3525. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3526. np->msi_x_entry[i].entry = i;
  3527. }
  3528. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3529. np->msi_flags |= NV_MSI_X_ENABLED;
  3530. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3531. /* Request irq for rx handling */
  3532. sprintf(np->name_rx, "%s-rx", dev->name);
  3533. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3534. &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3535. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3536. pci_disable_msix(np->pci_dev);
  3537. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3538. goto out_err;
  3539. }
  3540. /* Request irq for tx handling */
  3541. sprintf(np->name_tx, "%s-tx", dev->name);
  3542. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3543. &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3544. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3545. pci_disable_msix(np->pci_dev);
  3546. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3547. goto out_free_rx;
  3548. }
  3549. /* Request irq for link and timer handling */
  3550. sprintf(np->name_other, "%s-other", dev->name);
  3551. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3552. &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3553. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3554. pci_disable_msix(np->pci_dev);
  3555. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3556. goto out_free_tx;
  3557. }
  3558. /* map interrupts to their respective vector */
  3559. writel(0, base + NvRegMSIXMap0);
  3560. writel(0, base + NvRegMSIXMap1);
  3561. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3562. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3563. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3564. } else {
  3565. /* Request irq for all interrupts */
  3566. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3567. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3568. pci_disable_msix(np->pci_dev);
  3569. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3570. goto out_err;
  3571. }
  3572. /* map interrupts to vector 0 */
  3573. writel(0, base + NvRegMSIXMap0);
  3574. writel(0, base + NvRegMSIXMap1);
  3575. }
  3576. }
  3577. }
  3578. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3579. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3580. np->msi_flags |= NV_MSI_ENABLED;
  3581. dev->irq = np->pci_dev->irq;
  3582. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3583. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3584. pci_disable_msi(np->pci_dev);
  3585. np->msi_flags &= ~NV_MSI_ENABLED;
  3586. dev->irq = np->pci_dev->irq;
  3587. goto out_err;
  3588. }
  3589. /* map interrupts to vector 0 */
  3590. writel(0, base + NvRegMSIMap0);
  3591. writel(0, base + NvRegMSIMap1);
  3592. /* enable msi vector 0 */
  3593. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3594. }
  3595. }
  3596. if (ret != 0) {
  3597. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3598. goto out_err;
  3599. }
  3600. return 0;
  3601. out_free_tx:
  3602. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3603. out_free_rx:
  3604. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3605. out_err:
  3606. return 1;
  3607. }
  3608. static void nv_free_irq(struct net_device *dev)
  3609. {
  3610. struct fe_priv *np = get_nvpriv(dev);
  3611. int i;
  3612. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3613. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3614. free_irq(np->msi_x_entry[i].vector, dev);
  3615. }
  3616. pci_disable_msix(np->pci_dev);
  3617. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3618. } else {
  3619. free_irq(np->pci_dev->irq, dev);
  3620. if (np->msi_flags & NV_MSI_ENABLED) {
  3621. pci_disable_msi(np->pci_dev);
  3622. np->msi_flags &= ~NV_MSI_ENABLED;
  3623. }
  3624. }
  3625. }
  3626. static void nv_do_nic_poll(unsigned long data)
  3627. {
  3628. struct net_device *dev = (struct net_device *) data;
  3629. struct fe_priv *np = netdev_priv(dev);
  3630. u8 __iomem *base = get_hwbase(dev);
  3631. u32 mask = 0;
  3632. /*
  3633. * First disable irq(s) and then
  3634. * reenable interrupts on the nic, we have to do this before calling
  3635. * nv_nic_irq because that may decide to do otherwise
  3636. */
  3637. if (!using_multi_irqs(dev)) {
  3638. if (np->msi_flags & NV_MSI_X_ENABLED)
  3639. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3640. else
  3641. disable_irq_lockdep(np->pci_dev->irq);
  3642. mask = np->irqmask;
  3643. } else {
  3644. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3645. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3646. mask |= NVREG_IRQ_RX_ALL;
  3647. }
  3648. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3649. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3650. mask |= NVREG_IRQ_TX_ALL;
  3651. }
  3652. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3653. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3654. mask |= NVREG_IRQ_OTHER;
  3655. }
  3656. }
  3657. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3658. if (np->recover_error) {
  3659. np->recover_error = 0;
  3660. printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
  3661. if (netif_running(dev)) {
  3662. netif_tx_lock_bh(dev);
  3663. netif_addr_lock(dev);
  3664. spin_lock(&np->lock);
  3665. /* stop engines */
  3666. nv_stop_rxtx(dev);
  3667. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3668. nv_mac_reset(dev);
  3669. nv_txrx_reset(dev);
  3670. /* drain rx queue */
  3671. nv_drain_rxtx(dev);
  3672. /* reinit driver view of the rx queue */
  3673. set_bufsize(dev);
  3674. if (nv_init_ring(dev)) {
  3675. if (!np->in_shutdown)
  3676. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3677. }
  3678. /* reinit nic view of the rx queue */
  3679. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3680. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3681. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3682. base + NvRegRingSizes);
  3683. pci_push(base);
  3684. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3685. pci_push(base);
  3686. /* clear interrupts */
  3687. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3688. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3689. else
  3690. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3691. /* restart rx engine */
  3692. nv_start_rxtx(dev);
  3693. spin_unlock(&np->lock);
  3694. netif_addr_unlock(dev);
  3695. netif_tx_unlock_bh(dev);
  3696. }
  3697. }
  3698. writel(mask, base + NvRegIrqMask);
  3699. pci_push(base);
  3700. if (!using_multi_irqs(dev)) {
  3701. np->nic_poll_irq = 0;
  3702. if (nv_optimized(np))
  3703. nv_nic_irq_optimized(0, dev);
  3704. else
  3705. nv_nic_irq(0, dev);
  3706. if (np->msi_flags & NV_MSI_X_ENABLED)
  3707. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3708. else
  3709. enable_irq_lockdep(np->pci_dev->irq);
  3710. } else {
  3711. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3712. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3713. nv_nic_irq_rx(0, dev);
  3714. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3715. }
  3716. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3717. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3718. nv_nic_irq_tx(0, dev);
  3719. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3720. }
  3721. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3722. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3723. nv_nic_irq_other(0, dev);
  3724. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3725. }
  3726. }
  3727. }
  3728. #ifdef CONFIG_NET_POLL_CONTROLLER
  3729. static void nv_poll_controller(struct net_device *dev)
  3730. {
  3731. nv_do_nic_poll((unsigned long) dev);
  3732. }
  3733. #endif
  3734. static void nv_do_stats_poll(unsigned long data)
  3735. {
  3736. struct net_device *dev = (struct net_device *) data;
  3737. struct fe_priv *np = netdev_priv(dev);
  3738. nv_get_hw_stats(dev);
  3739. if (!np->in_shutdown)
  3740. mod_timer(&np->stats_poll,
  3741. round_jiffies(jiffies + STATS_INTERVAL));
  3742. }
  3743. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3744. {
  3745. struct fe_priv *np = netdev_priv(dev);
  3746. strcpy(info->driver, DRV_NAME);
  3747. strcpy(info->version, FORCEDETH_VERSION);
  3748. strcpy(info->bus_info, pci_name(np->pci_dev));
  3749. }
  3750. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3751. {
  3752. struct fe_priv *np = netdev_priv(dev);
  3753. wolinfo->supported = WAKE_MAGIC;
  3754. spin_lock_irq(&np->lock);
  3755. if (np->wolenabled)
  3756. wolinfo->wolopts = WAKE_MAGIC;
  3757. spin_unlock_irq(&np->lock);
  3758. }
  3759. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3760. {
  3761. struct fe_priv *np = netdev_priv(dev);
  3762. u8 __iomem *base = get_hwbase(dev);
  3763. u32 flags = 0;
  3764. if (wolinfo->wolopts == 0) {
  3765. np->wolenabled = 0;
  3766. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3767. np->wolenabled = 1;
  3768. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3769. }
  3770. if (netif_running(dev)) {
  3771. spin_lock_irq(&np->lock);
  3772. writel(flags, base + NvRegWakeUpFlags);
  3773. spin_unlock_irq(&np->lock);
  3774. }
  3775. return 0;
  3776. }
  3777. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3778. {
  3779. struct fe_priv *np = netdev_priv(dev);
  3780. int adv;
  3781. spin_lock_irq(&np->lock);
