sge.c 92 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327
  1. /*
  2. * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <linux/skbuff.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/if_vlan.h>
  36. #include <linux/ip.h>
  37. #include <linux/tcp.h>
  38. #include <linux/dma-mapping.h>
  39. #include <net/arp.h>
  40. #include "common.h"
  41. #include "regs.h"
  42. #include "sge_defs.h"
  43. #include "t3_cpl.h"
  44. #include "firmware_exports.h"
  45. #define USE_GTS 0
  46. #define SGE_RX_SM_BUF_SIZE 1536
  47. #define SGE_RX_COPY_THRES 256
  48. #define SGE_RX_PULL_LEN 128
  49. #define SGE_PG_RSVD SMP_CACHE_BYTES
  50. /*
  51. * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
  52. * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
  53. * directly.
  54. */
  55. #define FL0_PG_CHUNK_SIZE 2048
  56. #define FL0_PG_ORDER 0
  57. #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
  58. #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
  59. #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
  60. #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
  61. #define SGE_RX_DROP_THRES 16
  62. #define RX_RECLAIM_PERIOD (HZ/4)
  63. /*
  64. * Max number of Rx buffers we replenish at a time.
  65. */
  66. #define MAX_RX_REFILL 16U
  67. /*
  68. * Period of the Tx buffer reclaim timer. This timer does not need to run
  69. * frequently as Tx buffers are usually reclaimed by new Tx packets.
  70. */
  71. #define TX_RECLAIM_PERIOD (HZ / 4)
  72. #define TX_RECLAIM_TIMER_CHUNK 64U
  73. #define TX_RECLAIM_CHUNK 16U
  74. /* WR size in bytes */
  75. #define WR_LEN (WR_FLITS * 8)
  76. /*
  77. * Types of Tx queues in each queue set. Order here matters, do not change.
  78. */
  79. enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
  80. /* Values for sge_txq.flags */
  81. enum {
  82. TXQ_RUNNING = 1 << 0, /* fetch engine is running */
  83. TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
  84. };
  85. struct tx_desc {
  86. __be64 flit[TX_DESC_FLITS];
  87. };
  88. struct rx_desc {
  89. __be32 addr_lo;
  90. __be32 len_gen;
  91. __be32 gen2;
  92. __be32 addr_hi;
  93. };
  94. struct tx_sw_desc { /* SW state per Tx descriptor */
  95. struct sk_buff *skb;
  96. u8 eop; /* set if last descriptor for packet */
  97. u8 addr_idx; /* buffer index of first SGL entry in descriptor */
  98. u8 fragidx; /* first page fragment associated with descriptor */
  99. s8 sflit; /* start flit of first SGL entry in descriptor */
  100. };
  101. struct rx_sw_desc { /* SW state per Rx descriptor */
  102. union {
  103. struct sk_buff *skb;
  104. struct fl_pg_chunk pg_chunk;
  105. };
  106. DECLARE_PCI_UNMAP_ADDR(dma_addr);
  107. };
  108. struct rsp_desc { /* response queue descriptor */
  109. struct rss_header rss_hdr;
  110. __be32 flags;
  111. __be32 len_cq;
  112. u8 imm_data[47];
  113. u8 intr_gen;
  114. };
  115. /*
  116. * Holds unmapping information for Tx packets that need deferred unmapping.
  117. * This structure lives at skb->head and must be allocated by callers.
  118. */
  119. struct deferred_unmap_info {
  120. struct pci_dev *pdev;
  121. dma_addr_t addr[MAX_SKB_FRAGS + 1];
  122. };
  123. /*
  124. * Maps a number of flits to the number of Tx descriptors that can hold them.
  125. * The formula is
  126. *
  127. * desc = 1 + (flits - 2) / (WR_FLITS - 1).
  128. *
  129. * HW allows up to 4 descriptors to be combined into a WR.
  130. */
  131. static u8 flit_desc_map[] = {
  132. 0,
  133. #if SGE_NUM_GENBITS == 1
  134. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  135. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  136. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  137. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
  138. #elif SGE_NUM_GENBITS == 2
  139. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  140. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  141. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  142. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  143. #else
  144. # error "SGE_NUM_GENBITS must be 1 or 2"
  145. #endif
  146. };
  147. static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
  148. {
  149. return container_of(q, struct sge_qset, fl[qidx]);
  150. }
  151. static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
  152. {
  153. return container_of(q, struct sge_qset, rspq);
  154. }
  155. static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
  156. {
  157. return container_of(q, struct sge_qset, txq[qidx]);
  158. }
  159. /**
  160. * refill_rspq - replenish an SGE response queue
  161. * @adapter: the adapter
  162. * @q: the response queue to replenish
  163. * @credits: how many new responses to make available
  164. *
  165. * Replenishes a response queue by making the supplied number of responses
  166. * available to HW.
  167. */
  168. static inline void refill_rspq(struct adapter *adapter,
  169. const struct sge_rspq *q, unsigned int credits)
  170. {
  171. rmb();
  172. t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
  173. V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
  174. }
  175. /**
  176. * need_skb_unmap - does the platform need unmapping of sk_buffs?
  177. *
  178. * Returns true if the platfrom needs sk_buff unmapping. The compiler
  179. * optimizes away unecessary code if this returns true.
  180. */
  181. static inline int need_skb_unmap(void)
  182. {
  183. /*
  184. * This structure is used to tell if the platfrom needs buffer
  185. * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
  186. */
  187. struct dummy {
  188. DECLARE_PCI_UNMAP_ADDR(addr);
  189. };
  190. return sizeof(struct dummy) != 0;
  191. }
  192. /**
  193. * unmap_skb - unmap a packet main body and its page fragments
  194. * @skb: the packet
  195. * @q: the Tx queue containing Tx descriptors for the packet
  196. * @cidx: index of Tx descriptor
  197. * @pdev: the PCI device
  198. *
  199. * Unmap the main body of an sk_buff and its page fragments, if any.
  200. * Because of the fairly complicated structure of our SGLs and the desire
  201. * to conserve space for metadata, the information necessary to unmap an
  202. * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
  203. * descriptors (the physical addresses of the various data buffers), and
  204. * the SW descriptor state (assorted indices). The send functions
  205. * initialize the indices for the first packet descriptor so we can unmap
  206. * the buffers held in the first Tx descriptor here, and we have enough
  207. * information at this point to set the state for the next Tx descriptor.
  208. *
  209. * Note that it is possible to clean up the first descriptor of a packet
  210. * before the send routines have written the next descriptors, but this
  211. * race does not cause any problem. We just end up writing the unmapping
  212. * info for the descriptor first.
  213. */
  214. static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
  215. unsigned int cidx, struct pci_dev *pdev)
  216. {
  217. const struct sg_ent *sgp;
  218. struct tx_sw_desc *d = &q->sdesc[cidx];
  219. int nfrags, frag_idx, curflit, j = d->addr_idx;
  220. sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
  221. frag_idx = d->fragidx;
  222. if (frag_idx == 0 && skb_headlen(skb)) {
  223. pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
  224. skb_headlen(skb), PCI_DMA_TODEVICE);
  225. j = 1;
  226. }
  227. curflit = d->sflit + 1 + j;
  228. nfrags = skb_shinfo(skb)->nr_frags;
  229. while (frag_idx < nfrags && curflit < WR_FLITS) {
  230. pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
  231. skb_shinfo(skb)->frags[frag_idx].size,
  232. PCI_DMA_TODEVICE);
  233. j ^= 1;
  234. if (j == 0) {
  235. sgp++;
  236. curflit++;
  237. }
  238. curflit++;
  239. frag_idx++;
  240. }
  241. if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
  242. d = cidx + 1 == q->size ? q->sdesc : d + 1;
  243. d->fragidx = frag_idx;
  244. d->addr_idx = j;
  245. d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
  246. }
  247. }
  248. /**
  249. * free_tx_desc - reclaims Tx descriptors and their buffers
  250. * @adapter: the adapter
  251. * @q: the Tx queue to reclaim descriptors from
  252. * @n: the number of descriptors to reclaim
  253. *
  254. * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
  255. * Tx buffers. Called with the Tx queue lock held.
  256. */
  257. static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
  258. unsigned int n)
  259. {
  260. struct tx_sw_desc *d;
  261. struct pci_dev *pdev = adapter->pdev;
  262. unsigned int cidx = q->cidx;
  263. const int need_unmap = need_skb_unmap() &&
  264. q->cntxt_id >= FW_TUNNEL_SGEEC_START;
  265. d = &q->sdesc[cidx];
  266. while (n--) {
  267. if (d->skb) { /* an SGL is present */
  268. if (need_unmap)
  269. unmap_skb(d->skb, q, cidx, pdev);
  270. if (d->eop)
  271. kfree_skb(d->skb);
  272. }
  273. ++d;
  274. if (++cidx == q->size) {
  275. cidx = 0;
  276. d = q->sdesc;
  277. }
  278. }
  279. q->cidx = cidx;
  280. }
  281. /**
  282. * reclaim_completed_tx - reclaims completed Tx descriptors
  283. * @adapter: the adapter
  284. * @q: the Tx queue to reclaim completed descriptors from
  285. * @chunk: maximum number of descriptors to reclaim
  286. *
  287. * Reclaims Tx descriptors that the SGE has indicated it has processed,
  288. * and frees the associated buffers if possible. Called with the Tx
  289. * queue's lock held.
  290. */
  291. static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
  292. struct sge_txq *q,
  293. unsigned int chunk)
  294. {
  295. unsigned int reclaim = q->processed - q->cleaned;
  296. reclaim = min(chunk, reclaim);
  297. if (reclaim) {
  298. free_tx_desc(adapter, q, reclaim);
  299. q->cleaned += reclaim;
  300. q->in_use -= reclaim;
  301. }
  302. return q->processed - q->cleaned;
  303. }
  304. /**
  305. * should_restart_tx - are there enough resources to restart a Tx queue?
  306. * @q: the Tx queue
  307. *
  308. * Checks if there are enough descriptors to restart a suspended Tx queue.
  309. */
  310. static inline int should_restart_tx(const struct sge_txq *q)
  311. {
  312. unsigned int r = q->processed - q->cleaned;
  313. return q->in_use - r < (q->size >> 1);
  314. }
  315. static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
  316. struct rx_sw_desc *d)
  317. {
  318. if (q->use_pages && d->pg_chunk.page) {
  319. (*d->pg_chunk.p_cnt)--;
  320. if (!*d->pg_chunk.p_cnt)
  321. pci_unmap_page(pdev,
  322. pci_unmap_addr(&d->pg_chunk, mapping),
  323. q->alloc_size, PCI_DMA_FROMDEVICE);
  324. put_page(d->pg_chunk.page);
  325. d->pg_chunk.page = NULL;
  326. } else {
  327. pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
  328. q->buf_size, PCI_DMA_FROMDEVICE);
  329. kfree_skb(d->skb);
  330. d->skb = NULL;
  331. }
  332. }
  333. /**
  334. * free_rx_bufs - free the Rx buffers on an SGE free list
  335. * @pdev: the PCI device associated with the adapter
  336. * @rxq: the SGE free list to clean up
  337. *
  338. * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
  339. * this queue should be stopped before calling this function.
  340. */
  341. static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
  342. {
  343. unsigned int cidx = q->cidx;
  344. while (q->credits--) {
  345. struct rx_sw_desc *d = &q->sdesc[cidx];
  346. clear_rx_desc(pdev, q, d);
  347. if (++cidx == q->size)
  348. cidx = 0;
  349. }
  350. if (q->pg_chunk.page) {
  351. __free_pages(q->pg_chunk.page, q->order);
  352. q->pg_chunk.page = NULL;
  353. }
  354. }
  355. /**
  356. * add_one_rx_buf - add a packet buffer to a free-buffer list
  357. * @va: buffer start VA
  358. * @len: the buffer length
  359. * @d: the HW Rx descriptor to write
  360. * @sd: the SW Rx descriptor to write
  361. * @gen: the generation bit value
  362. * @pdev: the PCI device associated with the adapter
  363. *
  364. * Add a buffer of the given length to the supplied HW and SW Rx
  365. * descriptors.
  366. */
  367. static inline int add_one_rx_buf(void *va, unsigned int len,
  368. struct rx_desc *d, struct rx_sw_desc *sd,
  369. unsigned int gen, struct pci_dev *pdev)
  370. {
  371. dma_addr_t mapping;
  372. mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
  373. if (unlikely(pci_dma_mapping_error(pdev, mapping)))
  374. return -ENOMEM;
  375. pci_unmap_addr_set(sd, dma_addr, mapping);
  376. d->addr_lo = cpu_to_be32(mapping);
  377. d->addr_hi = cpu_to_be32((u64) mapping >> 32);
  378. wmb();
  379. d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
  380. d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
  381. return 0;
  382. }
  383. static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
  384. unsigned int gen)
  385. {
  386. d->addr_lo = cpu_to_be32(mapping);
  387. d->addr_hi = cpu_to_be32((u64) mapping >> 32);
  388. wmb();
  389. d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
  390. d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
  391. return 0;
  392. }
  393. static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
  394. struct rx_sw_desc *sd, gfp_t gfp,
  395. unsigned int order)
  396. {
  397. if (!q->pg_chunk.page) {
  398. dma_addr_t mapping;
  399. q->pg_chunk.page = alloc_pages(gfp, order);
  400. if (unlikely(!q->pg_chunk.page))
  401. return -ENOMEM;
  402. q->pg_chunk.va = page_address(q->pg_chunk.page);
  403. q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
  404. SGE_PG_RSVD;
  405. q->pg_chunk.offset = 0;
  406. mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
  407. 0, q->alloc_size, PCI_DMA_FROMDEVICE);
  408. pci_unmap_addr_set(&q->pg_chunk, mapping, mapping);
  409. }
  410. sd->pg_chunk = q->pg_chunk;
  411. prefetch(sd->pg_chunk.p_cnt);
  412. q->pg_chunk.offset += q->buf_size;
  413. if (q->pg_chunk.offset == (PAGE_SIZE << order))
  414. q->pg_chunk.page = NULL;
  415. else {
  416. q->pg_chunk.va += q->buf_size;
  417. get_page(q->pg_chunk.page);
  418. }
  419. if (sd->pg_chunk.offset == 0)
  420. *sd->pg_chunk.p_cnt = 1;
  421. else
  422. *sd->pg_chunk.p_cnt += 1;
  423. return 0;
  424. }
  425. static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
  426. {
  427. if (q->pend_cred >= q->credits / 4) {
  428. q->pend_cred = 0;
  429. t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
  430. }
  431. }
  432. /**
  433. * refill_fl - refill an SGE free-buffer list
  434. * @adapter: the adapter
  435. * @q: the free-list to refill
  436. * @n: the number of new buffers to allocate
  437. * @gfp: the gfp flags for allocating new buffers
  438. *
  439. * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
  440. * allocated with the supplied gfp flags. The caller must assure that
  441. * @n does not exceed the queue's capacity.
