input.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/input.h>
  13. #include <linux/module.h>
  14. #include <linux/random.h>
  15. #include <linux/major.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/poll.h>
  19. #include <linux/device.h>
  20. #include <linux/mutex.h>
  21. #include <linux/rcupdate.h>
  22. #include <linux/smp_lock.h>
  23. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  24. MODULE_DESCRIPTION("Input core");
  25. MODULE_LICENSE("GPL");
  26. #define INPUT_DEVICES 256
  27. static LIST_HEAD(input_dev_list);
  28. static LIST_HEAD(input_handler_list);
  29. /*
  30. * input_mutex protects access to both input_dev_list and input_handler_list.
  31. * This also causes input_[un]register_device and input_[un]register_handler
  32. * be mutually exclusive which simplifies locking in drivers implementing
  33. * input handlers.
  34. */
  35. static DEFINE_MUTEX(input_mutex);
  36. static struct input_handler *input_table[8];
  37. static inline int is_event_supported(unsigned int code,
  38. unsigned long *bm, unsigned int max)
  39. {
  40. return code <= max && test_bit(code, bm);
  41. }
  42. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  43. {
  44. if (fuzz) {
  45. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  46. return old_val;
  47. if (value > old_val - fuzz && value < old_val + fuzz)
  48. return (old_val * 3 + value) / 4;
  49. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  50. return (old_val + value) / 2;
  51. }
  52. return value;
  53. }
  54. /*
  55. * Pass event through all open handles. This function is called with
  56. * dev->event_lock held and interrupts disabled.
  57. */
  58. static void input_pass_event(struct input_dev *dev,
  59. unsigned int type, unsigned int code, int value)
  60. {
  61. struct input_handle *handle;
  62. rcu_read_lock();
  63. handle = rcu_dereference(dev->grab);
  64. if (handle)
  65. handle->handler->event(handle, type, code, value);
  66. else
  67. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  68. if (handle->open)
  69. handle->handler->event(handle,
  70. type, code, value);
  71. rcu_read_unlock();
  72. }
  73. /*
  74. * Generate software autorepeat event. Note that we take
  75. * dev->event_lock here to avoid racing with input_event
  76. * which may cause keys get "stuck".
  77. */
  78. static void input_repeat_key(unsigned long data)
  79. {
  80. struct input_dev *dev = (void *) data;
  81. unsigned long flags;
  82. spin_lock_irqsave(&dev->event_lock, flags);
  83. if (test_bit(dev->repeat_key, dev->key) &&
  84. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  85. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  86. if (dev->sync) {
  87. /*
  88. * Only send SYN_REPORT if we are not in a middle
  89. * of driver parsing a new hardware packet.
  90. * Otherwise assume that the driver will send
  91. * SYN_REPORT once it's done.
  92. */
  93. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  94. }
  95. if (dev->rep[REP_PERIOD])
  96. mod_timer(&dev->timer, jiffies +
  97. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  98. }
  99. spin_unlock_irqrestore(&dev->event_lock, flags);
  100. }
  101. static void input_start_autorepeat(struct input_dev *dev, int code)
  102. {
  103. if (test_bit(EV_REP, dev->evbit) &&
  104. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  105. dev->timer.data) {
  106. dev->repeat_key = code;
  107. mod_timer(&dev->timer,
  108. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  109. }
  110. }
  111. static void input_stop_autorepeat(struct input_dev *dev)
  112. {
  113. del_timer(&dev->timer);
  114. }
  115. #define INPUT_IGNORE_EVENT 0
  116. #define INPUT_PASS_TO_HANDLERS 1
  117. #define INPUT_PASS_TO_DEVICE 2
  118. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  119. static void input_handle_event(struct input_dev *dev,
  120. unsigned int type, unsigned int code, int value)
  121. {
  122. int disposition = INPUT_IGNORE_EVENT;
  123. switch (type) {
  124. case EV_SYN:
  125. switch (code) {
  126. case SYN_CONFIG:
  127. disposition = INPUT_PASS_TO_ALL;
  128. break;
  129. case SYN_REPORT:
  130. if (!dev->sync) {
  131. dev->sync = 1;
  132. disposition = INPUT_PASS_TO_HANDLERS;
  133. }
  134. break;
  135. }
  136. break;
  137. case EV_KEY:
  138. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  139. !!test_bit(code, dev->key) != value) {
