bmac.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690
  1. /*
  2. * Network device driver for the BMAC ethernet controller on
  3. * Apple Powermacs. Assumes it's under a DBDMA controller.
  4. *
  5. * Copyright (C) 1998 Randy Gobbel.
  6. *
  7. * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
  8. * dynamic procfs inode.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/delay.h>
  15. #include <linux/string.h>
  16. #include <linux/timer.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/init.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/crc32.h>
  21. #include <linux/bitrev.h>
  22. #include <linux/ethtool.h>
  23. #include <asm/prom.h>
  24. #include <asm/dbdma.h>
  25. #include <asm/io.h>
  26. #include <asm/page.h>
  27. #include <asm/pgtable.h>
  28. #include <asm/machdep.h>
  29. #include <asm/pmac_feature.h>
  30. #include <asm/macio.h>
  31. #include <asm/irq.h>
  32. #include "bmac.h"
  33. #define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
  34. #define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
  35. /*
  36. * CRC polynomial - used in working out multicast filter bits.
  37. */
  38. #define ENET_CRCPOLY 0x04c11db7
  39. /* switch to use multicast code lifted from sunhme driver */
  40. #define SUNHME_MULTICAST
  41. #define N_RX_RING 64
  42. #define N_TX_RING 32
  43. #define MAX_TX_ACTIVE 1
  44. #define ETHERCRC 4
  45. #define ETHERMINPACKET 64
  46. #define ETHERMTU 1500
  47. #define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2)
  48. #define TX_TIMEOUT HZ /* 1 second */
  49. /* Bits in transmit DMA status */
  50. #define TX_DMA_ERR 0x80
  51. #define XXDEBUG(args)
  52. struct bmac_data {
  53. /* volatile struct bmac *bmac; */
  54. struct sk_buff_head *queue;
  55. volatile struct dbdma_regs __iomem *tx_dma;
  56. int tx_dma_intr;
  57. volatile struct dbdma_regs __iomem *rx_dma;
  58. int rx_dma_intr;
  59. volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
  60. volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
  61. struct macio_dev *mdev;
  62. int is_bmac_plus;
  63. struct sk_buff *rx_bufs[N_RX_RING];
  64. int rx_fill;
  65. int rx_empty;
  66. struct sk_buff *tx_bufs[N_TX_RING];
  67. int tx_fill;
  68. int tx_empty;
  69. unsigned char tx_fullup;
  70. struct timer_list tx_timeout;
  71. int timeout_active;
  72. int sleeping;
  73. int opened;
  74. unsigned short hash_use_count[64];
  75. unsigned short hash_table_mask[4];
  76. spinlock_t lock;
  77. };
  78. #if 0 /* Move that to ethtool */
  79. typedef struct bmac_reg_entry {
  80. char *name;
  81. unsigned short reg_offset;
  82. } bmac_reg_entry_t;
  83. #define N_REG_ENTRIES 31
  84. static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
  85. {"MEMADD", MEMADD},
  86. {"MEMDATAHI", MEMDATAHI},
  87. {"MEMDATALO", MEMDATALO},
  88. {"TXPNTR", TXPNTR},
  89. {"RXPNTR", RXPNTR},
  90. {"IPG1", IPG1},
  91. {"IPG2", IPG2},
  92. {"ALIMIT", ALIMIT},
  93. {"SLOT", SLOT},
  94. {"PALEN", PALEN},
  95. {"PAPAT", PAPAT},
  96. {"TXSFD", TXSFD},
  97. {"JAM", JAM},
  98. {"TXCFG", TXCFG},
  99. {"TXMAX", TXMAX},
  100. {"TXMIN", TXMIN},
  101. {"PAREG", PAREG},
  102. {"DCNT", DCNT},
  103. {"NCCNT", NCCNT},
  104. {"NTCNT", NTCNT},
  105. {"EXCNT", EXCNT},
  106. {"LTCNT", LTCNT},
  107. {"TXSM", TXSM},
  108. {"RXCFG", RXCFG},
  109. {"RXMAX", RXMAX},
  110. {"RXMIN", RXMIN},
  111. {"FRCNT", FRCNT},
  112. {"AECNT", AECNT},
  113. {"FECNT", FECNT},
  114. {"RXSM", RXSM},
  115. {"RXCV", RXCV}
  116. };
  117. #endif
  118. static unsigned char *bmac_emergency_rxbuf;
  119. /*
  120. * Number of bytes of private data per BMAC: allow enough for
  121. * the rx and tx dma commands plus a branch dma command each,
  122. * and another 16 bytes to allow us to align the dma command
  123. * buffers on a 16 byte boundary.
  124. */
  125. #define PRIV_BYTES (sizeof(struct bmac_data) \
  126. + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
  127. + sizeof(struct sk_buff_head))
  128. static int bmac_open(struct net_device *dev);
  129. static int bmac_close(struct net_device *dev);
  130. static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
  131. static void bmac_set_multicast(struct net_device *dev);
  132. static void bmac_reset_and_enable(struct net_device *dev);
  133. static void bmac_start_chip(struct net_device *dev);
  134. static void bmac_init_chip(struct net_device *dev);
  135. static void bmac_init_registers(struct net_device *dev);
  136. static void bmac_enable_and_reset_chip(struct net_device *dev);
  137. static int bmac_set_address(struct net_device *dev, void *addr);
  138. static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
  139. static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
  140. static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
  141. static void bmac_set_timeout(struct net_device *dev);
  142. static void bmac_tx_timeout(unsigned long data);
  143. static int bmac_output(struct sk_buff *skb, struct net_device *dev);
  144. static void bmac_start(struct net_device *dev);
  145. #define DBDMA_SET(x) ( ((x) | (x) << 16) )
  146. #define DBDMA_CLEAR(x) ( (x) << 16)
  147. static inline void
  148. dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
  149. {
  150. __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
  151. return;
  152. }
  153. static inline unsigned long
  154. dbdma_ld32(volatile __u32 __iomem *a)
  155. {
  156. __u32 swap;
  157. __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a));
  158. return swap;
  159. }
  160. static void
  161. dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
  162. {
  163. dbdma_st32(&dmap->control,
  164. DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
  165. eieio();
  166. }
  167. static void
  168. dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
  169. {
  170. dbdma_st32(&dmap->control,
  171. DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
  172. eieio();
  173. while (dbdma_ld32(&dmap->status) & RUN)
  174. eieio();
  175. }
  176. static void
  177. dbdma_setcmd(volatile struct dbdma_cmd *cp,
  178. unsigned short cmd, unsigned count, unsigned long addr,
  179. unsigned long cmd_dep)
  180. {
  181. out_le16(&cp->command, cmd);
  182. out_le16(&cp->req_count, count);
  183. out_le32(&cp->phy_addr, addr);
  184. out_le32(&cp->cmd_dep, cmd_dep);
  185. out_le16(&cp->xfer_status, 0);
  186. out_le16(&cp->res_count, 0);
  187. }
  188. static inline
  189. void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
