linear.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417
  1. /*
  2. linear.c : Multiple Devices driver for Linux
  3. Copyright (C) 1994-96 Marc ZYNGIER
  4. <zyngier@ufr-info-p7.ibp.fr> or
  5. <maz@gloups.fdn.fr>
  6. Linear mode management functions.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2, or (at your option)
  10. any later version.
  11. You should have received a copy of the GNU General Public License
  12. (for example /usr/src/linux/COPYING); if not, write to the Free
  13. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  14. */
  15. #include <linux/blkdev.h>
  16. #include <linux/raid/md_u.h>
  17. #include <linux/seq_file.h>
  18. #include "md.h"
  19. #include "linear.h"
  20. /*
  21. * find which device holds a particular offset
  22. */
  23. static inline dev_info_t *which_dev(mddev_t *mddev, sector_t sector)
  24. {
  25. dev_info_t *hash;
  26. linear_conf_t *conf = mddev_to_conf(mddev);
  27. sector_t idx = sector >> conf->sector_shift;
  28. /*
  29. * sector_div(a,b) returns the remainer and sets a to a/b
  30. */
  31. (void)sector_div(idx, conf->spacing);
  32. hash = conf->hash_table[idx];
  33. while (sector >= hash->num_sectors + hash->start_sector)
  34. hash++;
  35. return hash;
  36. }
  37. /**
  38. * linear_mergeable_bvec -- tell bio layer if two requests can be merged
  39. * @q: request queue
  40. * @bvm: properties of new bio
  41. * @biovec: the request that could be merged to it.
  42. *
  43. * Return amount of bytes we can take at this offset
  44. */
  45. static int linear_mergeable_bvec(struct request_queue *q,
  46. struct bvec_merge_data *bvm,
  47. struct bio_vec *biovec)
  48. {
  49. mddev_t *mddev = q->queuedata;
  50. dev_info_t *dev0;
  51. unsigned long maxsectors, bio_sectors = bvm->bi_size >> 9;
  52. sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
  53. dev0 = which_dev(mddev, sector);
  54. maxsectors = dev0->num_sectors - (sector - dev0->start_sector);
  55. if (maxsectors < bio_sectors)
  56. maxsectors = 0;
  57. else
  58. maxsectors -= bio_sectors;
  59. if (maxsectors <= (PAGE_SIZE >> 9 ) && bio_sectors == 0)
  60. return biovec->bv_len;
  61. /* The bytes available at this offset could be really big,
  62. * so we cap at 2^31 to avoid overflow */
  63. if (maxsectors > (1 << (31-9)))
  64. return 1<<31;
  65. return maxsectors << 9;
  66. }
  67. static void linear_unplug(struct request_queue *q)
  68. {
  69. mddev_t *mddev = q->queuedata;
  70. linear_conf_t *conf = mddev_to_conf(mddev);
  71. int i;
  72. for (i=0; i < mddev->raid_disks; i++) {
  73. struct request_queue *r_queue = bdev_get_queue(conf->disks[i].rdev->bdev);
  74. blk_unplug(r_queue);
  75. }
  76. }
  77. static int linear_congested(void *data, int bits)
  78. {
  79. mddev_t *mddev = data;
  80. linear_conf_t *conf = mddev_to_conf(mddev);
  81. int i, ret = 0;
  82. for (i = 0; i < mddev->raid_disks && !ret ; i++) {
  83. struct request_queue *q = bdev_get_queue(conf->disks[i].rdev->bdev);
  84. ret |= bdi_congested(&q->backing_dev_info, bits);
  85. }
  86. return ret;
  87. }
  88. static sector_t linear_size(mddev_t *mddev, sector_t sectors, int raid_disks)
  89. {
  90. linear_conf_t *conf = mddev_to_conf(mddev);
  91. WARN_ONCE(sectors || raid_disks,
  92. "%s does not support generic reshape\n", __func__);
  93. return conf->array_sectors;
  94. }
  95. static linear_conf_t *linear_conf(mddev_t *mddev, int raid_disks)
  96. {
  97. linear_conf_t *conf;
  98. dev_info_t **table;
  99. mdk_rdev_t *rdev;
  100. int i, nb_zone, cnt;
  101. sector_t min_sectors;
  102. sector_t curr_sector;
  103. conf = kzalloc (sizeof (*conf) + raid_disks*sizeof(dev_info_t),
  104. GFP_KERNEL);
  105. if (!conf)
  106. return NULL;
  107. cnt = 0;
  108. conf->array_sectors = 0;
  109. list_for_each_entry(rdev, &mddev->disks, same_set) {
  110. int j = rdev->raid_disk;
  111. dev_info_t *disk = conf->disks + j;
  112. if (j < 0 || j >= raid_disks || disk->rdev) {
  113. printk("linear: disk numbering problem. Aborting!\n");
  114. goto out;
  115. }
  116. disk->rdev = rdev;
  117. blk_queue_stack_limits(mddev->queue,
  118. rdev->bdev->bd_disk->queue);
  119. /* as we don't honour merge_bvec_fn, we must never risk
  120. * violating it, so limit ->max_sector to one PAGE, as
  121. * a one page request is never in violation.