  3782. ecmd->port = PORT_MII;
  3783. if (!netif_running(dev)) {
  3784. /* We do not track link speed / duplex setting if the
  3785. * interface is disabled. Force a link check */
  3786. if (nv_update_linkspeed(dev)) {
  3787. if (!netif_carrier_ok(dev))
  3788. netif_carrier_on(dev);
  3789. } else {
  3790. if (netif_carrier_ok(dev))
  3791. netif_carrier_off(dev);
  3792. }
  3793. }
  3794. if (netif_carrier_ok(dev)) {
  3795. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3796. case NVREG_LINKSPEED_10:
  3797. ecmd->speed = SPEED_10;
  3798. break;
  3799. case NVREG_LINKSPEED_100:
  3800. ecmd->speed = SPEED_100;
  3801. break;
  3802. case NVREG_LINKSPEED_1000:
  3803. ecmd->speed = SPEED_1000;
  3804. break;
  3805. }
  3806. ecmd->duplex = DUPLEX_HALF;
  3807. if (np->duplex)
  3808. ecmd->duplex = DUPLEX_FULL;
  3809. } else {
  3810. ecmd->speed = -1;
  3811. ecmd->duplex = -1;
  3812. }
  3813. ecmd->autoneg = np->autoneg;
  3814. ecmd->advertising = ADVERTISED_MII;
  3815. if (np->autoneg) {
  3816. ecmd->advertising |= ADVERTISED_Autoneg;
  3817. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3818. if (adv & ADVERTISE_10HALF)
  3819. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3820. if (adv & ADVERTISE_10FULL)
  3821. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3822. if (adv & ADVERTISE_100HALF)
  3823. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3824. if (adv & ADVERTISE_100FULL)
  3825. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3826. if (np->gigabit == PHY_GIGABIT) {
  3827. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3828. if (adv & ADVERTISE_1000FULL)
  3829. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3830. }
  3831. }
  3832. ecmd->supported = (SUPPORTED_Autoneg |
  3833. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3834. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3835. SUPPORTED_MII);
  3836. if (np->gigabit == PHY_GIGABIT)
  3837. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3838. ecmd->phy_address = np->phyaddr;
  3839. ecmd->transceiver = XCVR_EXTERNAL;
  3840. /* ignore maxtxpkt, maxrxpkt for now */
  3841. spin_unlock_irq(&np->lock);
  3842. return 0;
  3843. }
  3844. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3845. {
  3846. struct fe_priv *np = netdev_priv(dev);
  3847. if (ecmd->port != PORT_MII)
  3848. return -EINVAL;
  3849. if (ecmd->transceiver != XCVR_EXTERNAL)
  3850. return -EINVAL;
  3851. if (ecmd->phy_address != np->phyaddr) {
  3852. /* TODO: support switching between multiple phys. Should be
  3853. * trivial, but not enabled due to lack of test hardware. */
  3854. return -EINVAL;
  3855. }
  3856. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3857. u32 mask;
  3858. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3859. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3860. if (np->gigabit == PHY_GIGABIT)
  3861. mask |= ADVERTISED_1000baseT_Full;
  3862. if ((ecmd->advertising & mask) == 0)
  3863. return -EINVAL;
  3864. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3865. /* Note: autonegotiation disable, speed 1000 intentionally
  3866. * forbidden - noone should need that. */
  3867. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3868. return -EINVAL;
  3869. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3870. return -EINVAL;
  3871. } else {
  3872. return -EINVAL;
  3873. }
  3874. netif_carrier_off(dev);
  3875. if (netif_running(dev)) {
  3876. unsigned long flags;
  3877. nv_disable_irq(dev);
  3878. netif_tx_lock_bh(dev);
  3879. netif_addr_lock(dev);
  3880. /* with plain spinlock lockdep complains */
  3881. spin_lock_irqsave(&np->lock, flags);
  3882. /* stop engines */
  3883. /* FIXME:
  3884. * this can take some time, and interrupts are disabled
  3885. * due to spin_lock_irqsave, but let's hope no daemon
  3886. * is going to change the settings very often...
  3887. * Worst case:
  3888. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3889. * + some minor delays, which is up to a second approximately
  3890. */
  3891. nv_stop_rxtx(dev);
  3892. spin_unlock_irqrestore(&np->lock, flags);
  3893. netif_addr_unlock(dev);
  3894. netif_tx_unlock_bh(dev);
  3895. }
  3896. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3897. int adv, bmcr;
  3898. np->autoneg = 1;
  3899. /* advertise only what has been requested */
  3900. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3901. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3902. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3903. adv |= ADVERTISE_10HALF;
  3904. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3905. adv |= ADVERTISE_10FULL;
  3906. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3907. adv |= ADVERTISE_100HALF;
  3908. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3909. adv |= ADVERTISE_100FULL;
  3910. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3911. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3912. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3913. adv |= ADVERTISE_PAUSE_ASYM;
  3914. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3915. if (np->gigabit == PHY_GIGABIT) {
  3916. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3917. adv &= ~ADVERTISE_1000FULL;
  3918. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3919. adv |= ADVERTISE_1000FULL;
  3920. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3921. }
  3922. if (netif_running(dev))
  3923. printk(KERN_INFO "%s: link down.\n", dev->name);
  3924. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3925. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3926. bmcr |= BMCR_ANENABLE;
  3927. /* reset the phy in order for settings to stick,
  3928. * and cause autoneg to start */
  3929. if (phy_reset(dev, bmcr)) {
  3930. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3931. return -EINVAL;
  3932. }
  3933. } else {
  3934. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3935. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3936. }
  3937. } else {
  3938. int adv, bmcr;
  3939. np->autoneg = 0;
  3940. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3941. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3942. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3943. adv |= ADVERTISE_10HALF;
  3944. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3945. adv |= ADVERTISE_10FULL;
  3946. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3947. adv |= ADVERTISE_100HALF;
  3948. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3949. adv |= ADVERTISE_100FULL;
  3950. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3951. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3952. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3953. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3954. }
  3955. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3956. adv |= ADVERTISE_PAUSE_ASYM;
  3957. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3958. }
  3959. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3960. np->fixed_mode = adv;
  3961. if (np->gigabit == PHY_GIGABIT) {
  3962. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3963. adv &= ~ADVERTISE_1000FULL;
  3964. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3965. }
  3966. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3967. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3968. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3969. bmcr |= BMCR_FULLDPLX;
  3970. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3971. bmcr |= BMCR_SPEED100;
  3972. if (np->phy_oui == PHY_OUI_MARVELL) {
  3973. /* reset the phy in order for forced mode settings to stick */
  3974. if (phy_reset(dev, bmcr)) {
  3975. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3976. return -EINVAL;
  3977. }
  3978. } else {
  3979. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3980. if (netif_running(dev)) {
  3981. /* Wait a bit and then reconfigure the nic. */
  3982. udelay(10);
  3983. nv_linkchange(dev);
  3984. }
  3985. }
  3986. }
  3987. if (netif_running(dev)) {
  3988. nv_start_rxtx(dev);
  3989. nv_enable_irq(dev);
  3990. }
  3991. return 0;
  3992. }
  3993. #define FORCEDETH_REGS_VER 1
  3994. static int nv_get_regs_len(struct net_device *dev)
  3995. {
  3996. struct fe_priv *np = netdev_priv(dev);
  3997. return np->register_size;
  3998. }
  3999. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  4000. {
  4001. struct fe_priv *np = netdev_priv(dev);
  4002. u8 __iomem *base = get_hwbase(dev);
  4003. u32 *rbuf = buf;
  4004. int i;
  4005. regs->version = FORCEDETH_REGS_VER;
  4006. spin_lock_irq(&np->lock);
  4007. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  4008. rbuf[i] = readl(base + i*sizeof(u32));
  4009. spin_unlock_irq(&np->lock);
  4010. }
  4011. static int nv_nway_reset(struct net_device *dev)
  4012. {
  4013. struct fe_priv *np = netdev_priv(dev);
  4014. int ret;
  4015. if (np->autoneg) {
  4016. int bmcr;
  4017. netif_carrier_off(dev);
  4018. if (netif_running(dev)) {
  4019. nv_disable_irq(dev);
  4020. netif_tx_lock_bh(dev);
  4021. netif_addr_lock(dev);
  4022. spin_lock(&np->lock);
  4023. /* stop engines */
  4024. nv_stop_rxtx(dev);
  4025. spin_unlock(&np->lock);
  4026. netif_addr_unlock(dev);
  4027. netif_tx_unlock_bh(dev);
  4028. printk(KERN_INFO "%s: link down.\n", dev->name);
  4029. }
  4030. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4031. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  4032. bmcr |= BMCR_ANENABLE;