  442. */
  443. static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
  444. {
  445. struct rx_sw_desc *sd = &q->sdesc[q->pidx];
  446. struct rx_desc *d = &q->desc[q->pidx];
  447. unsigned int count = 0;
  448. while (n--) {
  449. dma_addr_t mapping;
  450. int err;
  451. if (q->use_pages) {
  452. if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
  453. q->order))) {
  454. nomem: q->alloc_failed++;
  455. break;
  456. }
  457. mapping = pci_unmap_addr(&sd->pg_chunk, mapping) +
  458. sd->pg_chunk.offset;
  459. pci_unmap_addr_set(sd, dma_addr, mapping);
  460. add_one_rx_chunk(mapping, d, q->gen);
  461. pci_dma_sync_single_for_device(adap->pdev, mapping,
  462. q->buf_size - SGE_PG_RSVD,
  463. PCI_DMA_FROMDEVICE);
  464. } else {
  465. void *buf_start;
  466. struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
  467. if (!skb)
  468. goto nomem;
  469. sd->skb = skb;
  470. buf_start = skb->data;
  471. err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
  472. q->gen, adap->pdev);
  473. if (unlikely(err)) {
  474. clear_rx_desc(adap->pdev, q, sd);
  475. break;
  476. }
  477. }
  478. d++;
  479. sd++;
  480. if (++q->pidx == q->size) {
  481. q->pidx = 0;
  482. q->gen ^= 1;
  483. sd = q->sdesc;
  484. d = q->desc;
  485. }
  486. count++;
  487. }
  488. q->credits += count;
  489. q->pend_cred += count;
  490. ring_fl_db(adap, q);
  491. return count;
  492. }
  493. static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
  494. {
  495. refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
  496. GFP_ATOMIC | __GFP_COMP);
  497. }
  498. /**
  499. * recycle_rx_buf - recycle a receive buffer
  500. * @adapter: the adapter
  501. * @q: the SGE free list
  502. * @idx: index of buffer to recycle
  503. *
  504. * Recycles the specified buffer on the given free list by adding it at
  505. * the next available slot on the list.
  506. */
  507. static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
  508. unsigned int idx)
  509. {
  510. struct rx_desc *from = &q->desc[idx];
  511. struct rx_desc *to = &q->desc[q->pidx];
  512. q->sdesc[q->pidx] = q->sdesc[idx];
  513. to->addr_lo = from->addr_lo; /* already big endian */
  514. to->addr_hi = from->addr_hi; /* likewise */
  515. wmb();
  516. to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
  517. to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
  518. if (++q->pidx == q->size) {
  519. q->pidx = 0;
  520. q->gen ^= 1;
  521. }
  522. q->credits++;
  523. q->pend_cred++;
  524. ring_fl_db(adap, q);
  525. }
  526. /**
  527. * alloc_ring - allocate resources for an SGE descriptor ring
  528. * @pdev: the PCI device
  529. * @nelem: the number of descriptors
  530. * @elem_size: the size of each descriptor
  531. * @sw_size: the size of the SW state associated with each ring element
  532. * @phys: the physical address of the allocated ring
  533. * @metadata: address of the array holding the SW state for the ring
  534. *
  535. * Allocates resources for an SGE descriptor ring, such as Tx queues,
  536. * free buffer lists, or response queues. Each SGE ring requires
  537. * space for its HW descriptors plus, optionally, space for the SW state
  538. * associated with each HW entry (the metadata). The function returns
  539. * three values: the virtual address for the HW ring (the return value
  540. * of the function), the physical address of the HW ring, and the address
  541. * of the SW ring.
  542. */
  543. static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
  544. size_t sw_size, dma_addr_t * phys, void *metadata)
  545. {
  546. size_t len = nelem * elem_size;
  547. void *s = NULL;
  548. void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
  549. if (!p)
  550. return NULL;
  551. if (sw_size && metadata) {
  552. s = kcalloc(nelem, sw_size, GFP_KERNEL);
  553. if (!s) {
  554. dma_free_coherent(&pdev->dev, len, p, *phys);
  555. return NULL;
  556. }
  557. *(void **)metadata = s;
  558. }
  559. memset(p, 0, len);
  560. return p;
  561. }
  562. /**
  563. * t3_reset_qset - reset a sge qset
  564. * @q: the queue set
  565. *
  566. * Reset the qset structure.
  567. * the NAPI structure is preserved in the event of
  568. * the qset's reincarnation, for example during EEH recovery.
  569. */
  570. static void t3_reset_qset(struct sge_qset *q)
  571. {
  572. if (q->adap &&
  573. !(q->adap->flags & NAPI_INIT)) {
  574. memset(q, 0, sizeof(*q));
  575. return;
  576. }
  577. q->adap = NULL;
  578. memset(&q->rspq, 0, sizeof(q->rspq));
  579. memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
  580. memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
  581. q->txq_stopped = 0;
  582. q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
  583. q->rx_reclaim_timer.function = NULL;
  584. q->lro_frag_tbl.nr_frags = q->lro_frag_tbl.len = 0;
  585. }
  586. /**
  587. * free_qset - free the resources of an SGE queue set
  588. * @adapter: the adapter owning the queue set
  589. * @q: the queue set
  590. *
  591. * Release the HW and SW resources associated with an SGE queue set, such
  592. * as HW contexts, packet buffers, and descriptor rings. Traffic to the
  593. * queue set must be quiesced prior to calling this.
  594. */
  595. static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
  596. {
  597. int i;
  598. struct pci_dev *pdev = adapter->pdev;
  599. for (i = 0; i < SGE_RXQ_PER_SET; ++i)
  600. if (q->fl[i].desc) {
  601. spin_lock_irq(&adapter->sge.reg_lock);
  602. t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
  603. spin_unlock_irq(&adapter->sge.reg_lock);
  604. free_rx_bufs(pdev, &q->fl[i]);
  605. kfree(q->fl[i].sdesc);
  606. dma_free_coherent(&pdev->dev,
  607. q->fl[i].size *
  608. sizeof(struct rx_desc), q->fl[i].desc,
  609. q->fl[i].phys_addr);
  610. }
  611. for (i = 0; i < SGE_TXQ_PER_SET; ++i)
  612. if (q->txq[i].desc) {
  613. spin_lock_irq(&adapter->sge.reg_lock);
  614. t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
  615. spin_unlock_irq(&adapter->sge.reg_lock);
  616. if (q->txq[i].sdesc) {
  617. free_tx_desc(adapter, &q->txq[i],
  618. q->txq[i].in_use);
  619. kfree(q->txq[i].sdesc);
  620. }
  621. dma_free_coherent(&pdev->dev,
  622. q->txq[i].size *
  623. sizeof(struct tx_desc),
  624. q->txq[i].desc, q->txq[i].phys_addr);
  625. __skb_queue_purge(&q->txq[i].sendq);
  626. }
  627. if (q->rspq.desc) {
  628. spin_lock_irq(&adapter->sge.reg_lock);
  629. t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
  630. spin_unlock_irq(&adapter->sge.reg_lock);
  631. dma_free_coherent(&pdev->dev,
  632. q->rspq.size * sizeof(struct rsp_desc),
  633. q->rspq.desc, q->rspq.phys_addr);
  634. }
  635. t3_reset_qset(q);
  636. }
  637. /**
  638. * init_qset_cntxt - initialize an SGE queue set context info
  639. * @qs: the queue set
  640. * @id: the queue set id
  641. *
  642. * Initializes the TIDs and context ids for the queues of a queue set.
  643. */
  644. static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
  645. {
  646. qs->rspq.cntxt_id = id;
  647. qs->fl[0].cntxt_id = 2 * id;
  648. qs->fl[1].cntxt_id = 2 * id + 1;
  649. qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
  650. qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
  651. qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
  652. qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
  653. qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
  654. }
  655. /**
  656. * sgl_len - calculates the size of an SGL of the given capacity
  657. * @n: the number of SGL entries
  658. *
  659. * Calculates the number of flits needed for a scatter/gather list that
  660. * can hold the given number of entries.
  661. */
  662. static inline unsigned int sgl_len(unsigned int n)
  663. {
  664. /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
  665. return (3 * n) / 2 + (n & 1);
  666. }
  667. /**
  668. * flits_to_desc - returns the num of Tx descriptors for the given flits
  669. * @n: the number of flits
  670. *
  671. * Calculates the number of Tx descriptors needed for the supplied number
  672. * of flits.
  673. */
  674. static inline unsigned int flits_to_desc(unsigned int n)
  675. {
  676. BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
  677. return flit_desc_map[n];
  678. }
  679. /**
  680. * get_packet - return the next ingress packet buffer from a free list
  681. * @adap: the adapter that received the packet
  682. * @fl: the SGE free list holding the packet
  683. * @len: the packet length including any SGE padding
  684. * @drop_thres: # of remaining buffers before we start dropping packets
  685. *
  686. * Get the next packet from a free list and complete setup of the
  687. * sk_buff. If the packet is small we make a copy and recycle the
  688. * original buffer, otherwise we use the original buffer itself. If a
  689. * positive drop threshold is supplied packets are dropped and their
  690. * buffers recycled if (a) the number of remaining buffers is under the
  691. * threshold and the packet is too big to copy, or (b) the packet should
  692. * be copied but there is no memory for the copy.
  693. */
  694. static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
  695. unsigned int len, unsigned int drop_thres)
  696. {
  697. struct sk_buff *skb = NULL;
  698. struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
  699. prefetch(sd->skb->data);
  700. fl->credits--;
  701. if (len <= SGE_RX_COPY_THRES) {
  702. skb = alloc_skb(len, GFP_ATOMIC);
  703. if (likely(skb != NULL)) {
  704. __skb_put(skb, len);
  705. pci_dma_sync_single_for_cpu(adap->pdev,
  706. pci_unmap_addr(sd, dma_addr), len,
  707. PCI_DMA_FROMDEVICE);
  708. memcpy(skb->data, sd->skb->data, len);
  709. pci_dma_sync_single_for_device(adap->pdev,
  710. pci_unmap_addr(sd, dma_addr), len,
  711. PCI_DMA_FROMDEVICE);
  712. } else if (!drop_thres)
  713. goto use_orig_buf;
  714. recycle:
  715. recycle_rx_buf(adap, fl, fl->cidx);
  716. return skb;
  717. }
  718. if (unlikely(fl->credits < drop_thres) &&
  719. refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
  720. GFP_ATOMIC | __GFP_COMP) == 0)
  721. goto recycle;
  722. use_orig_buf:
  723. pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
  724. fl->buf_size, PCI_DMA_FROMDEVICE);
  725. skb = sd->skb;
  726. skb_put(skb, len);
  727. __refill_fl(adap, fl);
  728. return skb;
  729. }
  730. /**
  731. * get_packet_pg - return the next ingress packet buffer from a free list
  732. * @adap: the adapter that received the packet
  733. * @fl: the SGE free list holding the packet
  734. * @len: the packet length including any SGE padding
  735. * @drop_thres: # of remaining buffers before we start dropping packets
  736. *
  737. * Get the next packet from a free list populated with page chunks.
  738. * If the packet is small we make a copy and recycle the original buffer,
  739. * otherwise we attach the original buffer as a page fragment to a fresh
  740. * sk_buff. If a positive drop threshold is supplied packets are dropped
  741. * and their buffers recycled if (a) the number of remaining buffers is
  742. * under the threshold and the packet is too big to copy, or (b) there's
  743. * no system memory.
  744. *
  745. * Note: this function is similar to @get_packet but deals with Rx buffers
  746. * that are page chunks rather than sk_buffs.
  747. */
  748. static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
  749. struct sge_rspq *q, unsigned int len,
  750. unsigned int drop_thres)
  751. {
  752. struct sk_buff *newskb, *skb;
  753. struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
  754. dma_addr_t dma_addr = pci_unmap_addr(sd, dma_addr);
  755. newskb = skb = q->pg_skb;
  756. if (!skb && (len <= SGE_RX_COPY_THRES)) {
  757. newskb = alloc_skb(len, GFP_ATOMIC);
  758. if (likely(newskb != NULL)) {
  759. __skb_put(newskb, len);
  760. pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
  761. PCI_DMA_FROMDEVICE);
  762. memcpy(newskb->data, sd->pg_chunk.va, len);
  763. pci_dma_sync_single_for_device(adap->pdev, dma_addr,
  764. len,
  765. PCI_DMA_FROMDEVICE);
  766. } else if (!drop_thres)
  767. return NULL;
  768. recycle:
  769. fl->credits--;
  770. recycle_rx_buf(adap, fl, fl->cidx);
  771. q->rx_recycle_buf++;
  772. return newskb;
  773. }
  774. if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
  775. goto recycle;
  776. prefetch(sd->pg_chunk.p_cnt);
  777. if (!skb)
  778. newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
  779. if (unlikely(!newskb)) {
  780. if (!drop_thres)
  781. return NULL;
  782. goto recycle;
  783. }
  784. pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
  785. PCI_DMA_FROMDEVICE);
  786. (*sd->pg_chunk.p_cnt)--;
  787. if (!*sd->pg_chunk.p_cnt)
  788. pci_unmap_page(adap->pdev,
  789. pci_unmap_addr(&sd->pg_chunk, mapping),
  790. fl->alloc_size,
  791. PCI_DMA_FROMDEVICE);
  792. if (!skb) {
  793. __skb_put(newskb, SGE_RX_PULL_LEN);
  794. memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
  795. skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
  796. sd->pg_chunk.offset + SGE_RX_PULL_LEN,
  797. len - SGE_RX_PULL_LEN);
  798. newskb->len = len;
  799. newskb->data_len = len - SGE_RX_PULL_LEN;
  800. newskb->truesize += newskb->data_len;
  801. } else {
  802. skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
  803. sd->pg_chunk.page,
  804. sd->pg_chunk.offset, len);
  805. newskb->len += len;
  806. newskb->data_len += len;
  807. newskb->truesize += len;
  808. }
  809. fl->credits--;
  810. /*
  811. * We do not refill FLs here, we let the caller do it to overlap a
  812. * prefetch.
