mtdpart.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * (C) 2000 Nicolas Pitre <nico@cam.org>
  5. *
  6. * This code is GPL
  7. *
  8. * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
  9. * added support for read_oob, write_oob
  10. */
  11. #include <linux/module.h>
  12. #include <linux/types.h>
  13. #include <linux/kernel.h>
  14. #include <linux/slab.h>
  15. #include <linux/list.h>
  16. #include <linux/kmod.h>
  17. #include <linux/mtd/mtd.h>
  18. #include <linux/mtd/partitions.h>
  19. #include <linux/mtd/compatmac.h>
  20. /* Our partition linked list */
  21. static LIST_HEAD(mtd_partitions);
  22. /* Our partition node structure */
  23. struct mtd_part {
  24. struct mtd_info mtd;
  25. struct mtd_info *master;
  26. uint64_t offset;
  27. int index;
  28. struct list_head list;
  29. int registered;
  30. };
  31. /*
  32. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  33. * the pointer to that structure with this macro.
  34. */
  35. #define PART(x) ((struct mtd_part *)(x))
  36. /*
  37. * MTD methods which simply translate the effective address and pass through
  38. * to the _real_ device.
  39. */
  40. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  41. size_t *retlen, u_char *buf)
  42. {
  43. struct mtd_part *part = PART(mtd);
  44. struct mtd_ecc_stats stats;
  45. int res;
  46. stats = part->master->ecc_stats;
  47. if (from >= mtd->size)
  48. len = 0;
  49. else if (from + len > mtd->size)
  50. len = mtd->size - from;
  51. res = part->master->read(part->master, from + part->offset,
  52. len, retlen, buf);
  53. if (unlikely(res)) {
  54. if (res == -EUCLEAN)
  55. mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
  56. if (res == -EBADMSG)
  57. mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
  58. }
  59. return res;
  60. }
  61. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  62. size_t *retlen, void **virt, resource_size_t *phys)
  63. {
  64. struct mtd_part *part = PART(mtd);
  65. if (from >= mtd->size)
  66. len = 0;
  67. else if (from + len > mtd->size)
  68. len = mtd->size - from;
  69. return part->master->point (part->master, from + part->offset,
  70. len, retlen, virt, phys);
  71. }
  72. static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  73. {
  74. struct mtd_part *part = PART(mtd);
  75. part->master->unpoint(part->master, from + part->offset, len);
  76. }
  77. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  78. unsigned long len,
  79. unsigned long offset,
  80. unsigned long flags)
  81. {
  82. struct mtd_part *part = PART(mtd);
  83. offset += part->offset;
  84. return part->master->get_unmapped_area(part->master, len, offset,
  85. flags);
  86. }
  87. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  88. struct mtd_oob_ops *ops)
  89. {
  90. struct mtd_part *part = PART(mtd);
  91. int res;
  92. if (from >= mtd->size)
  93. return -EINVAL;
  94. if (ops->datbuf && from + ops->len > mtd->size)
  95. return -EINVAL;
  96. res = part->master->read_oob(part->master, from + part->offset, ops);
  97. if (unlikely(res)) {
  98. if (res == -EUCLEAN)
  99. mtd->ecc_stats.corrected++;
  100. if (res == -EBADMSG)
  101. mtd->ecc_stats.failed++;
  102. }
  103. return res;
  104. }
  105. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  106. size_t len, size_t *retlen, u_char *buf)
  107. {
  108. struct mtd_part *part = PART(mtd);
  109. return part->master->read_user_prot_reg(part->master, from,
  110. len, retlen, buf);
  111. }
  112. static int part_get_user_prot_info(struct mtd_info *mtd,
  113. struct otp_info *buf, size_t len)
  114. {
  115. struct mtd_part *part = PART(mtd);
  116. return part->master->get_user_prot_info(part->master, buf, len);
  117. }
  118. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  119. size_t len, size_t *retlen, u_char *buf)
  120. {
  121. struct mtd_part *part = PART(mtd);
  122. return part->master->read_fact_prot_reg(part->master, from,
  123. len, retlen, buf);
  124. }
  125. static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  126. size_t len)
  127. {
  128. struct mtd_part *part = PART(mtd);
  129. return part->master->get_fact_prot_info(part->master, buf, len);
  130. }
  131. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  132. size_t *retlen, const u_char *buf)
  133. {
  134. struct mtd_part *part = PART(mtd);
  135. if (!(mtd->flags & MTD_WRITEABLE))
  136. return -EROFS;
  137. if (to >= mtd->size)
  138. len = 0;
  139. else if (to + len > mtd->size)