  4033. /* reset the phy in order for settings to stick*/
  4034. if (phy_reset(dev, bmcr)) {
  4035. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4036. return -EINVAL;
  4037. }
  4038. } else {
  4039. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4040. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4041. }
  4042. if (netif_running(dev)) {
  4043. nv_start_rxtx(dev);
  4044. nv_enable_irq(dev);
  4045. }
  4046. ret = 0;
  4047. } else {
  4048. ret = -EINVAL;
  4049. }
  4050. return ret;
  4051. }
  4052. static int nv_set_tso(struct net_device *dev, u32 value)
  4053. {
  4054. struct fe_priv *np = netdev_priv(dev);
  4055. if ((np->driver_data & DEV_HAS_CHECKSUM))
  4056. return ethtool_op_set_tso(dev, value);
  4057. else
  4058. return -EOPNOTSUPP;
  4059. }
  4060. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4061. {
  4062. struct fe_priv *np = netdev_priv(dev);
  4063. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4064. ring->rx_mini_max_pending = 0;
  4065. ring->rx_jumbo_max_pending = 0;
  4066. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4067. ring->rx_pending = np->rx_ring_size;
  4068. ring->rx_mini_pending = 0;
  4069. ring->rx_jumbo_pending = 0;
  4070. ring->tx_pending = np->tx_ring_size;
  4071. }
  4072. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4073. {
  4074. struct fe_priv *np = netdev_priv(dev);
  4075. u8 __iomem *base = get_hwbase(dev);
  4076. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4077. dma_addr_t ring_addr;
  4078. if (ring->rx_pending < RX_RING_MIN ||
  4079. ring->tx_pending < TX_RING_MIN ||
  4080. ring->rx_mini_pending != 0 ||
  4081. ring->rx_jumbo_pending != 0 ||
  4082. (np->desc_ver == DESC_VER_1 &&
  4083. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4084. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4085. (np->desc_ver != DESC_VER_1 &&
  4086. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4087. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4088. return -EINVAL;
  4089. }
  4090. /* allocate new rings */
  4091. if (!nv_optimized(np)) {
  4092. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4093. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4094. &ring_addr);
  4095. } else {
  4096. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4097. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4098. &ring_addr);
  4099. }
  4100. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4101. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4102. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4103. /* fall back to old rings */
  4104. if (!nv_optimized(np)) {
  4105. if (rxtx_ring)
  4106. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4107. rxtx_ring, ring_addr);
  4108. } else {
  4109. if (rxtx_ring)
  4110. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4111. rxtx_ring, ring_addr);
  4112. }
  4113. if (rx_skbuff)
  4114. kfree(rx_skbuff);
  4115. if (tx_skbuff)
  4116. kfree(tx_skbuff);
  4117. goto exit;
  4118. }
  4119. if (netif_running(dev)) {
  4120. nv_disable_irq(dev);
  4121. nv_napi_disable(dev);
  4122. netif_tx_lock_bh(dev);
  4123. netif_addr_lock(dev);
  4124. spin_lock(&np->lock);
  4125. /* stop engines */
  4126. nv_stop_rxtx(dev);
  4127. nv_txrx_reset(dev);
  4128. /* drain queues */
  4129. nv_drain_rxtx(dev);
  4130. /* delete queues */
  4131. free_rings(dev);
  4132. }
  4133. /* set new values */
  4134. np->rx_ring_size = ring->rx_pending;
  4135. np->tx_ring_size = ring->tx_pending;
  4136. if (!nv_optimized(np)) {
  4137. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4138. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4139. } else {
  4140. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4141. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4142. }
  4143. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4144. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4145. np->ring_addr = ring_addr;
  4146. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4147. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4148. if (netif_running(dev)) {
  4149. /* reinit driver view of the queues */
  4150. set_bufsize(dev);
  4151. if (nv_init_ring(dev)) {
  4152. if (!np->in_shutdown)
  4153. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4154. }
  4155. /* reinit nic view of the queues */
  4156. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4157. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4158. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4159. base + NvRegRingSizes);
  4160. pci_push(base);
  4161. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4162. pci_push(base);
  4163. /* restart engines */
  4164. nv_start_rxtx(dev);
  4165. spin_unlock(&np->lock);
  4166. netif_addr_unlock(dev);
  4167. netif_tx_unlock_bh(dev);
  4168. nv_napi_enable(dev);
  4169. nv_enable_irq(dev);
  4170. }
  4171. return 0;
  4172. exit:
  4173. return -ENOMEM;
  4174. }
  4175. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4176. {
  4177. struct fe_priv *np = netdev_priv(dev);
  4178. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4179. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4180. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4181. }
  4182. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4183. {
  4184. struct fe_priv *np = netdev_priv(dev);
  4185. int adv, bmcr;
  4186. if ((!np->autoneg && np->duplex == 0) ||
  4187. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4188. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4189. dev->name);
  4190. return -EINVAL;
  4191. }
  4192. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4193. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4194. return -EINVAL;
  4195. }
  4196. netif_carrier_off(dev);
  4197. if (netif_running(dev)) {
  4198. nv_disable_irq(dev);
  4199. netif_tx_lock_bh(dev);
  4200. netif_addr_lock(dev);
  4201. spin_lock(&np->lock);
  4202. /* stop engines */
  4203. nv_stop_rxtx(dev);
  4204. spin_unlock(&np->lock);
  4205. netif_addr_unlock(dev);
  4206. netif_tx_unlock_bh(dev);
  4207. }
  4208. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4209. if (pause->rx_pause)
  4210. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4211. if (pause->tx_pause)
  4212. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4213. if (np->autoneg && pause->autoneg) {
  4214. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4215. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4216. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4217. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4218. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4219. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4220. adv |= ADVERTISE_PAUSE_ASYM;
  4221. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4222. if (netif_running(dev))
  4223. printk(KERN_INFO "%s: link down.\n", dev->name);
  4224. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4225. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4226. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4227. } else {
  4228. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4229. if (pause->rx_pause)
  4230. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4231. if (pause->tx_pause)
  4232. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4233. if (!netif_running(dev))
  4234. nv_update_linkspeed(dev);
  4235. else
  4236. nv_update_pause(dev, np->pause_flags);
  4237. }
  4238. if (netif_running(dev)) {
  4239. nv_start_rxtx(dev);
  4240. nv_enable_irq(dev);
  4241. }
  4242. return 0;
  4243. }
  4244. static u32 nv_get_rx_csum(struct net_device *dev)
  4245. {
  4246. struct fe_priv *np = netdev_priv(dev);
  4247. return (np->rx_csum) != 0;
  4248. }
  4249. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4250. {
  4251. struct fe_priv *np = netdev_priv(dev);
  4252. u8 __iomem *base = get_hwbase(dev);
  4253. int retcode = 0;
  4254. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4255. if (data) {
  4256. np->rx_csum = 1;
  4257. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4258. } else {
  4259. np->rx_csum = 0;
  4260. /* vlan is dependent on rx checksum offload */
  4261. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4262. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4263. }
  4264. if (netif_running(dev)) {
  4265. spin_lock_irq(&np->lock);
  4266. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4267. spin_unlock_irq(&np->lock);
  4268. }
  4269. } else {
  4270. return -EINVAL;
  4271. }
  4272. return retcode;
  4273. }
  4274. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4275. {
  4276. struct fe_priv *np = netdev_priv(dev);
  4277. if (np->driver_data & DEV_HAS_CHECKSUM)
  4278. return ethtool_op_set_tx_csum(dev, data);
  4279. else
  4280. return -EOPNOTSUPP;
  4281. }
  4282. static int nv_set_sg(struct net_device *dev, u32 data)
  4283. {
  4284. struct fe_priv *np = netdev_priv(dev);
  4285. if (np->driver_data & DEV_HAS_CHECKSUM)
  4286. return ethtool_op_set_sg(dev, data);
  4287. else
  4288. return -EOPNOTSUPP;
  4289. }
  4290. static int nv_get_sset_count(struct net_device *dev, int sset)
  4291. {
  4292. struct fe_priv *np = netdev_priv(dev);
  4293. switch (sset) {
  4294. case ETH_SS_TEST:
  4295. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4296. return NV_TEST_COUNT_EXTENDED;
  4297. else
  4298. return NV_TEST_COUNT_BASE;
  4299. case ETH_SS_STATS:
