page_tables.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805
  1. /*P:700 The pagetable code, on the other hand, still shows the scars of
  2. * previous encounters. It's functional, and as neat as it can be in the
  3. * circumstances, but be wary, for these things are subtle and break easily.
  4. * The Guest provides a virtual to physical mapping, but we can neither trust
  5. * it nor use it: we verify and convert it here then point the CPU to the
  6. * converted Guest pages when running the Guest. :*/
  7. /* Copyright (C) Rusty Russell IBM Corporation 2006.
  8. * GPL v2 and any later version */
  9. #include <linux/mm.h>
  10. #include <linux/types.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/random.h>
  13. #include <linux/percpu.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/uaccess.h>
  16. #include <asm/bootparam.h>
  17. #include "lg.h"
  18. /*M:008 We hold reference to pages, which prevents them from being swapped.
  19. * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
  20. * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
  21. * could probably consider launching Guests as non-root. :*/
  22. /*H:300
  23. * The Page Table Code
  24. *
  25. * We use two-level page tables for the Guest. If you're not entirely
  26. * comfortable with virtual addresses, physical addresses and page tables then
  27. * I recommend you review arch/x86/lguest/boot.c's "Page Table Handling" (with
  28. * diagrams!).
  29. *
  30. * The Guest keeps page tables, but we maintain the actual ones here: these are
  31. * called "shadow" page tables. Which is a very Guest-centric name: these are
  32. * the real page tables the CPU uses, although we keep them up to date to
  33. * reflect the Guest's. (See what I mean about weird naming? Since when do
  34. * shadows reflect anything?)
  35. *
  36. * Anyway, this is the most complicated part of the Host code. There are seven
  37. * parts to this:
  38. * (i) Looking up a page table entry when the Guest faults,
  39. * (ii) Making sure the Guest stack is mapped,
  40. * (iii) Setting up a page table entry when the Guest tells us one has changed,
  41. * (iv) Switching page tables,
  42. * (v) Flushing (throwing away) page tables,
  43. * (vi) Mapping the Switcher when the Guest is about to run,
  44. * (vii) Setting up the page tables initially.
  45. :*/
  46. /* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
  47. * conveniently placed at the top 4MB, so it uses a separate, complete PTE
  48. * page. */
  49. #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
  50. /* We actually need a separate PTE page for each CPU. Remember that after the
  51. * Switcher code itself comes two pages for each CPU, and we don't want this
  52. * CPU's guest to see the pages of any other CPU. */
  53. static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
  54. #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
  55. /*H:320 The page table code is curly enough to need helper functions to keep it
  56. * clear and clean.
  57. *
  58. * There are two functions which return pointers to the shadow (aka "real")
  59. * page tables.
  60. *
  61. * spgd_addr() takes the virtual address and returns a pointer to the top-level
  62. * page directory entry (PGD) for that address. Since we keep track of several
  63. * page tables, the "i" argument tells us which one we're interested in (it's
  64. * usually the current one). */
  65. static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
  66. {
  67. unsigned int index = pgd_index(vaddr);
  68. /* We kill any Guest trying to touch the Switcher addresses. */
  69. if (index >= SWITCHER_PGD_INDEX) {
  70. kill_guest(cpu, "attempt to access switcher pages");
  71. index = 0;
  72. }
  73. /* Return a pointer index'th pgd entry for the i'th page table. */
  74. return &cpu->lg->pgdirs[i].pgdir[index];
  75. }
  76. /* This routine then takes the page directory entry returned above, which
  77. * contains the address of the page table entry (PTE) page. It then returns a
  78. * pointer to the PTE entry for the given address. */
  79. static pte_t *spte_addr(pgd_t spgd, unsigned long vaddr)
  80. {
  81. pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
  82. /* You should never call this if the PGD entry wasn't valid */
  83. BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
  84. return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
  85. }
  86. /* These two functions just like the above two, except they access the Guest
  87. * page tables. Hence they return a Guest address. */
  88. static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
  89. {
  90. unsigned int index = vaddr >> (PGDIR_SHIFT);
  91. return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
  92. }
  93. static unsigned long gpte_addr(pgd_t gpgd, unsigned long vaddr)
  94. {
  95. unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
  96. BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
  97. return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
  98. }
  99. /*:*/
  100. /*M:014 get_pfn is slow: we could probably try to grab batches of pages here as
  101. * an optimization (ie. pre-faulting). :*/
  102. /*H:350 This routine takes a page number given by the Guest and converts it to
  103. * an actual, physical page number. It can fail for several reasons: the
  104. * virtual address might not be mapped by the Launcher, the write flag is set
  105. * and the page is read-only, or the write flag was set and the page was
  106. * shared so had to be copied, but we ran out of memory.