  140. len = mtd->size - to;
  141. return part->master->write(part->master, to + part->offset,
  142. len, retlen, buf);
  143. }
  144. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  145. size_t *retlen, const u_char *buf)
  146. {
  147. struct mtd_part *part = PART(mtd);
  148. if (!(mtd->flags & MTD_WRITEABLE))
  149. return -EROFS;
  150. if (to >= mtd->size)
  151. len = 0;
  152. else if (to + len > mtd->size)
  153. len = mtd->size - to;
  154. return part->master->panic_write(part->master, to + part->offset,
  155. len, retlen, buf);
  156. }
  157. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  158. struct mtd_oob_ops *ops)
  159. {
  160. struct mtd_part *part = PART(mtd);
  161. if (!(mtd->flags & MTD_WRITEABLE))
  162. return -EROFS;
  163. if (to >= mtd->size)
  164. return -EINVAL;
  165. if (ops->datbuf && to + ops->len > mtd->size)
  166. return -EINVAL;
  167. return part->master->write_oob(part->master, to + part->offset, ops);
  168. }
  169. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  170. size_t len, size_t *retlen, u_char *buf)
  171. {
  172. struct mtd_part *part = PART(mtd);
  173. return part->master->write_user_prot_reg(part->master, from,
  174. len, retlen, buf);
  175. }
  176. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  177. size_t len)
  178. {
  179. struct mtd_part *part = PART(mtd);
  180. return part->master->lock_user_prot_reg(part->master, from, len);
  181. }
  182. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  183. unsigned long count, loff_t to, size_t *retlen)
  184. {
  185. struct mtd_part *part = PART(mtd);
  186. if (!(mtd->flags & MTD_WRITEABLE))
  187. return -EROFS;
  188. return part->master->writev(part->master, vecs, count,
  189. to + part->offset, retlen);
  190. }
  191. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  192. {
  193. struct mtd_part *part = PART(mtd);
  194. int ret;
  195. if (!(mtd->flags & MTD_WRITEABLE))
  196. return -EROFS;
  197. if (instr->addr >= mtd->size)
  198. return -EINVAL;
  199. instr->addr += part->offset;
  200. ret = part->master->erase(part->master, instr);
  201. if (ret) {
  202. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  203. instr->fail_addr -= part->offset;
  204. instr->addr -= part->offset;
  205. }
  206. return ret;
  207. }
  208. void mtd_erase_callback(struct erase_info *instr)
  209. {
  210. if (instr->mtd->erase == part_erase) {
  211. struct mtd_part *part = PART(instr->mtd);
  212. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  213. instr->fail_addr -= part->offset;
  214. instr->addr -= part->offset;
  215. }
  216. if (instr->callback)
  217. instr->callback(instr);
  218. }
  219. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  220. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  221. {
  222. struct mtd_part *part = PART(mtd);
  223. if ((len + ofs) > mtd->size)
  224. return -EINVAL;
  225. return part->master->lock(part->master, ofs + part->offset, len);
  226. }
  227. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  228. {
  229. struct mtd_part *part = PART(mtd);
  230. if ((len + ofs) > mtd->size)
  231. return -EINVAL;
  232. return part->master->unlock(part->master, ofs + part->offset, len);
  233. }
  234. static void part_sync(struct mtd_info *mtd)
  235. {
  236. struct mtd_part *part = PART(mtd);
  237. part->master->sync(part->master);
  238. }
  239. static int part_suspend(struct mtd_info *mtd)
  240. {
  241. struct mtd_part *part = PART(mtd);
  242. return part->master->suspend(part->master);
  243. }
  244. static void part_resume(struct mtd_info *mtd)
  245. {
  246. struct mtd_part *part = PART(mtd);
  247. part->master->resume(part->master);
  248. }
  249. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  250. {
  251. struct mtd_part *part = PART(mtd);
  252. if (ofs >= mtd->size)
  253. return -EINVAL;
  254. ofs += part->offset;
  255. return part->master->block_isbad(part->master, ofs);
  256. }
  257. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  258. {
  259. struct mtd_part *part = PART(mtd);
  260. int res;
  261. if (!(mtd->flags & MTD_WRITEABLE))
  262. return -EROFS;
  263. if (ofs >= mtd->size)
  264. return -EINVAL;
  265. ofs += part->offset;
  266. res = part->master->block_markbad(part->master, ofs);
  267. if (!res)
  268. mtd->ecc_stats.badblocks++;
  269. return res;
  270. }
  271. /*
  272. * This function unregisters and destroy all slave MTD objects which are
  273. * attached to the given master MTD object.