  813. */
  814. return newskb;
  815. }
  816. /**
  817. * get_imm_packet - return the next ingress packet buffer from a response
  818. * @resp: the response descriptor containing the packet data
  819. *
  820. * Return a packet containing the immediate data of the given response.
  821. */
  822. static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
  823. {
  824. struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
  825. if (skb) {
  826. __skb_put(skb, IMMED_PKT_SIZE);
  827. skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
  828. }
  829. return skb;
  830. }
  831. /**
  832. * calc_tx_descs - calculate the number of Tx descriptors for a packet
  833. * @skb: the packet
  834. *
  835. * Returns the number of Tx descriptors needed for the given Ethernet
  836. * packet. Ethernet packets require addition of WR and CPL headers.
  837. */
  838. static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
  839. {
  840. unsigned int flits;
  841. if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
  842. return 1;
  843. flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
  844. if (skb_shinfo(skb)->gso_size)
  845. flits++;
  846. return flits_to_desc(flits);
  847. }
  848. /**
  849. * make_sgl - populate a scatter/gather list for a packet
  850. * @skb: the packet
  851. * @sgp: the SGL to populate
  852. * @start: start address of skb main body data to include in the SGL
  853. * @len: length of skb main body data to include in the SGL
  854. * @pdev: the PCI device
  855. *
  856. * Generates a scatter/gather list for the buffers that make up a packet
  857. * and returns the SGL size in 8-byte words. The caller must size the SGL
  858. * appropriately.
  859. */
  860. static inline unsigned int make_sgl(const struct sk_buff *skb,
  861. struct sg_ent *sgp, unsigned char *start,
  862. unsigned int len, struct pci_dev *pdev)
  863. {
  864. dma_addr_t mapping;
  865. unsigned int i, j = 0, nfrags;
  866. if (len) {
  867. mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
  868. sgp->len[0] = cpu_to_be32(len);
  869. sgp->addr[0] = cpu_to_be64(mapping);
  870. j = 1;
  871. }
  872. nfrags = skb_shinfo(skb)->nr_frags;
  873. for (i = 0; i < nfrags; i++) {
  874. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  875. mapping = pci_map_page(pdev, frag->page, frag->page_offset,
  876. frag->size, PCI_DMA_TODEVICE);
  877. sgp->len[j] = cpu_to_be32(frag->size);
  878. sgp->addr[j] = cpu_to_be64(mapping);
  879. j ^= 1;
  880. if (j == 0)
  881. ++sgp;
  882. }
  883. if (j)
  884. sgp->len[j] = 0;
  885. return ((nfrags + (len != 0)) * 3) / 2 + j;
  886. }
  887. /**
  888. * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
  889. * @adap: the adapter
  890. * @q: the Tx queue
  891. *
  892. * Ring the doorbel if a Tx queue is asleep. There is a natural race,
  893. * where the HW is going to sleep just after we checked, however,
  894. * then the interrupt handler will detect the outstanding TX packet
  895. * and ring the doorbell for us.
  896. *
  897. * When GTS is disabled we unconditionally ring the doorbell.
  898. */
  899. static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
  900. {
  901. #if USE_GTS
  902. clear_bit(TXQ_LAST_PKT_DB, &q->flags);
  903. if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
  904. set_bit(TXQ_LAST_PKT_DB, &q->flags);
  905. t3_write_reg(adap, A_SG_KDOORBELL,
  906. F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
  907. }
  908. #else
  909. wmb(); /* write descriptors before telling HW */
  910. t3_write_reg(adap, A_SG_KDOORBELL,
  911. F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
  912. #endif
  913. }
  914. static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
  915. {
  916. #if SGE_NUM_GENBITS == 2
  917. d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
  918. #endif
  919. }
  920. /**
  921. * write_wr_hdr_sgl - write a WR header and, optionally, SGL
  922. * @ndesc: number of Tx descriptors spanned by the SGL
  923. * @skb: the packet corresponding to the WR
  924. * @d: first Tx descriptor to be written
  925. * @pidx: index of above descriptors
  926. * @q: the SGE Tx queue
  927. * @sgl: the SGL
  928. * @flits: number of flits to the start of the SGL in the first descriptor
  929. * @sgl_flits: the SGL size in flits
  930. * @gen: the Tx descriptor generation
  931. * @wr_hi: top 32 bits of WR header based on WR type (big endian)
  932. * @wr_lo: low 32 bits of WR header based on WR type (big endian)
  933. *
  934. * Write a work request header and an associated SGL. If the SGL is
  935. * small enough to fit into one Tx descriptor it has already been written
  936. * and we just need to write the WR header. Otherwise we distribute the
  937. * SGL across the number of descriptors it spans.
  938. */
  939. static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
  940. struct tx_desc *d, unsigned int pidx,
  941. const struct sge_txq *q,
  942. const struct sg_ent *sgl,
  943. unsigned int flits, unsigned int sgl_flits,
  944. unsigned int gen, __be32 wr_hi,
  945. __be32 wr_lo)
  946. {
  947. struct work_request_hdr *wrp = (struct work_request_hdr *)d;
  948. struct tx_sw_desc *sd = &q->sdesc[pidx];
  949. sd->skb = skb;
  950. if (need_skb_unmap()) {
  951. sd->fragidx = 0;
  952. sd->addr_idx = 0;
  953. sd->sflit = flits;
  954. }
  955. if (likely(ndesc == 1)) {
  956. sd->eop = 1;
  957. wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
  958. V_WR_SGLSFLT(flits)) | wr_hi;
  959. wmb();
  960. wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
  961. V_WR_GEN(gen)) | wr_lo;
  962. wr_gen2(d, gen);
  963. } else {
  964. unsigned int ogen = gen;
  965. const u64 *fp = (const u64 *)sgl;
  966. struct work_request_hdr *wp = wrp;
  967. wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
  968. V_WR_SGLSFLT(flits)) | wr_hi;
  969. while (sgl_flits) {
  970. unsigned int avail = WR_FLITS - flits;
  971. if (avail > sgl_flits)
  972. avail = sgl_flits;
  973. memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
  974. sgl_flits -= avail;
  975. ndesc--;
  976. if (!sgl_flits)
  977. break;
  978. fp += avail;
  979. d++;
  980. sd->eop = 0;
  981. sd++;
  982. if (++pidx == q->size) {
  983. pidx = 0;
  984. gen ^= 1;
  985. d = q->desc;
  986. sd = q->sdesc;
  987. }
  988. sd->skb = skb;
  989. wrp = (struct work_request_hdr *)d;
  990. wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
  991. V_WR_SGLSFLT(1)) | wr_hi;
  992. wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
  993. sgl_flits + 1)) |
  994. V_WR_GEN(gen)) | wr_lo;
  995. wr_gen2(d, gen);
  996. flits = 1;
  997. }
  998. sd->eop = 1;
  999. wrp->wr_hi |= htonl(F_WR_EOP);
  1000. wmb();
  1001. wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
  1002. wr_gen2((struct tx_desc *)wp, ogen);
  1003. WARN_ON(ndesc != 0);
  1004. }
  1005. }
  1006. /**
  1007. * write_tx_pkt_wr - write a TX_PKT work request
  1008. * @adap: the adapter
  1009. * @skb: the packet to send
  1010. * @pi: the egress interface
  1011. * @pidx: index of the first Tx descriptor to write
  1012. * @gen: the generation value to use
  1013. * @q: the Tx queue
  1014. * @ndesc: number of descriptors the packet will occupy
  1015. * @compl: the value of the COMPL bit to use
  1016. *
  1017. * Generate a TX_PKT work request to send the supplied packet.
  1018. */
  1019. static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
  1020. const struct port_info *pi,
  1021. unsigned int pidx, unsigned int gen,
  1022. struct sge_txq *q, unsigned int ndesc,
  1023. unsigned int compl)
  1024. {
  1025. unsigned int flits, sgl_flits, cntrl, tso_info;
  1026. struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
  1027. struct tx_desc *d = &q->desc[pidx];
  1028. struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
  1029. cpl->len = htonl(skb->len);
  1030. cntrl = V_TXPKT_INTF(pi->port_id);
  1031. if (vlan_tx_tag_present(skb) && pi->vlan_grp)
  1032. cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
  1033. tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
  1034. if (tso_info) {
  1035. int eth_type;
  1036. struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
  1037. d->flit[2] = 0;
  1038. cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
  1039. hdr->cntrl = htonl(cntrl);
  1040. eth_type = skb_network_offset(skb) == ETH_HLEN ?
  1041. CPL_ETH_II : CPL_ETH_II_VLAN;
  1042. tso_info |= V_LSO_ETH_TYPE(eth_type) |
  1043. V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
  1044. V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
  1045. hdr->lso_info = htonl(tso_info);
  1046. flits = 3;
  1047. } else {
  1048. cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
  1049. cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
  1050. cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
  1051. cpl->cntrl = htonl(cntrl);
  1052. if (skb->len <= WR_LEN - sizeof(*cpl)) {
  1053. q->sdesc[pidx].skb = NULL;
  1054. if (!skb->data_len)
  1055. skb_copy_from_linear_data(skb, &d->flit[2],
  1056. skb->len);
  1057. else
  1058. skb_copy_bits(skb, 0, &d->flit[2], skb->len);
  1059. flits = (skb->len + 7) / 8 + 2;
  1060. cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
  1061. V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
  1062. | F_WR_SOP | F_WR_EOP | compl);
  1063. wmb();
  1064. cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
  1065. V_WR_TID(q->token));
  1066. wr_gen2(d, gen);
  1067. kfree_skb(skb);
  1068. return;
  1069. }
  1070. flits = 2;
  1071. }
  1072. sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
  1073. sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
  1074. write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
  1075. htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
  1076. htonl(V_WR_TID(q->token)));
  1077. }
  1078. static inline void t3_stop_tx_queue(struct netdev_queue *txq,
  1079. struct sge_qset *qs, struct sge_txq *q)
  1080. {
  1081. netif_tx_stop_queue(txq);
  1082. set_bit(TXQ_ETH, &qs->txq_stopped);
  1083. q->stops++;
  1084. }
  1085. /**
  1086. * eth_xmit - add a packet to the Ethernet Tx queue
  1087. * @skb: the packet
  1088. * @dev: the egress net device
  1089. *
  1090. * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
  1091. */
  1092. int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
  1093. {
  1094. int qidx;
  1095. unsigned int ndesc, pidx, credits, gen, compl;
  1096. const struct port_info *pi = netdev_priv(dev);
  1097. struct adapter *adap = pi->adapter;
  1098. struct netdev_queue *txq;
  1099. struct sge_qset *qs;
  1100. struct sge_txq *q;
  1101. /*
  1102. * The chip min packet length is 9 octets but play safe and reject
  1103. * anything shorter than an Ethernet header.
  1104. */
  1105. if (unlikely(skb->len < ETH_HLEN)) {
  1106. dev_kfree_skb(skb);
  1107. return NETDEV_TX_OK;
  1108. }
  1109. qidx = skb_get_queue_mapping(skb);
  1110. qs = &pi->qs[qidx];
  1111. q = &qs->txq[TXQ_ETH];
  1112. txq = netdev_get_tx_queue(dev, qidx);
  1113. spin_lock(&q->lock);
  1114. reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
  1115. credits = q->size - q->in_use;
  1116. ndesc = calc_tx_descs(skb);
  1117. if (unlikely(credits < ndesc)) {
  1118. t3_stop_tx_queue(txq, qs, q);
  1119. dev_err(&adap->pdev->dev,
  1120. "%s: Tx ring %u full while queue awake!\n",
  1121. dev->name, q->cntxt_id & 7);
  1122. spin_unlock(&q->lock);
  1123. return NETDEV_TX_BUSY;
  1124. }
  1125. q->in_use += ndesc;
  1126. if (unlikely(credits - ndesc < q->stop_thres)) {
  1127. t3_stop_tx_queue(txq, qs, q);
  1128. if (should_restart_tx(q) &&
  1129. test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
  1130. q->restarts++;
  1131. netif_tx_wake_queue(txq);
  1132. }
  1133. }
  1134. gen = q->gen;
  1135. q->unacked += ndesc;
  1136. compl = (q->unacked & 8) << (S_WR_COMPL - 3);
  1137. q->unacked &= 7;
  1138. pidx = q->pidx;
  1139. q->pidx += ndesc;
  1140. if (q->pidx >= q->size) {
  1141. q->pidx -= q->size;
  1142. q->gen ^= 1;
  1143. }
  1144. /* update port statistics */
  1145. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1146. qs->port_stats[SGE_PSTAT_TX_CSUM]++;
  1147. if (skb_shinfo(skb)->gso_size)
  1148. qs->port_stats[SGE_PSTAT_TSO]++;
  1149. if (vlan_tx_tag_present(skb) && pi->vlan_grp)
  1150. qs->port_stats[SGE_PSTAT_VLANINS]++;
  1151. dev->trans_start = jiffies;
  1152. spin_unlock(&q->lock);
  1153. /*
  1154. * We do not use Tx completion interrupts to free DMAd Tx packets.