  107. *
  108. * This holds a reference to the page, so release_pte() is careful to put that
  109. * back. */
  110. static unsigned long get_pfn(unsigned long virtpfn, int write)
  111. {
  112. struct page *page;
  113. /* gup me one page at this address please! */
  114. if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
  115. return page_to_pfn(page);
  116. /* This value indicates failure. */
  117. return -1UL;
  118. }
  119. /*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
  120. * entry can be a little tricky. The flags are (almost) the same, but the
  121. * Guest PTE contains a virtual page number: the CPU needs the real page
  122. * number. */
  123. static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
  124. {
  125. unsigned long pfn, base, flags;
  126. /* The Guest sets the global flag, because it thinks that it is using
  127. * PGE. We only told it to use PGE so it would tell us whether it was
  128. * flushing a kernel mapping or a userspace mapping. We don't actually
  129. * use the global bit, so throw it away. */
  130. flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
  131. /* The Guest's pages are offset inside the Launcher. */
  132. base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
  133. /* We need a temporary "unsigned long" variable to hold the answer from
  134. * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
  135. * fit in spte.pfn. get_pfn() finds the real physical number of the
  136. * page, given the virtual number. */
  137. pfn = get_pfn(base + pte_pfn(gpte), write);
  138. if (pfn == -1UL) {
  139. kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
  140. /* When we destroy the Guest, we'll go through the shadow page
  141. * tables and release_pte() them. Make sure we don't think
  142. * this one is valid! */
  143. flags = 0;
  144. }
  145. /* Now we assemble our shadow PTE from the page number and flags. */
  146. return pfn_pte(pfn, __pgprot(flags));
  147. }
  148. /*H:460 And to complete the chain, release_pte() looks like this: */
  149. static void release_pte(pte_t pte)
  150. {
  151. /* Remember that get_user_pages_fast() took a reference to the page, in
  152. * get_pfn()? We have to put it back now. */
  153. if (pte_flags(pte) & _PAGE_PRESENT)
  154. put_page(pfn_to_page(pte_pfn(pte)));
  155. }
  156. /*:*/
  157. static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
  158. {
  159. if ((pte_flags(gpte) & _PAGE_PSE) ||
  160. pte_pfn(gpte) >= cpu->lg->pfn_limit)
  161. kill_guest(cpu, "bad page table entry");
  162. }
  163. static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
  164. {
  165. if ((pgd_flags(gpgd) & ~_PAGE_TABLE) ||
  166. (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
  167. kill_guest(cpu, "bad page directory entry");
  168. }
  169. /*H:330
  170. * (i) Looking up a page table entry when the Guest faults.
  171. *
  172. * We saw this call in run_guest(): when we see a page fault in the Guest, we
  173. * come here. That's because we only set up the shadow page tables lazily as
  174. * they're needed, so we get page faults all the time and quietly fix them up
  175. * and return to the Guest without it knowing.