  190. {
  191. out_le16((void __iomem *)dev->base_addr + reg_offset, data);
  192. }
  193. static inline
  194. unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
  195. {
  196. return in_le16((void __iomem *)dev->base_addr + reg_offset);
  197. }
  198. static void
  199. bmac_enable_and_reset_chip(struct net_device *dev)
  200. {
  201. struct bmac_data *bp = netdev_priv(dev);
  202. volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
  203. volatile struct dbdma_regs __iomem *td = bp->tx_dma;
  204. if (rd)
  205. dbdma_reset(rd);
  206. if (td)
  207. dbdma_reset(td);
  208. pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
  209. }
  210. #define MIFDELAY udelay(10)
  211. static unsigned int
  212. bmac_mif_readbits(struct net_device *dev, int nb)
  213. {
  214. unsigned int val = 0;
  215. while (--nb >= 0) {
  216. bmwrite(dev, MIFCSR, 0);
  217. MIFDELAY;
  218. if (bmread(dev, MIFCSR) & 8)
  219. val |= 1 << nb;
  220. bmwrite(dev, MIFCSR, 1);
  221. MIFDELAY;
  222. }
  223. bmwrite(dev, MIFCSR, 0);
  224. MIFDELAY;
  225. bmwrite(dev, MIFCSR, 1);
  226. MIFDELAY;
  227. return val;
  228. }
  229. static void
  230. bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
  231. {
  232. int b;
  233. while (--nb >= 0) {
  234. b = (val & (1 << nb))? 6: 4;
  235. bmwrite(dev, MIFCSR, b);
  236. MIFDELAY;
  237. bmwrite(dev, MIFCSR, b|1);
  238. MIFDELAY;
  239. }
  240. }
  241. static unsigned int
  242. bmac_mif_read(struct net_device *dev, unsigned int addr)
  243. {
  244. unsigned int val;
  245. bmwrite(dev, MIFCSR, 4);
  246. MIFDELAY;
  247. bmac_mif_writebits(dev, ~0U, 32);
  248. bmac_mif_writebits(dev, 6, 4);
  249. bmac_mif_writebits(dev, addr, 10);
  250. bmwrite(dev, MIFCSR, 2);
  251. MIFDELAY;
  252. bmwrite(dev, MIFCSR, 1);
  253. MIFDELAY;
  254. val = bmac_mif_readbits(dev, 17);
  255. bmwrite(dev, MIFCSR, 4);
  256. MIFDELAY;
  257. return val;
  258. }
  259. static void
  260. bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
  261. {
  262. bmwrite(dev, MIFCSR, 4);
  263. MIFDELAY;
  264. bmac_mif_writebits(dev, ~0U, 32);
  265. bmac_mif_writebits(dev, 5, 4);
  266. bmac_mif_writebits(dev, addr, 10);
  267. bmac_mif_writebits(dev, 2, 2);
  268. bmac_mif_writebits(dev, val, 16);
  269. bmac_mif_writebits(dev, 3, 2);
  270. }
  271. static void
  272. bmac_init_registers(struct net_device *dev)
  273. {
  274. struct bmac_data *bp = netdev_priv(dev);
  275. volatile unsigned short regValue;
  276. unsigned short *pWord16;
  277. int i;
  278. /* XXDEBUG(("bmac: enter init_registers\n")); */
  279. bmwrite(dev, RXRST, RxResetValue);
  280. bmwrite(dev, TXRST, TxResetBit);
  281. i = 100;
  282. do {
  283. --i;
  284. udelay(10000);
  285. regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
  286. } while ((regValue & TxResetBit) && i > 0);
  287. if (!bp->is_bmac_plus) {
  288. regValue = bmread(dev, XCVRIF);
  289. regValue |= ClkBit | SerialMode | COLActiveLow;
  290. bmwrite(dev, XCVRIF, regValue);
  291. udelay(10000);
  292. }
  293. bmwrite(dev, RSEED, (unsigned short)0x1968);
  294. regValue = bmread(dev, XIFC);
  295. regValue |= TxOutputEnable;
  296. bmwrite(dev, XIFC, regValue);
  297. bmread(dev, PAREG);
  298. /* set collision counters to 0 */
  299. bmwrite(dev, NCCNT, 0);
  300. bmwrite(dev, NTCNT, 0);
  301. bmwrite(dev, EXCNT, 0);
  302. bmwrite(dev, LTCNT, 0);
  303. /* set rx counters to 0 */
  304. bmwrite(dev, FRCNT, 0);
  305. bmwrite(dev, LECNT, 0);
  306. bmwrite(dev, AECNT, 0);
  307. bmwrite(dev, FECNT, 0);
  308. bmwrite(dev, RXCV, 0);
  309. /* set tx fifo information */
  310. bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */
  311. bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */
  312. bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
  313. /* set rx fifo information */
  314. bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
  315. bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
  316. //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */
  317. bmread(dev, STATUS); /* read it just to clear it */
  318. /* zero out the chip Hash Filter registers */
  319. for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
  320. bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
  321. bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
  322. bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
  323. bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
  324. pWord16 = (unsigned short *)dev->dev_addr;
  325. bmwrite(dev, MADD0, *pWord16++);
  326. bmwrite(dev, MADD1, *pWord16++);
  327. bmwrite(dev, MADD2, *pWord16);
  328. bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
  329. bmwrite(dev, INTDISABLE, EnableNormal);
  330. return;
  331. }
  332. #if 0
  333. static void
  334. bmac_disable_interrupts(struct net_device *dev)
  335. {
  336. bmwrite(dev, INTDISABLE, DisableAll);
  337. }
  338. static void
  339. bmac_enable_interrupts(struct net_device *dev)
  340. {
  341. bmwrite(dev, INTDISABLE, EnableNormal);
  342. }
  343. #endif
  344. static void
  345. bmac_start_chip(struct net_device *dev)
  346. {
  347. struct bmac_data *bp = netdev_priv(dev);
  348. volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
  349. unsigned short oldConfig;
  350. /* enable rx dma channel */
  351. dbdma_continue(rd);
  352. oldConfig = bmread(dev, TXCFG);
  353. bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
  354. /* turn on rx plus any other bits already on (promiscuous possibly) */
  355. oldConfig = bmread(dev, RXCFG);
  356. bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
  357. udelay(20000);
  358. }
  359. static void
  360. bmac_init_phy(struct net_device *dev)
  361. {
  362. unsigned int addr;
  363. struct bmac_data *bp = netdev_priv(dev);
  364. printk(KERN_DEBUG "phy registers:");
  365. for (addr = 0; addr < 32; ++addr) {
  366. if ((addr & 7) == 0)
  367. printk("\n" KERN_DEBUG);
  368. printk(" %.4x", bmac_mif_read(dev, addr));
  369. }
  370. printk("\n");
  371. if (bp->is_bmac_plus) {
  372. unsigned int capable, ctrl;
  373. ctrl = bmac_mif_read(dev, 0);
  374. capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
  375. if (bmac_mif_read(dev, 4) != capable
  376. || (ctrl & 0x1000) == 0) {
  377. bmac_mif_write(dev, 4, capable);
  378. bmac_mif_write(dev, 0, 0x1200);
  379. } else
  380. bmac_mif_write(dev, 0, 0x1000);
  381. }
  382. }
  383. static void bmac_init_chip(struct net_device *dev)
  384. {
  385. bmac_init_phy(dev);
  386. bmac_init_registers(dev);