  1155. * This is good for performamce but means that we rely on new Tx
  1156. * packets arriving to run the destructors of completed packets,
  1157. * which open up space in their sockets' send queues. Sometimes
  1158. * we do not get such new packets causing Tx to stall. A single
  1159. * UDP transmitter is a good example of this situation. We have
  1160. * a clean up timer that periodically reclaims completed packets
  1161. * but it doesn't run often enough (nor do we want it to) to prevent
  1162. * lengthy stalls. A solution to this problem is to run the
  1163. * destructor early, after the packet is queued but before it's DMAd.
  1164. * A cons is that we lie to socket memory accounting, but the amount
  1165. * of extra memory is reasonable (limited by the number of Tx
  1166. * descriptors), the packets do actually get freed quickly by new
  1167. * packets almost always, and for protocols like TCP that wait for
  1168. * acks to really free up the data the extra memory is even less.
  1169. * On the positive side we run the destructors on the sending CPU
  1170. * rather than on a potentially different completing CPU, usually a
  1171. * good thing. We also run them without holding our Tx queue lock,
  1172. * unlike what reclaim_completed_tx() would otherwise do.
  1173. *
  1174. * Run the destructor before telling the DMA engine about the packet
  1175. * to make sure it doesn't complete and get freed prematurely.
  1176. */
  1177. if (likely(!skb_shared(skb)))
  1178. skb_orphan(skb);
  1179. write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
  1180. check_ring_tx_db(adap, q);
  1181. return NETDEV_TX_OK;
  1182. }
  1183. /**
  1184. * write_imm - write a packet into a Tx descriptor as immediate data
  1185. * @d: the Tx descriptor to write
  1186. * @skb: the packet
  1187. * @len: the length of packet data to write as immediate data
  1188. * @gen: the generation bit value to write
  1189. *
  1190. * Writes a packet as immediate data into a Tx descriptor. The packet
  1191. * contains a work request at its beginning. We must write the packet
  1192. * carefully so the SGE doesn't read it accidentally before it's written
  1193. * in its entirety.
  1194. */
  1195. static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
  1196. unsigned int len, unsigned int gen)
  1197. {
  1198. struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
  1199. struct work_request_hdr *to = (struct work_request_hdr *)d;
  1200. if (likely(!skb->data_len))
  1201. memcpy(&to[1], &from[1], len - sizeof(*from));
  1202. else
  1203. skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
  1204. to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
  1205. V_WR_BCNTLFLT(len & 7));
  1206. wmb();
  1207. to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
  1208. V_WR_LEN((len + 7) / 8));
  1209. wr_gen2(d, gen);
  1210. kfree_skb(skb);
  1211. }
  1212. /**
  1213. * check_desc_avail - check descriptor availability on a send queue
  1214. * @adap: the adapter
  1215. * @q: the send queue
  1216. * @skb: the packet needing the descriptors
  1217. * @ndesc: the number of Tx descriptors needed
  1218. * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
  1219. *
  1220. * Checks if the requested number of Tx descriptors is available on an
  1221. * SGE send queue. If the queue is already suspended or not enough
  1222. * descriptors are available the packet is queued for later transmission.
  1223. * Must be called with the Tx queue locked.
  1224. *
  1225. * Returns 0 if enough descriptors are available, 1 if there aren't
  1226. * enough descriptors and the packet has been queued, and 2 if the caller
  1227. * needs to retry because there weren't enough descriptors at the
  1228. * beginning of the call but some freed up in the mean time.
  1229. */
  1230. static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
  1231. struct sk_buff *skb, unsigned int ndesc,
  1232. unsigned int qid)
  1233. {
  1234. if (unlikely(!skb_queue_empty(&q->sendq))) {
  1235. addq_exit:__skb_queue_tail(&q->sendq, skb);
  1236. return 1;
  1237. }
  1238. if (unlikely(q->size - q->in_use < ndesc)) {
  1239. struct sge_qset *qs = txq_to_qset(q, qid);
  1240. set_bit(qid, &qs->txq_stopped);
  1241. smp_mb__after_clear_bit();
  1242. if (should_restart_tx(q) &&
  1243. test_and_clear_bit(qid, &qs->txq_stopped))
  1244. return 2;
  1245. q->stops++;
  1246. goto addq_exit;
  1247. }
  1248. return 0;
  1249. }
  1250. /**
  1251. * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
  1252. * @q: the SGE control Tx queue
  1253. *
  1254. * This is a variant of reclaim_completed_tx() that is used for Tx queues
  1255. * that send only immediate data (presently just the control queues) and
  1256. * thus do not have any sk_buffs to release.
  1257. */
  1258. static inline void reclaim_completed_tx_imm(struct sge_txq *q)
  1259. {
  1260. unsigned int reclaim = q->processed - q->cleaned;
  1261. q->in_use -= reclaim;
  1262. q->cleaned += reclaim;
  1263. }
  1264. static inline int immediate(const struct sk_buff *skb)
  1265. {
  1266. return skb->len <= WR_LEN;
  1267. }
  1268. /**
  1269. * ctrl_xmit - send a packet through an SGE control Tx queue
  1270. * @adap: the adapter
  1271. * @q: the control queue
  1272. * @skb: the packet
  1273. *
  1274. * Send a packet through an SGE control Tx queue. Packets sent through
  1275. * a control queue must fit entirely as immediate data in a single Tx
  1276. * descriptor and have no page fragments.
  1277. */
  1278. static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
  1279. struct sk_buff *skb)
  1280. {
  1281. int ret;
  1282. struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
  1283. if (unlikely(!immediate(skb))) {
  1284. WARN_ON(1);
  1285. dev_kfree_skb(skb);
  1286. return NET_XMIT_SUCCESS;
  1287. }
  1288. wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
  1289. wrp->wr_lo = htonl(V_WR_TID(q->token));
  1290. spin_lock(&q->lock);
  1291. again:reclaim_completed_tx_imm(q);
  1292. ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
  1293. if (unlikely(ret)) {
  1294. if (ret == 1) {
  1295. spin_unlock(&q->lock);
  1296. return NET_XMIT_CN;
  1297. }
  1298. goto again;
  1299. }
  1300. write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
  1301. q->in_use++;
  1302. if (++q->pidx >= q->size) {
  1303. q->pidx = 0;
  1304. q->gen ^= 1;
  1305. }
  1306. spin_unlock(&q->lock);
  1307. wmb();
  1308. t3_write_reg(adap, A_SG_KDOORBELL,
  1309. F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
  1310. return NET_XMIT_SUCCESS;
  1311. }
  1312. /**
  1313. * restart_ctrlq - restart a suspended control queue
  1314. * @qs: the queue set cotaining the control queue
  1315. *
  1316. * Resumes transmission on a suspended Tx control queue.
  1317. */
  1318. static void restart_ctrlq(unsigned long data)
  1319. {
  1320. struct sk_buff *skb;
  1321. struct sge_qset *qs = (struct sge_qset *)data;
  1322. struct sge_txq *q = &qs->txq[TXQ_CTRL];
  1323. spin_lock(&q->lock);
  1324. again:reclaim_completed_tx_imm(q);
  1325. while (q->in_use < q->size &&
  1326. (skb = __skb_dequeue(&q->sendq)) != NULL) {
  1327. write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
  1328. if (++q->pidx >= q->size) {
  1329. q->pidx = 0;
  1330. q->gen ^= 1;
  1331. }
  1332. q->in_use++;
  1333. }
  1334. if (!skb_queue_empty(&q->sendq)) {
  1335. set_bit(TXQ_CTRL, &qs->txq_stopped);
  1336. smp_mb__after_clear_bit();
  1337. if (should_restart_tx(q) &&
  1338. test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
  1339. goto again;
  1340. q->stops++;
  1341. }
  1342. spin_unlock(&q->lock);
  1343. wmb();
  1344. t3_write_reg(qs->adap, A_SG_KDOORBELL,
  1345. F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
  1346. }
  1347. /*
  1348. * Send a management message through control queue 0
  1349. */
  1350. int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
  1351. {
  1352. int ret;
  1353. local_bh_disable();
  1354. ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
  1355. local_bh_enable();
  1356. return ret;
  1357. }
  1358. /**
  1359. * deferred_unmap_destructor - unmap a packet when it is freed
  1360. * @skb: the packet
  1361. *
  1362. * This is the packet destructor used for Tx packets that need to remain
  1363. * mapped until they are freed rather than until their Tx descriptors are
  1364. * freed.
  1365. */
  1366. static void deferred_unmap_destructor(struct sk_buff *skb)
  1367. {
  1368. int i;
  1369. const dma_addr_t *p;
  1370. const struct skb_shared_info *si;
  1371. const struct deferred_unmap_info *dui;
  1372. dui = (struct deferred_unmap_info *)skb->head;
  1373. p = dui->addr;
  1374. if (skb->tail - skb->transport_header)
  1375. pci_unmap_single(dui->pdev, *p++,
  1376. skb->tail - skb->transport_header,
  1377. PCI_DMA_TODEVICE);
  1378. si = skb_shinfo(skb);
  1379. for (i = 0; i < si->nr_frags; i++)
  1380. pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
  1381. PCI_DMA_TODEVICE);
  1382. }
  1383. static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
  1384. const struct sg_ent *sgl, int sgl_flits)
  1385. {
  1386. dma_addr_t *p;
  1387. struct deferred_unmap_info *dui;
  1388. dui = (struct deferred_unmap_info *)skb->head;
  1389. dui->pdev = pdev;
  1390. for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
  1391. *p++ = be64_to_cpu(sgl->addr[0]);
  1392. *p++ = be64_to_cpu(sgl->addr[1]);
  1393. }
  1394. if (sgl_flits)
  1395. *p = be64_to_cpu(sgl->addr[0]);
  1396. }
  1397. /**
  1398. * write_ofld_wr - write an offload work request
  1399. * @adap: the adapter
  1400. * @skb: the packet to send
  1401. * @q: the Tx queue
  1402. * @pidx: index of the first Tx descriptor to write
  1403. * @gen: the generation value to use
  1404. * @ndesc: number of descriptors the packet will occupy
  1405. *
  1406. * Write an offload work request to send the supplied packet. The packet
  1407. * data already carry the work request with most fields populated.
  1408. */
  1409. static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
  1410. struct sge_txq *q, unsigned int pidx,
  1411. unsigned int gen, unsigned int ndesc)
  1412. {
  1413. unsigned int sgl_flits, flits;
  1414. struct work_request_hdr *from;
  1415. struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
  1416. struct tx_desc *d = &q->desc[pidx];
  1417. if (immediate(skb)) {
  1418. q->sdesc[pidx].skb = NULL;
  1419. write_imm(d, skb, skb->len, gen);
  1420. return;
  1421. }
  1422. /* Only TX_DATA builds SGLs */
  1423. from = (struct work_request_hdr *)skb->data;
  1424. memcpy(&d->flit[1], &from[1],
  1425. skb_transport_offset(skb) - sizeof(*from));
  1426. flits = skb_transport_offset(skb) / 8;
  1427. sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
  1428. sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
  1429. skb->tail - skb->transport_header,
  1430. adap->pdev);
  1431. if (need_skb_unmap()) {
  1432. setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
  1433. skb->destructor = deferred_unmap_destructor;
  1434. }
  1435. write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
  1436. gen, from->wr_hi, from->wr_lo);
  1437. }
  1438. /**
  1439. * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
  1440. * @skb: the packet
  1441. *
  1442. * Returns the number of Tx descriptors needed for the given offload
  1443. * packet. These packets are already fully constructed.
  1444. */
  1445. static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
  1446. {
  1447. unsigned int flits, cnt;
  1448. if (skb->len <= WR_LEN)
  1449. return 1; /* packet fits as immediate data */
  1450. flits = skb_transport_offset(skb) / 8; /* headers */
  1451. cnt = skb_shinfo(skb)->nr_frags;
  1452. if (skb->tail != skb->transport_header)
  1453. cnt++;
  1454. return flits_to_desc(flits + sgl_len(cnt));
  1455. }
  1456. /**
  1457. * ofld_xmit - send a packet through an offload queue
  1458. * @adap: the adapter
  1459. * @q: the Tx offload queue
  1460. * @skb: the packet
  1461. *
  1462. * Send an offload packet through an SGE offload queue.
  1463. */
  1464. static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
  1465. struct sk_buff *skb)
  1466. {
  1467. int ret;
  1468. unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
  1469. spin_lock(&q->lock);
  1470. again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
  1471. ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
  1472. if (unlikely(ret)) {
  1473. if (ret == 1) {
  1474. skb->priority = ndesc; /* save for restart */
  1475. spin_unlock(&q->lock);
  1476. return NET_XMIT_CN;
  1477. }
  1478. goto again;
  1479. }
  1480. gen = q->gen;
  1481. q->in_use += ndesc;
  1482. pidx = q->pidx;
  1483. q->pidx += ndesc;
  1484. if (q->pidx >= q->size) {
  1485. q->pidx -= q->size;
  1486. q->gen ^= 1;
  1487. }
  1488. spin_unlock(&q->lock);
  1489. write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
  1490. check_ring_tx_db(adap, q);
  1491. return NET_XMIT_SUCCESS;
  1492. }
  1493. /**
  1494. * restart_offloadq - restart a suspended offload queue
  1495. * @qs: the queue set cotaining the offload queue
  1496. *
  1497. * Resumes transmission on a suspended Tx offload queue.
