ixp4xx_eth.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278
  1. /*
  2. * Intel IXP4xx Ethernet driver for Linux
  3. *
  4. * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation.
  9. *
  10. * Ethernet port config (0x00 is not present on IXP42X):
  11. *
  12. * logical port 0x00 0x10 0x20
  13. * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
  14. * physical PortId 2 0 1
  15. * TX queue 23 24 25
  16. * RX-free queue 26 27 28
  17. * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
  18. *
  19. *
  20. * Queue entries:
  21. * bits 0 -> 1 - NPE ID (RX and TX-done)
  22. * bits 0 -> 2 - priority (TX, per 802.1D)
  23. * bits 3 -> 4 - port ID (user-set?)
  24. * bits 5 -> 31 - physical descriptor address
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/dmapool.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/io.h>
  31. #include <linux/kernel.h>
  32. #include <linux/phy.h>
  33. #include <linux/platform_device.h>
  34. #include <mach/npe.h>
  35. #include <mach/qmgr.h>
  36. #define DEBUG_DESC 0
  37. #define DEBUG_RX 0
  38. #define DEBUG_TX 0
  39. #define DEBUG_PKT_BYTES 0
  40. #define DEBUG_MDIO 0
  41. #define DEBUG_CLOSE 0
  42. #define DRV_NAME "ixp4xx_eth"
  43. #define MAX_NPES 3
  44. #define RX_DESCS 64 /* also length of all RX queues */
  45. #define TX_DESCS 16 /* also length of all TX queues */
  46. #define TXDONE_QUEUE_LEN 64 /* dwords */
  47. #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
  48. #define REGS_SIZE 0x1000
  49. #define MAX_MRU 1536 /* 0x600 */
  50. #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
  51. #define NAPI_WEIGHT 16
  52. #define MDIO_INTERVAL (3 * HZ)
  53. #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
  54. #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
  55. #define NPE_ID(port_id) ((port_id) >> 4)
  56. #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
  57. #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
  58. #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
  59. #define TXDONE_QUEUE 31
  60. /* TX Control Registers */
  61. #define TX_CNTRL0_TX_EN 0x01
  62. #define TX_CNTRL0_HALFDUPLEX 0x02
  63. #define TX_CNTRL0_RETRY 0x04
  64. #define TX_CNTRL0_PAD_EN 0x08
  65. #define TX_CNTRL0_APPEND_FCS 0x10
  66. #define TX_CNTRL0_2DEFER 0x20
  67. #define TX_CNTRL0_RMII 0x40 /* reduced MII */
  68. #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
  69. /* RX Control Registers */
  70. #define RX_CNTRL0_RX_EN 0x01
  71. #define RX_CNTRL0_PADSTRIP_EN 0x02
  72. #define RX_CNTRL0_SEND_FCS 0x04
  73. #define RX_CNTRL0_PAUSE_EN 0x08
  74. #define RX_CNTRL0_LOOP_EN 0x10
  75. #define RX_CNTRL0_ADDR_FLTR_EN 0x20
  76. #define RX_CNTRL0_RX_RUNT_EN 0x40
  77. #define RX_CNTRL0_BCAST_DIS 0x80
  78. #define RX_CNTRL1_DEFER_EN 0x01
  79. /* Core Control Register */
  80. #define CORE_RESET 0x01
  81. #define CORE_RX_FIFO_FLUSH 0x02
  82. #define CORE_TX_FIFO_FLUSH 0x04
  83. #define CORE_SEND_JAM 0x08
  84. #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
  85. #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
  86. TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
  87. TX_CNTRL0_2DEFER)
  88. #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
  89. #define DEFAULT_CORE_CNTRL CORE_MDC_EN
  90. /* NPE message codes */
  91. #define NPE_GETSTATUS 0x00
  92. #define NPE_EDB_SETPORTADDRESS 0x01
  93. #define NPE_EDB_GETMACADDRESSDATABASE 0x02
  94. #define NPE_EDB_SETMACADDRESSSDATABASE 0x03
  95. #define NPE_GETSTATS 0x04
  96. #define NPE_RESETSTATS 0x05
  97. #define NPE_SETMAXFRAMELENGTHS 0x06
  98. #define NPE_VLAN_SETRXTAGMODE 0x07
  99. #define NPE_VLAN_SETDEFAULTRXVID 0x08
  100. #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
  101. #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
  102. #define NPE_VLAN_SETRXQOSENTRY 0x0B
  103. #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
  104. #define NPE_STP_SETBLOCKINGSTATE 0x0D
  105. #define NPE_FW_SETFIREWALLMODE 0x0E
  106. #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
  107. #define NPE_PC_SETAPMACTABLE 0x11
  108. #define NPE_SETLOOPBACK_MODE 0x12
  109. #define NPE_PC_SETBSSIDTABLE 0x13
  110. #define NPE_ADDRESS_FILTER_CONFIG 0x14
  111. #define NPE_APPENDFCSCONFIG 0x15
  112. #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
  113. #define NPE_MAC_RECOVERY_START 0x17
  114. #ifdef __ARMEB__
  115. typedef struct sk_buff buffer_t;
  116. #define free_buffer dev_kfree_skb
  117. #define free_buffer_irq dev_kfree_skb_irq
  118. #else
  119. typedef void buffer_t;
  120. #define free_buffer kfree
  121. #define free_buffer_irq kfree
  122. #endif
  123. struct eth_regs {
  124. u32 tx_control[2], __res1[2]; /* 000 */
  125. u32 rx_control[2], __res2[2]; /* 010 */
  126. u32 random_seed, __res3[3]; /* 020 */