  4300. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4301. return NV_DEV_STATISTICS_V3_COUNT;
  4302. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4303. return NV_DEV_STATISTICS_V2_COUNT;
  4304. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4305. return NV_DEV_STATISTICS_V1_COUNT;
  4306. else
  4307. return 0;
  4308. default:
  4309. return -EOPNOTSUPP;
  4310. }
  4311. }
  4312. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4313. {
  4314. struct fe_priv *np = netdev_priv(dev);
  4315. /* update stats */
  4316. nv_do_stats_poll((unsigned long)dev);
  4317. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4318. }
  4319. static int nv_link_test(struct net_device *dev)
  4320. {
  4321. struct fe_priv *np = netdev_priv(dev);
  4322. int mii_status;
  4323. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4324. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4325. /* check phy link status */
  4326. if (!(mii_status & BMSR_LSTATUS))
  4327. return 0;
  4328. else
  4329. return 1;
  4330. }
  4331. static int nv_register_test(struct net_device *dev)
  4332. {
  4333. u8 __iomem *base = get_hwbase(dev);
  4334. int i = 0;
  4335. u32 orig_read, new_read;
  4336. do {
  4337. orig_read = readl(base + nv_registers_test[i].reg);
  4338. /* xor with mask to toggle bits */
  4339. orig_read ^= nv_registers_test[i].mask;
  4340. writel(orig_read, base + nv_registers_test[i].reg);
  4341. new_read = readl(base + nv_registers_test[i].reg);
  4342. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4343. return 0;
  4344. /* restore original value */
  4345. orig_read ^= nv_registers_test[i].mask;
  4346. writel(orig_read, base + nv_registers_test[i].reg);
  4347. } while (nv_registers_test[++i].reg != 0);
  4348. return 1;
  4349. }
  4350. static int nv_interrupt_test(struct net_device *dev)
  4351. {
  4352. struct fe_priv *np = netdev_priv(dev);
  4353. u8 __iomem *base = get_hwbase(dev);
  4354. int ret = 1;
  4355. int testcnt;
  4356. u32 save_msi_flags, save_poll_interval = 0;
  4357. if (netif_running(dev)) {
  4358. /* free current irq */
  4359. nv_free_irq(dev);
  4360. save_poll_interval = readl(base+NvRegPollingInterval);
  4361. }
  4362. /* flag to test interrupt handler */
  4363. np->intr_test = 0;
  4364. /* setup test irq */
  4365. save_msi_flags = np->msi_flags;
  4366. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4367. np->msi_flags |= 0x001; /* setup 1 vector */
  4368. if (nv_request_irq(dev, 1))
  4369. return 0;
  4370. /* setup timer interrupt */
  4371. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4372. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4373. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4374. /* wait for at least one interrupt */
  4375. msleep(100);
  4376. spin_lock_irq(&np->lock);
  4377. /* flag should be set within ISR */
  4378. testcnt = np->intr_test;
  4379. if (!testcnt)
  4380. ret = 2;
  4381. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4382. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4383. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4384. else
  4385. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4386. spin_unlock_irq(&np->lock);
  4387. nv_free_irq(dev);
  4388. np->msi_flags = save_msi_flags;
  4389. if (netif_running(dev)) {
  4390. writel(save_poll_interval, base + NvRegPollingInterval);
  4391. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4392. /* restore original irq */
  4393. if (nv_request_irq(dev, 0))
  4394. return 0;
  4395. }
  4396. return ret;
  4397. }
  4398. static int nv_loopback_test(struct net_device *dev)
  4399. {
  4400. struct fe_priv *np = netdev_priv(dev);
  4401. u8 __iomem *base = get_hwbase(dev);
  4402. struct sk_buff *tx_skb, *rx_skb;
  4403. dma_addr_t test_dma_addr;
  4404. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4405. u32 flags;
  4406. int len, i, pkt_len;
  4407. u8 *pkt_data;
  4408. u32 filter_flags = 0;
  4409. u32 misc1_flags = 0;
  4410. int ret = 1;
  4411. if (netif_running(dev)) {
  4412. nv_disable_irq(dev);
  4413. filter_flags = readl(base + NvRegPacketFilterFlags);
  4414. misc1_flags = readl(base + NvRegMisc1);
  4415. } else {
  4416. nv_txrx_reset(dev);
  4417. }
  4418. /* reinit driver view of the rx queue */
  4419. set_bufsize(dev);
  4420. nv_init_ring(dev);
  4421. /* setup hardware for loopback */
  4422. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4423. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4424. /* reinit nic view of the rx queue */
  4425. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4426. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4427. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4428. base + NvRegRingSizes);
  4429. pci_push(base);
  4430. /* restart rx engine */
  4431. nv_start_rxtx(dev);
  4432. /* setup packet for tx */
  4433. pkt_len = ETH_DATA_LEN;
  4434. tx_skb = dev_alloc_skb(pkt_len);
  4435. if (!tx_skb) {
  4436. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4437. " of %s\n", dev->name);
  4438. ret = 0;
  4439. goto out;
  4440. }
  4441. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4442. skb_tailroom(tx_skb),
  4443. PCI_DMA_FROMDEVICE);
  4444. pkt_data = skb_put(tx_skb, pkt_len);
  4445. for (i = 0; i < pkt_len; i++)
  4446. pkt_data[i] = (u8)(i & 0xff);
  4447. if (!nv_optimized(np)) {
  4448. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4449. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4450. } else {
  4451. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4452. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4453. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4454. }
  4455. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4456. pci_push(get_hwbase(dev));
  4457. msleep(500);
  4458. /* check for rx of the packet */
  4459. if (!nv_optimized(np)) {
  4460. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4461. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4462. } else {
  4463. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4464. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4465. }
  4466. if (flags & NV_RX_AVAIL) {
  4467. ret = 0;
  4468. } else if (np->desc_ver == DESC_VER_1) {
  4469. if (flags & NV_RX_ERROR)
  4470. ret = 0;
  4471. } else {
  4472. if (flags & NV_RX2_ERROR) {
  4473. ret = 0;
  4474. }
  4475. }
  4476. if (ret) {
  4477. if (len != pkt_len) {
  4478. ret = 0;
  4479. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4480. dev->name, len, pkt_len);
  4481. } else {
  4482. rx_skb = np->rx_skb[0].skb;
  4483. for (i = 0; i < pkt_len; i++) {
  4484. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4485. ret = 0;
  4486. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4487. dev->name, i);
  4488. break;
  4489. }
  4490. }
  4491. }
  4492. } else {
  4493. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4494. }
  4495. pci_unmap_page(np->pci_dev, test_dma_addr,
  4496. (skb_end_pointer(tx_skb) - tx_skb->data),
  4497. PCI_DMA_TODEVICE);
  4498. dev_kfree_skb_any(tx_skb);
  4499. out:
  4500. /* stop engines */
  4501. nv_stop_rxtx(dev);
  4502. nv_txrx_reset(dev);
  4503. /* drain rx queue */
  4504. nv_drain_rxtx(dev);
  4505. if (netif_running(dev)) {
  4506. writel(misc1_flags, base + NvRegMisc1);
  4507. writel(filter_flags, base + NvRegPacketFilterFlags);
  4508. nv_enable_irq(dev);
  4509. }
  4510. return ret;
  4511. }
  4512. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4513. {
  4514. struct fe_priv *np = netdev_priv(dev);
  4515. u8 __iomem *base = get_hwbase(dev);
  4516. int result;
  4517. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4518. if (!nv_link_test(dev)) {
  4519. test->flags |= ETH_TEST_FL_FAILED;
  4520. buffer[0] = 1;
  4521. }
  4522. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4523. if (netif_running(dev)) {
  4524. netif_stop_queue(dev);
  4525. nv_napi_disable(dev);
  4526. netif_tx_lock_bh(dev);
  4527. netif_addr_lock(dev);
  4528. spin_lock_irq(&np->lock);
  4529. nv_disable_hw_interrupts(dev, np->irqmask);
  4530. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4531. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4532. } else {
  4533. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4534. }
  4535. /* stop engines */
  4536. nv_stop_rxtx(dev);
  4537. nv_txrx_reset(dev);
  4538. /* drain rx queue */
  4539. nv_drain_rxtx(dev);
  4540. spin_unlock_irq(&np->lock);
  4541. netif_addr_unlock(dev);
  4542. netif_tx_unlock_bh(dev);
  4543. }
  4544. if (!nv_register_test(dev)) {
  4545. test->flags |= ETH_TEST_FL_FAILED;
  4546. buffer[1] = 1;
  4547. }
  4548. result = nv_interrupt_test(dev);
  4549. if (result != 1) {
  4550. test->flags |= ETH_TEST_FL_FAILED;
  4551. buffer[2] = 1;
  4552. }
  4553. if (result == 0) {
  4554. /* bail out */
  4555. return;
  4556. }
  4557. if (!nv_loopback_test(dev)) {
  4558. test->flags |= ETH_TEST_FL_FAILED;
  4559. buffer[3] = 1;
  4560. }
  4561. if (netif_running(dev)) {
  4562. /* reinit driver view of the rx queue */
  4563. set_bufsize(dev);
  4564. if (nv_init_ring(dev)) {
  4565. if (!np->in_shutdown)
  4566. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4567. }
  4568. /* reinit nic view of the rx queue */
  4569. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4570. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4571. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4572. base + NvRegRingSizes);