  140. if (value != 2) {
  141. __change_bit(code, dev->key);
  142. if (value)
  143. input_start_autorepeat(dev, code);
  144. else
  145. input_stop_autorepeat(dev);
  146. }
  147. disposition = INPUT_PASS_TO_HANDLERS;
  148. }
  149. break;
  150. case EV_SW:
  151. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  152. !!test_bit(code, dev->sw) != value) {
  153. __change_bit(code, dev->sw);
  154. disposition = INPUT_PASS_TO_HANDLERS;
  155. }
  156. break;
  157. case EV_ABS:
  158. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  159. value = input_defuzz_abs_event(value,
  160. dev->abs[code], dev->absfuzz[code]);
  161. if (dev->abs[code] != value) {
  162. dev->abs[code] = value;
  163. disposition = INPUT_PASS_TO_HANDLERS;
  164. }
  165. }
  166. break;
  167. case EV_REL:
  168. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  169. disposition = INPUT_PASS_TO_HANDLERS;
  170. break;
  171. case EV_MSC:
  172. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  173. disposition = INPUT_PASS_TO_ALL;
  174. break;
  175. case EV_LED:
  176. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  177. !!test_bit(code, dev->led) != value) {
  178. __change_bit(code, dev->led);
  179. disposition = INPUT_PASS_TO_ALL;
  180. }
  181. break;
  182. case EV_SND:
  183. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  184. if (!!test_bit(code, dev->snd) != !!value)
  185. __change_bit(code, dev->snd);
  186. disposition = INPUT_PASS_TO_ALL;
  187. }
  188. break;
  189. case EV_REP:
  190. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  191. dev->rep[code] = value;
  192. disposition = INPUT_PASS_TO_ALL;
  193. }
  194. break;
  195. case EV_FF:
  196. if (value >= 0)
  197. disposition = INPUT_PASS_TO_ALL;
  198. break;
  199. case EV_PWR:
  200. disposition = INPUT_PASS_TO_ALL;
  201. break;
  202. }
  203. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  204. dev->sync = 0;
  205. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  206. dev->event(dev, type, code, value);
  207. if (disposition & INPUT_PASS_TO_HANDLERS)
  208. input_pass_event(dev, type, code, value);
  209. }
  210. /**
  211. * input_event() - report new input event
  212. * @dev: device that generated the event
  213. * @type: type of the event
  214. * @code: event code
  215. * @value: value of the event
  216. *
  217. * This function should be used by drivers implementing various input
  218. * devices. See also input_inject_event().
  219. */
  220. void input_event(struct input_dev *dev,
  221. unsigned int type, unsigned int code, int value)
  222. {
  223. unsigned long flags;
  224. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  225. spin_lock_irqsave(&dev->event_lock, flags);
  226. add_input_randomness(type, code, value);
  227. input_handle_event(dev, type, code, value);
  228. spin_unlock_irqrestore(&dev->event_lock, flags);
  229. }
  230. }
  231. EXPORT_SYMBOL(input_event);
  232. /**
  233. * input_inject_event() - send input event from input handler
  234. * @handle: input handle to send event through
  235. * @type: type of the event
  236. * @code: event code
  237. * @value: value of the event
  238. *
  239. * Similar to input_event() but will ignore event if device is
  240. * "grabbed" and handle injecting event is not the one that owns
  241. * the device.
  242. */
  243. void input_inject_event(struct input_handle *handle,
  244. unsigned int type, unsigned int code, int value)
  245. {
  246. struct input_dev *dev = handle->dev;
  247. struct input_handle *grab;
  248. unsigned long flags;
  249. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  250. spin_lock_irqsave(&dev->event_lock, flags);
  251. rcu_read_lock();
  252. grab = rcu_dereference(dev->grab);
  253. if (!grab || grab == handle)
  254. input_handle_event(dev, type, code, value);
  255. rcu_read_unlock();
  256. spin_unlock_irqrestore(&dev->event_lock, flags);
  257. }
  258. }
  259. EXPORT_SYMBOL(input_inject_event);
  260. /**
  261. * input_grab_device - grabs device for exclusive use
  262. * @handle: input handle that wants to own the device
  263. *
  264. * When a device is grabbed by an input handle all events generated by
  265. * the device are delivered only to this handle. Also events injected
  266. * by other input handles are ignored while device is grabbed.