  1498. */
  1499. static void restart_offloadq(unsigned long data)
  1500. {
  1501. struct sk_buff *skb;
  1502. struct sge_qset *qs = (struct sge_qset *)data;
  1503. struct sge_txq *q = &qs->txq[TXQ_OFLD];
  1504. const struct port_info *pi = netdev_priv(qs->netdev);
  1505. struct adapter *adap = pi->adapter;
  1506. spin_lock(&q->lock);
  1507. again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
  1508. while ((skb = skb_peek(&q->sendq)) != NULL) {
  1509. unsigned int gen, pidx;
  1510. unsigned int ndesc = skb->priority;
  1511. if (unlikely(q->size - q->in_use < ndesc)) {
  1512. set_bit(TXQ_OFLD, &qs->txq_stopped);
  1513. smp_mb__after_clear_bit();
  1514. if (should_restart_tx(q) &&
  1515. test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
  1516. goto again;
  1517. q->stops++;
  1518. break;
  1519. }
  1520. gen = q->gen;
  1521. q->in_use += ndesc;
  1522. pidx = q->pidx;
  1523. q->pidx += ndesc;
  1524. if (q->pidx >= q->size) {
  1525. q->pidx -= q->size;
  1526. q->gen ^= 1;
  1527. }
  1528. __skb_unlink(skb, &q->sendq);
  1529. spin_unlock(&q->lock);
  1530. write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
  1531. spin_lock(&q->lock);
  1532. }
  1533. spin_unlock(&q->lock);
  1534. #if USE_GTS
  1535. set_bit(TXQ_RUNNING, &q->flags);
  1536. set_bit(TXQ_LAST_PKT_DB, &q->flags);
  1537. #endif
  1538. wmb();
  1539. t3_write_reg(adap, A_SG_KDOORBELL,
  1540. F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
  1541. }
  1542. /**
  1543. * queue_set - return the queue set a packet should use
  1544. * @skb: the packet
  1545. *
  1546. * Maps a packet to the SGE queue set it should use. The desired queue
  1547. * set is carried in bits 1-3 in the packet's priority.
  1548. */
  1549. static inline int queue_set(const struct sk_buff *skb)
  1550. {
  1551. return skb->priority >> 1;
  1552. }
  1553. /**
  1554. * is_ctrl_pkt - return whether an offload packet is a control packet
  1555. * @skb: the packet
  1556. *
  1557. * Determines whether an offload packet should use an OFLD or a CTRL
  1558. * Tx queue. This is indicated by bit 0 in the packet's priority.
  1559. */
  1560. static inline int is_ctrl_pkt(const struct sk_buff *skb)
  1561. {
  1562. return skb->priority & 1;
  1563. }
  1564. /**
  1565. * t3_offload_tx - send an offload packet
  1566. * @tdev: the offload device to send to
  1567. * @skb: the packet
  1568. *
  1569. * Sends an offload packet. We use the packet priority to select the
  1570. * appropriate Tx queue as follows: bit 0 indicates whether the packet
  1571. * should be sent as regular or control, bits 1-3 select the queue set.
  1572. */
  1573. int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
  1574. {
  1575. struct adapter *adap = tdev2adap(tdev);
  1576. struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
  1577. if (unlikely(is_ctrl_pkt(skb)))
  1578. return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
  1579. return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
  1580. }
  1581. /**
  1582. * offload_enqueue - add an offload packet to an SGE offload receive queue
  1583. * @q: the SGE response queue
  1584. * @skb: the packet
  1585. *
  1586. * Add a new offload packet to an SGE response queue's offload packet
  1587. * queue. If the packet is the first on the queue it schedules the RX
  1588. * softirq to process the queue.
  1589. */
  1590. static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
  1591. {
  1592. int was_empty = skb_queue_empty(&q->rx_queue);
  1593. __skb_queue_tail(&q->rx_queue, skb);
  1594. if (was_empty) {
  1595. struct sge_qset *qs = rspq_to_qset(q);
  1596. napi_schedule(&qs->napi);
  1597. }
  1598. }
  1599. /**
  1600. * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
  1601. * @tdev: the offload device that will be receiving the packets
  1602. * @q: the SGE response queue that assembled the bundle
  1603. * @skbs: the partial bundle
  1604. * @n: the number of packets in the bundle
  1605. *
  1606. * Delivers a (partial) bundle of Rx offload packets to an offload device.
  1607. */
  1608. static inline void deliver_partial_bundle(struct t3cdev *tdev,
  1609. struct sge_rspq *q,
  1610. struct sk_buff *skbs[], int n)
  1611. {
  1612. if (n) {
  1613. q->offload_bundles++;
  1614. tdev->recv(tdev, skbs, n);
  1615. }
  1616. }
  1617. /**
  1618. * ofld_poll - NAPI handler for offload packets in interrupt mode
  1619. * @dev: the network device doing the polling
  1620. * @budget: polling budget
  1621. *
  1622. * The NAPI handler for offload packets when a response queue is serviced
  1623. * by the hard interrupt handler, i.e., when it's operating in non-polling
  1624. * mode. Creates small packet batches and sends them through the offload
  1625. * receive handler. Batches need to be of modest size as we do prefetches
  1626. * on the packets in each.
  1627. */
  1628. static int ofld_poll(struct napi_struct *napi, int budget)
  1629. {
  1630. struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
  1631. struct sge_rspq *q = &qs->rspq;
  1632. struct adapter *adapter = qs->adap;
  1633. int work_done = 0;
  1634. while (work_done < budget) {
  1635. struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
  1636. struct sk_buff_head queue;
  1637. int ngathered;
  1638. spin_lock_irq(&q->lock);
  1639. __skb_queue_head_init(&queue);
  1640. skb_queue_splice_init(&q->rx_queue, &queue);
  1641. if (skb_queue_empty(&queue)) {
  1642. napi_complete(napi);
  1643. spin_unlock_irq(&q->lock);
  1644. return work_done;
  1645. }
  1646. spin_unlock_irq(&q->lock);
  1647. ngathered = 0;
  1648. skb_queue_walk_safe(&queue, skb, tmp) {
  1649. if (work_done >= budget)
  1650. break;
  1651. work_done++;
  1652. __skb_unlink(skb, &queue);
  1653. prefetch(skb->data);
  1654. skbs[ngathered] = skb;
  1655. if (++ngathered == RX_BUNDLE_SIZE) {
  1656. q->offload_bundles++;
  1657. adapter->tdev.recv(&adapter->tdev, skbs,
  1658. ngathered);
  1659. ngathered = 0;
  1660. }
  1661. }
  1662. if (!skb_queue_empty(&queue)) {
  1663. /* splice remaining packets back onto Rx queue */
  1664. spin_lock_irq(&q->lock);
  1665. skb_queue_splice(&queue, &q->rx_queue);
  1666. spin_unlock_irq(&q->lock);
  1667. }
  1668. deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
  1669. }
  1670. return work_done;
  1671. }
  1672. /**
  1673. * rx_offload - process a received offload packet
  1674. * @tdev: the offload device receiving the packet
  1675. * @rq: the response queue that received the packet
  1676. * @skb: the packet
  1677. * @rx_gather: a gather list of packets if we are building a bundle
  1678. * @gather_idx: index of the next available slot in the bundle
  1679. *
  1680. * Process an ingress offload pakcet and add it to the offload ingress
  1681. * queue. Returns the index of the next available slot in the bundle.
  1682. */
  1683. static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
  1684. struct sk_buff *skb, struct sk_buff *rx_gather[],
  1685. unsigned int gather_idx)
  1686. {
  1687. skb_reset_mac_header(skb);
  1688. skb_reset_network_header(skb);
  1689. skb_reset_transport_header(skb);
  1690. if (rq->polling) {
  1691. rx_gather[gather_idx++] = skb;
  1692. if (gather_idx == RX_BUNDLE_SIZE) {
  1693. tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
  1694. gather_idx = 0;
  1695. rq->offload_bundles++;
  1696. }
  1697. } else
  1698. offload_enqueue(rq, skb);
  1699. return gather_idx;
  1700. }
  1701. /**
  1702. * restart_tx - check whether to restart suspended Tx queues
  1703. * @qs: the queue set to resume
  1704. *
  1705. * Restarts suspended Tx queues of an SGE queue set if they have enough
  1706. * free resources to resume operation.
  1707. */
  1708. static void restart_tx(struct sge_qset *qs)
  1709. {
  1710. if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
  1711. should_restart_tx(&qs->txq[TXQ_ETH]) &&
  1712. test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
  1713. qs->txq[TXQ_ETH].restarts++;
  1714. if (netif_running(qs->netdev))
  1715. netif_tx_wake_queue(qs->tx_q);
  1716. }
  1717. if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
  1718. should_restart_tx(&qs->txq[TXQ_OFLD]) &&
  1719. test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
  1720. qs->txq[TXQ_OFLD].restarts++;
  1721. tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
  1722. }
  1723. if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
  1724. should_restart_tx(&qs->txq[TXQ_CTRL]) &&
  1725. test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
  1726. qs->txq[TXQ_CTRL].restarts++;
  1727. tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
  1728. }
  1729. }
  1730. /**
  1731. * cxgb3_arp_process - process an ARP request probing a private IP address
  1732. * @adapter: the adapter
  1733. * @skb: the skbuff containing the ARP request
  1734. *
  1735. * Check if the ARP request is probing the private IP address
  1736. * dedicated to iSCSI, generate an ARP reply if so.
  1737. */
  1738. static void cxgb3_arp_process(struct adapter *adapter, struct sk_buff *skb)
  1739. {
  1740. struct net_device *dev = skb->dev;
  1741. struct port_info *pi;
  1742. struct arphdr *arp;
  1743. unsigned char *arp_ptr;
  1744. unsigned char *sha;
  1745. __be32 sip, tip;
  1746. if (!dev)
  1747. return;
  1748. skb_reset_network_header(skb);
  1749. arp = arp_hdr(skb);
  1750. if (arp->ar_op != htons(ARPOP_REQUEST))
  1751. return;
  1752. arp_ptr = (unsigned char *)(arp + 1);
  1753. sha = arp_ptr;
  1754. arp_ptr += dev->addr_len;
  1755. memcpy(&sip, arp_ptr, sizeof(sip));
  1756. arp_ptr += sizeof(sip);
  1757. arp_ptr += dev->addr_len;
  1758. memcpy(&tip, arp_ptr, sizeof(tip));
  1759. pi = netdev_priv(dev);
  1760. if (tip != pi->iscsi_ipv4addr)
  1761. return;
  1762. arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
  1763. dev->dev_addr, sha);
  1764. }
  1765. static inline int is_arp(struct sk_buff *skb)
  1766. {
  1767. return skb->protocol == htons(ETH_P_ARP);
  1768. }
  1769. /**
  1770. * rx_eth - process an ingress ethernet packet
  1771. * @adap: the adapter
  1772. * @rq: the response queue that received the packet
  1773. * @skb: the packet
  1774. * @pad: amount of padding at the start of the buffer
  1775. *
  1776. * Process an ingress ethernet pakcet and deliver it to the stack.
  1777. * The padding is 2 if the packet was delivered in an Rx buffer and 0
  1778. * if it was immediate data in a response.
  1779. */
  1780. static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
  1781. struct sk_buff *skb, int pad, int lro)
  1782. {
  1783. struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
  1784. struct sge_qset *qs = rspq_to_qset(rq);
  1785. struct port_info *pi;
  1786. skb_pull(skb, sizeof(*p) + pad);
  1787. skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
  1788. pi = netdev_priv(skb->dev);
  1789. if ((pi->rx_offload & T3_RX_CSUM) && p->csum_valid &&
  1790. p->csum == htons(0xffff) && !p->fragment) {
  1791. qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
  1792. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1793. } else
  1794. skb->ip_summed = CHECKSUM_NONE;
  1795. skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
  1796. if (unlikely(p->vlan_valid)) {
  1797. struct vlan_group *grp = pi->vlan_grp;
  1798. qs->port_stats[SGE_PSTAT_VLANEX]++;
  1799. if (likely(grp))
  1800. if (lro)
  1801. vlan_gro_receive(&qs->napi, grp,
  1802. ntohs(p->vlan), skb);
  1803. else {
  1804. if (unlikely(pi->iscsi_ipv4addr &&
  1805. is_arp(skb))) {
  1806. unsigned short vtag = ntohs(p->vlan) &
  1807. VLAN_VID_MASK;
  1808. skb->dev = vlan_group_get_device(grp,
  1809. vtag);
  1810. cxgb3_arp_process(adap, skb);
  1811. }
  1812. __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
  1813. rq->polling);
  1814. }
  1815. else
  1816. dev_kfree_skb_any(skb);
  1817. } else if (rq->polling) {
  1818. if (lro)
  1819. napi_gro_receive(&qs->napi, skb);
  1820. else {
  1821. if (unlikely(pi->iscsi_ipv4addr && is_arp(skb)))
  1822. cxgb3_arp_process(adap, skb);
  1823. netif_receive_skb(skb);
  1824. }
  1825. } else
  1826. netif_rx(skb);
  1827. }
  1828. static inline int is_eth_tcp(u32 rss)
  1829. {
  1830. return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
  1831. }
  1832. /**
  1833. * lro_add_page - add a page chunk to an LRO session
  1834. * @adap: the adapter
  1835. * @qs: the associated queue set
  1836. * @fl: the free list containing the page chunk to add
  1837. * @len: packet length
  1838. * @complete: Indicates the last fragment of a frame
  1839. *
  1840. * Add a received packet contained in a page chunk to an existing LRO
  1841. * session.
