m25p80.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790
  1. /*
  2. * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
  3. *
  4. * Author: Mike Lavender, mike@steroidmicros.com
  5. *
  6. * Copyright (c) 2005, Intec Automation Inc.
  7. *
  8. * Some parts are based on lart.c by Abraham Van Der Merwe
  9. *
  10. * Cleaned up and generalized based on mtd_dataflash.c
  11. *
  12. * This code is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. *
  16. */
  17. #include <linux/init.h>
  18. #include <linux/module.h>
  19. #include <linux/device.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/mutex.h>
  22. #include <linux/math64.h>
  23. #include <linux/mtd/mtd.h>
  24. #include <linux/mtd/partitions.h>
  25. #include <linux/spi/spi.h>
  26. #include <linux/spi/flash.h>
  27. #define FLASH_PAGESIZE 256
  28. /* Flash opcodes. */
  29. #define OPCODE_WREN 0x06 /* Write enable */
  30. #define OPCODE_RDSR 0x05 /* Read status register */
  31. #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
  32. #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
  33. #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
  34. #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
  35. #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
  36. #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
  37. #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
  38. #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
  39. #define OPCODE_RDID 0x9f /* Read JEDEC ID */
  40. /* Status Register bits. */
  41. #define SR_WIP 1 /* Write in progress */
  42. #define SR_WEL 2 /* Write enable latch */
  43. /* meaning of other SR_* bits may differ between vendors */
  44. #define SR_BP0 4 /* Block protect 0 */
  45. #define SR_BP1 8 /* Block protect 1 */
  46. #define SR_BP2 0x10 /* Block protect 2 */
  47. #define SR_SRWD 0x80 /* SR write protect */
  48. /* Define max times to check status register before we give up. */
  49. #define MAX_READY_WAIT_COUNT 100000
  50. #define CMD_SIZE 4
  51. #ifdef CONFIG_M25PXX_USE_FAST_READ
  52. #define OPCODE_READ OPCODE_FAST_READ
  53. #define FAST_READ_DUMMY_BYTE 1
  54. #else
  55. #define OPCODE_READ OPCODE_NORM_READ
  56. #define FAST_READ_DUMMY_BYTE 0
  57. #endif
  58. /****************************************************************************/
  59. struct m25p {
  60. struct spi_device *spi;
  61. struct mutex lock;
  62. struct mtd_info mtd;
  63. unsigned partitioned:1;
  64. u8 erase_opcode;
  65. u8 command[CMD_SIZE + FAST_READ_DUMMY_BYTE];
  66. };
  67. static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
  68. {
  69. return container_of(mtd, struct m25p, mtd);
  70. }
  71. /****************************************************************************/
  72. /*
  73. * Internal helper functions
  74. */
  75. /*
  76. * Read the status register, returning its value in the location
  77. * Return the status register value.
  78. * Returns negative if error occurred.
  79. */
  80. static int read_sr(struct m25p *flash)
  81. {
  82. ssize_t retval;
  83. u8 code = OPCODE_RDSR;
  84. u8 val;
  85. retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
  86. if (retval < 0) {
  87. dev_err(&flash->spi->dev, "error %d reading SR\n",
  88. (int) retval);
  89. return retval;
  90. }
  91. return val;
  92. }
  93. /*
  94. * Write status register 1 byte
  95. * Returns negative if error occurred.
  96. */
  97. static int write_sr(struct m25p *flash, u8 val)
  98. {
  99. flash->command[0] = OPCODE_WRSR;
  100. flash->command[1] = val;
  101. return spi_write(flash->spi, flash->command, 2);
  102. }
  103. /*
  104. * Set write enable latch with Write Enable command.
  105. * Returns negative if error occurred.
  106. */
  107. static inline int write_enable(struct m25p *flash)
  108. {
  109. u8 code = OPCODE_WREN;
  110. return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
  111. }
  112. /*
  113. * Service routine to read status register until ready, or timeout occurs.
  114. * Returns non-zero if error.
  115. */
  116. static int wait_till_ready(struct m25p *flash)
  117. {
  118. int count;
  119. int sr;
  120. /* one chip guarantees max 5 msec wait here after page writes,
  121. * but potentially three seconds (!) after page erase.