  4573. pci_push(base);
  4574. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4575. pci_push(base);
  4576. /* restart rx engine */
  4577. nv_start_rxtx(dev);
  4578. netif_start_queue(dev);
  4579. nv_napi_enable(dev);
  4580. nv_enable_hw_interrupts(dev, np->irqmask);
  4581. }
  4582. }
  4583. }
  4584. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4585. {
  4586. switch (stringset) {
  4587. case ETH_SS_STATS:
  4588. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4589. break;
  4590. case ETH_SS_TEST:
  4591. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4592. break;
  4593. }
  4594. }
  4595. static const struct ethtool_ops ops = {
  4596. .get_drvinfo = nv_get_drvinfo,
  4597. .get_link = ethtool_op_get_link,
  4598. .get_wol = nv_get_wol,
  4599. .set_wol = nv_set_wol,
  4600. .get_settings = nv_get_settings,
  4601. .set_settings = nv_set_settings,
  4602. .get_regs_len = nv_get_regs_len,
  4603. .get_regs = nv_get_regs,
  4604. .nway_reset = nv_nway_reset,
  4605. .set_tso = nv_set_tso,
  4606. .get_ringparam = nv_get_ringparam,
  4607. .set_ringparam = nv_set_ringparam,
  4608. .get_pauseparam = nv_get_pauseparam,
  4609. .set_pauseparam = nv_set_pauseparam,
  4610. .get_rx_csum = nv_get_rx_csum,
  4611. .set_rx_csum = nv_set_rx_csum,
  4612. .set_tx_csum = nv_set_tx_csum,
  4613. .set_sg = nv_set_sg,
  4614. .get_strings = nv_get_strings,
  4615. .get_ethtool_stats = nv_get_ethtool_stats,
  4616. .get_sset_count = nv_get_sset_count,
  4617. .self_test = nv_self_test,
  4618. };
  4619. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4620. {
  4621. struct fe_priv *np = get_nvpriv(dev);
  4622. spin_lock_irq(&np->lock);
  4623. /* save vlan group */
  4624. np->vlangrp = grp;
  4625. if (grp) {
  4626. /* enable vlan on MAC */
  4627. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4628. } else {
  4629. /* disable vlan on MAC */
  4630. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4631. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4632. }
  4633. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4634. spin_unlock_irq(&np->lock);
  4635. }
  4636. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4637. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4638. {
  4639. struct fe_priv *np = netdev_priv(dev);
  4640. u8 __iomem *base = get_hwbase(dev);
  4641. int i;
  4642. u32 tx_ctrl, mgmt_sema;
  4643. for (i = 0; i < 10; i++) {
  4644. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4645. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4646. break;
  4647. msleep(500);
  4648. }
  4649. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4650. return 0;
  4651. for (i = 0; i < 2; i++) {
  4652. tx_ctrl = readl(base + NvRegTransmitterControl);
  4653. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4654. writel(tx_ctrl, base + NvRegTransmitterControl);
  4655. /* verify that semaphore was acquired */
  4656. tx_ctrl = readl(base + NvRegTransmitterControl);
  4657. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4658. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4659. np->mgmt_sema = 1;
  4660. return 1;
  4661. }
  4662. else
  4663. udelay(50);
  4664. }
  4665. return 0;
  4666. }
  4667. static void nv_mgmt_release_sema(struct net_device *dev)
  4668. {
  4669. struct fe_priv *np = netdev_priv(dev);
  4670. u8 __iomem *base = get_hwbase(dev);
  4671. u32 tx_ctrl;
  4672. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4673. if (np->mgmt_sema) {
  4674. tx_ctrl = readl(base + NvRegTransmitterControl);
  4675. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4676. writel(tx_ctrl, base + NvRegTransmitterControl);
  4677. }
  4678. }
  4679. }
  4680. static int nv_mgmt_get_version(struct net_device *dev)
  4681. {
  4682. struct fe_priv *np = netdev_priv(dev);
  4683. u8 __iomem *base = get_hwbase(dev);
  4684. u32 data_ready = readl(base + NvRegTransmitterControl);
  4685. u32 data_ready2 = 0;
  4686. unsigned long start;
  4687. int ready = 0;
  4688. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4689. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4690. start = jiffies;
  4691. while (time_before(jiffies, start + 5*HZ)) {
  4692. data_ready2 = readl(base + NvRegTransmitterControl);
  4693. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4694. ready = 1;
  4695. break;
  4696. }
  4697. schedule_timeout_uninterruptible(1);
  4698. }
  4699. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4700. return 0;
  4701. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4702. return 1;
  4703. }
  4704. static int nv_open(struct net_device *dev)
  4705. {
  4706. struct fe_priv *np = netdev_priv(dev);
  4707. u8 __iomem *base = get_hwbase(dev);
  4708. int ret = 1;
  4709. int oom, i;
  4710. u32 low;
  4711. dprintk(KERN_DEBUG "nv_open: begin\n");
  4712. /* power up phy */
  4713. mii_rw(dev, np->phyaddr, MII_BMCR,
  4714. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4715. /* erase previous misconfiguration */
  4716. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4717. nv_mac_reset(dev);
  4718. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4719. writel(0, base + NvRegMulticastAddrB);
  4720. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4721. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4722. writel(0, base + NvRegPacketFilterFlags);
  4723. writel(0, base + NvRegTransmitterControl);
  4724. writel(0, base + NvRegReceiverControl);
  4725. writel(0, base + NvRegAdapterControl);
  4726. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4727. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4728. /* initialize descriptor rings */
  4729. set_bufsize(dev);
  4730. oom = nv_init_ring(dev);
  4731. writel(0, base + NvRegLinkSpeed);
  4732. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4733. nv_txrx_reset(dev);
  4734. writel(0, base + NvRegUnknownSetupReg6);
  4735. np->in_shutdown = 0;
  4736. /* give hw rings */
  4737. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4738. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4739. base + NvRegRingSizes);
  4740. writel(np->linkspeed, base + NvRegLinkSpeed);
  4741. if (np->desc_ver == DESC_VER_1)
  4742. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4743. else
  4744. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4745. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4746. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4747. pci_push(base);
  4748. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4749. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4750. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4751. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4752. writel(0, base + NvRegMIIMask);
  4753. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4754. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4755. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4756. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4757. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4758. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4759. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4760. get_random_bytes(&low, sizeof(low));
  4761. low &= NVREG_SLOTTIME_MASK;
  4762. if (np->desc_ver == DESC_VER_1) {
  4763. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4764. } else {
  4765. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4766. /* setup legacy backoff */
  4767. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4768. } else {
  4769. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4770. nv_gear_backoff_reseed(dev);
  4771. }
  4772. }
  4773. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4774. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4775. if (poll_interval == -1) {
  4776. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4777. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4778. else
  4779. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4780. }
  4781. else
  4782. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4783. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4784. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4785. base + NvRegAdapterControl);
  4786. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4787. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4788. if (np->wolenabled)
  4789. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4790. i = readl(base + NvRegPowerState);
  4791. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4792. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4793. pci_push(base);
  4794. udelay(10);
  4795. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4796. nv_disable_hw_interrupts(dev, np->irqmask);
  4797. pci_push(base);
  4798. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4799. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4800. pci_push(base);
  4801. if (nv_request_irq(dev, 0)) {
  4802. goto out_drain;
  4803. }
  4804. /* ask for interrupts */
  4805. nv_enable_hw_interrupts(dev, np->irqmask);
  4806. spin_lock_irq(&np->lock);
  4807. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4808. writel(0, base + NvRegMulticastAddrB);
  4809. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4810. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4811. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4812. /* One manual link speed update: Interrupts are enabled, future link
  4813. * speed changes cause interrupts and are handled by nv_link_irq().