  127. u32 partial_empty_threshold, __res4; /* 030 */
  128. u32 partial_full_threshold, __res5; /* 038 */
  129. u32 tx_start_bytes, __res6[3]; /* 040 */
  130. u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
  131. u32 tx_2part_deferral[2], __res8[2]; /* 060 */
  132. u32 slot_time, __res9[3]; /* 070 */
  133. u32 mdio_command[4]; /* 080 */
  134. u32 mdio_status[4]; /* 090 */
  135. u32 mcast_mask[6], __res10[2]; /* 0A0 */
  136. u32 mcast_addr[6], __res11[2]; /* 0C0 */
  137. u32 int_clock_threshold, __res12[3]; /* 0E0 */
  138. u32 hw_addr[6], __res13[61]; /* 0F0 */
  139. u32 core_control; /* 1FC */
  140. };
  141. struct port {
  142. struct resource *mem_res;
  143. struct eth_regs __iomem *regs;
  144. struct npe *npe;
  145. struct net_device *netdev;
  146. struct napi_struct napi;
  147. struct phy_device *phydev;
  148. struct eth_plat_info *plat;
  149. buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
  150. struct desc *desc_tab; /* coherent */
  151. u32 desc_tab_phys;
  152. int id; /* logical port ID */
  153. int speed, duplex;
  154. u8 firmware[4];
  155. };
  156. /* NPE message structure */
  157. struct msg {
  158. #ifdef __ARMEB__
  159. u8 cmd, eth_id, byte2, byte3;
  160. u8 byte4, byte5, byte6, byte7;
  161. #else
  162. u8 byte3, byte2, eth_id, cmd;
  163. u8 byte7, byte6, byte5, byte4;
  164. #endif
  165. };
  166. /* Ethernet packet descriptor */
  167. struct desc {
  168. u32 next; /* pointer to next buffer, unused */
  169. #ifdef __ARMEB__
  170. u16 buf_len; /* buffer length */
  171. u16 pkt_len; /* packet length */
  172. u32 data; /* pointer to data buffer in RAM */
  173. u8 dest_id;
  174. u8 src_id;
  175. u16 flags;
  176. u8 qos;
  177. u8 padlen;
  178. u16 vlan_tci;
  179. #else
  180. u16 pkt_len; /* packet length */
  181. u16 buf_len; /* buffer length */
  182. u32 data; /* pointer to data buffer in RAM */
  183. u16 flags;
  184. u8 src_id;
  185. u8 dest_id;
  186. u16 vlan_tci;
  187. u8 padlen;
  188. u8 qos;
  189. #endif
  190. #ifdef __ARMEB__
  191. u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
  192. u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
  193. u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
  194. #else
  195. u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
  196. u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
  197. u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
  198. #endif
  199. };
  200. #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
  201. (n) * sizeof(struct desc))
  202. #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
  203. #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
  204. ((n) + RX_DESCS) * sizeof(struct desc))
  205. #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
  206. #ifndef __ARMEB__
  207. static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
  208. {
  209. int i;
  210. for (i = 0; i < cnt; i++)
  211. dest[i] = swab32(src[i]);
  212. }
  213. #endif
  214. static spinlock_t mdio_lock;
  215. static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
  216. struct mii_bus *mdio_bus;
  217. static int ports_open;
  218. static struct port *npe_port_tab[MAX_NPES];
  219. static struct dma_pool *dma_pool;
  220. static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
  221. int write, u16 cmd)
  222. {
  223. int cycles = 0;
  224. if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
  225. printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
  226. return -1;
  227. }
  228. if (write) {
  229. __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
  230. __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
  231. }
  232. __raw_writel(((phy_id << 5) | location) & 0xFF,
  233. &mdio_regs->mdio_command[2]);
  234. __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
  235. &mdio_regs->mdio_command[3]);
  236. while ((cycles < MAX_MDIO_RETRIES) &&
  237. (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
  238. udelay(1);
  239. cycles++;
  240. }
  241. if (cycles == MAX_MDIO_RETRIES) {
  242. printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
  243. phy_id);
  244. return -1;
  245. }
  246. #if DEBUG_MDIO
  247. printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
  248. phy_id, write ? "write" : "read", cycles);
  249. #endif
  250. if (write)
  251. return 0;
  252. if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
  253. #if DEBUG_MDIO
  254. printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
  255. phy_id);
  256. #endif
  257. return 0xFFFF; /* don't return error */
  258. }
  259. return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
  260. ((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
  261. }
  262. static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