  274. */
  275. int del_mtd_partitions(struct mtd_info *master)
  276. {
  277. struct mtd_part *slave, *next;
  278. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  279. if (slave->master == master) {
  280. list_del(&slave->list);
  281. if (slave->registered)
  282. del_mtd_device(&slave->mtd);
  283. kfree(slave);
  284. }
  285. return 0;
  286. }
  287. EXPORT_SYMBOL(del_mtd_partitions);
  288. static struct mtd_part *add_one_partition(struct mtd_info *master,
  289. const struct mtd_partition *part, int partno,
  290. uint64_t cur_offset)
  291. {
  292. struct mtd_part *slave;
  293. /* allocate the partition structure */
  294. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  295. if (!slave) {
  296. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  297. master->name);
  298. del_mtd_partitions(master);
  299. return NULL;
  300. }
  301. list_add(&slave->list, &mtd_partitions);
  302. /* set up the MTD object for this partition */
  303. slave->mtd.type = master->type;
  304. slave->mtd.flags = master->flags & ~part->mask_flags;
  305. slave->mtd.size = part->size;
  306. slave->mtd.writesize = master->writesize;
  307. slave->mtd.oobsize = master->oobsize;
  308. slave->mtd.oobavail = master->oobavail;
  309. slave->mtd.subpage_sft = master->subpage_sft;
  310. slave->mtd.name = part->name;
  311. slave->mtd.owner = master->owner;
  312. slave->mtd.backing_dev_info = master->backing_dev_info;
  313. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  314. * to have the same data be in two different partitions.
  315. */
  316. slave->mtd.dev.parent = master->dev.parent;
  317. slave->mtd.read = part_read;
  318. slave->mtd.write = part_write;
  319. if (master->panic_write)
  320. slave->mtd.panic_write = part_panic_write;
  321. if (master->point && master->unpoint) {
  322. slave->mtd.point = part_point;
  323. slave->mtd.unpoint = part_unpoint;
  324. }
  325. if (master->get_unmapped_area)
  326. slave->mtd.get_unmapped_area = part_get_unmapped_area;
  327. if (master->read_oob)
  328. slave->mtd.read_oob = part_read_oob;
  329. if (master->write_oob)
  330. slave->mtd.write_oob = part_write_oob;
  331. if (master->read_user_prot_reg)
  332. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  333. if (master->read_fact_prot_reg)
  334. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  335. if (master->write_user_prot_reg)
  336. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  337. if (master->lock_user_prot_reg)
  338. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  339. if (master->get_user_prot_info)
  340. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  341. if (master->get_fact_prot_info)
  342. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  343. if (master->sync)
  344. slave->mtd.sync = part_sync;
  345. if (!partno && master->suspend && master->resume) {
  346. slave->mtd.suspend = part_suspend;
  347. slave->mtd.resume = part_resume;
  348. }
  349. if (master->writev)
  350. slave->mtd.writev = part_writev;
  351. if (master->lock)
  352. slave->mtd.lock = part_lock;
  353. if (master->unlock)
  354. slave->mtd.unlock = part_unlock;
  355. if (master->block_isbad)
  356. slave->mtd.block_isbad = part_block_isbad;
  357. if (master->block_markbad)
  358. slave->mtd.block_markbad = part_block_markbad;
  359. slave->mtd.erase = part_erase;
  360. slave->master = master;
  361. slave->offset = part->offset;
  362. slave->index = partno;
  363. if (slave->offset == MTDPART_OFS_APPEND)
  364. slave->offset = cur_offset;
  365. if (slave->offset == MTDPART_OFS_NXTBLK) {
  366. slave->offset = cur_offset;
  367. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  368. /* Round up to next erasesize */
  369. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  370. printk(KERN_NOTICE "Moving partition %d: "
  371. "0x%012llx -> 0x%012llx\n", partno,
  372. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  373. }
  374. }
  375. if (slave->mtd.size == MTDPART_SIZ_FULL)
  376. slave->mtd.size = master->size - slave->offset;
  377. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  378. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  379. /* let's do some sanity checks */
  380. if (slave->offset >= master->size) {
  381. /* let's register it anyway to preserve ordering */
  382. slave->offset = 0;
  383. slave->mtd.size = 0;
  384. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  385. part->name);
  386. goto out_register;
  387. }
  388. if (slave->offset + slave->mtd.size > master->size) {
  389. slave->mtd.size = master->size - slave->offset;
  390. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  391. part->name, master->name, (unsigned long long)slave->mtd.size);
  392. }
  393. if (master->numeraseregions > 1) {