  122. */
  123. for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {
  124. if ((sr = read_sr(flash)) < 0)
  125. break;
  126. else if (!(sr & SR_WIP))
  127. return 0;
  128. /* REVISIT sometimes sleeping would be best */
  129. }
  130. return 1;
  131. }
  132. /*
  133. * Erase the whole flash memory
  134. *
  135. * Returns 0 if successful, non-zero otherwise.
  136. */
  137. static int erase_chip(struct m25p *flash)
  138. {
  139. DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
  140. dev_name(&flash->spi->dev), __func__,
  141. (long long)(flash->mtd.size >> 10));
  142. /* Wait until finished previous write command. */
  143. if (wait_till_ready(flash))
  144. return 1;
  145. /* Send write enable, then erase commands. */
  146. write_enable(flash);
  147. /* Set up command buffer. */
  148. flash->command[0] = OPCODE_CHIP_ERASE;
  149. spi_write(flash->spi, flash->command, 1);
  150. return 0;
  151. }
  152. /*
  153. * Erase one sector of flash memory at offset ``offset'' which is any
  154. * address within the sector which should be erased.
  155. *
  156. * Returns 0 if successful, non-zero otherwise.
  157. */
  158. static int erase_sector(struct m25p *flash, u32 offset)
  159. {
  160. DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
  161. dev_name(&flash->spi->dev), __func__,
  162. flash->mtd.erasesize / 1024, offset);
  163. /* Wait until finished previous write command. */
  164. if (wait_till_ready(flash))
  165. return 1;
  166. /* Send write enable, then erase commands. */
  167. write_enable(flash);
  168. /* Set up command buffer. */
  169. flash->command[0] = flash->erase_opcode;
  170. flash->command[1] = offset >> 16;
  171. flash->command[2] = offset >> 8;
  172. flash->command[3] = offset;
  173. spi_write(flash->spi, flash->command, CMD_SIZE);
  174. return 0;
  175. }
  176. /****************************************************************************/
  177. /*
  178. * MTD implementation
  179. */
  180. /*
  181. * Erase an address range on the flash chip. The address range may extend
  182. * one or more erase sectors. Return an error is there is a problem erasing.
  183. */
  184. static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
  185. {
  186. struct m25p *flash = mtd_to_m25p(mtd);
  187. u32 addr,len;
  188. uint32_t rem;
  189. DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
  190. dev_name(&flash->spi->dev), __func__, "at",
  191. (long long)instr->addr, (long long)instr->len);
  192. /* sanity checks */
  193. if (instr->addr + instr->len > flash->mtd.size)
  194. return -EINVAL;
  195. div_u64_rem(instr->len, mtd->erasesize, &rem);
  196. if (rem)
  197. return -EINVAL;
  198. addr = instr->addr;
  199. len = instr->len;
  200. mutex_lock(&flash->lock);
  201. /* whole-chip erase? */
  202. if (len == flash->mtd.size && erase_chip(flash)) {
  203. instr->state = MTD_ERASE_FAILED;
  204. mutex_unlock(&flash->lock);
  205. return -EIO;
  206. /* REVISIT in some cases we could speed up erasing large regions
  207. * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
  208. * to use "small sector erase", but that's not always optimal.
  209. */
  210. /* "sector"-at-a-time erase */
  211. } else {
  212. while (len) {
  213. if (erase_sector(flash, addr)) {
  214. instr->state = MTD_ERASE_FAILED;
  215. mutex_unlock(&flash->lock);
  216. return -EIO;
  217. }
  218. addr += mtd->erasesize;
  219. len -= mtd->erasesize;
  220. }
  221. }
  222. mutex_unlock(&flash->lock);
  223. instr->state = MTD_ERASE_DONE;
  224. mtd_erase_callback(instr);
  225. return 0;
  226. }
  227. /*
  228. * Read an address range from the flash chip. The address range
  229. * may be any size provided it is within the physical boundaries.