  263. {
  264. unsigned long flags;
  265. int ret;
  266. spin_lock_irqsave(&mdio_lock, flags);
  267. ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
  268. spin_unlock_irqrestore(&mdio_lock, flags);
  269. #if DEBUG_MDIO
  270. printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
  271. phy_id, location, ret);
  272. #endif
  273. return ret;
  274. }
  275. static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
  276. u16 val)
  277. {
  278. unsigned long flags;
  279. int ret;
  280. spin_lock_irqsave(&mdio_lock, flags);
  281. ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
  282. spin_unlock_irqrestore(&mdio_lock, flags);
  283. #if DEBUG_MDIO
  284. printk(KERN_DEBUG "%s #%i: MII read [%i] <- 0x%X, err = %i\n",
  285. bus->name, phy_id, location, val, ret);
  286. #endif
  287. return ret;
  288. }
  289. static int ixp4xx_mdio_register(void)
  290. {
  291. int err;
  292. if (!(mdio_bus = mdiobus_alloc()))
  293. return -ENOMEM;
  294. if (cpu_is_ixp43x()) {
  295. /* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
  296. if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
  297. return -ENOSYS;
  298. mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
  299. } else {
  300. /* All MII PHY accesses use NPE-B Ethernet registers */
  301. if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
  302. return -ENOSYS;
  303. mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  304. }
  305. __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
  306. spin_lock_init(&mdio_lock);
  307. mdio_bus->name = "IXP4xx MII Bus";
  308. mdio_bus->read = &ixp4xx_mdio_read;
  309. mdio_bus->write = &ixp4xx_mdio_write;
  310. strcpy(mdio_bus->id, "0");
  311. if ((err = mdiobus_register(mdio_bus)))
  312. mdiobus_free(mdio_bus);
  313. return err;
  314. }
  315. static void ixp4xx_mdio_remove(void)
  316. {
  317. mdiobus_unregister(mdio_bus);
  318. mdiobus_free(mdio_bus);
  319. }
  320. static void ixp4xx_adjust_link(struct net_device *dev)
  321. {
  322. struct port *port = netdev_priv(dev);
  323. struct phy_device *phydev = port->phydev;
  324. if (!phydev->link) {
  325. if (port->speed) {
  326. port->speed = 0;
  327. printk(KERN_INFO "%s: link down\n", dev->name);
  328. }
  329. return;
  330. }
  331. if (port->speed == phydev->speed && port->duplex == phydev->duplex)
  332. return;
  333. port->speed = phydev->speed;
  334. port->duplex = phydev->duplex;
  335. if (port->duplex)
  336. __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
  337. &port->regs->tx_control[0]);
  338. else
  339. __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
  340. &port->regs->tx_control[0]);
  341. printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
  342. dev->name, port->speed, port->duplex ? "full" : "half");
  343. }
  344. static inline void debug_pkt(struct net_device *dev, const char *func,
  345. u8 *data, int len)
  346. {
  347. #if DEBUG_PKT_BYTES
  348. int i;
  349. printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
  350. for (i = 0; i < len; i++) {
  351. if (i >= DEBUG_PKT_BYTES)
  352. break;
  353. printk("%s%02X",
  354. ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
  355. data[i]);
  356. }
  357. printk("\n");
  358. #endif
  359. }
  360. static inline void debug_desc(u32 phys, struct desc *desc)
  361. {
  362. #if DEBUG_DESC
  363. printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
  364. " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
  365. phys, desc->next, desc->buf_len, desc->pkt_len,
  366. desc->data, desc->dest_id, desc->src_id, desc->flags,
  367. desc->qos, desc->padlen, desc->vlan_tci,
  368. desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
  369. desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
  370. desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
  371. desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
  372. #endif
  373. }
  374. static inline int queue_get_desc(unsigned int queue, struct port *port,
  375. int is_tx)
  376. {
  377. u32 phys, tab_phys, n_desc;
  378. struct desc *tab;
  379. if (!(phys = qmgr_get_entry(queue)))
  380. return -1;
  381. phys &= ~0x1F; /* mask out non-address bits */
  382. tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
  383. tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
  384. n_desc = (phys - tab_phys) / sizeof(struct desc);
  385. BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
  386. debug_desc(phys, &tab[n_desc]);
  387. BUG_ON(tab[n_desc].next);
  388. return n_desc;
  389. }
  390. static inline void queue_put_desc(unsigned int queue, u32 phys,
  391. struct desc *desc)
  392. {
  393. debug_desc(phys, desc);
  394. BUG_ON(phys & 0x1F);
  395. qmgr_put_entry(queue, phys);
  396. BUG_ON(qmgr_stat_overflow(queue));
  397. }