  1842. */
  1843. static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
  1844. struct sge_fl *fl, int len, int complete)
  1845. {
  1846. struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
  1847. struct cpl_rx_pkt *cpl;
  1848. struct skb_frag_struct *rx_frag = qs->lro_frag_tbl.frags;
  1849. int nr_frags = qs->lro_frag_tbl.nr_frags;
  1850. int frag_len = qs->lro_frag_tbl.len;
  1851. int offset = 0;
  1852. if (!nr_frags) {
  1853. offset = 2 + sizeof(struct cpl_rx_pkt);
  1854. qs->lro_va = cpl = sd->pg_chunk.va + 2;
  1855. }
  1856. fl->credits--;
  1857. len -= offset;
  1858. pci_dma_sync_single_for_cpu(adap->pdev,
  1859. pci_unmap_addr(sd, dma_addr),
  1860. fl->buf_size - SGE_PG_RSVD,
  1861. PCI_DMA_FROMDEVICE);
  1862. (*sd->pg_chunk.p_cnt)--;
  1863. if (!*sd->pg_chunk.p_cnt)
  1864. pci_unmap_page(adap->pdev,
  1865. pci_unmap_addr(&sd->pg_chunk, mapping),
  1866. fl->alloc_size,
  1867. PCI_DMA_FROMDEVICE);
  1868. prefetch(qs->lro_va);
  1869. rx_frag += nr_frags;
  1870. rx_frag->page = sd->pg_chunk.page;
  1871. rx_frag->page_offset = sd->pg_chunk.offset + offset;
  1872. rx_frag->size = len;
  1873. frag_len += len;
  1874. qs->lro_frag_tbl.nr_frags++;
  1875. qs->lro_frag_tbl.len = frag_len;
  1876. if (!complete)
  1877. return;
  1878. qs->lro_frag_tbl.ip_summed = CHECKSUM_UNNECESSARY;
  1879. cpl = qs->lro_va;
  1880. if (unlikely(cpl->vlan_valid)) {
  1881. struct net_device *dev = qs->netdev;
  1882. struct port_info *pi = netdev_priv(dev);
  1883. struct vlan_group *grp = pi->vlan_grp;
  1884. if (likely(grp != NULL)) {
  1885. vlan_gro_frags(&qs->napi, grp, ntohs(cpl->vlan),
  1886. &qs->lro_frag_tbl);
  1887. goto out;
  1888. }
  1889. }
  1890. napi_gro_frags(&qs->napi, &qs->lro_frag_tbl);
  1891. out:
  1892. qs->lro_frag_tbl.nr_frags = qs->lro_frag_tbl.len = 0;
  1893. }
  1894. /**
  1895. * handle_rsp_cntrl_info - handles control information in a response
  1896. * @qs: the queue set corresponding to the response
  1897. * @flags: the response control flags
  1898. *
  1899. * Handles the control information of an SGE response, such as GTS
  1900. * indications and completion credits for the queue set's Tx queues.
  1901. * HW coalesces credits, we don't do any extra SW coalescing.
  1902. */
  1903. static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
  1904. {
  1905. unsigned int credits;
  1906. #if USE_GTS
  1907. if (flags & F_RSPD_TXQ0_GTS)
  1908. clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
  1909. #endif
  1910. credits = G_RSPD_TXQ0_CR(flags);
  1911. if (credits)
  1912. qs->txq[TXQ_ETH].processed += credits;
  1913. credits = G_RSPD_TXQ2_CR(flags);
  1914. if (credits)
  1915. qs->txq[TXQ_CTRL].processed += credits;
  1916. # if USE_GTS
  1917. if (flags & F_RSPD_TXQ1_GTS)
  1918. clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
  1919. # endif
  1920. credits = G_RSPD_TXQ1_CR(flags);
  1921. if (credits)
  1922. qs->txq[TXQ_OFLD].processed += credits;
  1923. }
  1924. /**
  1925. * check_ring_db - check if we need to ring any doorbells
  1926. * @adapter: the adapter
  1927. * @qs: the queue set whose Tx queues are to be examined
  1928. * @sleeping: indicates which Tx queue sent GTS
  1929. *
  1930. * Checks if some of a queue set's Tx queues need to ring their doorbells
  1931. * to resume transmission after idling while they still have unprocessed
  1932. * descriptors.
  1933. */
  1934. static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
  1935. unsigned int sleeping)
  1936. {
  1937. if (sleeping & F_RSPD_TXQ0_GTS) {
  1938. struct sge_txq *txq = &qs->txq[TXQ_ETH];
  1939. if (txq->cleaned + txq->in_use != txq->processed &&
  1940. !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
  1941. set_bit(TXQ_RUNNING, &txq->flags);
  1942. t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
  1943. V_EGRCNTX(txq->cntxt_id));
  1944. }
  1945. }
  1946. if (sleeping & F_RSPD_TXQ1_GTS) {
  1947. struct sge_txq *txq = &qs->txq[TXQ_OFLD];
  1948. if (txq->cleaned + txq->in_use != txq->processed &&
  1949. !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
  1950. set_bit(TXQ_RUNNING, &txq->flags);
  1951. t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
  1952. V_EGRCNTX(txq->cntxt_id));
  1953. }
  1954. }
  1955. }
  1956. /**
  1957. * is_new_response - check if a response is newly written
  1958. * @r: the response descriptor
  1959. * @q: the response queue
  1960. *
  1961. * Returns true if a response descriptor contains a yet unprocessed
  1962. * response.
  1963. */
  1964. static inline int is_new_response(const struct rsp_desc *r,
  1965. const struct sge_rspq *q)
  1966. {
  1967. return (r->intr_gen & F_RSPD_GEN2) == q->gen;
  1968. }
  1969. static inline void clear_rspq_bufstate(struct sge_rspq * const q)
  1970. {
  1971. q->pg_skb = NULL;
  1972. q->rx_recycle_buf = 0;
  1973. }
  1974. #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
  1975. #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
  1976. V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
  1977. V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
  1978. V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
  1979. /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
  1980. #define NOMEM_INTR_DELAY 2500
  1981. /**
  1982. * process_responses - process responses from an SGE response queue
  1983. * @adap: the adapter
  1984. * @qs: the queue set to which the response queue belongs
  1985. * @budget: how many responses can be processed in this round
  1986. *
  1987. * Process responses from an SGE response queue up to the supplied budget.
  1988. * Responses include received packets as well as credits and other events
  1989. * for the queues that belong to the response queue's queue set.
  1990. * A negative budget is effectively unlimited.
  1991. *
  1992. * Additionally choose the interrupt holdoff time for the next interrupt
  1993. * on this queue. If the system is under memory shortage use a fairly
  1994. * long delay to help recovery.
  1995. */
  1996. static int process_responses(struct adapter *adap, struct sge_qset *qs,
  1997. int budget)
  1998. {
  1999. struct sge_rspq *q = &qs->rspq;
  2000. struct rsp_desc *r = &q->desc[q->cidx];
  2001. int budget_left = budget;
  2002. unsigned int sleeping = 0;
  2003. struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
  2004. int ngathered = 0;
  2005. q->next_holdoff = q->holdoff_tmr;
  2006. while (likely(budget_left && is_new_response(r, q))) {
  2007. int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
  2008. struct sk_buff *skb = NULL;
  2009. u32 len, flags = ntohl(r->flags);
  2010. __be32 rss_hi = *(const __be32 *)r,
  2011. rss_lo = r->rss_hdr.rss_hash_val;
  2012. eth = r->rss_hdr.opcode == CPL_RX_PKT;
  2013. if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
  2014. skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
  2015. if (!skb)
  2016. goto no_mem;
  2017. memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
  2018. skb->data[0] = CPL_ASYNC_NOTIF;
  2019. rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
  2020. q->async_notif++;
  2021. } else if (flags & F_RSPD_IMM_DATA_VALID) {
  2022. skb = get_imm_packet(r);
  2023. if (unlikely(!skb)) {
  2024. no_mem:
  2025. q->next_holdoff = NOMEM_INTR_DELAY;
  2026. q->nomem++;
  2027. /* consume one credit since we tried */
  2028. budget_left--;
  2029. break;
  2030. }
  2031. q->imm_data++;
  2032. ethpad = 0;
  2033. } else if ((len = ntohl(r->len_cq)) != 0) {
  2034. struct sge_fl *fl;
  2035. lro &= eth && is_eth_tcp(rss_hi);
  2036. fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
  2037. if (fl->use_pages) {
  2038. void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
  2039. prefetch(&qs->lro_frag_tbl);
  2040. prefetch(addr);
  2041. #if L1_CACHE_BYTES < 128
  2042. prefetch(addr + L1_CACHE_BYTES);
  2043. #endif
  2044. __refill_fl(adap, fl);
  2045. if (lro > 0) {
  2046. lro_add_page(adap, qs, fl,
  2047. G_RSPD_LEN(len),
  2048. flags & F_RSPD_EOP);
  2049. goto next_fl;
  2050. }
  2051. skb = get_packet_pg(adap, fl, q,
  2052. G_RSPD_LEN(len),
  2053. eth ?
  2054. SGE_RX_DROP_THRES : 0);
  2055. q->pg_skb = skb;
  2056. } else
  2057. skb = get_packet(adap, fl, G_RSPD_LEN(len),
  2058. eth ? SGE_RX_DROP_THRES : 0);
  2059. if (unlikely(!skb)) {
  2060. if (!eth)
  2061. goto no_mem;
  2062. q->rx_drops++;
  2063. } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
  2064. __skb_pull(skb, 2);
  2065. next_fl:
  2066. if (++fl->cidx == fl->size)
  2067. fl->cidx = 0;
  2068. } else
  2069. q->pure_rsps++;
  2070. if (flags & RSPD_CTRL_MASK) {
  2071. sleeping |= flags & RSPD_GTS_MASK;
  2072. handle_rsp_cntrl_info(qs, flags);
  2073. }
  2074. r++;
  2075. if (unlikely(++q->cidx == q->size)) {
  2076. q->cidx = 0;
  2077. q->gen ^= 1;
  2078. r = q->desc;
  2079. }
  2080. prefetch(r);
  2081. if (++q->credits >= (q->size / 4)) {
  2082. refill_rspq(adap, q, q->credits);
  2083. q->credits = 0;
  2084. }
  2085. packet_complete = flags &
  2086. (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
  2087. F_RSPD_ASYNC_NOTIF);
  2088. if (skb != NULL && packet_complete) {
  2089. if (eth)
  2090. rx_eth(adap, q, skb, ethpad, lro);
  2091. else {
  2092. q->offload_pkts++;
  2093. /* Preserve the RSS info in csum & priority */
  2094. skb->csum = rss_hi;
  2095. skb->priority = rss_lo;
  2096. ngathered = rx_offload(&adap->tdev, q, skb,
  2097. offload_skbs,
  2098. ngathered);
  2099. }
  2100. if (flags & F_RSPD_EOP)
  2101. clear_rspq_bufstate(q);
  2102. }
  2103. --budget_left;
  2104. }
  2105. deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
  2106. if (sleeping)
  2107. check_ring_db(adap, qs, sleeping);
  2108. smp_mb(); /* commit Tx queue .processed updates */
  2109. if (unlikely(qs->txq_stopped != 0))
  2110. restart_tx(qs);
  2111. budget -= budget_left;
  2112. return budget;
  2113. }
  2114. static inline int is_pure_response(const struct rsp_desc *r)
  2115. {
  2116. __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
  2117. return (n | r->len_cq) == 0;
  2118. }
  2119. /**
  2120. * napi_rx_handler - the NAPI handler for Rx processing
  2121. * @napi: the napi instance
  2122. * @budget: how many packets we can process in this round
  2123. *
  2124. * Handler for new data events when using NAPI.
  2125. */
  2126. static int napi_rx_handler(struct napi_struct *napi, int budget)
  2127. {
  2128. struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
  2129. struct adapter *adap = qs->adap;
  2130. int work_done = process_responses(adap, qs, budget);
  2131. if (likely(work_done < budget)) {
  2132. napi_complete(napi);
  2133. /*
  2134. * Because we don't atomically flush the following
  2135. * write it is possible that in very rare cases it can
  2136. * reach the device in a way that races with a new
  2137. * response being written plus an error interrupt
  2138. * causing the NAPI interrupt handler below to return
  2139. * unhandled status to the OS. To protect against
  2140. * this would require flushing the write and doing
  2141. * both the write and the flush with interrupts off.
  2142. * Way too expensive and unjustifiable given the
  2143. * rarity of the race.
  2144. *
  2145. * The race cannot happen at all with MSI-X.
  2146. */
  2147. t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
  2148. V_NEWTIMER(qs->rspq.next_holdoff) |
  2149. V_NEWINDEX(qs->rspq.cidx));
  2150. }
  2151. return work_done;
  2152. }
  2153. /*
  2154. * Returns true if the device is already scheduled for polling.
  2155. */
  2156. static inline int napi_is_scheduled(struct napi_struct *napi)
  2157. {
  2158. return test_bit(NAPI_STATE_SCHED, &napi->state);
  2159. }
  2160. /**
  2161. * process_pure_responses - process pure responses from a response queue
  2162. * @adap: the adapter
  2163. * @qs: the queue set owning the response queue
  2164. * @r: the first pure response to process
  2165. *
  2166. * A simpler version of process_responses() that handles only pure (i.e.,
  2167. * non data-carrying) responses. Such respones are too light-weight to
  2168. * justify calling a softirq under NAPI, so we handle them specially in
  2169. * the interrupt handler. The function is called with a pointer to a
  2170. * response, which the caller must ensure is a valid pure response.
  2171. *
  2172. * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
  2173. */
  2174. static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
  2175. struct rsp_desc *r)
  2176. {
  2177. struct sge_rspq *q = &qs->rspq;
  2178. unsigned int sleeping = 0;
  2179. do {
  2180. u32 flags = ntohl(r->flags);
  2181. r++;
  2182. if (unlikely(++q->cidx == q->size)) {
  2183. q->cidx = 0;
  2184. q->gen ^= 1;
  2185. r = q->desc;
  2186. }
  2187. prefetch(r);
  2188. if (flags & RSPD_CTRL_MASK) {
  2189. sleeping |= flags & RSPD_GTS_MASK;
  2190. handle_rsp_cntrl_info(qs, flags);
  2191. }
  2192. q->pure_rsps++;
  2193. if (++q->credits >= (q->size / 4)) {
  2194. refill_rspq(adap, q, q->credits);
  2195. q->credits = 0;
  2196. }
  2197. } while (is_new_response(r, q) && is_pure_response(r));
  2198. if (sleeping)
  2199. check_ring_db(adap, qs, sleeping);
  2200. smp_mb(); /* commit Tx queue .processed updates */
  2201. if (unlikely(qs->txq_stopped != 0))
  2202. restart_tx(qs);
  2203. return is_new_response(r, q);
  2204. }
  2205. /**
  2206. * handle_responses - decide what to do with new responses in NAPI mode
  2207. * @adap: the adapter
  2208. * @q: the response queue
  2209. *
  2210. * This is used by the NAPI interrupt handlers to decide what to do with
  2211. * new SGE responses. If there are no new responses it returns -1. If
  2212. * there are new responses and they are pure (i.e., non-data carrying)
  2213. * it handles them straight in hard interrupt context as they are very
  2214. * cheap and don't deliver any packets. Finally, if there are any data
  2215. * signaling responses it schedules the NAPI handler. Returns 1 if it
  2216. * schedules NAPI, 0 if all new responses were pure.