  387. }
  388. #ifdef CONFIG_PM
  389. static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
  390. {
  391. struct net_device* dev = macio_get_drvdata(mdev);
  392. struct bmac_data *bp = netdev_priv(dev);
  393. unsigned long flags;
  394. unsigned short config;
  395. int i;
  396. netif_device_detach(dev);
  397. /* prolly should wait for dma to finish & turn off the chip */
  398. spin_lock_irqsave(&bp->lock, flags);
  399. if (bp->timeout_active) {
  400. del_timer(&bp->tx_timeout);
  401. bp->timeout_active = 0;
  402. }
  403. disable_irq(dev->irq);
  404. disable_irq(bp->tx_dma_intr);
  405. disable_irq(bp->rx_dma_intr);
  406. bp->sleeping = 1;
  407. spin_unlock_irqrestore(&bp->lock, flags);
  408. if (bp->opened) {
  409. volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
  410. volatile struct dbdma_regs __iomem *td = bp->tx_dma;
  411. config = bmread(dev, RXCFG);
  412. bmwrite(dev, RXCFG, (config & ~RxMACEnable));
  413. config = bmread(dev, TXCFG);
  414. bmwrite(dev, TXCFG, (config & ~TxMACEnable));
  415. bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
  416. /* disable rx and tx dma */
  417. st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
  418. st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
  419. /* free some skb's */
  420. for (i=0; i<N_RX_RING; i++) {
  421. if (bp->rx_bufs[i] != NULL) {
  422. dev_kfree_skb(bp->rx_bufs[i]);
  423. bp->rx_bufs[i] = NULL;
  424. }
  425. }
  426. for (i = 0; i<N_TX_RING; i++) {
  427. if (bp->tx_bufs[i] != NULL) {
  428. dev_kfree_skb(bp->tx_bufs[i]);
  429. bp->tx_bufs[i] = NULL;
  430. }
  431. }
  432. }
  433. pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
  434. return 0;
  435. }
  436. static int bmac_resume(struct macio_dev *mdev)
  437. {
  438. struct net_device* dev = macio_get_drvdata(mdev);
  439. struct bmac_data *bp = netdev_priv(dev);
  440. /* see if this is enough */
  441. if (bp->opened)
  442. bmac_reset_and_enable(dev);
  443. enable_irq(dev->irq);
  444. enable_irq(bp->tx_dma_intr);
  445. enable_irq(bp->rx_dma_intr);
  446. netif_device_attach(dev);
  447. return 0;
  448. }
  449. #endif /* CONFIG_PM */
  450. static int bmac_set_address(struct net_device *dev, void *addr)
  451. {
  452. struct bmac_data *bp = netdev_priv(dev);
  453. unsigned char *p = addr;
  454. unsigned short *pWord16;
  455. unsigned long flags;
  456. int i;
  457. XXDEBUG(("bmac: enter set_address\n"));
  458. spin_lock_irqsave(&bp->lock, flags);
  459. for (i = 0; i < 6; ++i) {
  460. dev->dev_addr[i] = p[i];
  461. }
  462. /* load up the hardware address */
  463. pWord16 = (unsigned short *)dev->dev_addr;
  464. bmwrite(dev, MADD0, *pWord16++);
  465. bmwrite(dev, MADD1, *pWord16++);
  466. bmwrite(dev, MADD2, *pWord16);
  467. spin_unlock_irqrestore(&bp->lock, flags);
  468. XXDEBUG(("bmac: exit set_address\n"));
  469. return 0;
  470. }
  471. static inline void bmac_set_timeout(struct net_device *dev)
  472. {
  473. struct bmac_data *bp = netdev_priv(dev);
  474. unsigned long flags;
  475. spin_lock_irqsave(&bp->lock, flags);
  476. if (bp->timeout_active)
  477. del_timer(&bp->tx_timeout);
  478. bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
  479. bp->tx_timeout.function = bmac_tx_timeout;
  480. bp->tx_timeout.data = (unsigned long) dev;
  481. add_timer(&bp->tx_timeout);
  482. bp->timeout_active = 1;
  483. spin_unlock_irqrestore(&bp->lock, flags);
  484. }
  485. static void
  486. bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
  487. {
  488. void *vaddr;
  489. unsigned long baddr;
  490. unsigned long len;
  491. len = skb->len;
  492. vaddr = skb->data;
  493. baddr = virt_to_bus(vaddr);
  494. dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
  495. }
  496. static void
  497. bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
  498. {
  499. unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
  500. dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
  501. virt_to_bus(addr), 0);
  502. }
  503. static void
  504. bmac_init_tx_ring(struct bmac_data *bp)
  505. {
  506. volatile struct dbdma_regs __iomem *td = bp->tx_dma;
  507. memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
  508. bp->tx_empty = 0;
  509. bp->tx_fill = 0;
  510. bp->tx_fullup = 0;
  511. /* put a branch at the end of the tx command list */
  512. dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
  513. (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
  514. /* reset tx dma */
  515. dbdma_reset(td);
  516. out_le32(&td->wait_sel, 0x00200020);
  517. out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
  518. }
  519. static int
  520. bmac_init_rx_ring(struct bmac_data *bp)
  521. {
  522. volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
  523. int i;
  524. struct sk_buff *skb;
  525. /* initialize list of sk_buffs for receiving and set up recv dma */
  526. memset((char *)bp->rx_cmds, 0,
  527. (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
  528. for (i = 0; i < N_RX_RING; i++) {
  529. if ((skb = bp->rx_bufs[i]) == NULL) {
  530. bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
  531. if (skb != NULL)
  532. skb_reserve(skb, 2);
  533. }
  534. bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
  535. }
  536. bp->rx_empty = 0;
  537. bp->rx_fill = i;
  538. /* Put a branch back to the beginning of the receive command list */
  539. dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
  540. (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
  541. /* start rx dma */
  542. dbdma_reset(rd);
  543. out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
  544. return 1;
  545. }
  546. static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
  547. {
  548. struct bmac_data *bp = netdev_priv(dev);
  549. volatile struct dbdma_regs __iomem *td = bp->tx_dma;
  550. int i;
  551. /* see if there's a free slot in the tx ring */
  552. /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
  553. /* bp->tx_empty, bp->tx_fill)); */
  554. i = bp->tx_fill + 1;
  555. if (i >= N_TX_RING)
  556. i = 0;
  557. if (i == bp->tx_empty) {
  558. netif_stop_queue(dev);
  559. bp->tx_fullup = 1;
  560. XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
  561. return -1; /* can't take it at the moment */
  562. }
  563. dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
  564. bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
  565. bp->tx_bufs[bp->tx_fill] = skb;
  566. bp->tx_fill = i;
  567. dev->stats.tx_bytes += skb->len;
  568. dbdma_continue(td);