  230. */
  231. static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
  232. size_t *retlen, u_char *buf)
  233. {
  234. struct m25p *flash = mtd_to_m25p(mtd);
  235. struct spi_transfer t[2];
  236. struct spi_message m;
  237. DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
  238. dev_name(&flash->spi->dev), __func__, "from",
  239. (u32)from, len);
  240. /* sanity checks */
  241. if (!len)
  242. return 0;
  243. if (from + len > flash->mtd.size)
  244. return -EINVAL;
  245. spi_message_init(&m);
  246. memset(t, 0, (sizeof t));
  247. /* NOTE:
  248. * OPCODE_FAST_READ (if available) is faster.
  249. * Should add 1 byte DUMMY_BYTE.
  250. */
  251. t[0].tx_buf = flash->command;
  252. t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE;
  253. spi_message_add_tail(&t[0], &m);
  254. t[1].rx_buf = buf;
  255. t[1].len = len;
  256. spi_message_add_tail(&t[1], &m);
  257. /* Byte count starts at zero. */
  258. if (retlen)
  259. *retlen = 0;
  260. mutex_lock(&flash->lock);
  261. /* Wait till previous write/erase is done. */
  262. if (wait_till_ready(flash)) {
  263. /* REVISIT status return?? */
  264. mutex_unlock(&flash->lock);
  265. return 1;
  266. }
  267. /* FIXME switch to OPCODE_FAST_READ. It's required for higher
  268. * clocks; and at this writing, every chip this driver handles
  269. * supports that opcode.
  270. */
  271. /* Set up the write data buffer. */
  272. flash->command[0] = OPCODE_READ;
  273. flash->command[1] = from >> 16;
  274. flash->command[2] = from >> 8;
  275. flash->command[3] = from;
  276. spi_sync(flash->spi, &m);
  277. *retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE;
  278. mutex_unlock(&flash->lock);
  279. return 0;
  280. }
  281. /*
  282. * Write an address range to the flash chip. Data must be written in
  283. * FLASH_PAGESIZE chunks. The address range may be any size provided
  284. * it is within the physical boundaries.
  285. */
  286. static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
  287. size_t *retlen, const u_char *buf)
  288. {
  289. struct m25p *flash = mtd_to_m25p(mtd);
  290. u32 page_offset, page_size;
  291. struct spi_transfer t[2];
  292. struct spi_message m;
  293. DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
  294. dev_name(&flash->spi->dev), __func__, "to",
  295. (u32)to, len);
  296. if (retlen)
  297. *retlen = 0;
  298. /* sanity checks */
  299. if (!len)
  300. return(0);
  301. if (to + len > flash->mtd.size)
  302. return -EINVAL;
  303. spi_message_init(&m);
  304. memset(t, 0, (sizeof t));
  305. t[0].tx_buf = flash->command;
  306. t[0].len = CMD_SIZE;
  307. spi_message_add_tail(&t[0], &m);
  308. t[1].tx_buf = buf;
  309. spi_message_add_tail(&t[1], &m);
  310. mutex_lock(&flash->lock);
  311. /* Wait until finished previous write command. */
  312. if (wait_till_ready(flash)) {
  313. mutex_unlock(&flash->lock);
  314. return 1;
  315. }
  316. write_enable(flash);
  317. /* Set up the opcode in the write buffer. */
  318. flash->command[0] = OPCODE_PP;
  319. flash->command[1] = to >> 16;
  320. flash->command[2] = to >> 8;
  321. flash->command[3] = to;
  322. /* what page do we start with? */
  323. page_offset = to % FLASH_PAGESIZE;
  324. /* do all the bytes fit onto one page? */
  325. if (page_offset + len <= FLASH_PAGESIZE) {
  326. t[1].len = len;
  327. spi_sync(flash->spi, &m);
  328. *retlen = m.actual_length - CMD_SIZE;
  329. } else {
  330. u32 i;
  331. /* the size of data remaining on the first page */
  332. page_size = FLASH_PAGESIZE - page_offset;
  333. t[1].len = page_size;
  334. spi_sync(flash->spi, &m);
  335. *retlen = m.actual_length - CMD_SIZE;
  336. /* write everything in PAGESIZE chunks */
  337. for (i = page_size; i < len; i += page_size) {
  338. page_size = len - i;
  339. if (page_size > FLASH_PAGESIZE)
  340. page_size = FLASH_PAGESIZE;
  341. /* write the next page to flash */
  342. flash->command[1] = (to + i) >> 16;
  343. flash->command[2] = (to + i) >> 8;
  344. flash->command[3] = (to + i);
  345. t[1].tx_buf = buf + i;
  346. t[1].len = page_size;
  347. wait_till_ready(flash);
  348. write_enable(flash);
  349. spi_sync(flash->spi, &m);
  350. if (retlen)
  351. *retlen += m.actual_length - CMD_SIZE;
  352. }
  353. }
  354. mutex_unlock(&flash->lock);
  355. return 0;
  356. }
  357. /****************************************************************************/
  358. /*
  359. * SPI device driver setup and teardown
  360. */
  361. struct flash_info {
  362. char *name;
  363. /* JEDEC id zero means "no ID" (most older chips); otherwise it has
  364. * a high byte of zero plus three data bytes: the manufacturer id,
  365. * then a two byte device id.