  4814. */
  4815. {
  4816. u32 miistat;
  4817. miistat = readl(base + NvRegMIIStatus);
  4818. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4819. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4820. }
  4821. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4822. * to init hw */
  4823. np->linkspeed = 0;
  4824. ret = nv_update_linkspeed(dev);
  4825. nv_start_rxtx(dev);
  4826. netif_start_queue(dev);
  4827. nv_napi_enable(dev);
  4828. if (ret) {
  4829. netif_carrier_on(dev);
  4830. } else {
  4831. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4832. netif_carrier_off(dev);
  4833. }
  4834. if (oom)
  4835. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4836. /* start statistics timer */
  4837. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4838. mod_timer(&np->stats_poll,
  4839. round_jiffies(jiffies + STATS_INTERVAL));
  4840. spin_unlock_irq(&np->lock);
  4841. return 0;
  4842. out_drain:
  4843. nv_drain_rxtx(dev);
  4844. return ret;
  4845. }
  4846. static int nv_close(struct net_device *dev)
  4847. {
  4848. struct fe_priv *np = netdev_priv(dev);
  4849. u8 __iomem *base;
  4850. spin_lock_irq(&np->lock);
  4851. np->in_shutdown = 1;
  4852. spin_unlock_irq(&np->lock);
  4853. nv_napi_disable(dev);
  4854. synchronize_irq(np->pci_dev->irq);
  4855. del_timer_sync(&np->oom_kick);
  4856. del_timer_sync(&np->nic_poll);
  4857. del_timer_sync(&np->stats_poll);
  4858. netif_stop_queue(dev);
  4859. spin_lock_irq(&np->lock);
  4860. nv_stop_rxtx(dev);
  4861. nv_txrx_reset(dev);
  4862. /* disable interrupts on the nic or we will lock up */
  4863. base = get_hwbase(dev);
  4864. nv_disable_hw_interrupts(dev, np->irqmask);
  4865. pci_push(base);
  4866. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4867. spin_unlock_irq(&np->lock);
  4868. nv_free_irq(dev);
  4869. nv_drain_rxtx(dev);
  4870. if (np->wolenabled) {
  4871. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4872. nv_start_rx(dev);
  4873. } else {
  4874. /* power down phy */
  4875. mii_rw(dev, np->phyaddr, MII_BMCR,
  4876. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4877. }
  4878. /* FIXME: power down nic */
  4879. return 0;
  4880. }
  4881. static const struct net_device_ops nv_netdev_ops = {
  4882. .ndo_open = nv_open,
  4883. .ndo_stop = nv_close,
  4884. .ndo_get_stats = nv_get_stats,
  4885. .ndo_start_xmit = nv_start_xmit,
  4886. .ndo_tx_timeout = nv_tx_timeout,
  4887. .ndo_change_mtu = nv_change_mtu,
  4888. .ndo_validate_addr = eth_validate_addr,
  4889. .ndo_set_mac_address = nv_set_mac_address,
  4890. .ndo_set_multicast_list = nv_set_multicast,
  4891. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4892. #ifdef CONFIG_NET_POLL_CONTROLLER
  4893. .ndo_poll_controller = nv_poll_controller,
  4894. #endif
  4895. };
  4896. static const struct net_device_ops nv_netdev_ops_optimized = {
  4897. .ndo_open = nv_open,
  4898. .ndo_stop = nv_close,
  4899. .ndo_get_stats = nv_get_stats,
  4900. .ndo_start_xmit = nv_start_xmit_optimized,
  4901. .ndo_tx_timeout = nv_tx_timeout,
  4902. .ndo_change_mtu = nv_change_mtu,
  4903. .ndo_validate_addr = eth_validate_addr,
  4904. .ndo_set_mac_address = nv_set_mac_address,
  4905. .ndo_set_multicast_list = nv_set_multicast,
  4906. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4907. #ifdef CONFIG_NET_POLL_CONTROLLER
  4908. .ndo_poll_controller = nv_poll_controller,
  4909. #endif
  4910. };
  4911. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4912. {
  4913. struct net_device *dev;
  4914. struct fe_priv *np;
  4915. unsigned long addr;
  4916. u8 __iomem *base;
  4917. int err, i;
  4918. u32 powerstate, txreg;
  4919. u32 phystate_orig = 0, phystate;
  4920. int phyinitialized = 0;
  4921. static int printed_version;
  4922. if (!printed_version++)
  4923. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4924. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4925. dev = alloc_etherdev(sizeof(struct fe_priv));
  4926. err = -ENOMEM;
  4927. if (!dev)
  4928. goto out;
  4929. np = netdev_priv(dev);
  4930. np->dev = dev;
  4931. np->pci_dev = pci_dev;
  4932. spin_lock_init(&np->lock);
  4933. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4934. init_timer(&np->oom_kick);
  4935. np->oom_kick.data = (unsigned long) dev;
  4936. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4937. init_timer(&np->nic_poll);
  4938. np->nic_poll.data = (unsigned long) dev;
  4939. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4940. init_timer(&np->stats_poll);
  4941. np->stats_poll.data = (unsigned long) dev;
  4942. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4943. err = pci_enable_device(pci_dev);
  4944. if (err)
  4945. goto out_free;
  4946. pci_set_master(pci_dev);
  4947. err = pci_request_regions(pci_dev, DRV_NAME);
  4948. if (err < 0)
  4949. goto out_disable;
  4950. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4951. np->register_size = NV_PCI_REGSZ_VER3;
  4952. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4953. np->register_size = NV_PCI_REGSZ_VER2;
  4954. else
  4955. np->register_size = NV_PCI_REGSZ_VER1;
  4956. err = -EINVAL;
  4957. addr = 0;
  4958. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4959. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4960. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4961. pci_resource_len(pci_dev, i),
  4962. pci_resource_flags(pci_dev, i));
  4963. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4964. pci_resource_len(pci_dev, i) >= np->register_size) {
  4965. addr = pci_resource_start(pci_dev, i);
  4966. break;
  4967. }
  4968. }
  4969. if (i == DEVICE_COUNT_RESOURCE) {
  4970. dev_printk(KERN_INFO, &pci_dev->dev,
  4971. "Couldn't find register window\n");
  4972. goto out_relreg;
  4973. }
  4974. /* copy of driver data */
  4975. np->driver_data = id->driver_data;
  4976. /* copy of device id */
  4977. np->device_id = id->device;
  4978. /* handle different descriptor versions */
  4979. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4980. /* packet format 3: supports 40-bit addressing */
  4981. np->desc_ver = DESC_VER_3;
  4982. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4983. if (dma_64bit) {
  4984. if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
  4985. dev_printk(KERN_INFO, &pci_dev->dev,
  4986. "64-bit DMA failed, using 32-bit addressing\n");
  4987. else
  4988. dev->features |= NETIF_F_HIGHDMA;
  4989. if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
  4990. dev_printk(KERN_INFO, &pci_dev->dev,
  4991. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4992. }
  4993. }
  4994. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4995. /* packet format 2: supports jumbo frames */
  4996. np->desc_ver = DESC_VER_2;
  4997. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4998. } else {
  4999. /* original packet format */
  5000. np->desc_ver = DESC_VER_1;
  5001. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  5002. }
  5003. np->pkt_limit = NV_PKTLIMIT_1;
  5004. if (id->driver_data & DEV_HAS_LARGEDESC)
  5005. np->pkt_limit = NV_PKTLIMIT_2;
  5006. if (id->driver_data & DEV_HAS_CHECKSUM) {
  5007. np->rx_csum = 1;
  5008. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  5009. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  5010. dev->features |= NETIF_F_TSO;
  5011. }
  5012. np->vlanctl_bits = 0;
  5013. if (id->driver_data & DEV_HAS_VLAN) {
  5014. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  5015. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  5016. }
  5017. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  5018. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  5019. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  5020. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  5021. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  5022. }
  5023. err = -ENOMEM;
  5024. np->base = ioremap(addr, np->register_size);
  5025. if (!np->base)
  5026. goto out_relreg;
  5027. dev->base_addr = (unsigned long)np->base;
  5028. dev->irq = pci_dev->irq;
  5029. np->rx_ring_size = RX_RING_DEFAULT;
  5030. np->tx_ring_size = TX_RING_DEFAULT;
  5031. if (!nv_optimized(np)) {
  5032. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  5033. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  5034. &np->ring_addr);
  5035. if (!np->rx_ring.orig)
  5036. goto out_unmap;
  5037. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  5038. } else {
  5039. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  5040. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  5041. &np->ring_addr);
  5042. if (!np->rx_ring.ex)
  5043. goto out_unmap;
  5044. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  5045. }
  5046. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5047. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5048. if (!np->rx_skb || !np->tx_skb)
  5049. goto out_freering;
  5050. if (!nv_optimized(np))
  5051. dev->netdev_ops = &nv_netdev_ops;
  5052. else
  5053. dev->netdev_ops = &nv_netdev_ops_optimized;
  5054. #ifdef CONFIG_FORCEDETH_NAPI
  5055. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  5056. #endif
  5057. SET_ETHTOOL_OPS(dev, &ops);
  5058. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5059. pci_set_drvdata(pci_dev, dev);
  5060. /* read the mac address */
  5061. base = get_hwbase(dev);
  5062. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5063. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5064. /* check the workaround bit for correct mac address order */
  5065. txreg = readl(base + NvRegTransmitPoll);
  5066. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5067. /* mac address is already in correct order */
  5068. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5069. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5070. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5071. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5072. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5073. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5074. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5075. /* mac address is already in correct order */
  5076. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5077. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5078. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5079. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5080. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5081. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5082. /*
  5083. * Set orig mac address back to the reversed version.