  569. return 0;
  570. }
  571. static int rxintcount;
  572. static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
  573. {
  574. struct net_device *dev = (struct net_device *) dev_id;
  575. struct bmac_data *bp = netdev_priv(dev);
  576. volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
  577. volatile struct dbdma_cmd *cp;
  578. int i, nb, stat;
  579. struct sk_buff *skb;
  580. unsigned int residual;
  581. int last;
  582. unsigned long flags;
  583. spin_lock_irqsave(&bp->lock, flags);
  584. if (++rxintcount < 10) {
  585. XXDEBUG(("bmac_rxdma_intr\n"));
  586. }
  587. last = -1;
  588. i = bp->rx_empty;
  589. while (1) {
  590. cp = &bp->rx_cmds[i];
  591. stat = ld_le16(&cp->xfer_status);
  592. residual = ld_le16(&cp->res_count);
  593. if ((stat & ACTIVE) == 0)
  594. break;
  595. nb = RX_BUFLEN - residual - 2;
  596. if (nb < (ETHERMINPACKET - ETHERCRC)) {
  597. skb = NULL;
  598. dev->stats.rx_length_errors++;
  599. dev->stats.rx_errors++;
  600. } else {
  601. skb = bp->rx_bufs[i];
  602. bp->rx_bufs[i] = NULL;
  603. }
  604. if (skb != NULL) {
  605. nb -= ETHERCRC;
  606. skb_put(skb, nb);
  607. skb->protocol = eth_type_trans(skb, dev);
  608. netif_rx(skb);
  609. ++dev->stats.rx_packets;
  610. dev->stats.rx_bytes += nb;
  611. } else {
  612. ++dev->stats.rx_dropped;
  613. }
  614. if ((skb = bp->rx_bufs[i]) == NULL) {
  615. bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
  616. if (skb != NULL)
  617. skb_reserve(bp->rx_bufs[i], 2);
  618. }
  619. bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
  620. st_le16(&cp->res_count, 0);
  621. st_le16(&cp->xfer_status, 0);
  622. last = i;
  623. if (++i >= N_RX_RING) i = 0;
  624. }
  625. if (last != -1) {
  626. bp->rx_fill = last;
  627. bp->rx_empty = i;
  628. }
  629. dbdma_continue(rd);
  630. spin_unlock_irqrestore(&bp->lock, flags);
  631. if (rxintcount < 10) {
  632. XXDEBUG(("bmac_rxdma_intr done\n"));
  633. }
  634. return IRQ_HANDLED;
  635. }
  636. static int txintcount;
  637. static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
  638. {
  639. struct net_device *dev = (struct net_device *) dev_id;
  640. struct bmac_data *bp = netdev_priv(dev);
  641. volatile struct dbdma_cmd *cp;
  642. int stat;
  643. unsigned long flags;
  644. spin_lock_irqsave(&bp->lock, flags);
  645. if (txintcount++ < 10) {
  646. XXDEBUG(("bmac_txdma_intr\n"));
  647. }
  648. /* del_timer(&bp->tx_timeout); */
  649. /* bp->timeout_active = 0; */
  650. while (1) {
  651. cp = &bp->tx_cmds[bp->tx_empty];
  652. stat = ld_le16(&cp->xfer_status);
  653. if (txintcount < 10) {
  654. XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
  655. }
  656. if (!(stat & ACTIVE)) {
  657. /*
  658. * status field might not have been filled by DBDMA
  659. */
  660. if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
  661. break;
  662. }
  663. if (bp->tx_bufs[bp->tx_empty]) {
  664. ++dev->stats.tx_packets;
  665. dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
  666. }
  667. bp->tx_bufs[bp->tx_empty] = NULL;
  668. bp->tx_fullup = 0;
  669. netif_wake_queue(dev);
  670. if (++bp->tx_empty >= N_TX_RING)
  671. bp->tx_empty = 0;
  672. if (bp->tx_empty == bp->tx_fill)
  673. break;
  674. }
  675. spin_unlock_irqrestore(&bp->lock, flags);
  676. if (txintcount < 10) {
  677. XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
  678. }
  679. bmac_start(dev);
  680. return IRQ_HANDLED;
  681. }
  682. #ifndef SUNHME_MULTICAST
  683. /* Real fast bit-reversal algorithm, 6-bit values */
  684. static int reverse6[64] = {
  685. 0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
  686. 0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
  687. 0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
  688. 0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
  689. 0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
  690. 0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
  691. 0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
  692. 0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
  693. };
  694. static unsigned int
  695. crc416(unsigned int curval, unsigned short nxtval)
  696. {
  697. register unsigned int counter, cur = curval, next = nxtval;
  698. register int high_crc_set, low_data_set;
  699. /* Swap bytes */
  700. next = ((next & 0x00FF) << 8) | (next >> 8);
  701. /* Compute bit-by-bit */
  702. for (counter = 0; counter < 16; ++counter) {
  703. /* is high CRC bit set? */
  704. if ((cur & 0x80000000) == 0) high_crc_set = 0;
  705. else high_crc_set = 1;
  706. cur = cur << 1;
  707. if ((next & 0x0001) == 0) low_data_set = 0;
  708. else low_data_set = 1;
  709. next = next >> 1;
  710. /* do the XOR */
  711. if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
  712. }
  713. return cur;
  714. }
  715. static unsigned int
  716. bmac_crc(unsigned short *address)
  717. {
  718. unsigned int newcrc;
  719. XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
  720. newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */
  721. newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */
  722. newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */
  723. return(newcrc);
  724. }
  725. /*
  726. * Add requested mcast addr to BMac's hash table filter.
  727. *
  728. */
  729. static void
  730. bmac_addhash(struct bmac_data *bp, unsigned char *addr)
  731. {
  732. unsigned int crc;
  733. unsigned short mask;
  734. if (!(*addr)) return;
  735. crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
  736. crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
  737. if (bp->hash_use_count[crc]++) return; /* This bit is already set */
  738. mask = crc % 16;
  739. mask = (unsigned char)1 << mask;
  740. bp->hash_use_count[crc/16] |= mask;
  741. }
  742. static void
  743. bmac_removehash(struct bmac_data *bp, unsigned char *addr)
  744. {
  745. unsigned int crc;
  746. unsigned char mask;
  747. /* Now, delete the address from the filter copy, as indicated */
  748. crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
  749. crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
  750. if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
  751. if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
  752. mask = crc % 16;
  753. mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
  754. bp->hash_table_mask[crc/16] &= mask;
  755. }
  756. /*
  757. * Sync the adapter with the software copy of the multicast mask
  758. * (logical address filter).