  2217. *
  2218. * The caller must ascertain NAPI is not already running.
  2219. */
  2220. static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
  2221. {
  2222. struct sge_qset *qs = rspq_to_qset(q);
  2223. struct rsp_desc *r = &q->desc[q->cidx];
  2224. if (!is_new_response(r, q))
  2225. return -1;
  2226. if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
  2227. t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
  2228. V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
  2229. return 0;
  2230. }
  2231. napi_schedule(&qs->napi);
  2232. return 1;
  2233. }
  2234. /*
  2235. * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
  2236. * (i.e., response queue serviced in hard interrupt).
  2237. */
  2238. irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
  2239. {
  2240. struct sge_qset *qs = cookie;
  2241. struct adapter *adap = qs->adap;
  2242. struct sge_rspq *q = &qs->rspq;
  2243. spin_lock(&q->lock);
  2244. if (process_responses(adap, qs, -1) == 0)
  2245. q->unhandled_irqs++;
  2246. t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
  2247. V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
  2248. spin_unlock(&q->lock);
  2249. return IRQ_HANDLED;
  2250. }
  2251. /*
  2252. * The MSI-X interrupt handler for an SGE response queue for the NAPI case
  2253. * (i.e., response queue serviced by NAPI polling).
  2254. */
  2255. static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
  2256. {
  2257. struct sge_qset *qs = cookie;
  2258. struct sge_rspq *q = &qs->rspq;
  2259. spin_lock(&q->lock);
  2260. if (handle_responses(qs->adap, q) < 0)
  2261. q->unhandled_irqs++;
  2262. spin_unlock(&q->lock);
  2263. return IRQ_HANDLED;
  2264. }
  2265. /*
  2266. * The non-NAPI MSI interrupt handler. This needs to handle data events from
  2267. * SGE response queues as well as error and other async events as they all use
  2268. * the same MSI vector. We use one SGE response queue per port in this mode
  2269. * and protect all response queues with queue 0's lock.
  2270. */
  2271. static irqreturn_t t3_intr_msi(int irq, void *cookie)
  2272. {
  2273. int new_packets = 0;
  2274. struct adapter *adap = cookie;
  2275. struct sge_rspq *q = &adap->sge.qs[0].rspq;
  2276. spin_lock(&q->lock);
  2277. if (process_responses(adap, &adap->sge.qs[0], -1)) {
  2278. t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
  2279. V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
  2280. new_packets = 1;
  2281. }
  2282. if (adap->params.nports == 2 &&
  2283. process_responses(adap, &adap->sge.qs[1], -1)) {
  2284. struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
  2285. t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
  2286. V_NEWTIMER(q1->next_holdoff) |
  2287. V_NEWINDEX(q1->cidx));
  2288. new_packets = 1;
  2289. }
  2290. if (!new_packets && t3_slow_intr_handler(adap) == 0)
  2291. q->unhandled_irqs++;
  2292. spin_unlock(&q->lock);
  2293. return IRQ_HANDLED;
  2294. }
  2295. static int rspq_check_napi(struct sge_qset *qs)
  2296. {
  2297. struct sge_rspq *q = &qs->rspq;
  2298. if (!napi_is_scheduled(&qs->napi) &&
  2299. is_new_response(&q->desc[q->cidx], q)) {
  2300. napi_schedule(&qs->napi);
  2301. return 1;
  2302. }
  2303. return 0;
  2304. }
  2305. /*
  2306. * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
  2307. * by NAPI polling). Handles data events from SGE response queues as well as
  2308. * error and other async events as they all use the same MSI vector. We use
  2309. * one SGE response queue per port in this mode and protect all response
  2310. * queues with queue 0's lock.
  2311. */
  2312. static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
  2313. {
  2314. int new_packets;
  2315. struct adapter *adap = cookie;
  2316. struct sge_rspq *q = &adap->sge.qs[0].rspq;
  2317. spin_lock(&q->lock);
  2318. new_packets = rspq_check_napi(&adap->sge.qs[0]);
  2319. if (adap->params.nports == 2)
  2320. new_packets += rspq_check_napi(&adap->sge.qs[1]);
  2321. if (!new_packets && t3_slow_intr_handler(adap) == 0)
  2322. q->unhandled_irqs++;
  2323. spin_unlock(&q->lock);
  2324. return IRQ_HANDLED;
  2325. }
  2326. /*
  2327. * A helper function that processes responses and issues GTS.
  2328. */
  2329. static inline int process_responses_gts(struct adapter *adap,
  2330. struct sge_rspq *rq)
  2331. {
  2332. int work;
  2333. work = process_responses(adap, rspq_to_qset(rq), -1);
  2334. t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
  2335. V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
  2336. return work;
  2337. }
  2338. /*
  2339. * The legacy INTx interrupt handler. This needs to handle data events from
  2340. * SGE response queues as well as error and other async events as they all use
  2341. * the same interrupt pin. We use one SGE response queue per port in this mode
  2342. * and protect all response queues with queue 0's lock.
  2343. */
  2344. static irqreturn_t t3_intr(int irq, void *cookie)
  2345. {
  2346. int work_done, w0, w1;
  2347. struct adapter *adap = cookie;
  2348. struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
  2349. struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
  2350. spin_lock(&q0->lock);
  2351. w0 = is_new_response(&q0->desc[q0->cidx], q0);
  2352. w1 = adap->params.nports == 2 &&
  2353. is_new_response(&q1->desc[q1->cidx], q1);
  2354. if (likely(w0 | w1)) {
  2355. t3_write_reg(adap, A_PL_CLI, 0);
  2356. t3_read_reg(adap, A_PL_CLI); /* flush */
  2357. if (likely(w0))
  2358. process_responses_gts(adap, q0);
  2359. if (w1)
  2360. process_responses_gts(adap, q1);
  2361. work_done = w0 | w1;
  2362. } else
  2363. work_done = t3_slow_intr_handler(adap);
  2364. spin_unlock(&q0->lock);
  2365. return IRQ_RETVAL(work_done != 0);
  2366. }
  2367. /*
  2368. * Interrupt handler for legacy INTx interrupts for T3B-based cards.
  2369. * Handles data events from SGE response queues as well as error and other
  2370. * async events as they all use the same interrupt pin. We use one SGE
  2371. * response queue per port in this mode and protect all response queues with
  2372. * queue 0's lock.
  2373. */
  2374. static irqreturn_t t3b_intr(int irq, void *cookie)
  2375. {
  2376. u32 map;
  2377. struct adapter *adap = cookie;
  2378. struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
  2379. t3_write_reg(adap, A_PL_CLI, 0);
  2380. map = t3_read_reg(adap, A_SG_DATA_INTR);
  2381. if (unlikely(!map)) /* shared interrupt, most likely */
  2382. return IRQ_NONE;
  2383. spin_lock(&q0->lock);
  2384. if (unlikely(map & F_ERRINTR))
  2385. t3_slow_intr_handler(adap);
  2386. if (likely(map & 1))
  2387. process_responses_gts(adap, q0);
  2388. if (map & 2)
  2389. process_responses_gts(adap, &adap->sge.qs[1].rspq);
  2390. spin_unlock(&q0->lock);
  2391. return IRQ_HANDLED;
  2392. }
  2393. /*
  2394. * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
  2395. * Handles data events from SGE response queues as well as error and other
  2396. * async events as they all use the same interrupt pin. We use one SGE
  2397. * response queue per port in this mode and protect all response queues with
  2398. * queue 0's lock.
  2399. */
  2400. static irqreturn_t t3b_intr_napi(int irq, void *cookie)
  2401. {
  2402. u32 map;
  2403. struct adapter *adap = cookie;
  2404. struct sge_qset *qs0 = &adap->sge.qs[0];
  2405. struct sge_rspq *q0 = &qs0->rspq;
  2406. t3_write_reg(adap, A_PL_CLI, 0);
  2407. map = t3_read_reg(adap, A_SG_DATA_INTR);
  2408. if (unlikely(!map)) /* shared interrupt, most likely */
  2409. return IRQ_NONE;
  2410. spin_lock(&q0->lock);
  2411. if (unlikely(map & F_ERRINTR))
  2412. t3_slow_intr_handler(adap);
  2413. if (likely(map & 1))
  2414. napi_schedule(&qs0->napi);
  2415. if (map & 2)
  2416. napi_schedule(&adap->sge.qs[1].napi);
  2417. spin_unlock(&q0->lock);
  2418. return IRQ_HANDLED;
  2419. }
  2420. /**
  2421. * t3_intr_handler - select the top-level interrupt handler
  2422. * @adap: the adapter
  2423. * @polling: whether using NAPI to service response queues
  2424. *
  2425. * Selects the top-level interrupt handler based on the type of interrupts
  2426. * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
  2427. * response queues.
  2428. */
  2429. irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
  2430. {
  2431. if (adap->flags & USING_MSIX)
  2432. return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
  2433. if (adap->flags & USING_MSI)
  2434. return polling ? t3_intr_msi_napi : t3_intr_msi;
  2435. if (adap->params.rev > 0)
  2436. return polling ? t3b_intr_napi : t3b_intr;
  2437. return t3_intr;
  2438. }
  2439. #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
  2440. F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
  2441. V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
  2442. F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
  2443. F_HIRCQPARITYERROR)
  2444. #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
  2445. #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
  2446. F_RSPQDISABLED)
  2447. /**
  2448. * t3_sge_err_intr_handler - SGE async event interrupt handler
  2449. * @adapter: the adapter
  2450. *
  2451. * Interrupt handler for SGE asynchronous (non-data) events.
  2452. */
  2453. void t3_sge_err_intr_handler(struct adapter *adapter)
  2454. {
  2455. unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
  2456. ~F_FLEMPTY;
  2457. if (status & SGE_PARERR)
  2458. CH_ALERT(adapter, "SGE parity error (0x%x)\n",
  2459. status & SGE_PARERR);
  2460. if (status & SGE_FRAMINGERR)
  2461. CH_ALERT(adapter, "SGE framing error (0x%x)\n",
  2462. status & SGE_FRAMINGERR);
  2463. if (status & F_RSPQCREDITOVERFOW)
  2464. CH_ALERT(adapter, "SGE response queue credit overflow\n");
  2465. if (status & F_RSPQDISABLED) {
  2466. v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
  2467. CH_ALERT(adapter,
  2468. "packet delivered to disabled response queue "
  2469. "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
  2470. }
  2471. if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
  2472. CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
  2473. status & F_HIPIODRBDROPERR ? "high" : "lo");
  2474. t3_write_reg(adapter, A_SG_INT_CAUSE, status);
  2475. if (status & SGE_FATALERR)
  2476. t3_fatal_err(adapter);
  2477. }
  2478. /**
  2479. * sge_timer_tx - perform periodic maintenance of an SGE qset
  2480. * @data: the SGE queue set to maintain
  2481. *
  2482. * Runs periodically from a timer to perform maintenance of an SGE queue
  2483. * set. It performs two tasks:
  2484. *
  2485. * Cleans up any completed Tx descriptors that may still be pending.
  2486. * Normal descriptor cleanup happens when new packets are added to a Tx
  2487. * queue so this timer is relatively infrequent and does any cleanup only
  2488. * if the Tx queue has not seen any new packets in a while. We make a
  2489. * best effort attempt to reclaim descriptors, in that we don't wait
  2490. * around if we cannot get a queue's lock (which most likely is because
  2491. * someone else is queueing new packets and so will also handle the clean
  2492. * up). Since control queues use immediate data exclusively we don't
  2493. * bother cleaning them up here.
  2494. *
  2495. */
  2496. static void sge_timer_tx(unsigned long data)
  2497. {
  2498. struct sge_qset *qs = (struct sge_qset *)data;
  2499. struct port_info *pi = netdev_priv(qs->netdev);
  2500. struct adapter *adap = pi->adapter;
  2501. unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
  2502. unsigned long next_period;
  2503. if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
  2504. tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
  2505. TX_RECLAIM_TIMER_CHUNK);
  2506. spin_unlock(&qs->txq[TXQ_ETH].lock);
  2507. }
  2508. if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
  2509. tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
  2510. TX_RECLAIM_TIMER_CHUNK);
  2511. spin_unlock(&qs->txq[TXQ_OFLD].lock);
  2512. }
  2513. next_period = TX_RECLAIM_PERIOD >>
  2514. (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
  2515. TX_RECLAIM_TIMER_CHUNK);
  2516. mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
  2517. }
  2518. /*
  2519. * sge_timer_rx - perform periodic maintenance of an SGE qset
  2520. * @data: the SGE queue set to maintain
  2521. *
  2522. * a) Replenishes Rx queues that have run out due to memory shortage.
  2523. * Normally new Rx buffers are added when existing ones are consumed but
  2524. * when out of memory a queue can become empty. We try to add only a few
  2525. * buffers here, the queue will be replenished fully as these new buffers
  2526. * are used up if memory shortage has subsided.
  2527. *
  2528. * b) Return coalesced response queue credits in case a response queue is
  2529. * starved.
  2530. *
  2531. */
  2532. static void sge_timer_rx(unsigned long data)
  2533. {
  2534. spinlock_t *lock;
  2535. struct sge_qset *qs = (struct sge_qset *)data;
  2536. struct port_info *pi = netdev_priv(qs->netdev);
  2537. struct adapter *adap = pi->adapter;
  2538. u32 status;
  2539. lock = adap->params.rev > 0 ?