  176. *
  177. * If we fixed up the fault (ie. we mapped the address), this routine returns
  178. * true. Otherwise, it was a real fault and we need to tell the Guest. */
  179. bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
  180. {
  181. pgd_t gpgd;
  182. pgd_t *spgd;
  183. unsigned long gpte_ptr;
  184. pte_t gpte;
  185. pte_t *spte;
  186. /* First step: get the top-level Guest page table entry. */
  187. gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
  188. /* Toplevel not present? We can't map it in. */
  189. if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
  190. return false;
  191. /* Now look at the matching shadow entry. */
  192. spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
  193. if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
  194. /* No shadow entry: allocate a new shadow PTE page. */
  195. unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
  196. /* This is not really the Guest's fault, but killing it is
  197. * simple for this corner case. */
  198. if (!ptepage) {
  199. kill_guest(cpu, "out of memory allocating pte page");
  200. return false;
  201. }
  202. /* We check that the Guest pgd is OK. */
  203. check_gpgd(cpu, gpgd);
  204. /* And we copy the flags to the shadow PGD entry. The page
  205. * number in the shadow PGD is the page we just allocated. */
  206. *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
  207. }
  208. /* OK, now we look at the lower level in the Guest page table: keep its
  209. * address, because we might update it later. */
  210. gpte_ptr = gpte_addr(gpgd, vaddr);
  211. gpte = lgread(cpu, gpte_ptr, pte_t);
  212. /* If this page isn't in the Guest page tables, we can't page it in. */
  213. if (!(pte_flags(gpte) & _PAGE_PRESENT))
  214. return false;
  215. /* Check they're not trying to write to a page the Guest wants
  216. * read-only (bit 2 of errcode == write). */
  217. if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
  218. return false;
  219. /* User access to a kernel-only page? (bit 3 == user access) */
  220. if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
  221. return false;
  222. /* Check that the Guest PTE flags are OK, and the page number is below
  223. * the pfn_limit (ie. not mapping the Launcher binary). */
  224. check_gpte(cpu, gpte);
  225. /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
  226. gpte = pte_mkyoung(gpte);
  227. if (errcode & 2)
  228. gpte = pte_mkdirty(gpte);
  229. /* Get the pointer to the shadow PTE entry we're going to set. */
  230. spte = spte_addr(*spgd, vaddr);
  231. /* If there was a valid shadow PTE entry here before, we release it.
  232. * This can happen with a write to a previously read-only entry. */
  233. release_pte(*spte);
  234. /* If this is a write, we insist that the Guest page is writable (the
  235. * final arg to gpte_to_spte()). */
  236. if (pte_dirty(gpte))
  237. *spte = gpte_to_spte(cpu, gpte, 1);
  238. else
  239. /* If this is a read, don't set the "writable" bit in the page
  240. * table entry, even if the Guest says it's writable. That way
  241. * we will come back here when a write does actually occur, so
  242. * we can update the Guest's _PAGE_DIRTY flag. */
  243. *spte = gpte_to_spte(cpu, pte_wrprotect(gpte), 0);
  244. /* Finally, we write the Guest PTE entry back: we've set the
  245. * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
  246. lgwrite(cpu, gpte_ptr, pte_t, gpte);
  247. /* The fault is fixed, the page table is populated, the mapping
  248. * manipulated, the result returned and the code complete. A small
  249. * delay and a trace of alliteration are the only indications the Guest
  250. * has that a page fault occurred at all. */
  251. return true;
  252. }
  253. /*H:360
  254. * (ii) Making sure the Guest stack is mapped.
  255. *
  256. * Remember that direct traps into the Guest need a mapped Guest kernel stack.
  257. * pin_stack_pages() calls us here: we could simply call demand_page(), but as
  258. * we've seen that logic is quite long, and usually the stack pages are already
  259. * mapped, so it's overkill.