  759. */
  760. static void
  761. bmac_rx_off(struct net_device *dev)
  762. {
  763. unsigned short rx_cfg;
  764. rx_cfg = bmread(dev, RXCFG);
  765. rx_cfg &= ~RxMACEnable;
  766. bmwrite(dev, RXCFG, rx_cfg);
  767. do {
  768. rx_cfg = bmread(dev, RXCFG);
  769. } while (rx_cfg & RxMACEnable);
  770. }
  771. unsigned short
  772. bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
  773. {
  774. unsigned short rx_cfg;
  775. rx_cfg = bmread(dev, RXCFG);
  776. rx_cfg |= RxMACEnable;
  777. if (hash_enable) rx_cfg |= RxHashFilterEnable;
  778. else rx_cfg &= ~RxHashFilterEnable;
  779. if (promisc_enable) rx_cfg |= RxPromiscEnable;
  780. else rx_cfg &= ~RxPromiscEnable;
  781. bmwrite(dev, RXRST, RxResetValue);
  782. bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
  783. bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
  784. bmwrite(dev, RXCFG, rx_cfg );
  785. return rx_cfg;
  786. }
  787. static void
  788. bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
  789. {
  790. bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
  791. bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
  792. bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
  793. bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
  794. }
  795. #if 0
  796. static void
  797. bmac_add_multi(struct net_device *dev,
  798. struct bmac_data *bp, unsigned char *addr)
  799. {
  800. /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
  801. bmac_addhash(bp, addr);
  802. bmac_rx_off(dev);
  803. bmac_update_hash_table_mask(dev, bp);
  804. bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
  805. /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
  806. }
  807. static void
  808. bmac_remove_multi(struct net_device *dev,
  809. struct bmac_data *bp, unsigned char *addr)
  810. {
  811. bmac_removehash(bp, addr);
  812. bmac_rx_off(dev);
  813. bmac_update_hash_table_mask(dev, bp);
  814. bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
  815. }
  816. #endif
  817. /* Set or clear the multicast filter for this adaptor.
  818. num_addrs == -1 Promiscuous mode, receive all packets
  819. num_addrs == 0 Normal mode, clear multicast list
  820. num_addrs > 0 Multicast mode, receive normal and MC packets, and do
  821. best-effort filtering.
  822. */
  823. static void bmac_set_multicast(struct net_device *dev)
  824. {
  825. struct dev_mc_list *dmi;
  826. struct bmac_data *bp = netdev_priv(dev);
  827. int num_addrs = dev->mc_count;
  828. unsigned short rx_cfg;
  829. int i;
  830. if (bp->sleeping)
  831. return;
  832. XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
  833. if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
  834. for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
  835. bmac_update_hash_table_mask(dev, bp);
  836. rx_cfg = bmac_rx_on(dev, 1, 0);
  837. XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
  838. } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
  839. rx_cfg = bmread(dev, RXCFG);
  840. rx_cfg |= RxPromiscEnable;
  841. bmwrite(dev, RXCFG, rx_cfg);
  842. rx_cfg = bmac_rx_on(dev, 0, 1);
  843. XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
  844. } else {
  845. for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
  846. for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
  847. if (num_addrs == 0) {
  848. rx_cfg = bmac_rx_on(dev, 0, 0);
  849. XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
  850. } else {
  851. for (dmi=dev->mc_list; dmi!=NULL; dmi=dmi->next)
  852. bmac_addhash(bp, dmi->dmi_addr);
  853. bmac_update_hash_table_mask(dev, bp);
  854. rx_cfg = bmac_rx_on(dev, 1, 0);
  855. XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
  856. }
  857. }
  858. /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
  859. }
  860. #else /* ifdef SUNHME_MULTICAST */
  861. /* The version of set_multicast below was lifted from sunhme.c */
  862. static void bmac_set_multicast(struct net_device *dev)
  863. {
  864. struct dev_mc_list *dmi = dev->mc_list;
  865. char *addrs;
  866. int i;
  867. unsigned short rx_cfg;
  868. u32 crc;
  869. if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
  870. bmwrite(dev, BHASH0, 0xffff);
  871. bmwrite(dev, BHASH1, 0xffff);
  872. bmwrite(dev, BHASH2, 0xffff);
  873. bmwrite(dev, BHASH3, 0xffff);
  874. } else if(dev->flags & IFF_PROMISC) {
  875. rx_cfg = bmread(dev, RXCFG);
  876. rx_cfg |= RxPromiscEnable;
  877. bmwrite(dev, RXCFG, rx_cfg);
  878. } else {
  879. u16 hash_table[4];
  880. rx_cfg = bmread(dev, RXCFG);
  881. rx_cfg &= ~RxPromiscEnable;
  882. bmwrite(dev, RXCFG, rx_cfg);
  883. for(i = 0; i < 4; i++) hash_table[i] = 0;
  884. for(i = 0; i < dev->mc_count; i++) {
  885. addrs = dmi->dmi_addr;
  886. dmi = dmi->next;
  887. if(!(*addrs & 1))
  888. continue;
  889. crc = ether_crc_le(6, addrs);
  890. crc >>= 26;
  891. hash_table[crc >> 4] |= 1 << (crc & 0xf);
  892. }
  893. bmwrite(dev, BHASH0, hash_table[0]);
  894. bmwrite(dev, BHASH1, hash_table[1]);
  895. bmwrite(dev, BHASH2, hash_table[2]);
  896. bmwrite(dev, BHASH3, hash_table[3]);
  897. }
  898. }
  899. #endif /* SUNHME_MULTICAST */
  900. static int miscintcount;
  901. static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
  902. {
  903. struct net_device *dev = (struct net_device *) dev_id;
  904. unsigned int status = bmread(dev, STATUS);
  905. if (miscintcount++ < 10) {
  906. XXDEBUG(("bmac_misc_intr\n"));
  907. }
  908. /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
  909. /* bmac_txdma_intr_inner(irq, dev_id); */
  910. /* if (status & FrameReceived) dev->stats.rx_dropped++; */
  911. if (status & RxErrorMask) dev->stats.rx_errors++;
  912. if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
  913. if (status & RxLenCntExp) dev->stats.rx_length_errors++;
  914. if (status & RxOverFlow) dev->stats.rx_over_errors++;