  366. */
  367. u32 jedec_id;
  368. u16 ext_id;
  369. /* The size listed here is what works with OPCODE_SE, which isn't
  370. * necessarily called a "sector" by the vendor.
  371. */
  372. unsigned sector_size;
  373. u16 n_sectors;
  374. u16 flags;
  375. #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
  376. };
  377. /* NOTE: double check command sets and memory organization when you add
  378. * more flash chips. This current list focusses on newer chips, which
  379. * have been converging on command sets which including JEDEC ID.
  380. */
  381. static struct flash_info __devinitdata m25p_data [] = {
  382. /* Atmel -- some are (confusingly) marketed as "DataFlash" */
  383. { "at25fs010", 0x1f6601, 0, 32 * 1024, 4, SECT_4K, },
  384. { "at25fs040", 0x1f6604, 0, 64 * 1024, 8, SECT_4K, },
  385. { "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K, },
  386. { "at25df641", 0x1f4800, 0, 64 * 1024, 128, SECT_4K, },
  387. { "at26f004", 0x1f0400, 0, 64 * 1024, 8, SECT_4K, },
  388. { "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K, },
  389. { "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K, },
  390. { "at26df321", 0x1f4701, 0, 64 * 1024, 64, SECT_4K, },
  391. /* Spansion -- single (large) sector size only, at least
  392. * for the chips listed here (without boot sectors).
  393. */
  394. { "s25sl004a", 0x010212, 0, 64 * 1024, 8, },
  395. { "s25sl008a", 0x010213, 0, 64 * 1024, 16, },
  396. { "s25sl016a", 0x010214, 0, 64 * 1024, 32, },
  397. { "s25sl032a", 0x010215, 0, 64 * 1024, 64, },
  398. { "s25sl064a", 0x010216, 0, 64 * 1024, 128, },
  399. { "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, },
  400. { "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, },
  401. /* SST -- large erase sizes are "overlays", "sectors" are 4K */
  402. { "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K, },
  403. { "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K, },
  404. { "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K, },
  405. { "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K, },
  406. /* ST Microelectronics -- newer production may have feature updates */
  407. { "m25p05", 0x202010, 0, 32 * 1024, 2, },
  408. { "m25p10", 0x202011, 0, 32 * 1024, 4, },
  409. { "m25p20", 0x202012, 0, 64 * 1024, 4, },
  410. { "m25p40", 0x202013, 0, 64 * 1024, 8, },
  411. { "m25p80", 0, 0, 64 * 1024, 16, },
  412. { "m25p16", 0x202015, 0, 64 * 1024, 32, },
  413. { "m25p32", 0x202016, 0, 64 * 1024, 64, },
  414. { "m25p64", 0x202017, 0, 64 * 1024, 128, },
  415. { "m25p128", 0x202018, 0, 256 * 1024, 64, },
  416. { "m45pe80", 0x204014, 0, 64 * 1024, 16, },
  417. { "m45pe16", 0x204015, 0, 64 * 1024, 32, },
  418. { "m25pe80", 0x208014, 0, 64 * 1024, 16, },
  419. { "m25pe16", 0x208015, 0, 64 * 1024, 32, SECT_4K, },
  420. /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
  421. { "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K, },
  422. { "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K, },
  423. { "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K, },
  424. { "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K, },
  425. { "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K, },
  426. { "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K, },
  427. { "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K, },
  428. };
  429. static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
  430. {
  431. int tmp;
  432. u8 code = OPCODE_RDID;
  433. u8 id[5];
  434. u32 jedec;
  435. u16 ext_jedec;
  436. struct flash_info *info;
  437. /* JEDEC also defines an optional "extended device information"
  438. * string for after vendor-specific data, after the three bytes
  439. * we use here. Supporting some chips might require using it.