  260. *
  261. * This is a quick version which answers the question: is this virtual address
  262. * mapped by the shadow page tables, and is it writable? */
  263. static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
  264. {
  265. pgd_t *spgd;
  266. unsigned long flags;
  267. /* Look at the current top level entry: is it present? */
  268. spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
  269. if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
  270. return false;
  271. /* Check the flags on the pte entry itself: it must be present and
  272. * writable. */
  273. flags = pte_flags(*(spte_addr(*spgd, vaddr)));
  274. return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
  275. }
  276. /* So, when pin_stack_pages() asks us to pin a page, we check if it's already
  277. * in the page tables, and if not, we call demand_page() with error code 2
  278. * (meaning "write"). */
  279. void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
  280. {
  281. if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
  282. kill_guest(cpu, "bad stack page %#lx", vaddr);
  283. }
  284. /*H:450 If we chase down the release_pgd() code, it looks like this: */
  285. static void release_pgd(struct lguest *lg, pgd_t *spgd)
  286. {
  287. /* If the entry's not present, there's nothing to release. */
  288. if (pgd_flags(*spgd) & _PAGE_PRESENT) {
  289. unsigned int i;
  290. /* Converting the pfn to find the actual PTE page is easy: turn
  291. * the page number into a physical address, then convert to a
  292. * virtual address (easy for kernel pages like this one). */
  293. pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
  294. /* For each entry in the page, we might need to release it. */
  295. for (i = 0; i < PTRS_PER_PTE; i++)
  296. release_pte(ptepage[i]);
  297. /* Now we can free the page of PTEs */
  298. free_page((long)ptepage);
  299. /* And zero out the PGD entry so we never release it twice. */
  300. *spgd = __pgd(0);
  301. }
  302. }
  303. /*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
  304. * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
  305. * It simply releases every PTE page from 0 up to the Guest's kernel address. */
  306. static void flush_user_mappings(struct lguest *lg, int idx)
  307. {
  308. unsigned int i;
  309. /* Release every pgd entry up to the kernel's address. */
  310. for (i = 0; i < pgd_index(lg->kernel_address); i++)
  311. release_pgd(lg, lg->pgdirs[idx].pgdir + i);
  312. }
  313. /*H:440 (v) Flushing (throwing away) page tables,
  314. *
  315. * The Guest has a hypercall to throw away the page tables: it's used when a
  316. * large number of mappings have been changed. */
  317. void guest_pagetable_flush_user(struct lg_cpu *cpu)
  318. {
  319. /* Drop the userspace part of the current page table. */
  320. flush_user_mappings(cpu->lg, cpu->cpu_pgd);
  321. }
  322. /*:*/
  323. /* We walk down the guest page tables to get a guest-physical address */
  324. unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
  325. {
  326. pgd_t gpgd;
  327. pte_t gpte;
  328. /* First step: get the top-level Guest page table entry. */
  329. gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
  330. /* Toplevel not present? We can't map it in. */
  331. if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
  332. kill_guest(cpu, "Bad address %#lx", vaddr);
  333. return -1UL;
  334. }
  335. gpte = lgread(cpu, gpte_addr(gpgd, vaddr), pte_t);
  336. if (!(pte_flags(gpte) & _PAGE_PRESENT))
  337. kill_guest(cpu, "Bad address %#lx", vaddr);
  338. return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
  339. }
  340. /* We keep several page tables. This is a simple routine to find the page
  341. * table (if any) corresponding to this top-level address the Guest has given
  342. * us. */
  343. static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
  344. {
  345. unsigned int i;
  346. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  347. if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
  348. break;
  349. return i;
  350. }