  398. static inline void dma_unmap_tx(struct port *port, struct desc *desc)
  399. {
  400. #ifdef __ARMEB__
  401. dma_unmap_single(&port->netdev->dev, desc->data,
  402. desc->buf_len, DMA_TO_DEVICE);
  403. #else
  404. dma_unmap_single(&port->netdev->dev, desc->data & ~3,
  405. ALIGN((desc->data & 3) + desc->buf_len, 4),
  406. DMA_TO_DEVICE);
  407. #endif
  408. }
  409. static void eth_rx_irq(void *pdev)
  410. {
  411. struct net_device *dev = pdev;
  412. struct port *port = netdev_priv(dev);
  413. #if DEBUG_RX
  414. printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
  415. #endif
  416. qmgr_disable_irq(port->plat->rxq);
  417. napi_schedule(&port->napi);
  418. }
  419. static int eth_poll(struct napi_struct *napi, int budget)
  420. {
  421. struct port *port = container_of(napi, struct port, napi);
  422. struct net_device *dev = port->netdev;
  423. unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
  424. int received = 0;
  425. #if DEBUG_RX
  426. printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
  427. #endif
  428. while (received < budget) {
  429. struct sk_buff *skb;
  430. struct desc *desc;
  431. int n;
  432. #ifdef __ARMEB__
  433. struct sk_buff *temp;
  434. u32 phys;
  435. #endif
  436. if ((n = queue_get_desc(rxq, port, 0)) < 0) {
  437. #if DEBUG_RX
  438. printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
  439. dev->name);
  440. #endif
  441. napi_complete(napi);
  442. qmgr_enable_irq(rxq);
  443. if (!qmgr_stat_empty(rxq) &&
  444. napi_reschedule(napi)) {
  445. #if DEBUG_RX
  446. printk(KERN_DEBUG "%s: eth_poll"
  447. " napi_reschedule successed\n",
  448. dev->name);
  449. #endif
  450. qmgr_disable_irq(rxq);
  451. continue;
  452. }
  453. #if DEBUG_RX
  454. printk(KERN_DEBUG "%s: eth_poll all done\n",
  455. dev->name);
  456. #endif
  457. return received; /* all work done */
  458. }
  459. desc = rx_desc_ptr(port, n);
  460. #ifdef __ARMEB__
  461. if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
  462. phys = dma_map_single(&dev->dev, skb->data,
  463. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  464. if (dma_mapping_error(&dev->dev, phys)) {
  465. dev_kfree_skb(skb);
  466. skb = NULL;
  467. }
  468. }
  469. #else
  470. skb = netdev_alloc_skb(dev,
  471. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
  472. #endif
  473. if (!skb) {
  474. dev->stats.rx_dropped++;
  475. /* put the desc back on RX-ready queue */
  476. desc->buf_len = MAX_MRU;
  477. desc->pkt_len = 0;
  478. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  479. continue;
  480. }
  481. /* process received frame */
  482. #ifdef __ARMEB__
  483. temp = skb;
  484. skb = port->rx_buff_tab[n];
  485. dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
  486. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  487. #else
  488. dma_sync_single(&dev->dev, desc->data - NET_IP_ALIGN,
  489. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  490. memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
  491. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
  492. #endif
  493. skb_reserve(skb, NET_IP_ALIGN);
  494. skb_put(skb, desc->pkt_len);
  495. debug_pkt(dev, "eth_poll", skb->data, skb->len);
  496. skb->protocol = eth_type_trans(skb, dev);
  497. dev->stats.rx_packets++;
  498. dev->stats.rx_bytes += skb->len;
  499. netif_receive_skb(skb);
  500. /* put the new buffer on RX-free queue */
  501. #ifdef __ARMEB__
  502. port->rx_buff_tab[n] = temp;
  503. desc->data = phys + NET_IP_ALIGN;
  504. #endif
  505. desc->buf_len = MAX_MRU;
  506. desc->pkt_len = 0;
  507. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  508. received++;
  509. }
  510. #if DEBUG_RX
  511. printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
  512. #endif
  513. return received; /* not all work done */
  514. }
  515. static void eth_txdone_irq(void *unused)
  516. {
  517. u32 phys;
  518. #if DEBUG_TX
  519. printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
  520. #endif
  521. while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
  522. u32 npe_id, n_desc;
  523. struct port *port;
  524. struct desc *desc;
  525. int start;
  526. npe_id = phys & 3;
  527. BUG_ON(npe_id >= MAX_NPES);
  528. port = npe_port_tab[npe_id];
  529. BUG_ON(!port);
  530. phys &= ~0x1F; /* mask out non-address bits */
  531. n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
  532. BUG_ON(n_desc >= TX_DESCS);
  533. desc = tx_desc_ptr(port, n_desc);
  534. debug_desc(phys, desc);
  535. if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
  536. port->netdev->stats.tx_packets++;
  537. port->netdev->stats.tx_bytes += desc->pkt_len;
  538. dma_unmap_tx(port, desc);
  539. #if DEBUG_TX
  540. printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