  440. */
  441. tmp = spi_write_then_read(spi, &code, 1, id, 5);
  442. if (tmp < 0) {
  443. DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
  444. dev_name(&spi->dev), tmp);
  445. return NULL;
  446. }
  447. jedec = id[0];
  448. jedec = jedec << 8;
  449. jedec |= id[1];
  450. jedec = jedec << 8;
  451. jedec |= id[2];
  452. ext_jedec = id[3] << 8 | id[4];
  453. for (tmp = 0, info = m25p_data;
  454. tmp < ARRAY_SIZE(m25p_data);
  455. tmp++, info++) {
  456. if (info->jedec_id == jedec) {
  457. if (info->ext_id != 0 && info->ext_id != ext_jedec)
  458. continue;
  459. return info;
  460. }
  461. }
  462. dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
  463. return NULL;
  464. }
  465. /*
  466. * board specific setup should have ensured the SPI clock used here
  467. * matches what the READ command supports, at least until this driver
  468. * understands FAST_READ (for clocks over 25 MHz).
  469. */
  470. static int __devinit m25p_probe(struct spi_device *spi)
  471. {
  472. struct flash_platform_data *data;
  473. struct m25p *flash;
  474. struct flash_info *info;
  475. unsigned i;
  476. /* Platform data helps sort out which chip type we have, as
  477. * well as how this board partitions it. If we don't have
  478. * a chip ID, try the JEDEC id commands; they'll work for most
  479. * newer chips, even if we don't recognize the particular chip.
  480. */
  481. data = spi->dev.platform_data;
  482. if (data && data->type) {
  483. for (i = 0, info = m25p_data;
  484. i < ARRAY_SIZE(m25p_data);
  485. i++, info++) {
  486. if (strcmp(data->type, info->name) == 0)
  487. break;
  488. }
  489. /* unrecognized chip? */
  490. if (i == ARRAY_SIZE(m25p_data)) {
  491. DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
  492. dev_name(&spi->dev), data->type);
  493. info = NULL;
  494. /* recognized; is that chip really what's there? */
  495. } else if (info->jedec_id) {
  496. struct flash_info *chip = jedec_probe(spi);
  497. if (!chip || chip != info) {
  498. dev_warn(&spi->dev, "found %s, expected %s\n",
  499. chip ? chip->name : "UNKNOWN",
  500. info->name);
  501. info = NULL;
  502. }
  503. }
  504. } else
  505. info = jedec_probe(spi);
  506. if (!info)
  507. return -ENODEV;
  508. flash = kzalloc(sizeof *flash, GFP_KERNEL);
  509. if (!flash)
  510. return -ENOMEM;
  511. flash->spi = spi;
  512. mutex_init(&flash->lock);
  513. dev_set_drvdata(&spi->dev, flash);
  514. /*
  515. * Atmel serial flash tend to power up
  516. * with the software protection bits set
  517. */
  518. if (info->jedec_id >> 16 == 0x1f) {
  519. write_enable(flash);
  520. write_sr(flash, 0);
  521. }
  522. if (data && data->name)
  523. flash->mtd.name = data->name;
  524. else
  525. flash->mtd.name = dev_name(&spi->dev);
  526. flash->mtd.type = MTD_NORFLASH;
  527. flash->mtd.writesize = 1;
  528. flash->mtd.flags = MTD_CAP_NORFLASH;
  529. flash->mtd.size = info->sector_size * info->n_sectors;
  530. flash->mtd.erase = m25p80_erase;
  531. flash->mtd.read = m25p80_read;
  532. flash->mtd.write = m25p80_write;
  533. /* prefer "small sector" erase if possible */
  534. if (info->flags & SECT_4K) {
  535. flash->erase_opcode = OPCODE_BE_4K;
  536. flash->mtd.erasesize = 4096;
  537. } else {
  538. flash->erase_opcode = OPCODE_SE;
  539. flash->mtd.erasesize = info->sector_size;
  540. }
  541. flash->mtd.dev.parent = &spi->dev;