  915. if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
  916. /* if (status & FrameSent) dev->stats.tx_dropped++; */
  917. if (status & TxErrorMask) dev->stats.tx_errors++;
  918. if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
  919. if (status & TxNormalCollExp) dev->stats.collisions++;
  920. return IRQ_HANDLED;
  921. }
  922. /*
  923. * Procedure for reading EEPROM
  924. */
  925. #define SROMAddressLength 5
  926. #define DataInOn 0x0008
  927. #define DataInOff 0x0000
  928. #define Clk 0x0002
  929. #define ChipSelect 0x0001
  930. #define SDIShiftCount 3
  931. #define SD0ShiftCount 2
  932. #define DelayValue 1000 /* number of microseconds */
  933. #define SROMStartOffset 10 /* this is in words */
  934. #define SROMReadCount 3 /* number of words to read from SROM */
  935. #define SROMAddressBits 6
  936. #define EnetAddressOffset 20
  937. static unsigned char
  938. bmac_clock_out_bit(struct net_device *dev)
  939. {
  940. unsigned short data;
  941. unsigned short val;
  942. bmwrite(dev, SROMCSR, ChipSelect | Clk);
  943. udelay(DelayValue);
  944. data = bmread(dev, SROMCSR);
  945. udelay(DelayValue);
  946. val = (data >> SD0ShiftCount) & 1;
  947. bmwrite(dev, SROMCSR, ChipSelect);
  948. udelay(DelayValue);
  949. return val;
  950. }
  951. static void
  952. bmac_clock_in_bit(struct net_device *dev, unsigned int val)
  953. {
  954. unsigned short data;
  955. if (val != 0 && val != 1) return;
  956. data = (val << SDIShiftCount);
  957. bmwrite(dev, SROMCSR, data | ChipSelect );
  958. udelay(DelayValue);
  959. bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
  960. udelay(DelayValue);
  961. bmwrite(dev, SROMCSR, data | ChipSelect);
  962. udelay(DelayValue);
  963. }
  964. static void
  965. reset_and_select_srom(struct net_device *dev)
  966. {
  967. /* first reset */
  968. bmwrite(dev, SROMCSR, 0);
  969. udelay(DelayValue);
  970. /* send it the read command (110) */
  971. bmac_clock_in_bit(dev, 1);
  972. bmac_clock_in_bit(dev, 1);
  973. bmac_clock_in_bit(dev, 0);
  974. }
  975. static unsigned short
  976. read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
  977. {
  978. unsigned short data, val;
  979. int i;
  980. /* send out the address we want to read from */
  981. for (i = 0; i < addr_len; i++) {
  982. val = addr >> (addr_len-i-1);
  983. bmac_clock_in_bit(dev, val & 1);
  984. }
  985. /* Now read in the 16-bit data */
  986. data = 0;
  987. for (i = 0; i < 16; i++) {
  988. val = bmac_clock_out_bit(dev);
  989. data <<= 1;
  990. data |= val;
  991. }
  992. bmwrite(dev, SROMCSR, 0);
  993. return data;
  994. }
  995. /*
  996. * It looks like Cogent and SMC use different methods for calculating
  997. * checksums. What a pain..
  998. */
  999. static int
  1000. bmac_verify_checksum(struct net_device *dev)
  1001. {
  1002. unsigned short data, storedCS;
  1003. reset_and_select_srom(dev);
  1004. data = read_srom(dev, 3, SROMAddressBits);
  1005. storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
  1006. return 0;
  1007. }
  1008. static void
  1009. bmac_get_station_address(struct net_device *dev, unsigned char *ea)
  1010. {
  1011. int i;
  1012. unsigned short data;
  1013. for (i = 0; i < 6; i++)
  1014. {
  1015. reset_and_select_srom(dev);
  1016. data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
  1017. ea[2*i] = bitrev8(data & 0x0ff);
  1018. ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
  1019. }
  1020. }
  1021. static void bmac_reset_and_enable(struct net_device *dev)
  1022. {
  1023. struct bmac_data *bp = netdev_priv(dev);
  1024. unsigned long flags;
  1025. struct sk_buff *skb;
  1026. unsigned char *data;
  1027. spin_lock_irqsave(&bp->lock, flags);
  1028. bmac_enable_and_reset_chip(dev);
  1029. bmac_init_tx_ring(bp);
  1030. bmac_init_rx_ring(bp);
  1031. bmac_init_chip(dev);
  1032. bmac_start_chip(dev);
  1033. bmwrite(dev, INTDISABLE, EnableNormal);
  1034. bp->sleeping = 0;
  1035. /*
  1036. * It seems that the bmac can't receive until it's transmitted
  1037. * a packet. So we give it a dummy packet to transmit.
  1038. */
  1039. skb = dev_alloc_skb(ETHERMINPACKET);
  1040. if (skb != NULL) {
  1041. data = skb_put(skb, ETHERMINPACKET);
  1042. memset(data, 0, ETHERMINPACKET);
  1043. memcpy(data, dev->dev_addr, 6);
  1044. memcpy(data+6, dev->dev_addr, 6);
  1045. bmac_transmit_packet(skb, dev);
  1046. }
  1047. spin_unlock_irqrestore(&bp->lock, flags);
  1048. }
  1049. static void bmac_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  1050. {
  1051. struct bmac_data *bp = netdev_priv(dev);
  1052. strcpy(info->driver, "bmac");
  1053. strcpy(info->bus_info, dev_name(&bp->mdev->ofdev.dev));
  1054. }
  1055. static const struct ethtool_ops bmac_ethtool_ops = {
  1056. .get_drvinfo = bmac_get_drvinfo,
  1057. .get_link = ethtool_op_get_link,
  1058. };
  1059. static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
  1060. {
  1061. int j, rev, ret;
  1062. struct bmac_data *bp;
  1063. const unsigned char *prop_addr;
  1064. unsigned char addr[6];
  1065. struct net_device *dev;
  1066. int is_bmac_plus = ((int)match->data) != 0;
  1067. if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
  1068. printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
  1069. return -ENODEV;
  1070. }
  1071. prop_addr = of_get_property(macio_get_of_node(mdev),
  1072. "mac-address", NULL);
  1073. if (prop_addr == NULL) {
  1074. prop_addr = of_get_property(macio_get_of_node(mdev),
  1075. "local-mac-address", NULL);
  1076. if (prop_addr == NULL) {
  1077. printk(KERN_ERR "BMAC: Can't get mac-address\n");
  1078. return -ENODEV;
  1079. }
  1080. }
  1081. memcpy(addr, prop_addr, sizeof(addr));
  1082. dev = alloc_etherdev(PRIV_BYTES);
  1083. if (!dev) {
  1084. printk(KERN_ERR "BMAC: alloc_etherdev failed, out of memory\n");
  1085. return -ENOMEM;
  1086. }
  1087. bp = netdev_priv(dev);