  541. port->netdev->name, port->tx_buff_tab[n_desc]);
  542. #endif
  543. free_buffer_irq(port->tx_buff_tab[n_desc]);
  544. port->tx_buff_tab[n_desc] = NULL;
  545. }
  546. start = qmgr_stat_empty(port->plat->txreadyq);
  547. queue_put_desc(port->plat->txreadyq, phys, desc);
  548. if (start) {
  549. #if DEBUG_TX
  550. printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
  551. port->netdev->name);
  552. #endif
  553. netif_wake_queue(port->netdev);
  554. }
  555. }
  556. }
  557. static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
  558. {
  559. struct port *port = netdev_priv(dev);
  560. unsigned int txreadyq = port->plat->txreadyq;
  561. int len, offset, bytes, n;
  562. void *mem;
  563. u32 phys;
  564. struct desc *desc;
  565. #if DEBUG_TX
  566. printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
  567. #endif
  568. if (unlikely(skb->len > MAX_MRU)) {
  569. dev_kfree_skb(skb);
  570. dev->stats.tx_errors++;
  571. return NETDEV_TX_OK;
  572. }
  573. debug_pkt(dev, "eth_xmit", skb->data, skb->len);
  574. len = skb->len;
  575. #ifdef __ARMEB__
  576. offset = 0; /* no need to keep alignment */
  577. bytes = len;
  578. mem = skb->data;
  579. #else
  580. offset = (int)skb->data & 3; /* keep 32-bit alignment */
  581. bytes = ALIGN(offset + len, 4);
  582. if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
  583. dev_kfree_skb(skb);
  584. dev->stats.tx_dropped++;
  585. return NETDEV_TX_OK;
  586. }
  587. memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
  588. dev_kfree_skb(skb);
  589. #endif
  590. phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
  591. if (dma_mapping_error(&dev->dev, phys)) {
  592. #ifdef __ARMEB__
  593. dev_kfree_skb(skb);
  594. #else
  595. kfree(mem);
  596. #endif
  597. dev->stats.tx_dropped++;
  598. return NETDEV_TX_OK;
  599. }
  600. n = queue_get_desc(txreadyq, port, 1);
  601. BUG_ON(n < 0);
  602. desc = tx_desc_ptr(port, n);
  603. #ifdef __ARMEB__
  604. port->tx_buff_tab[n] = skb;
  605. #else
  606. port->tx_buff_tab[n] = mem;
  607. #endif
  608. desc->data = phys + offset;
  609. desc->buf_len = desc->pkt_len = len;
  610. /* NPE firmware pads short frames with zeros internally */
  611. wmb();
  612. queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
  613. dev->trans_start = jiffies;
  614. if (qmgr_stat_empty(txreadyq)) {
  615. #if DEBUG_TX
  616. printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
  617. #endif
  618. netif_stop_queue(dev);
  619. /* we could miss TX ready interrupt */
  620. if (!qmgr_stat_empty(txreadyq)) {
  621. #if DEBUG_TX
  622. printk(KERN_DEBUG "%s: eth_xmit ready again\n",
  623. dev->name);
  624. #endif
  625. netif_wake_queue(dev);
  626. }
  627. }
  628. #if DEBUG_TX
  629. printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
  630. #endif
  631. return NETDEV_TX_OK;
  632. }
  633. static void eth_set_mcast_list(struct net_device *dev)
  634. {
  635. struct port *port = netdev_priv(dev);
  636. struct dev_mc_list *mclist = dev->mc_list;
  637. u8 diffs[ETH_ALEN], *addr;
  638. int cnt = dev->mc_count, i;
  639. if ((dev->flags & IFF_PROMISC) || !mclist || !cnt) {
  640. __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
  641. &port->regs->rx_control[0]);
  642. return;
  643. }
  644. memset(diffs, 0, ETH_ALEN);
  645. addr = mclist->dmi_addr; /* first MAC address */
  646. while (--cnt && (mclist = mclist->next))
  647. for (i = 0; i < ETH_ALEN; i++)
  648. diffs[i] |= addr[i] ^ mclist->dmi_addr[i];
  649. for (i = 0; i < ETH_ALEN; i++) {
  650. __raw_writel(addr[i], &port->regs->mcast_addr[i]);
  651. __raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
  652. }
  653. __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
  654. &port->regs->rx_control[0]);
  655. }
  656. static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  657. {
  658. struct port *port = netdev_priv(dev);
  659. if (!netif_running(dev))
  660. return -EINVAL;
  661. return phy_mii_ioctl(port->phydev, if_mii(req), cmd);
  662. }
  663. /* ethtool support */
  664. static void ixp4xx_get_drvinfo(struct net_device *dev,
  665. struct ethtool_drvinfo *info)
  666. {
  667. struct port *port = netdev_priv(dev);
  668. strcpy(info->driver, DRV_NAME);
  669. snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
  670. port->firmware[0], port->firmware[1],
  671. port->firmware[2], port->firmware[3]);
  672. strcpy(info->bus_info, "internal");
  673. }
  674. static int ixp4xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  675. {
  676. struct port *port = netdev_priv(dev);
  677. return phy_ethtool_gset(port->phydev, cmd);
  678. }
  679. static int ixp4xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  680. {
  681. struct port *port = netdev_priv(dev);