  2540. &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
  2541. if (!spin_trylock_irq(lock))
  2542. goto out;
  2543. if (napi_is_scheduled(&qs->napi))
  2544. goto unlock;
  2545. if (adap->params.rev < 4) {
  2546. status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
  2547. if (status & (1 << qs->rspq.cntxt_id)) {
  2548. qs->rspq.starved++;
  2549. if (qs->rspq.credits) {
  2550. qs->rspq.credits--;
  2551. refill_rspq(adap, &qs->rspq, 1);
  2552. qs->rspq.restarted++;
  2553. t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
  2554. 1 << qs->rspq.cntxt_id);
  2555. }
  2556. }
  2557. }
  2558. if (qs->fl[0].credits < qs->fl[0].size)
  2559. __refill_fl(adap, &qs->fl[0]);
  2560. if (qs->fl[1].credits < qs->fl[1].size)
  2561. __refill_fl(adap, &qs->fl[1]);
  2562. unlock:
  2563. spin_unlock_irq(lock);
  2564. out:
  2565. mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
  2566. }
  2567. /**
  2568. * t3_update_qset_coalesce - update coalescing settings for a queue set
  2569. * @qs: the SGE queue set
  2570. * @p: new queue set parameters
  2571. *
  2572. * Update the coalescing settings for an SGE queue set. Nothing is done
  2573. * if the queue set is not initialized yet.
  2574. */
  2575. void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
  2576. {
  2577. qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
  2578. qs->rspq.polling = p->polling;
  2579. qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
  2580. }
  2581. /**
  2582. * t3_sge_alloc_qset - initialize an SGE queue set
  2583. * @adapter: the adapter
  2584. * @id: the queue set id
  2585. * @nports: how many Ethernet ports will be using this queue set
  2586. * @irq_vec_idx: the IRQ vector index for response queue interrupts
  2587. * @p: configuration parameters for this queue set
  2588. * @ntxq: number of Tx queues for the queue set
  2589. * @netdev: net device associated with this queue set
  2590. * @netdevq: net device TX queue associated with this queue set
  2591. *
  2592. * Allocate resources and initialize an SGE queue set. A queue set
  2593. * comprises a response queue, two Rx free-buffer queues, and up to 3
  2594. * Tx queues. The Tx queues are assigned roles in the order Ethernet
  2595. * queue, offload queue, and control queue.
  2596. */
  2597. int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
  2598. int irq_vec_idx, const struct qset_params *p,
  2599. int ntxq, struct net_device *dev,
  2600. struct netdev_queue *netdevq)
  2601. {
  2602. int i, avail, ret = -ENOMEM;
  2603. struct sge_qset *q = &adapter->sge.qs[id];
  2604. init_qset_cntxt(q, id);
  2605. setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
  2606. setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
  2607. q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
  2608. sizeof(struct rx_desc),
  2609. sizeof(struct rx_sw_desc),
  2610. &q->fl[0].phys_addr, &q->fl[0].sdesc);
  2611. if (!q->fl[0].desc)
  2612. goto err;
  2613. q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
  2614. sizeof(struct rx_desc),
  2615. sizeof(struct rx_sw_desc),
  2616. &q->fl[1].phys_addr, &q->fl[1].sdesc);
  2617. if (!q->fl[1].desc)
  2618. goto err;
  2619. q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
  2620. sizeof(struct rsp_desc), 0,
  2621. &q->rspq.phys_addr, NULL);
  2622. if (!q->rspq.desc)
  2623. goto err;
  2624. for (i = 0; i < ntxq; ++i) {
  2625. /*
  2626. * The control queue always uses immediate data so does not
  2627. * need to keep track of any sk_buffs.
  2628. */
  2629. size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
  2630. q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
  2631. sizeof(struct tx_desc), sz,
  2632. &q->txq[i].phys_addr,
  2633. &q->txq[i].sdesc);
  2634. if (!q->txq[i].desc)
  2635. goto err;
  2636. q->txq[i].gen = 1;
  2637. q->txq[i].size = p->txq_size[i];
  2638. spin_lock_init(&q->txq[i].lock);
  2639. skb_queue_head_init(&q->txq[i].sendq);
  2640. }
  2641. tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
  2642. (unsigned long)q);
  2643. tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
  2644. (unsigned long)q);
  2645. q->fl[0].gen = q->fl[1].gen = 1;
  2646. q->fl[0].size = p->fl_size;
  2647. q->fl[1].size = p->jumbo_size;
  2648. q->rspq.gen = 1;
  2649. q->rspq.size = p->rspq_size;
  2650. spin_lock_init(&q->rspq.lock);
  2651. skb_queue_head_init(&q->rspq.rx_queue);
  2652. q->txq[TXQ_ETH].stop_thres = nports *
  2653. flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
  2654. #if FL0_PG_CHUNK_SIZE > 0
  2655. q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
  2656. #else
  2657. q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
  2658. #endif
  2659. #if FL1_PG_CHUNK_SIZE > 0
  2660. q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
  2661. #else
  2662. q->fl[1].buf_size = is_offload(adapter) ?
  2663. (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
  2664. MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
  2665. #endif
  2666. q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
  2667. q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
  2668. q->fl[0].order = FL0_PG_ORDER;
  2669. q->fl[1].order = FL1_PG_ORDER;
  2670. q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
  2671. q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
  2672. spin_lock_irq(&adapter->sge.reg_lock);
  2673. /* FL threshold comparison uses < */
  2674. ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
  2675. q->rspq.phys_addr, q->rspq.size,
  2676. q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
  2677. if (ret)
  2678. goto err_unlock;
  2679. for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
  2680. ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
  2681. q->fl[i].phys_addr, q->fl[i].size,
  2682. q->fl[i].buf_size - SGE_PG_RSVD,
  2683. p->cong_thres, 1, 0);
  2684. if (ret)
  2685. goto err_unlock;
  2686. }
  2687. ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
  2688. SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
  2689. q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
  2690. 1, 0);
  2691. if (ret)
  2692. goto err_unlock;
  2693. if (ntxq > 1) {
  2694. ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
  2695. USE_GTS, SGE_CNTXT_OFLD, id,
  2696. q->txq[TXQ_OFLD].phys_addr,
  2697. q->txq[TXQ_OFLD].size, 0, 1, 0);
  2698. if (ret)
  2699. goto err_unlock;
  2700. }
  2701. if (ntxq > 2) {
  2702. ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
  2703. SGE_CNTXT_CTRL, id,
  2704. q->txq[TXQ_CTRL].phys_addr,
  2705. q->txq[TXQ_CTRL].size,
  2706. q->txq[TXQ_CTRL].token, 1, 0);
  2707. if (ret)
  2708. goto err_unlock;
  2709. }
  2710. spin_unlock_irq(&adapter->sge.reg_lock);
  2711. q->adap = adapter;
  2712. q->netdev = dev;
  2713. q->tx_q = netdevq;
  2714. t3_update_qset_coalesce(q, p);
  2715. avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
  2716. GFP_KERNEL | __GFP_COMP);
  2717. if (!avail) {
  2718. CH_ALERT(adapter, "free list queue 0 initialization failed\n");
  2719. goto err;
  2720. }
  2721. if (avail < q->fl[0].size)
  2722. CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
  2723. avail);
  2724. avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
  2725. GFP_KERNEL | __GFP_COMP);
  2726. if (avail < q->fl[1].size)
  2727. CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
  2728. avail);
  2729. refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
  2730. t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
  2731. V_NEWTIMER(q->rspq.holdoff_tmr));
  2732. return 0;
  2733. err_unlock:
  2734. spin_unlock_irq(&adapter->sge.reg_lock);
  2735. err:
  2736. t3_free_qset(adapter, q);
  2737. return ret;
  2738. }
  2739. /**
  2740. * t3_start_sge_timers - start SGE timer call backs
  2741. * @adap: the adapter
  2742. *
  2743. * Starts each SGE queue set's timer call back
  2744. */
  2745. void t3_start_sge_timers(struct adapter *adap)
  2746. {
  2747. int i;
  2748. for (i = 0; i < SGE_QSETS; ++i) {
  2749. struct sge_qset *q = &adap->sge.qs[i];
  2750. if (q->tx_reclaim_timer.function)
  2751. mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
  2752. if (q->rx_reclaim_timer.function)
  2753. mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
  2754. }
  2755. }
  2756. /**
  2757. * t3_stop_sge_timers - stop SGE timer call backs
  2758. * @adap: the adapter
  2759. *
  2760. * Stops each SGE queue set's timer call back
  2761. */
  2762. void t3_stop_sge_timers(struct adapter *adap)
  2763. {
  2764. int i;
  2765. for (i = 0; i < SGE_QSETS; ++i) {
  2766. struct sge_qset *q = &adap->sge.qs[i];
  2767. if (q->tx_reclaim_timer.function)
  2768. del_timer_sync(&q->tx_reclaim_timer);
  2769. if (q->rx_reclaim_timer.function)
  2770. del_timer_sync(&q->rx_reclaim_timer);
  2771. }
  2772. }
  2773. /**
  2774. * t3_free_sge_resources - free SGE resources
  2775. * @adap: the adapter
  2776. *
  2777. * Frees resources used by the SGE queue sets.
  2778. */
  2779. void t3_free_sge_resources(struct adapter *adap)
  2780. {
  2781. int i;
  2782. for (i = 0; i < SGE_QSETS; ++i)
  2783. t3_free_qset(adap, &adap->sge.qs[i]);
  2784. }
  2785. /**
  2786. * t3_sge_start - enable SGE
  2787. * @adap: the adapter
  2788. *
  2789. * Enables the SGE for DMAs. This is the last step in starting packet
  2790. * transfers.
  2791. */
  2792. void t3_sge_start(struct adapter *adap)
  2793. {
  2794. t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
  2795. }
  2796. /**
  2797. * t3_sge_stop - disable SGE operation
  2798. * @adap: the adapter
  2799. *
  2800. * Disables the DMA engine. This can be called in emeregencies (e.g.,
  2801. * from error interrupts) or from normal process context. In the latter
  2802. * case it also disables any pending queue restart tasklets. Note that
  2803. * if it is called in interrupt context it cannot disable the restart
  2804. * tasklets as it cannot wait, however the tasklets will have no effect
  2805. * since the doorbells are disabled and the driver will call this again
  2806. * later from process context, at which time the tasklets will be stopped
  2807. * if they are still running.
  2808. */
  2809. void t3_sge_stop(struct adapter *adap)
  2810. {
  2811. t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
  2812. if (!in_interrupt()) {
  2813. int i;
  2814. for (i = 0; i < SGE_QSETS; ++i) {
  2815. struct sge_qset *qs = &adap->sge.qs[i];
  2816. tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
  2817. tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
  2818. }
  2819. }
  2820. }
  2821. /**
  2822. * t3_sge_init - initialize SGE
  2823. * @adap: the adapter
  2824. * @p: the SGE parameters
  2825. *
  2826. * Performs SGE initialization needed every time after a chip reset.
  2827. * We do not initialize any of the queue sets here, instead the driver
  2828. * top-level must request those individually. We also do not enable DMA
  2829. * here, that should be done after the queues have been set up.
  2830. */
  2831. void t3_sge_init(struct adapter *adap, struct sge_params *p)
  2832. {
  2833. unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
  2834. ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
  2835. F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
  2836. V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
  2837. V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
  2838. #if SGE_NUM_GENBITS == 1
  2839. ctrl |= F_EGRGENCTRL;
  2840. #endif
  2841. if (adap->params.rev > 0) {
  2842. if (!(adap->flags & (USING_MSIX | USING_MSI)))
  2843. ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
  2844. }
  2845. t3_write_reg(adap, A_SG_CONTROL, ctrl);
  2846. t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
  2847. V_LORCQDRBTHRSH(512));
  2848. t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
  2849. t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
  2850. V_TIMEOUT(200 * core_ticks_per_usec(adap)));
  2851. t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
  2852. adap->params.rev < T3_REV_C ? 1000 : 500);
  2853. t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
  2854. t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
  2855. t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
  2856. t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
  2857. t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
  2858. }
  2859. /**
  2860. * t3_sge_prep - one-time SGE initialization
  2861. * @adap: the associated adapter
  2862. * @p: SGE parameters
  2863. *
  2864. * Performs one-time initialization of SGE SW state. Includes determining
  2865. * defaults for the assorted SGE parameters, which admins can change until
  2866. * they are used to initialize the SGE.
  2867. */
  2868. void t3_sge_prep(struct adapter *adap, struct sge_params *p)
  2869. {
  2870. int i;
  2871. p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
  2872. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2873. for (i = 0; i < SGE_QSETS; ++i) {
  2874. struct qset_params *q = p->qset + i;
  2875. q->polling = adap->params.rev > 0;
  2876. q->coalesce_usecs = 5;
  2877. q->rspq_size = 1024;
  2878. q->fl_size = 1024;
  2879. q->jumbo_size = 512;
  2880. q->txq_size[TXQ_ETH] = 1024;
  2881. q->txq_size[TXQ_OFLD] = 1024;
  2882. q->txq_size[TXQ_CTRL] = 256;
  2883. q->cong_thres = 0;
  2884. }
  2885. spin_lock_init(&adap->sge.reg_lock);
  2886. }
  2887. /**
  2888. * t3_get_desc - dump an SGE descriptor for debugging purposes
  2889. * @qs: the queue set
  2890. * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
  2891. * @idx: the descriptor index in the queue
  2892. * @data: where to dump the descriptor contents
  2893. *
  2894. * Dumps the contents of a HW descriptor of an SGE queue. Returns the
  2895. * size of the descriptor.
  2896. */
  2897. int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
  2898. unsigned char *data)
  2899. {
  2900. if (qnum >= 6)
  2901. return -EINVAL;
  2902. if (qnum < 3) {
  2903. if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
  2904. return -EINVAL;
  2905. memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
  2906. return sizeof(struct tx_desc);
  2907. }
  2908. if (qnum == 3) {
  2909. if (!qs->rspq.desc || idx >= qs->rspq.size)
  2910. return -EINVAL;
  2911. memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
  2912. return sizeof(struct rsp_desc);
  2913. }
  2914. qnum -= 4;
  2915. if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
  2916. return -EINVAL;
  2917. memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
  2918. return sizeof(struct rx_desc);
  2919. }