  5084. * This flag will be cleared during low power transition.
  5085. * Therefore, we should always put back the reversed address.
  5086. */
  5087. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5088. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5089. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5090. } else {
  5091. /* need to reverse mac address to correct order */
  5092. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5093. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5094. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5095. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5096. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5097. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5098. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5099. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  5100. }
  5101. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5102. if (!is_valid_ether_addr(dev->perm_addr)) {
  5103. /*
  5104. * Bad mac address. At least one bios sets the mac address
  5105. * to 01:23:45:67:89:ab
  5106. */
  5107. dev_printk(KERN_ERR, &pci_dev->dev,
  5108. "Invalid Mac address detected: %pM\n",
  5109. dev->dev_addr);
  5110. dev_printk(KERN_ERR, &pci_dev->dev,
  5111. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  5112. dev->dev_addr[0] = 0x00;
  5113. dev->dev_addr[1] = 0x00;
  5114. dev->dev_addr[2] = 0x6c;
  5115. get_random_bytes(&dev->dev_addr[3], 3);
  5116. }
  5117. dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
  5118. pci_name(pci_dev), dev->dev_addr);
  5119. /* set mac address */
  5120. nv_copy_mac_to_hw(dev);
  5121. /* Workaround current PCI init glitch: wakeup bits aren't
  5122. * being set from PCI PM capability.
  5123. */
  5124. device_init_wakeup(&pci_dev->dev, 1);
  5125. /* disable WOL */
  5126. writel(0, base + NvRegWakeUpFlags);
  5127. np->wolenabled = 0;
  5128. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5129. /* take phy and nic out of low power mode */
  5130. powerstate = readl(base + NvRegPowerState2);
  5131. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5132. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  5133. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  5134. pci_dev->revision >= 0xA3)
  5135. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5136. writel(powerstate, base + NvRegPowerState2);
  5137. }
  5138. if (np->desc_ver == DESC_VER_1) {
  5139. np->tx_flags = NV_TX_VALID;
  5140. } else {
  5141. np->tx_flags = NV_TX2_VALID;
  5142. }
  5143. np->msi_flags = 0;
  5144. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  5145. np->msi_flags |= NV_MSI_CAPABLE;
  5146. }
  5147. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  5148. /* msix has had reported issues when modifying irqmask
  5149. as in the case of napi, therefore, disable for now
  5150. */
  5151. #ifndef CONFIG_FORCEDETH_NAPI
  5152. np->msi_flags |= NV_MSI_X_CAPABLE;
  5153. #endif
  5154. }
  5155. if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
  5156. np->irqmask = NVREG_IRQMASK_CPU;
  5157. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5158. np->msi_flags |= 0x0001;
  5159. } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
  5160. !(id->driver_data & DEV_NEED_TIMERIRQ)) {
  5161. /* start off in throughput mode */
  5162. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5163. /* remove support for msix mode */
  5164. np->msi_flags &= ~NV_MSI_X_CAPABLE;
  5165. } else {
  5166. optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  5167. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5168. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5169. np->msi_flags |= 0x0003;
  5170. }
  5171. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5172. np->irqmask |= NVREG_IRQ_TIMER;
  5173. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5174. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5175. np->need_linktimer = 1;
  5176. np->link_timeout = jiffies + LINK_TIMEOUT;
  5177. } else {
  5178. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5179. np->need_linktimer = 0;
  5180. }
  5181. /* Limit the number of tx's outstanding for hw bug */
  5182. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5183. np->tx_limit = 1;
  5184. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  5185. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  5186. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  5187. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  5188. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  5189. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  5190. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  5191. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  5192. pci_dev->revision >= 0xA2)
  5193. np->tx_limit = 0;
  5194. }
  5195. /* clear phy state and temporarily halt phy interrupts */
  5196. writel(0, base + NvRegMIIMask);
  5197. phystate = readl(base + NvRegAdapterControl);
  5198. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5199. phystate_orig = 1;
  5200. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5201. writel(phystate, base + NvRegAdapterControl);
  5202. }
  5203. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5204. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5205. /* management unit running on the mac? */
  5206. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5207. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5208. nv_mgmt_acquire_sema(dev) &&
  5209. nv_mgmt_get_version(dev)) {
  5210. np->mac_in_use = 1;
  5211. if (np->mgmt_version > 0) {
  5212. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5213. }
  5214. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
  5215. pci_name(pci_dev), np->mac_in_use);
  5216. /* management unit setup the phy already? */
  5217. if (np->mac_in_use &&
  5218. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5219. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5220. /* phy is inited by mgmt unit */
  5221. phyinitialized = 1;
  5222. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
  5223. pci_name(pci_dev));
  5224. } else {
  5225. /* we need to init the phy */
  5226. }
  5227. }
  5228. }
  5229. /* find a suitable phy */
  5230. for (i = 1; i <= 32; i++) {
  5231. int id1, id2;
  5232. int phyaddr = i & 0x1F;
  5233. spin_lock_irq(&np->lock);
  5234. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5235. spin_unlock_irq(&np->lock);
  5236. if (id1 < 0 || id1 == 0xffff)
  5237. continue;
  5238. spin_lock_irq(&np->lock);
  5239. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5240. spin_unlock_irq(&np->lock);
  5241. if (id2 < 0 || id2 == 0xffff)
  5242. continue;
  5243. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5244. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5245. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5246. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5247. pci_name(pci_dev), id1, id2, phyaddr);
  5248. np->phyaddr = phyaddr;
  5249. np->phy_oui = id1 | id2;
  5250. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5251. if (np->phy_oui == PHY_OUI_REALTEK2)
  5252. np->phy_oui = PHY_OUI_REALTEK;
  5253. /* Setup phy revision for Realtek */
  5254. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5255. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5256. break;
  5257. }
  5258. if (i == 33) {
  5259. dev_printk(KERN_INFO, &pci_dev->dev,
  5260. "open: Could not find a valid PHY.\n");
  5261. goto out_error;
  5262. }
  5263. if (!phyinitialized) {
  5264. /* reset it */
  5265. phy_init(dev);
  5266. } else {
  5267. /* see if it is a gigabit phy */
  5268. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5269. if (mii_status & PHY_GIGABIT) {
  5270. np->gigabit = PHY_GIGABIT;
  5271. }
  5272. }
  5273. /* set default link speed settings */
  5274. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5275. np->duplex = 0;
  5276. np->autoneg = 1;
  5277. err = register_netdev(dev);
  5278. if (err) {
  5279. dev_printk(KERN_INFO, &pci_dev->dev,
  5280. "unable to register netdev: %d\n", err);
  5281. goto out_error;
  5282. }
  5283. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5284. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5285. dev->name,
  5286. np->phy_oui,
  5287. np->phyaddr,
  5288. dev->dev_addr[0],
  5289. dev->dev_addr[1],
  5290. dev->dev_addr[2],
  5291. dev->dev_addr[3],
  5292. dev->dev_addr[4],
  5293. dev->dev_addr[5]);
  5294. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5295. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5296. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5297. "csum " : "",
  5298. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5299. "vlan " : "",
  5300. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5301. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5302. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5303. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5304. np->need_linktimer ? "lnktim " : "",
  5305. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5306. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5307. np->desc_ver);
  5308. return 0;
  5309. out_error:
  5310. if (phystate_orig)
  5311. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5312. pci_set_drvdata(pci_dev, NULL);
  5313. out_freering:
  5314. free_rings(dev);
  5315. out_unmap:
  5316. iounmap(get_hwbase(dev));
  5317. out_relreg:
  5318. pci_release_regions(pci_dev);
  5319. out_disable:
  5320. pci_disable_device(pci_dev);
  5321. out_free:
  5322. free_netdev(dev);
  5323. out:
  5324. return err;
  5325. }
  5326. static void nv_restore_phy(struct net_device *dev)
  5327. {
  5328. struct fe_priv *np = netdev_priv(dev);
  5329. u16 phy_reserved, mii_control;
  5330. if (np->phy_oui == PHY_OUI_REALTEK &&
  5331. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5332. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5333. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5334. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5335. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5336. phy_reserved |= PHY_REALTEK_INIT8;
  5337. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5338. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5339. /* restart auto negotiation */
  5340. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5341. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5342. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5343. }
  5344. }
  5345. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5346. {
  5347. struct net_device *dev = pci_get_drvdata(pci_dev);
  5348. struct fe_priv *np = netdev_priv(dev);
  5349. u8 __iomem *base = get_hwbase(dev);
  5350. /* special op: write back the misordered MAC address - otherwise
  5351. * the next nv_probe would see a wrong address.