  682. return phy_ethtool_sset(port->phydev, cmd);
  683. }
  684. static int ixp4xx_nway_reset(struct net_device *dev)
  685. {
  686. struct port *port = netdev_priv(dev);
  687. return phy_start_aneg(port->phydev);
  688. }
  689. static struct ethtool_ops ixp4xx_ethtool_ops = {
  690. .get_drvinfo = ixp4xx_get_drvinfo,
  691. .get_settings = ixp4xx_get_settings,
  692. .set_settings = ixp4xx_set_settings,
  693. .nway_reset = ixp4xx_nway_reset,
  694. .get_link = ethtool_op_get_link,
  695. };
  696. static int request_queues(struct port *port)
  697. {
  698. int err;
  699. err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
  700. "%s:RX-free", port->netdev->name);
  701. if (err)
  702. return err;
  703. err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
  704. "%s:RX", port->netdev->name);
  705. if (err)
  706. goto rel_rxfree;
  707. err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
  708. "%s:TX", port->netdev->name);
  709. if (err)
  710. goto rel_rx;
  711. err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
  712. "%s:TX-ready", port->netdev->name);
  713. if (err)
  714. goto rel_tx;
  715. /* TX-done queue handles skbs sent out by the NPEs */
  716. if (!ports_open) {
  717. err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
  718. "%s:TX-done", DRV_NAME);
  719. if (err)
  720. goto rel_txready;
  721. }
  722. return 0;
  723. rel_txready:
  724. qmgr_release_queue(port->plat->txreadyq);
  725. rel_tx:
  726. qmgr_release_queue(TX_QUEUE(port->id));
  727. rel_rx:
  728. qmgr_release_queue(port->plat->rxq);
  729. rel_rxfree:
  730. qmgr_release_queue(RXFREE_QUEUE(port->id));
  731. printk(KERN_DEBUG "%s: unable to request hardware queues\n",
  732. port->netdev->name);
  733. return err;
  734. }
  735. static void release_queues(struct port *port)
  736. {
  737. qmgr_release_queue(RXFREE_QUEUE(port->id));
  738. qmgr_release_queue(port->plat->rxq);
  739. qmgr_release_queue(TX_QUEUE(port->id));
  740. qmgr_release_queue(port->plat->txreadyq);
  741. if (!ports_open)
  742. qmgr_release_queue(TXDONE_QUEUE);
  743. }
  744. static int init_queues(struct port *port)
  745. {
  746. int i;
  747. if (!ports_open)
  748. if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
  749. POOL_ALLOC_SIZE, 32, 0)))
  750. return -ENOMEM;
  751. if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
  752. &port->desc_tab_phys)))
  753. return -ENOMEM;
  754. memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
  755. memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
  756. memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
  757. /* Setup RX buffers */
  758. for (i = 0; i < RX_DESCS; i++) {
  759. struct desc *desc = rx_desc_ptr(port, i);
  760. buffer_t *buff; /* skb or kmalloc()ated memory */
  761. void *data;
  762. #ifdef __ARMEB__
  763. if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
  764. return -ENOMEM;
  765. data = buff->data;
  766. #else
  767. if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
  768. return -ENOMEM;
  769. data = buff;
  770. #endif
  771. desc->buf_len = MAX_MRU;
  772. desc->data = dma_map_single(&port->netdev->dev, data,
  773. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  774. if (dma_mapping_error(&port->netdev->dev, desc->data)) {
  775. free_buffer(buff);
  776. return -EIO;
  777. }
  778. desc->data += NET_IP_ALIGN;
  779. port->rx_buff_tab[i] = buff;
  780. }
  781. return 0;
  782. }
  783. static void destroy_queues(struct port *port)
  784. {
  785. int i;
  786. if (port->desc_tab) {
  787. for (i = 0; i < RX_DESCS; i++) {
  788. struct desc *desc = rx_desc_ptr(port, i);
  789. buffer_t *buff = port->rx_buff_tab[i];
  790. if (buff) {
  791. dma_unmap_single(&port->netdev->dev,
  792. desc->data - NET_IP_ALIGN,
  793. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  794. free_buffer(buff);
  795. }
  796. }
  797. for (i = 0; i < TX_DESCS; i++) {
  798. struct desc *desc = tx_desc_ptr(port, i);
  799. buffer_t *buff = port->tx_buff_tab[i];
  800. if (buff) {
  801. dma_unmap_tx(port, desc);
  802. free_buffer(buff);
  803. }
  804. }
  805. dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
  806. port->desc_tab = NULL;
  807. }
  808. if (!ports_open && dma_pool) {
  809. dma_pool_destroy(dma_pool);
  810. dma_pool = NULL;
  811. }
  812. }
  813. static int eth_open(struct net_device *dev)
  814. {
  815. struct port *port = netdev_priv(dev);
  816. struct npe *npe = port->npe;
  817. struct msg msg;
  818. int i, err;
  819. if (!npe_running(npe)) {
  820. err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
  821. if (err)
  822. return err;
  823. if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
  824. printk(KERN_ERR "%s: %s not responding\n", dev->name,
  825. npe_name(npe));
  826. return -EIO;