  351. /*H:435 And this is us, creating the new page directory. If we really do
  352. * allocate a new one (and so the kernel parts are not there), we set
  353. * blank_pgdir. */
  354. static unsigned int new_pgdir(struct lg_cpu *cpu,
  355. unsigned long gpgdir,
  356. int *blank_pgdir)
  357. {
  358. unsigned int next;
  359. /* We pick one entry at random to throw out. Choosing the Least
  360. * Recently Used might be better, but this is easy. */
  361. next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
  362. /* If it's never been allocated at all before, try now. */
  363. if (!cpu->lg->pgdirs[next].pgdir) {
  364. cpu->lg->pgdirs[next].pgdir =
  365. (pgd_t *)get_zeroed_page(GFP_KERNEL);
  366. /* If the allocation fails, just keep using the one we have */
  367. if (!cpu->lg->pgdirs[next].pgdir)
  368. next = cpu->cpu_pgd;
  369. else
  370. /* This is a blank page, so there are no kernel
  371. * mappings: caller must map the stack! */
  372. *blank_pgdir = 1;
  373. }
  374. /* Record which Guest toplevel this shadows. */
  375. cpu->lg->pgdirs[next].gpgdir = gpgdir;
  376. /* Release all the non-kernel mappings. */
  377. flush_user_mappings(cpu->lg, next);
  378. return next;
  379. }
  380. /*H:430 (iv) Switching page tables
  381. *
  382. * Now we've seen all the page table setting and manipulation, let's see what
  383. * what happens when the Guest changes page tables (ie. changes the top-level
  384. * pgdir). This occurs on almost every context switch. */
  385. void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
  386. {
  387. int newpgdir, repin = 0;
  388. /* Look to see if we have this one already. */
  389. newpgdir = find_pgdir(cpu->lg, pgtable);
  390. /* If not, we allocate or mug an existing one: if it's a fresh one,
  391. * repin gets set to 1. */
  392. if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
  393. newpgdir = new_pgdir(cpu, pgtable, &repin);
  394. /* Change the current pgd index to the new one. */
  395. cpu->cpu_pgd = newpgdir;
  396. /* If it was completely blank, we map in the Guest kernel stack */
  397. if (repin)
  398. pin_stack_pages(cpu);
  399. }
  400. /*H:470 Finally, a routine which throws away everything: all PGD entries in all
  401. * the shadow page tables, including the Guest's kernel mappings. This is used
  402. * when we destroy the Guest. */
  403. static void release_all_pagetables(struct lguest *lg)
  404. {
  405. unsigned int i, j;
  406. /* Every shadow pagetable this Guest has */
  407. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  408. if (lg->pgdirs[i].pgdir)
  409. /* Every PGD entry except the Switcher at the top */
  410. for (j = 0; j < SWITCHER_PGD_INDEX; j++)
  411. release_pgd(lg, lg->pgdirs[i].pgdir + j);
  412. }
  413. /* We also throw away everything when a Guest tells us it's changed a kernel
  414. * mapping. Since kernel mappings are in every page table, it's easiest to
  415. * throw them all away. This traps the Guest in amber for a while as
  416. * everything faults back in, but it's rare. */
  417. void guest_pagetable_clear_all(struct lg_cpu *cpu)
  418. {
  419. release_all_pagetables(cpu->lg);
  420. /* We need the Guest kernel stack mapped again. */
  421. pin_stack_pages(cpu);
  422. }
  423. /*:*/
  424. /*M:009 Since we throw away all mappings when a kernel mapping changes, our
  425. * performance sucks for guests using highmem. In fact, a guest with
  426. * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
  427. * usually slower than a Guest with less memory.
  428. *
  429. * This, of course, cannot be fixed. It would take some kind of... well, I
  430. * don't know, but the term "puissant code-fu" comes to mind. :*/
  431. /*H:420 This is the routine which actually sets the page table entry for then
  432. * "idx"'th shadow page table.
  433. *
  434. * Normally, we can just throw out the old entry and replace it with 0: if they
  435. * use it demand_page() will put the new entry in. We need to do this anyway:
  436. * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
  437. * is read from, and _PAGE_DIRTY when it's written to.