  267. */
  268. int input_grab_device(struct input_handle *handle)
  269. {
  270. struct input_dev *dev = handle->dev;
  271. int retval;
  272. retval = mutex_lock_interruptible(&dev->mutex);
  273. if (retval)
  274. return retval;
  275. if (dev->grab) {
  276. retval = -EBUSY;
  277. goto out;
  278. }
  279. rcu_assign_pointer(dev->grab, handle);
  280. synchronize_rcu();
  281. out:
  282. mutex_unlock(&dev->mutex);
  283. return retval;
  284. }
  285. EXPORT_SYMBOL(input_grab_device);
  286. static void __input_release_device(struct input_handle *handle)
  287. {
  288. struct input_dev *dev = handle->dev;
  289. if (dev->grab == handle) {
  290. rcu_assign_pointer(dev->grab, NULL);
  291. /* Make sure input_pass_event() notices that grab is gone */
  292. synchronize_rcu();
  293. list_for_each_entry(handle, &dev->h_list, d_node)
  294. if (handle->open && handle->handler->start)
  295. handle->handler->start(handle);
  296. }
  297. }
  298. /**
  299. * input_release_device - release previously grabbed device
  300. * @handle: input handle that owns the device
  301. *
  302. * Releases previously grabbed device so that other input handles can
  303. * start receiving input events. Upon release all handlers attached
  304. * to the device have their start() method called so they have a change
  305. * to synchronize device state with the rest of the system.
  306. */
  307. void input_release_device(struct input_handle *handle)
  308. {
  309. struct input_dev *dev = handle->dev;
  310. mutex_lock(&dev->mutex);
  311. __input_release_device(handle);
  312. mutex_unlock(&dev->mutex);
  313. }
  314. EXPORT_SYMBOL(input_release_device);
  315. /**
  316. * input_open_device - open input device
  317. * @handle: handle through which device is being accessed
  318. *
  319. * This function should be called by input handlers when they
  320. * want to start receive events from given input device.
  321. */
  322. int input_open_device(struct input_handle *handle)
  323. {
  324. struct input_dev *dev = handle->dev;
  325. int retval;
  326. retval = mutex_lock_interruptible(&dev->mutex);
  327. if (retval)
  328. return retval;
  329. if (dev->going_away) {
  330. retval = -ENODEV;
  331. goto out;
  332. }
  333. handle->open++;
  334. if (!dev->users++ && dev->open)
  335. retval = dev->open(dev);
  336. if (retval) {
  337. dev->users--;
  338. if (!--handle->open) {
  339. /*
  340. * Make sure we are not delivering any more events
  341. * through this handle
  342. */
  343. synchronize_rcu();
  344. }
  345. }
  346. out:
  347. mutex_unlock(&dev->mutex);
  348. return retval;
  349. }
  350. EXPORT_SYMBOL(input_open_device);
  351. int input_flush_device(struct input_handle *handle, struct file *file)
  352. {
  353. struct input_dev *dev = handle->dev;
  354. int retval;
  355. retval = mutex_lock_interruptible(&dev->mutex);
  356. if (retval)
  357. return retval;
  358. if (dev->flush)
  359. retval = dev->flush(dev, file);
  360. mutex_unlock(&dev->mutex);
  361. return retval;
  362. }
  363. EXPORT_SYMBOL(input_flush_device);
  364. /**
  365. * input_close_device - close input device
  366. * @handle: handle through which device is being accessed
  367. *
  368. * This function should be called by input handlers when they
  369. * want to stop receive events from given input device.
  370. */
  371. void input_close_device(struct input_handle *handle)
  372. {
  373. struct input_dev *dev = handle->dev;
  374. mutex_lock(&dev->mutex);
  375. __input_release_device(handle);
  376. if (!--dev->users && dev->close)
  377. dev->close(dev);
  378. if (!--handle->open) {
  379. /*
  380. * synchronize_rcu() makes sure that input_pass_event()
  381. * completed and that no more input events are delivered
  382. * through this handle
  383. */
  384. synchronize_rcu();
  385. }
  386. mutex_unlock(&dev->mutex);
  387. }
  388. EXPORT_SYMBOL(input_close_device);
  389. /*
  390. * Prepare device for unregistering
  391. */
  392. static void input_disconnect_device(struct input_dev *dev)
  393. {
  394. struct input_handle *handle;
  395. int code;
  396. /*
  397. * Mark device as going away. Note that we take dev->mutex here
  398. * not to protect access to dev->going_away but rather to ensure
  399. * that there are no threads in the middle of input_open_device()
  400. */
  401. mutex_lock(&dev->mutex);
  402. dev->going_away = 1;
  403. mutex_unlock(&dev->mutex);
  404. spin_lock_irq(&dev->event_lock);
  405. /*
  406. * Simulate keyup events for all pressed keys so that handlers
  407. * are not left with "stuck" keys. The driver may continue
  408. * generate events even after we done here but they will not
  409. * reach any handlers.