  394. /* Deal with variable erase size stuff */
  395. int i, max = master->numeraseregions;
  396. u64 end = slave->offset + slave->mtd.size;
  397. struct mtd_erase_region_info *regions = master->eraseregions;
  398. /* Find the first erase regions which is part of this
  399. * partition. */
  400. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  401. ;
  402. /* The loop searched for the region _behind_ the first one */
  403. i--;
  404. /* Pick biggest erasesize */
  405. for (; i < max && regions[i].offset < end; i++) {
  406. if (slave->mtd.erasesize < regions[i].erasesize) {
  407. slave->mtd.erasesize = regions[i].erasesize;
  408. }
  409. }
  410. BUG_ON(slave->mtd.erasesize == 0);
  411. } else {
  412. /* Single erase size */
  413. slave->mtd.erasesize = master->erasesize;
  414. }
  415. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  416. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  417. /* Doesn't start on a boundary of major erase size */
  418. /* FIXME: Let it be writable if it is on a boundary of
  419. * _minor_ erase size though */
  420. slave->mtd.flags &= ~MTD_WRITEABLE;
  421. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  422. part->name);
  423. }
  424. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  425. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  426. slave->mtd.flags &= ~MTD_WRITEABLE;
  427. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  428. part->name);
  429. }
  430. slave->mtd.ecclayout = master->ecclayout;
  431. if (master->block_isbad) {
  432. uint64_t offs = 0;
  433. while (offs < slave->mtd.size) {
  434. if (master->block_isbad(master,
  435. offs + slave->offset))
  436. slave->mtd.ecc_stats.badblocks++;
  437. offs += slave->mtd.erasesize;
  438. }
  439. }
  440. out_register:
  441. if (part->mtdp) {
  442. /* store the object pointer (caller may or may not register it*/
  443. *part->mtdp = &slave->mtd;
  444. slave->registered = 0;
  445. } else {
  446. /* register our partition */
  447. add_mtd_device(&slave->mtd);
  448. slave->registered = 1;
  449. }
  450. return slave;
  451. }
  452. /*
  453. * This function, given a master MTD object and a partition table, creates
  454. * and registers slave MTD objects which are bound to the master according to
  455. * the partition definitions.
  456. *
  457. * We don't register the master, or expect the caller to have done so,
  458. * for reasons of data integrity.
  459. */
  460. int add_mtd_partitions(struct mtd_info *master,
  461. const struct mtd_partition *parts,
  462. int nbparts)
  463. {
  464. struct mtd_part *slave;
  465. uint64_t cur_offset = 0;
  466. int i;
  467. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  468. for (i = 0; i < nbparts; i++) {
  469. slave = add_one_partition(master, parts + i, i, cur_offset);
  470. if (!slave)
  471. return -ENOMEM;
  472. cur_offset = slave->offset + slave->mtd.size;
  473. }
  474. return 0;
  475. }
  476. EXPORT_SYMBOL(add_mtd_partitions);
  477. static DEFINE_SPINLOCK(part_parser_lock);
  478. static LIST_HEAD(part_parsers);
  479. static struct mtd_part_parser *get_partition_parser(const char *name)
  480. {
  481. struct mtd_part_parser *p, *ret = NULL;
  482. spin_lock(&part_parser_lock);
  483. list_for_each_entry(p, &part_parsers, list)
  484. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  485. ret = p;
  486. break;
  487. }
  488. spin_unlock(&part_parser_lock);
  489. return ret;
  490. }
  491. int register_mtd_parser(struct mtd_part_parser *p)
  492. {
  493. spin_lock(&part_parser_lock);
  494. list_add(&p->list, &part_parsers);
  495. spin_unlock(&part_parser_lock);
  496. return 0;
  497. }
  498. EXPORT_SYMBOL_GPL(register_mtd_parser);
  499. int deregister_mtd_parser(struct mtd_part_parser *p)
  500. {
  501. spin_lock(&part_parser_lock);
  502. list_del(&p->list);
  503. spin_unlock(&part_parser_lock);
  504. return 0;
  505. }
  506. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  507. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  508. struct mtd_partition **pparts, unsigned long origin)
  509. {
  510. struct mtd_part_parser *parser;
  511. int ret = 0;
  512. for ( ; ret <= 0 && *types; types++) {
  513. parser = get_partition_parser(*types);
  514. if (!parser && !request_module("%s", *types))
  515. parser = get_partition_parser(*types);
  516. if (!parser) {
  517. printk(KERN_NOTICE "%s partition parsing not available\n",
  518. *types);
  519. continue;
  520. }
  521. ret = (*parser->parse_fn)(master, pparts, origin);
  522. if (ret > 0) {
  523. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  524. ret, parser->name, master->name);
  525. }
  526. put_partition_parser(parser);
  527. }
  528. return ret;
  529. }
  530. EXPORT_SYMBOL_GPL(parse_mtd_partitions);