  438. *
  439. * But Avi Kivity pointed out that most Operating Systems (Linux included) set
  440. * these bits on PTEs immediately anyway. This is done to save the CPU from
  441. * having to update them, but it helps us the same way: if they set
  442. * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
  443. * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
  444. */
  445. static void do_set_pte(struct lg_cpu *cpu, int idx,
  446. unsigned long vaddr, pte_t gpte)
  447. {
  448. /* Look up the matching shadow page directory entry. */
  449. pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
  450. /* If the top level isn't present, there's no entry to update. */
  451. if (pgd_flags(*spgd) & _PAGE_PRESENT) {
  452. /* Otherwise, we start by releasing the existing entry. */
  453. pte_t *spte = spte_addr(*spgd, vaddr);
  454. release_pte(*spte);
  455. /* If they're setting this entry as dirty or accessed, we might
  456. * as well put that entry they've given us in now. This shaves
  457. * 10% off a copy-on-write micro-benchmark. */
  458. if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
  459. check_gpte(cpu, gpte);
  460. *spte = gpte_to_spte(cpu, gpte,
  461. pte_flags(gpte) & _PAGE_DIRTY);
  462. } else
  463. /* Otherwise kill it and we can demand_page() it in
  464. * later. */
  465. *spte = __pte(0);
  466. }
  467. }
  468. /*H:410 Updating a PTE entry is a little trickier.
  469. *
  470. * We keep track of several different page tables (the Guest uses one for each
  471. * process, so it makes sense to cache at least a few). Each of these have
  472. * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
  473. * all processes. So when the page table above that address changes, we update
  474. * all the page tables, not just the current one. This is rare.
  475. *
  476. * The benefit is that when we have to track a new page table, we can keep all
  477. * the kernel mappings. This speeds up context switch immensely. */
  478. void guest_set_pte(struct lg_cpu *cpu,
  479. unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
  480. {
  481. /* Kernel mappings must be changed on all top levels. Slow, but doesn't
  482. * happen often. */
  483. if (vaddr >= cpu->lg->kernel_address) {
  484. unsigned int i;
  485. for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
  486. if (cpu->lg->pgdirs[i].pgdir)
  487. do_set_pte(cpu, i, vaddr, gpte);
  488. } else {
  489. /* Is this page table one we have a shadow for? */
  490. int pgdir = find_pgdir(cpu->lg, gpgdir);
  491. if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
  492. /* If so, do the update. */
  493. do_set_pte(cpu, pgdir, vaddr, gpte);
  494. }
  495. }
  496. /*H:400
  497. * (iii) Setting up a page table entry when the Guest tells us one has changed.
  498. *
  499. * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
  500. * with the other side of page tables while we're here: what happens when the
  501. * Guest asks for a page table to be updated?
  502. *
  503. * We already saw that demand_page() will fill in the shadow page tables when
  504. * needed, so we can simply remove shadow page table entries whenever the Guest
  505. * tells us they've changed. When the Guest tries to use the new entry it will
  506. * fault and demand_page() will fix it up.
  507. *
  508. * So with that in mind here's our code to to update a (top-level) PGD entry:
  509. */
  510. void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
  511. {
  512. int pgdir;
  513. /* The kernel seems to try to initialize this early on: we ignore its
  514. * attempts to map over the Switcher. */
  515. if (idx >= SWITCHER_PGD_INDEX)
  516. return;
  517. /* If they're talking about a page table we have a shadow for... */
  518. pgdir = find_pgdir(lg, gpgdir);
  519. if (pgdir < ARRAY_SIZE(lg->pgdirs))
  520. /* ... throw it away. */
  521. release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
  522. }
  523. /* Once we know how much memory we have we can construct simple identity
  524. * (which set virtual == physical) and linear mappings
  525. * which will get the Guest far enough into the boot to create its own.