  542. dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name,
  543. (long long)flash->mtd.size >> 10);
  544. DEBUG(MTD_DEBUG_LEVEL2,
  545. "mtd .name = %s, .size = 0x%llx (%lldMiB) "
  546. ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
  547. flash->mtd.name,
  548. (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
  549. flash->mtd.erasesize, flash->mtd.erasesize / 1024,
  550. flash->mtd.numeraseregions);
  551. if (flash->mtd.numeraseregions)
  552. for (i = 0; i < flash->mtd.numeraseregions; i++)
  553. DEBUG(MTD_DEBUG_LEVEL2,
  554. "mtd.eraseregions[%d] = { .offset = 0x%llx, "
  555. ".erasesize = 0x%.8x (%uKiB), "
  556. ".numblocks = %d }\n",
  557. i, (long long)flash->mtd.eraseregions[i].offset,
  558. flash->mtd.eraseregions[i].erasesize,
  559. flash->mtd.eraseregions[i].erasesize / 1024,
  560. flash->mtd.eraseregions[i].numblocks);
  561. /* partitions should match sector boundaries; and it may be good to
  562. * use readonly partitions for writeprotected sectors (BP2..BP0).
  563. */
  564. if (mtd_has_partitions()) {
  565. struct mtd_partition *parts = NULL;
  566. int nr_parts = 0;
  567. if (mtd_has_cmdlinepart()) {
  568. static const char *part_probes[]
  569. = { "cmdlinepart", NULL, };
  570. nr_parts = parse_mtd_partitions(&flash->mtd,
  571. part_probes, &parts, 0);
  572. }
  573. if (nr_parts <= 0 && data && data->parts) {
  574. parts = data->parts;
  575. nr_parts = data->nr_parts;
  576. }
  577. if (nr_parts > 0) {
  578. for (i = 0; i < nr_parts; i++) {
  579. DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
  580. "{.name = %s, .offset = 0x%llx, "
  581. ".size = 0x%llx (%lldKiB) }\n",
  582. i, parts[i].name,
  583. (long long)parts[i].offset,
  584. (long long)parts[i].size,
  585. (long long)(parts[i].size >> 10));
  586. }
  587. flash->partitioned = 1;
  588. return add_mtd_partitions(&flash->mtd, parts, nr_parts);
  589. }
  590. } else if (data->nr_parts)
  591. dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
  592. data->nr_parts, data->name);
  593. return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
  594. }
  595. static int __devexit m25p_remove(struct spi_device *spi)
  596. {
  597. struct m25p *flash = dev_get_drvdata(&spi->dev);
  598. int status;
  599. /* Clean up MTD stuff. */
  600. if (mtd_has_partitions() && flash->partitioned)
  601. status = del_mtd_partitions(&flash->mtd);
  602. else
  603. status = del_mtd_device(&flash->mtd);
  604. if (status == 0)
  605. kfree(flash);
  606. return 0;
  607. }
  608. static struct spi_driver m25p80_driver = {
  609. .driver = {
  610. .name = "m25p80",
  611. .bus = &spi_bus_type,
  612. .owner = THIS_MODULE,
  613. },
  614. .probe = m25p_probe,
  615. .remove = __devexit_p(m25p_remove),
  616. /* REVISIT: many of these chips have deep power-down modes, which
  617. * should clearly be entered on suspend() to minimize power use.
  618. * And also when they're otherwise idle...
  619. */
  620. };
  621. static int m25p80_init(void)
  622. {
  623. return spi_register_driver(&m25p80_driver);
  624. }
  625. static void m25p80_exit(void)
  626. {
  627. spi_unregister_driver(&m25p80_driver);
  628. }
  629. module_init(m25p80_init);
  630. module_exit(m25p80_exit);
  631. MODULE_LICENSE("GPL");
  632. MODULE_AUTHOR("Mike Lavender");
  633. MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");