  122. */
  123. if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
  124. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  125. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  126. disk->num_sectors = rdev->sectors;
  127. conf->array_sectors += rdev->sectors;
  128. cnt++;
  129. }
  130. if (cnt != raid_disks) {
  131. printk("linear: not enough drives present. Aborting!\n");
  132. goto out;
  133. }
  134. min_sectors = conf->array_sectors;
  135. sector_div(min_sectors, PAGE_SIZE/sizeof(struct dev_info *));
  136. if (min_sectors == 0)
  137. min_sectors = 1;
  138. /* min_sectors is the minimum spacing that will fit the hash
  139. * table in one PAGE. This may be much smaller than needed.
  140. * We find the smallest non-terminal set of consecutive devices
  141. * that is larger than min_sectors and use the size of that as
  142. * the actual spacing
  143. */
  144. conf->spacing = conf->array_sectors;
  145. for (i=0; i < cnt-1 ; i++) {
  146. sector_t tmp = 0;
  147. int j;
  148. for (j = i; j < cnt - 1 && tmp < min_sectors; j++)
  149. tmp += conf->disks[j].num_sectors;
  150. if (tmp >= min_sectors && tmp < conf->spacing)
  151. conf->spacing = tmp;
  152. }
  153. /* spacing may be too large for sector_div to work with,
  154. * so we might need to pre-shift
  155. */
  156. conf->sector_shift = 0;
  157. if (sizeof(sector_t) > sizeof(u32)) {
  158. sector_t space = conf->spacing;
  159. while (space > (sector_t)(~(u32)0)) {
  160. space >>= 1;
  161. conf->sector_shift++;
  162. }
  163. }
  164. /*
  165. * This code was restructured to work around a gcc-2.95.3 internal
  166. * compiler error. Alter it with care.
  167. */
  168. {
  169. sector_t sz;
  170. unsigned round;
  171. unsigned long base;
  172. sz = conf->array_sectors >> conf->sector_shift;
  173. sz += 1; /* force round-up */
  174. base = conf->spacing >> conf->sector_shift;
  175. round = sector_div(sz, base);
  176. nb_zone = sz + (round ? 1 : 0);
  177. }
  178. BUG_ON(nb_zone > PAGE_SIZE / sizeof(struct dev_info *));
  179. conf->hash_table = kmalloc (sizeof (struct dev_info *) * nb_zone,
  180. GFP_KERNEL);
  181. if (!conf->hash_table)
  182. goto out;
  183. /*
  184. * Here we generate the linear hash table
  185. * First calculate the device offsets.
  186. */
  187. conf->disks[0].start_sector = 0;
  188. for (i = 1; i < raid_disks; i++)
  189. conf->disks[i].start_sector =
  190. conf->disks[i-1].start_sector +
  191. conf->disks[i-1].num_sectors;
  192. table = conf->hash_table;
  193. i = 0;
  194. for (curr_sector = 0;
  195. curr_sector < conf->array_sectors;
  196. curr_sector += conf->spacing) {
  197. while (i < raid_disks-1 &&
  198. curr_sector >= conf->disks[i+1].start_sector)
  199. i++;
  200. *table ++ = conf->disks + i;
  201. }
  202. if (conf->sector_shift) {
  203. conf->spacing >>= conf->sector_shift;
  204. /* round spacing up so that when we divide by it,
  205. * we err on the side of "too-low", which is safest.
  206. */
  207. conf->spacing++;
  208. }
  209. BUG_ON(table - conf->hash_table > nb_zone);
  210. return conf;
  211. out:
  212. kfree(conf);
  213. return NULL;
  214. }
  215. static int linear_run (mddev_t *mddev)
  216. {
  217. linear_conf_t *conf;
  218. mddev->queue->queue_lock = &mddev->queue->__queue_lock;
  219. conf = linear_conf(mddev, mddev->raid_disks);
  220. if (!conf)
  221. return 1;
  222. mddev->private = conf;
  223. md_set_array_sectors(mddev, linear_size(mddev, 0, 0));
  224. blk_queue_merge_bvec(mddev->queue, linear_mergeable_bvec);
  225. mddev->queue->unplug_fn = linear_unplug;
  226. mddev->queue->backing_dev_info.congested_fn = linear_congested;
  227. mddev->queue->backing_dev_info.congested_data = mddev;
  228. return 0;
  229. }
  230. static int linear_add(mddev_t *mddev, mdk_rdev_t *rdev)
  231. {
  232. /* Adding a drive to a linear array allows the array to grow.