  526. *
  527. * We lay them out of the way, just below the initrd (which is why we need to
  528. * know its size here). */
  529. static unsigned long setup_pagetables(struct lguest *lg,
  530. unsigned long mem,
  531. unsigned long initrd_size)
  532. {
  533. pgd_t __user *pgdir;
  534. pte_t __user *linear;
  535. unsigned int mapped_pages, i, linear_pages, phys_linear;
  536. unsigned long mem_base = (unsigned long)lg->mem_base;
  537. /* We have mapped_pages frames to map, so we need
  538. * linear_pages page tables to map them. */
  539. mapped_pages = mem / PAGE_SIZE;
  540. linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE;
  541. /* We put the toplevel page directory page at the top of memory. */
  542. pgdir = (pgd_t *)(mem + mem_base - initrd_size - PAGE_SIZE);
  543. /* Now we use the next linear_pages pages as pte pages */
  544. linear = (void *)pgdir - linear_pages * PAGE_SIZE;
  545. /* Linear mapping is easy: put every page's address into the
  546. * mapping in order. */
  547. for (i = 0; i < mapped_pages; i++) {
  548. pte_t pte;
  549. pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER));
  550. if (copy_to_user(&linear[i], &pte, sizeof(pte)) != 0)
  551. return -EFAULT;
  552. }
  553. /* The top level points to the linear page table pages above.
  554. * We setup the identity and linear mappings here. */
  555. phys_linear = (unsigned long)linear - mem_base;
  556. for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
  557. pgd_t pgd;
  558. pgd = __pgd((phys_linear + i * sizeof(pte_t)) |
  559. (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
  560. if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd))
  561. || copy_to_user(&pgdir[pgd_index(PAGE_OFFSET)
  562. + i / PTRS_PER_PTE],
  563. &pgd, sizeof(pgd)))
  564. return -EFAULT;
  565. }
  566. /* We return the top level (guest-physical) address: remember where
  567. * this is. */
  568. return (unsigned long)pgdir - mem_base;
  569. }
  570. /*H:500 (vii) Setting up the page tables initially.
  571. *
  572. * When a Guest is first created, the Launcher tells us where the toplevel of
  573. * its first page table is. We set some things up here: */
  574. int init_guest_pagetable(struct lguest *lg)
  575. {
  576. u64 mem;
  577. u32 initrd_size;
  578. struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
  579. /* Get the Guest memory size and the ramdisk size from the boot header
  580. * located at lg->mem_base (Guest address 0). */
  581. if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
  582. || get_user(initrd_size, &boot->hdr.ramdisk_size))
  583. return -EFAULT;
  584. /* We start on the first shadow page table, and give it a blank PGD
  585. * page. */
  586. lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size);
  587. if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir))
  588. return lg->pgdirs[0].gpgdir;
  589. lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
  590. if (!lg->pgdirs[0].pgdir)
  591. return -ENOMEM;
  592. lg->cpus[0].cpu_pgd = 0;
  593. return 0;
  594. }
  595. /* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
  596. void page_table_guest_data_init(struct lg_cpu *cpu)
  597. {
  598. /* We get the kernel address: above this is all kernel memory. */
  599. if (get_user(cpu->lg->kernel_address,
  600. &cpu->lg->lguest_data->kernel_address)
  601. /* We tell the Guest that it can't use the top 4MB of virtual
  602. * addresses used by the Switcher. */
  603. || put_user(4U*1024*1024, &cpu->lg->lguest_data->reserve_mem)
  604. || put_user(cpu->lg->pgdirs[0].gpgdir, &cpu->lg->lguest_data->pgdir))
  605. kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
  606. /* In flush_user_mappings() we loop from 0 to
  607. * "pgd_index(lg->kernel_address)". This assumes it won't hit the
  608. * Switcher mappings, so check that now. */
  609. if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
  610. kill_guest(cpu, "bad kernel address %#lx",
  611. cpu->lg->kernel_address);
  612. }
  613. /* When a Guest dies, our cleanup is fairly simple. */
  614. void free_guest_pagetable(struct lguest *lg)
  615. {
  616. unsigned int i;
  617. /* Throw away all page table pages. */
  618. release_all_pagetables(lg);
  619. /* Now free the top levels: free_page() can handle 0 just fine. */
  620. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  621. free_page((long)lg->pgdirs[i].pgdir);
  622. }
  623. /*H:480 (vi) Mapping the Switcher when the Guest is about to run.