  1088. SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
  1089. macio_set_drvdata(mdev, dev);
  1090. bp->mdev = mdev;
  1091. spin_lock_init(&bp->lock);
  1092. if (macio_request_resources(mdev, "bmac")) {
  1093. printk(KERN_ERR "BMAC: can't request IO resource !\n");
  1094. goto out_free;
  1095. }
  1096. dev->base_addr = (unsigned long)
  1097. ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
  1098. if (dev->base_addr == 0)
  1099. goto out_release;
  1100. dev->irq = macio_irq(mdev, 0);
  1101. bmac_enable_and_reset_chip(dev);
  1102. bmwrite(dev, INTDISABLE, DisableAll);
  1103. rev = addr[0] == 0 && addr[1] == 0xA0;
  1104. for (j = 0; j < 6; ++j)
  1105. dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
  1106. /* Enable chip without interrupts for now */
  1107. bmac_enable_and_reset_chip(dev);
  1108. bmwrite(dev, INTDISABLE, DisableAll);
  1109. dev->open = bmac_open;
  1110. dev->stop = bmac_close;
  1111. dev->ethtool_ops = &bmac_ethtool_ops;
  1112. dev->hard_start_xmit = bmac_output;
  1113. dev->set_multicast_list = bmac_set_multicast;
  1114. dev->set_mac_address = bmac_set_address;
  1115. bmac_get_station_address(dev, addr);
  1116. if (bmac_verify_checksum(dev) != 0)
  1117. goto err_out_iounmap;
  1118. bp->is_bmac_plus = is_bmac_plus;
  1119. bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
  1120. if (!bp->tx_dma)
  1121. goto err_out_iounmap;
  1122. bp->tx_dma_intr = macio_irq(mdev, 1);
  1123. bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
  1124. if (!bp->rx_dma)
  1125. goto err_out_iounmap_tx;
  1126. bp->rx_dma_intr = macio_irq(mdev, 2);
  1127. bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
  1128. bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
  1129. bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
  1130. skb_queue_head_init(bp->queue);
  1131. init_timer(&bp->tx_timeout);
  1132. ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
  1133. if (ret) {
  1134. printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
  1135. goto err_out_iounmap_rx;
  1136. }
  1137. ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
  1138. if (ret) {
  1139. printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
  1140. goto err_out_irq0;
  1141. }
  1142. ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
  1143. if (ret) {
  1144. printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
  1145. goto err_out_irq1;
  1146. }
  1147. /* Mask chip interrupts and disable chip, will be
  1148. * re-enabled on open()
  1149. */
  1150. disable_irq(dev->irq);
  1151. pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
  1152. if (register_netdev(dev) != 0) {
  1153. printk(KERN_ERR "BMAC: Ethernet registration failed\n");
  1154. goto err_out_irq2;
  1155. }
  1156. printk(KERN_INFO "%s: BMAC%s at %pM",
  1157. dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
  1158. XXDEBUG((", base_addr=%#0lx", dev->base_addr));
  1159. printk("\n");
  1160. return 0;
  1161. err_out_irq2:
  1162. free_irq(bp->rx_dma_intr, dev);
  1163. err_out_irq1:
  1164. free_irq(bp->tx_dma_intr, dev);
  1165. err_out_irq0:
  1166. free_irq(dev->irq, dev);
  1167. err_out_iounmap_rx:
  1168. iounmap(bp->rx_dma);
  1169. err_out_iounmap_tx:
  1170. iounmap(bp->tx_dma);
  1171. err_out_iounmap:
  1172. iounmap((void __iomem *)dev->base_addr);
  1173. out_release:
  1174. macio_release_resources(mdev);
  1175. out_free:
  1176. pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
  1177. free_netdev(dev);
  1178. return -ENODEV;
  1179. }
  1180. static int bmac_open(struct net_device *dev)
  1181. {
  1182. struct bmac_data *bp = netdev_priv(dev);
  1183. /* XXDEBUG(("bmac: enter open\n")); */
  1184. /* reset the chip */
  1185. bp->opened = 1;
  1186. bmac_reset_and_enable(dev);
  1187. enable_irq(dev->irq);
  1188. return 0;
  1189. }
  1190. static int bmac_close(struct net_device *dev)
  1191. {
  1192. struct bmac_data *bp = netdev_priv(dev);
  1193. volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
  1194. volatile struct dbdma_regs __iomem *td = bp->tx_dma;
  1195. unsigned short config;
  1196. int i;
  1197. bp->sleeping = 1;
  1198. /* disable rx and tx */
  1199. config = bmread(dev, RXCFG);
  1200. bmwrite(dev, RXCFG, (config & ~RxMACEnable));
  1201. config = bmread(dev, TXCFG);
  1202. bmwrite(dev, TXCFG, (config & ~TxMACEnable));
  1203. bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
  1204. /* disable rx and tx dma */
  1205. st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
  1206. st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
  1207. /* free some skb's */
  1208. XXDEBUG(("bmac: free rx bufs\n"));
  1209. for (i=0; i<N_RX_RING; i++) {
  1210. if (bp->rx_bufs[i] != NULL) {
  1211. dev_kfree_skb(bp->rx_bufs[i]);
  1212. bp->rx_bufs[i] = NULL;
  1213. }
  1214. }
  1215. XXDEBUG(("bmac: free tx bufs\n"));
  1216. for (i = 0; i<N_TX_RING; i++) {
  1217. if (bp->tx_bufs[i] != NULL) {
  1218. dev_kfree_skb(bp->tx_bufs[i]);
  1219. bp->tx_bufs[i] = NULL;
  1220. }
  1221. }
  1222. XXDEBUG(("bmac: all bufs freed\n"));
  1223. bp->opened = 0;
  1224. disable_irq(dev->irq);
  1225. pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
  1226. return 0;
  1227. }
  1228. static void
  1229. bmac_start(struct net_device *dev)
  1230. {
  1231. struct bmac_data *bp = netdev_priv(dev);
  1232. int i;
  1233. struct sk_buff *skb;
  1234. unsigned long flags;
  1235. if (bp->sleeping)
  1236. return;
  1237. spin_lock_irqsave(&bp->lock, flags);
  1238. while (1) {
  1239. i = bp->tx_fill + 1;
  1240. if (i >= N_TX_RING)
  1241. i = 0;
  1242. if (i == bp->tx_empty)
  1243. break;
  1244. skb = skb_dequeue(bp->queue);
  1245. if (skb == NULL)
  1246. break;
  1247. bmac_transmit_packet(skb, dev);
  1248. }
  1249. spin_unlock_irqrestore(&bp->lock, flags);
  1250. }
  1251. static int
  1252. bmac_output(struct sk_buff *skb, struct net_device *dev)