  827. }
  828. port->firmware[0] = msg.byte4;
  829. port->firmware[1] = msg.byte5;
  830. port->firmware[2] = msg.byte6;
  831. port->firmware[3] = msg.byte7;
  832. }
  833. memset(&msg, 0, sizeof(msg));
  834. msg.cmd = NPE_VLAN_SETRXQOSENTRY;
  835. msg.eth_id = port->id;
  836. msg.byte5 = port->plat->rxq | 0x80;
  837. msg.byte7 = port->plat->rxq << 4;
  838. for (i = 0; i < 8; i++) {
  839. msg.byte3 = i;
  840. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
  841. return -EIO;
  842. }
  843. msg.cmd = NPE_EDB_SETPORTADDRESS;
  844. msg.eth_id = PHYSICAL_ID(port->id);
  845. msg.byte2 = dev->dev_addr[0];
  846. msg.byte3 = dev->dev_addr[1];
  847. msg.byte4 = dev->dev_addr[2];
  848. msg.byte5 = dev->dev_addr[3];
  849. msg.byte6 = dev->dev_addr[4];
  850. msg.byte7 = dev->dev_addr[5];
  851. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
  852. return -EIO;
  853. memset(&msg, 0, sizeof(msg));
  854. msg.cmd = NPE_FW_SETFIREWALLMODE;
  855. msg.eth_id = port->id;
  856. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
  857. return -EIO;
  858. if ((err = request_queues(port)) != 0)
  859. return err;
  860. if ((err = init_queues(port)) != 0) {
  861. destroy_queues(port);
  862. release_queues(port);
  863. return err;
  864. }
  865. port->speed = 0; /* force "link up" message */
  866. phy_start(port->phydev);
  867. for (i = 0; i < ETH_ALEN; i++)
  868. __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
  869. __raw_writel(0x08, &port->regs->random_seed);
  870. __raw_writel(0x12, &port->regs->partial_empty_threshold);
  871. __raw_writel(0x30, &port->regs->partial_full_threshold);
  872. __raw_writel(0x08, &port->regs->tx_start_bytes);
  873. __raw_writel(0x15, &port->regs->tx_deferral);
  874. __raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
  875. __raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
  876. __raw_writel(0x80, &port->regs->slot_time);
  877. __raw_writel(0x01, &port->regs->int_clock_threshold);
  878. /* Populate queues with buffers, no failure after this point */
  879. for (i = 0; i < TX_DESCS; i++)
  880. queue_put_desc(port->plat->txreadyq,
  881. tx_desc_phys(port, i), tx_desc_ptr(port, i));
  882. for (i = 0; i < RX_DESCS; i++)
  883. queue_put_desc(RXFREE_QUEUE(port->id),
  884. rx_desc_phys(port, i), rx_desc_ptr(port, i));
  885. __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
  886. __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
  887. __raw_writel(0, &port->regs->rx_control[1]);
  888. __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
  889. napi_enable(&port->napi);
  890. eth_set_mcast_list(dev);
  891. netif_start_queue(dev);
  892. qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
  893. eth_rx_irq, dev);
  894. if (!ports_open) {
  895. qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
  896. eth_txdone_irq, NULL);
  897. qmgr_enable_irq(TXDONE_QUEUE);
  898. }
  899. ports_open++;
  900. /* we may already have RX data, enables IRQ */
  901. napi_schedule(&port->napi);
  902. return 0;
  903. }
  904. static int eth_close(struct net_device *dev)
  905. {
  906. struct port *port = netdev_priv(dev);
  907. struct msg msg;
  908. int buffs = RX_DESCS; /* allocated RX buffers */
  909. int i;
  910. ports_open--;
  911. qmgr_disable_irq(port->plat->rxq);
  912. napi_disable(&port->napi);
  913. netif_stop_queue(dev);
  914. while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
  915. buffs--;
  916. memset(&msg, 0, sizeof(msg));
  917. msg.cmd = NPE_SETLOOPBACK_MODE;
  918. msg.eth_id = port->id;
  919. msg.byte3 = 1;
  920. if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
  921. printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
  922. i = 0;
  923. do { /* drain RX buffers */
  924. while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
  925. buffs--;
  926. if (!buffs)
  927. break;
  928. if (qmgr_stat_empty(TX_QUEUE(port->id))) {
  929. /* we have to inject some packet */
  930. struct desc *desc;
  931. u32 phys;
  932. int n = queue_get_desc(port->plat->txreadyq, port, 1);
  933. BUG_ON(n < 0);
  934. desc = tx_desc_ptr(port, n);
  935. phys = tx_desc_phys(port, n);
  936. desc->buf_len = desc->pkt_len = 1;
  937. wmb();
  938. queue_put_desc(TX_QUEUE(port->id), phys, desc);
  939. }
  940. udelay(1);
  941. } while (++i < MAX_CLOSE_WAIT);
  942. if (buffs)
  943. printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
  944. " left in NPE\n", dev->name, buffs);
  945. #if DEBUG_CLOSE
  946. if (!buffs)
  947. printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
  948. #endif
  949. buffs = TX_DESCS;
  950. while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
  951. buffs--; /* cancel TX */
  952. i = 0;
  953. do {
  954. while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