  5352. */
  5353. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5354. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5355. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5356. base + NvRegTransmitPoll);
  5357. }
  5358. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5359. {
  5360. struct net_device *dev = pci_get_drvdata(pci_dev);
  5361. unregister_netdev(dev);
  5362. nv_restore_mac_addr(pci_dev);
  5363. /* restore any phy related changes */
  5364. nv_restore_phy(dev);
  5365. nv_mgmt_release_sema(dev);
  5366. /* free all structures */
  5367. free_rings(dev);
  5368. iounmap(get_hwbase(dev));
  5369. pci_release_regions(pci_dev);
  5370. pci_disable_device(pci_dev);
  5371. free_netdev(dev);
  5372. pci_set_drvdata(pci_dev, NULL);
  5373. }
  5374. #ifdef CONFIG_PM
  5375. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5376. {
  5377. struct net_device *dev = pci_get_drvdata(pdev);
  5378. struct fe_priv *np = netdev_priv(dev);
  5379. u8 __iomem *base = get_hwbase(dev);
  5380. int i;
  5381. if (netif_running(dev)) {
  5382. // Gross.
  5383. nv_close(dev);
  5384. }
  5385. netif_device_detach(dev);
  5386. /* save non-pci configuration space */
  5387. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5388. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5389. pci_save_state(pdev);
  5390. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5391. pci_disable_device(pdev);
  5392. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5393. return 0;
  5394. }
  5395. static int nv_resume(struct pci_dev *pdev)
  5396. {
  5397. struct net_device *dev = pci_get_drvdata(pdev);
  5398. struct fe_priv *np = netdev_priv(dev);
  5399. u8 __iomem *base = get_hwbase(dev);
  5400. int i, rc = 0;
  5401. pci_set_power_state(pdev, PCI_D0);
  5402. pci_restore_state(pdev);
  5403. /* ack any pending wake events, disable PME */
  5404. pci_enable_wake(pdev, PCI_D0, 0);
  5405. /* restore non-pci configuration space */
  5406. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5407. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5408. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5409. /* restore phy state, including autoneg */
  5410. phy_init(dev);
  5411. netif_device_attach(dev);
  5412. if (netif_running(dev)) {
  5413. rc = nv_open(dev);
  5414. nv_set_multicast(dev);
  5415. }
  5416. return rc;
  5417. }
  5418. static void nv_shutdown(struct pci_dev *pdev)
  5419. {
  5420. struct net_device *dev = pci_get_drvdata(pdev);
  5421. struct fe_priv *np = netdev_priv(dev);
  5422. if (netif_running(dev))
  5423. nv_close(dev);
  5424. /*
  5425. * Restore the MAC so a kernel started by kexec won't get confused.
  5426. * If we really go for poweroff, we must not restore the MAC,
  5427. * otherwise the MAC for WOL will be reversed at least on some boards.
  5428. */
  5429. if (system_state != SYSTEM_POWER_OFF) {
  5430. nv_restore_mac_addr(pdev);
  5431. }
  5432. pci_disable_device(pdev);
  5433. /*
  5434. * Apparently it is not possible to reinitialise from D3 hot,
  5435. * only put the device into D3 if we really go for poweroff.
  5436. */
  5437. if (system_state == SYSTEM_POWER_OFF) {
  5438. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5439. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5440. pci_set_power_state(pdev, PCI_D3hot);
  5441. }
  5442. }
  5443. #else
  5444. #define nv_suspend NULL
  5445. #define nv_shutdown NULL
  5446. #define nv_resume NULL
  5447. #endif /* CONFIG_PM */
  5448. static struct pci_device_id pci_tbl[] = {
  5449. { /* nForce Ethernet Controller */
  5450. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  5451. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5452. },
  5453. { /* nForce2 Ethernet Controller */
  5454. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  5455. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5456. },
  5457. { /* nForce3 Ethernet Controller */
  5458. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  5459. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5460. },
  5461. { /* nForce3 Ethernet Controller */
  5462. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  5463. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5464. },
  5465. { /* nForce3 Ethernet Controller */
  5466. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  5467. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5468. },
  5469. { /* nForce3 Ethernet Controller */
  5470. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5471. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5472. },
  5473. { /* nForce3 Ethernet Controller */
  5474. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5475. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5476. },
  5477. { /* CK804 Ethernet Controller */
  5478. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5479. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5480. },
  5481. { /* CK804 Ethernet Controller */
  5482. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5483. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5484. },
  5485. { /* MCP04 Ethernet Controller */
  5486. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5487. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5488. },
  5489. { /* MCP04 Ethernet Controller */
  5490. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5491. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5492. },
  5493. { /* MCP51 Ethernet Controller */
  5494. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5495. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5496. },
  5497. { /* MCP51 Ethernet Controller */
  5498. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5499. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5500. },
  5501. { /* MCP55 Ethernet Controller */
  5502. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5503. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5504. },
  5505. { /* MCP55 Ethernet Controller */
  5506. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5507. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5508. },
  5509. { /* MCP61 Ethernet Controller */
  5510. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5511. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5512. },
  5513. { /* MCP61 Ethernet Controller */
  5514. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5515. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5516. },
  5517. { /* MCP61 Ethernet Controller */
  5518. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5519. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5520. },
  5521. { /* MCP61 Ethernet Controller */
  5522. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5523. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5524. },
  5525. { /* MCP65 Ethernet Controller */
  5526. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5527. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5528. },
  5529. { /* MCP65 Ethernet Controller */
  5530. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5531. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5532. },
  5533. { /* MCP65 Ethernet Controller */
  5534. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5535. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5536. },
  5537. { /* MCP65 Ethernet Controller */
  5538. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5539. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5540. },
  5541. { /* MCP67 Ethernet Controller */
  5542. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5543. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5544. },
  5545. { /* MCP67 Ethernet Controller */
  5546. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5547. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5548. },
  5549. { /* MCP67 Ethernet Controller */
  5550. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5551. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5552. },
  5553. { /* MCP67 Ethernet Controller */
  5554. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5555. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5556. },
  5557. { /* MCP73 Ethernet Controller */
  5558. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5559. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5560. },
  5561. { /* MCP73 Ethernet Controller */
  5562. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5563. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5564. },
  5565. { /* MCP73 Ethernet Controller */
  5566. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5567. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5568. },
  5569. { /* MCP73 Ethernet Controller */
  5570. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5571. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5572. },
  5573. { /* MCP77 Ethernet Controller */
  5574. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5575. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5576. },
  5577. { /* MCP77 Ethernet Controller */
  5578. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5579. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5580. },
  5581. { /* MCP77 Ethernet Controller */
  5582. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5583. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5584. },
  5585. { /* MCP77 Ethernet Controller */
  5586. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5587. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5588. },
  5589. { /* MCP79 Ethernet Controller */
  5590. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5591. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5592. },
  5593. { /* MCP79 Ethernet Controller */
  5594. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5595. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5596. },
  5597. { /* MCP79 Ethernet Controller */
  5598. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5599. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5600. },
  5601. { /* MCP79 Ethernet Controller */
  5602. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5603. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5604. },
  5605. {0,},
  5606. };
  5607. static struct pci_driver driver = {
  5608. .name = DRV_NAME,
  5609. .id_table = pci_tbl,
  5610. .probe = nv_probe,
  5611. .remove = __devexit_p(nv_remove),
  5612. .suspend = nv_suspend,
  5613. .resume = nv_resume,
  5614. .shutdown = nv_shutdown,
  5615. };
  5616. static int __init init_nic(void)
  5617. {
  5618. return pci_register_driver(&driver);
  5619. }
  5620. static void __exit exit_nic(void)
  5621. {
  5622. pci_unregister_driver(&driver);
  5623. }
  5624. module_param(max_interrupt_work, int, 0);
  5625. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5626. module_param(optimization_mode, int, 0);
  5627. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
  5628. module_param(poll_interval, int, 0);
  5629. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5630. module_param(msi, int, 0);
  5631. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5632. module_param(msix, int, 0);
  5633. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5634. module_param(dma_64bit, int, 0);
  5635. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5636. module_param(phy_cross, int, 0);
  5637. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5638. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5639. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5640. MODULE_LICENSE("GPL");
  5641. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5642. module_init(init_nic);
  5643. module_exit(exit_nic);