  233. * It is permitted if the new drive has a matching superblock
  234. * already on it, with raid_disk equal to raid_disks.
  235. * It is achieved by creating a new linear_private_data structure
  236. * and swapping it in in-place of the current one.
  237. * The current one is never freed until the array is stopped.
  238. * This avoids races.
  239. */
  240. linear_conf_t *newconf;
  241. if (rdev->saved_raid_disk != mddev->raid_disks)
  242. return -EINVAL;
  243. rdev->raid_disk = rdev->saved_raid_disk;
  244. newconf = linear_conf(mddev,mddev->raid_disks+1);
  245. if (!newconf)
  246. return -ENOMEM;
  247. newconf->prev = mddev_to_conf(mddev);
  248. mddev->private = newconf;
  249. mddev->raid_disks++;
  250. md_set_array_sectors(mddev, linear_size(mddev, 0, 0));
  251. set_capacity(mddev->gendisk, mddev->array_sectors);
  252. return 0;
  253. }
  254. static int linear_stop (mddev_t *mddev)
  255. {
  256. linear_conf_t *conf = mddev_to_conf(mddev);
  257. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  258. do {
  259. linear_conf_t *t = conf->prev;
  260. kfree(conf->hash_table);
  261. kfree(conf);
  262. conf = t;
  263. } while (conf);
  264. return 0;
  265. }
  266. static int linear_make_request (struct request_queue *q, struct bio *bio)
  267. {
  268. const int rw = bio_data_dir(bio);
  269. mddev_t *mddev = q->queuedata;
  270. dev_info_t *tmp_dev;
  271. int cpu;
  272. if (unlikely(bio_barrier(bio))) {
  273. bio_endio(bio, -EOPNOTSUPP);
  274. return 0;
  275. }
  276. cpu = part_stat_lock();
  277. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  278. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
  279. bio_sectors(bio));
  280. part_stat_unlock();
  281. tmp_dev = which_dev(mddev, bio->bi_sector);
  282. if (unlikely(bio->bi_sector >= (tmp_dev->num_sectors +
  283. tmp_dev->start_sector)
  284. || (bio->bi_sector <
  285. tmp_dev->start_sector))) {
  286. char b[BDEVNAME_SIZE];
  287. printk("linear_make_request: Sector %llu out of bounds on "
  288. "dev %s: %llu sectors, offset %llu\n",
  289. (unsigned long long)bio->bi_sector,
  290. bdevname(tmp_dev->rdev->bdev, b),
  291. (unsigned long long)tmp_dev->num_sectors,
  292. (unsigned long long)tmp_dev->start_sector);
  293. bio_io_error(bio);
  294. return 0;
  295. }
  296. if (unlikely(bio->bi_sector + (bio->bi_size >> 9) >
  297. tmp_dev->start_sector + tmp_dev->num_sectors)) {
  298. /* This bio crosses a device boundary, so we have to
  299. * split it.
  300. */
  301. struct bio_pair *bp;
  302. bp = bio_split(bio,
  303. tmp_dev->start_sector + tmp_dev->num_sectors
  304. - bio->bi_sector);
  305. if (linear_make_request(q, &bp->bio1))
  306. generic_make_request(&bp->bio1);
  307. if (linear_make_request(q, &bp->bio2))
  308. generic_make_request(&bp->bio2);
  309. bio_pair_release(bp);
  310. return 0;
  311. }
  312. bio->bi_bdev = tmp_dev->rdev->bdev;
  313. bio->bi_sector = bio->bi_sector - tmp_dev->start_sector
  314. + tmp_dev->rdev->data_offset;
  315. return 1;
  316. }
  317. static void linear_status (struct seq_file *seq, mddev_t *mddev)
  318. {
  319. seq_printf(seq, " %dk rounding", mddev->chunk_size/1024);
  320. }
  321. static struct mdk_personality linear_personality =
  322. {
  323. .name = "linear",
  324. .level = LEVEL_LINEAR,
  325. .owner = THIS_MODULE,
  326. .make_request = linear_make_request,
  327. .run = linear_run,
  328. .stop = linear_stop,
  329. .status = linear_status,
  330. .hot_add_disk = linear_add,
  331. .size = linear_size,
  332. };
  333. static int __init linear_init (void)
  334. {
  335. return register_md_personality (&linear_personality);
  336. }
  337. static void linear_exit (void)
  338. {
  339. unregister_md_personality (&linear_personality);
  340. }
  341. module_init(linear_init);
  342. module_exit(linear_exit);
  343. MODULE_LICENSE("GPL");
  344. MODULE_ALIAS("md-personality-1"); /* LINEAR - deprecated*/
  345. MODULE_ALIAS("md-linear");
  346. MODULE_ALIAS("md-level--1");