  1253. {
  1254. struct bmac_data *bp = netdev_priv(dev);
  1255. skb_queue_tail(bp->queue, skb);
  1256. bmac_start(dev);
  1257. return 0;
  1258. }
  1259. static void bmac_tx_timeout(unsigned long data)
  1260. {
  1261. struct net_device *dev = (struct net_device *) data;
  1262. struct bmac_data *bp = netdev_priv(dev);
  1263. volatile struct dbdma_regs __iomem *td = bp->tx_dma;
  1264. volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
  1265. volatile struct dbdma_cmd *cp;
  1266. unsigned long flags;
  1267. unsigned short config, oldConfig;
  1268. int i;
  1269. XXDEBUG(("bmac: tx_timeout called\n"));
  1270. spin_lock_irqsave(&bp->lock, flags);
  1271. bp->timeout_active = 0;
  1272. /* update various counters */
  1273. /* bmac_handle_misc_intrs(bp, 0); */
  1274. cp = &bp->tx_cmds[bp->tx_empty];
  1275. /* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
  1276. /* ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */
  1277. /* mb->pr, mb->xmtfs, mb->fifofc)); */
  1278. /* turn off both tx and rx and reset the chip */
  1279. config = bmread(dev, RXCFG);
  1280. bmwrite(dev, RXCFG, (config & ~RxMACEnable));
  1281. config = bmread(dev, TXCFG);
  1282. bmwrite(dev, TXCFG, (config & ~TxMACEnable));
  1283. out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
  1284. printk(KERN_ERR "bmac: transmit timeout - resetting\n");
  1285. bmac_enable_and_reset_chip(dev);
  1286. /* restart rx dma */
  1287. cp = bus_to_virt(ld_le32(&rd->cmdptr));
  1288. out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
  1289. out_le16(&cp->xfer_status, 0);
  1290. out_le32(&rd->cmdptr, virt_to_bus(cp));
  1291. out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
  1292. /* fix up the transmit side */
  1293. XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
  1294. bp->tx_empty, bp->tx_fill, bp->tx_fullup));
  1295. i = bp->tx_empty;
  1296. ++dev->stats.tx_errors;
  1297. if (i != bp->tx_fill) {
  1298. dev_kfree_skb(bp->tx_bufs[i]);
  1299. bp->tx_bufs[i] = NULL;
  1300. if (++i >= N_TX_RING) i = 0;
  1301. bp->tx_empty = i;
  1302. }
  1303. bp->tx_fullup = 0;
  1304. netif_wake_queue(dev);
  1305. if (i != bp->tx_fill) {
  1306. cp = &bp->tx_cmds[i];
  1307. out_le16(&cp->xfer_status, 0);
  1308. out_le16(&cp->command, OUTPUT_LAST);
  1309. out_le32(&td->cmdptr, virt_to_bus(cp));
  1310. out_le32(&td->control, DBDMA_SET(RUN));
  1311. /* bmac_set_timeout(dev); */
  1312. XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
  1313. }
  1314. /* turn it back on */
  1315. oldConfig = bmread(dev, RXCFG);
  1316. bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
  1317. oldConfig = bmread(dev, TXCFG);
  1318. bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
  1319. spin_unlock_irqrestore(&bp->lock, flags);
  1320. }
  1321. #if 0
  1322. static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
  1323. {
  1324. int i,*ip;
  1325. for (i=0;i< count;i++) {
  1326. ip = (int*)(cp+i);
  1327. printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
  1328. ld_le32(ip+0),
  1329. ld_le32(ip+1),
  1330. ld_le32(ip+2),
  1331. ld_le32(ip+3));
  1332. }
  1333. }
  1334. #endif
  1335. #if 0
  1336. static int
  1337. bmac_proc_info(char *buffer, char **start, off_t offset, int length)
  1338. {
  1339. int len = 0;
  1340. off_t pos = 0;
  1341. off_t begin = 0;
  1342. int i;
  1343. if (bmac_devs == NULL)
  1344. return (-ENOSYS);
  1345. len += sprintf(buffer, "BMAC counters & registers\n");
  1346. for (i = 0; i<N_REG_ENTRIES; i++) {
  1347. len += sprintf(buffer + len, "%s: %#08x\n",
  1348. reg_entries[i].name,
  1349. bmread(bmac_devs, reg_entries[i].reg_offset));
  1350. pos = begin + len;
  1351. if (pos < offset) {
  1352. len = 0;
  1353. begin = pos;
  1354. }
  1355. if (pos > offset+length) break;
  1356. }
  1357. *start = buffer + (offset - begin);
  1358. len -= (offset - begin);
  1359. if (len > length) len = length;
  1360. return len;
  1361. }
  1362. #endif
  1363. static int __devexit bmac_remove(struct macio_dev *mdev)
  1364. {
  1365. struct net_device *dev = macio_get_drvdata(mdev);
  1366. struct bmac_data *bp = netdev_priv(dev);
  1367. unregister_netdev(dev);
  1368. free_irq(dev->irq, dev);
  1369. free_irq(bp->tx_dma_intr, dev);
  1370. free_irq(bp->rx_dma_intr, dev);
  1371. iounmap((void __iomem *)dev->base_addr);
  1372. iounmap(bp->tx_dma);
  1373. iounmap(bp->rx_dma);
  1374. macio_release_resources(mdev);
  1375. free_netdev(dev);
  1376. return 0;
  1377. }
  1378. static struct of_device_id bmac_match[] =
  1379. {
  1380. {
  1381. .name = "bmac",
  1382. .data = (void *)0,
  1383. },
  1384. {
  1385. .type = "network",
  1386. .compatible = "bmac+",
  1387. .data = (void *)1,
  1388. },
  1389. {},
  1390. };
  1391. MODULE_DEVICE_TABLE (of, bmac_match);
  1392. static struct macio_driver bmac_driver =
  1393. {
  1394. .name = "bmac",
  1395. .match_table = bmac_match,
  1396. .probe = bmac_probe,
  1397. .remove = bmac_remove,
  1398. #ifdef CONFIG_PM
  1399. .suspend = bmac_suspend,
  1400. .resume = bmac_resume,
  1401. #endif
  1402. };
  1403. static int __init bmac_init(void)
  1404. {
  1405. if (bmac_emergency_rxbuf == NULL) {
  1406. bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
  1407. if (bmac_emergency_rxbuf == NULL) {
  1408. printk(KERN_ERR "BMAC: can't allocate emergency RX buffer\n");
  1409. return -ENOMEM;
  1410. }
  1411. }
  1412. return macio_register_driver(&bmac_driver);
  1413. }
  1414. static void __exit bmac_exit(void)
  1415. {
  1416. macio_unregister_driver(&bmac_driver);
  1417. kfree(bmac_emergency_rxbuf);
  1418. bmac_emergency_rxbuf = NULL;
  1419. }
  1420. MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
  1421. MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
  1422. MODULE_LICENSE("GPL");
  1423. module_init(bmac_init);
  1424. module_exit(bmac_exit);