  624. *
  625. * The Switcher and the two pages for this CPU need to be visible in the
  626. * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
  627. * for each CPU already set up, we just need to hook them in now we know which
  628. * Guest is about to run on this CPU. */
  629. void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
  630. {
  631. pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
  632. pgd_t switcher_pgd;
  633. pte_t regs_pte;
  634. unsigned long pfn;
  635. /* Make the last PGD entry for this Guest point to the Switcher's PTE
  636. * page for this CPU (with appropriate flags). */
  637. switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL);
  638. cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
  639. /* We also change the Switcher PTE page. When we're running the Guest,
  640. * we want the Guest's "regs" page to appear where the first Switcher
  641. * page for this CPU is. This is an optimization: when the Switcher
  642. * saves the Guest registers, it saves them into the first page of this
  643. * CPU's "struct lguest_pages": if we make sure the Guest's register
  644. * page is already mapped there, we don't have to copy them out
  645. * again. */
  646. pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
  647. regs_pte = pfn_pte(pfn, __pgprot(__PAGE_KERNEL));
  648. switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
  649. }
  650. /*:*/
  651. static void free_switcher_pte_pages(void)
  652. {
  653. unsigned int i;
  654. for_each_possible_cpu(i)
  655. free_page((long)switcher_pte_page(i));
  656. }
  657. /*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
  658. * the CPU number and the "struct page"s for the Switcher code itself.
  659. *
  660. * Currently the Switcher is less than a page long, so "pages" is always 1. */
  661. static __init void populate_switcher_pte_page(unsigned int cpu,
  662. struct page *switcher_page[],
  663. unsigned int pages)
  664. {
  665. unsigned int i;
  666. pte_t *pte = switcher_pte_page(cpu);
  667. /* The first entries are easy: they map the Switcher code. */
  668. for (i = 0; i < pages; i++) {
  669. pte[i] = mk_pte(switcher_page[i],
  670. __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
  671. }
  672. /* The only other thing we map is this CPU's pair of pages. */
  673. i = pages + cpu*2;
  674. /* First page (Guest registers) is writable from the Guest */
  675. pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
  676. __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
  677. /* The second page contains the "struct lguest_ro_state", and is
  678. * read-only. */
  679. pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
  680. __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
  681. }
  682. /* We've made it through the page table code. Perhaps our tired brains are
  683. * still processing the details, or perhaps we're simply glad it's over.
  684. *
  685. * If nothing else, note that all this complexity in juggling shadow page tables
  686. * in sync with the Guest's page tables is for one reason: for most Guests this
  687. * page table dance determines how bad performance will be. This is why Xen
  688. * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
  689. * have implemented shadow page table support directly into hardware.
  690. *
  691. * There is just one file remaining in the Host. */
  692. /*H:510 At boot or module load time, init_pagetables() allocates and populates
  693. * the Switcher PTE page for each CPU. */
  694. __init int init_pagetables(struct page **switcher_page, unsigned int pages)
  695. {
  696. unsigned int i;
  697. for_each_possible_cpu(i) {
  698. switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
  699. if (!switcher_pte_page(i)) {
  700. free_switcher_pte_pages();
  701. return -ENOMEM;
  702. }
  703. populate_switcher_pte_page(i, switcher_page, pages);
  704. }
  705. return 0;
  706. }
  707. /*:*/
  708. /* Cleaning up simply involves freeing the PTE page for each CPU. */
  709. void free_pagetables(void)
  710. {
  711. free_switcher_pte_pages();
  712. }