  955. buffs--;
  956. if (!buffs)
  957. break;
  958. } while (++i < MAX_CLOSE_WAIT);
  959. if (buffs)
  960. printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
  961. "left in NPE\n", dev->name, buffs);
  962. #if DEBUG_CLOSE
  963. if (!buffs)
  964. printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
  965. #endif
  966. msg.byte3 = 0;
  967. if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
  968. printk(KERN_CRIT "%s: unable to disable loopback\n",
  969. dev->name);
  970. phy_stop(port->phydev);
  971. if (!ports_open)
  972. qmgr_disable_irq(TXDONE_QUEUE);
  973. destroy_queues(port);
  974. release_queues(port);
  975. return 0;
  976. }
  977. static const struct net_device_ops ixp4xx_netdev_ops = {
  978. .ndo_open = eth_open,
  979. .ndo_stop = eth_close,
  980. .ndo_start_xmit = eth_xmit,
  981. .ndo_set_multicast_list = eth_set_mcast_list,
  982. .ndo_do_ioctl = eth_ioctl,
  983. };
  984. static int __devinit eth_init_one(struct platform_device *pdev)
  985. {
  986. struct port *port;
  987. struct net_device *dev;
  988. struct eth_plat_info *plat = pdev->dev.platform_data;
  989. u32 regs_phys;
  990. char phy_id[BUS_ID_SIZE];
  991. int err;
  992. if (!(dev = alloc_etherdev(sizeof(struct port))))
  993. return -ENOMEM;
  994. SET_NETDEV_DEV(dev, &pdev->dev);
  995. port = netdev_priv(dev);
  996. port->netdev = dev;
  997. port->id = pdev->id;
  998. switch (port->id) {
  999. case IXP4XX_ETH_NPEA:
  1000. port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
  1001. regs_phys = IXP4XX_EthA_BASE_PHYS;
  1002. break;
  1003. case IXP4XX_ETH_NPEB:
  1004. port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  1005. regs_phys = IXP4XX_EthB_BASE_PHYS;
  1006. break;
  1007. case IXP4XX_ETH_NPEC:
  1008. port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
  1009. regs_phys = IXP4XX_EthC_BASE_PHYS;
  1010. break;
  1011. default:
  1012. err = -ENOSYS;
  1013. goto err_free;
  1014. }
  1015. dev->netdev_ops = &ixp4xx_netdev_ops;
  1016. dev->ethtool_ops = &ixp4xx_ethtool_ops;
  1017. dev->tx_queue_len = 100;
  1018. netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
  1019. if (!(port->npe = npe_request(NPE_ID(port->id)))) {
  1020. err = -EIO;
  1021. goto err_free;
  1022. }
  1023. if (register_netdev(dev)) {
  1024. err = -EIO;
  1025. goto err_npe_rel;
  1026. }
  1027. port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
  1028. if (!port->mem_res) {
  1029. err = -EBUSY;
  1030. goto err_unreg;
  1031. }
  1032. port->plat = plat;
  1033. npe_port_tab[NPE_ID(port->id)] = port;
  1034. memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
  1035. platform_set_drvdata(pdev, dev);
  1036. __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
  1037. &port->regs->core_control);
  1038. udelay(50);
  1039. __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
  1040. udelay(50);
  1041. snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, "0", plat->phy);
  1042. port->phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link, 0,
  1043. PHY_INTERFACE_MODE_MII);
  1044. if (IS_ERR(port->phydev)) {
  1045. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  1046. return PTR_ERR(port->phydev);
  1047. }
  1048. port->phydev->irq = PHY_POLL;
  1049. printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
  1050. npe_name(port->npe));
  1051. return 0;
  1052. err_unreg:
  1053. unregister_netdev(dev);
  1054. err_npe_rel:
  1055. npe_release(port->npe);
  1056. err_free:
  1057. free_netdev(dev);
  1058. return err;
  1059. }
  1060. static int __devexit eth_remove_one(struct platform_device *pdev)
  1061. {
  1062. struct net_device *dev = platform_get_drvdata(pdev);
  1063. struct port *port = netdev_priv(dev);
  1064. unregister_netdev(dev);
  1065. npe_port_tab[NPE_ID(port->id)] = NULL;
  1066. platform_set_drvdata(pdev, NULL);
  1067. npe_release(port->npe);
  1068. release_resource(port->mem_res);
  1069. free_netdev(dev);
  1070. return 0;
  1071. }
  1072. static struct platform_driver ixp4xx_eth_driver = {
  1073. .driver.name = DRV_NAME,
  1074. .probe = eth_init_one,
  1075. .remove = eth_remove_one,
  1076. };
  1077. static int __init eth_init_module(void)
  1078. {
  1079. int err;
  1080. if ((err = ixp4xx_mdio_register()))
  1081. return err;
  1082. return platform_driver_register(&ixp4xx_eth_driver);
  1083. }
  1084. static void __exit eth_cleanup_module(void)
  1085. {
  1086. platform_driver_unregister(&ixp4xx_eth_driver);
  1087. ixp4xx_mdio_remove();
  1088. }
  1089. MODULE_AUTHOR("Krzysztof Halasa");
  1090. MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
  1091. MODULE_LICENSE("GPL v2");
  1092. MODULE_ALIAS("platform:ixp4xx_eth");
  1093. module_init(eth_init_module);
  1094. module_exit(eth_cleanup_module);