  410. */
  411. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  412. for (code = 0; code <= KEY_MAX; code++) {
  413. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  414. __test_and_clear_bit(code, dev->key)) {
  415. input_pass_event(dev, EV_KEY, code, 0);
  416. }
  417. }
  418. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  419. }
  420. list_for_each_entry(handle, &dev->h_list, d_node)
  421. handle->open = 0;
  422. spin_unlock_irq(&dev->event_lock);
  423. }
  424. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  425. {
  426. switch (dev->keycodesize) {
  427. case 1:
  428. return ((u8 *)dev->keycode)[scancode];
  429. case 2:
  430. return ((u16 *)dev->keycode)[scancode];
  431. default:
  432. return ((u32 *)dev->keycode)[scancode];
  433. }
  434. }
  435. static int input_default_getkeycode(struct input_dev *dev,
  436. int scancode, int *keycode)
  437. {
  438. if (!dev->keycodesize)
  439. return -EINVAL;
  440. if (scancode >= dev->keycodemax)
  441. return -EINVAL;
  442. *keycode = input_fetch_keycode(dev, scancode);
  443. return 0;
  444. }
  445. static int input_default_setkeycode(struct input_dev *dev,
  446. int scancode, int keycode)
  447. {
  448. int old_keycode;
  449. int i;
  450. if (scancode >= dev->keycodemax)
  451. return -EINVAL;
  452. if (!dev->keycodesize)
  453. return -EINVAL;
  454. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  455. return -EINVAL;
  456. switch (dev->keycodesize) {
  457. case 1: {
  458. u8 *k = (u8 *)dev->keycode;
  459. old_keycode = k[scancode];
  460. k[scancode] = keycode;
  461. break;
  462. }
  463. case 2: {
  464. u16 *k = (u16 *)dev->keycode;
  465. old_keycode = k[scancode];
  466. k[scancode] = keycode;
  467. break;
  468. }
  469. default: {
  470. u32 *k = (u32 *)dev->keycode;
  471. old_keycode = k[scancode];
  472. k[scancode] = keycode;
  473. break;
  474. }
  475. }
  476. clear_bit(old_keycode, dev->keybit);
  477. set_bit(keycode, dev->keybit);
  478. for (i = 0; i < dev->keycodemax; i++) {
  479. if (input_fetch_keycode(dev, i) == old_keycode) {
  480. set_bit(old_keycode, dev->keybit);
  481. break; /* Setting the bit twice is useless, so break */
  482. }
  483. }
  484. return 0;
  485. }
  486. /**
  487. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  488. * @dev: input device which keymap is being queried
  489. * @scancode: scancode (or its equivalent for device in question) for which
  490. * keycode is needed
  491. * @keycode: result
  492. *
  493. * This function should be called by anyone interested in retrieving current
  494. * keymap. Presently keyboard and evdev handlers use it.
  495. */
  496. int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
  497. {
  498. if (scancode < 0)
  499. return -EINVAL;
  500. return dev->getkeycode(dev, scancode, keycode);
  501. }
  502. EXPORT_SYMBOL(input_get_keycode);
  503. /**
  504. * input_get_keycode - assign new keycode to a given scancode
  505. * @dev: input device which keymap is being updated
  506. * @scancode: scancode (or its equivalent for device in question)
  507. * @keycode: new keycode to be assigned to the scancode
  508. *
  509. * This function should be called by anyone needing to update current
  510. * keymap. Presently keyboard and evdev handlers use it.
  511. */
  512. int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
  513. {
  514. unsigned long flags;
  515. int old_keycode;
  516. int retval;
  517. if (scancode < 0)
  518. return -EINVAL;
  519. if (keycode < 0 || keycode > KEY_MAX)
  520. return -EINVAL;
  521. spin_lock_irqsave(&dev->event_lock, flags);
  522. retval = dev->getkeycode(dev, scancode, &old_keycode);
  523. if (retval)
  524. goto out;
  525. retval = dev->setkeycode(dev, scancode, keycode);
  526. if (retval)
  527. goto out;
  528. /*
  529. * Simulate keyup event if keycode is not present
  530. * in the keymap anymore
  531. */
  532. if (test_bit(EV_KEY, dev->evbit) &&
  533. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  534. __test_and_clear_bit(old_keycode, dev->key)) {
  535. input_pass_event(dev, EV_KEY, old_keycode, 0);
  536. if (dev->sync)
  537. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  538. }
  539. out:
  540. spin_unlock_irqrestore(&dev->event_lock, flags);
  541. return retval;
  542. }
  543. EXPORT_SYMBOL(input_set_keycode);
  544. #define MATCH_BIT(bit, max) \
  545. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  546. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  547. break; \
  548. if (i != BITS_TO_LONGS(max)) \
  549. continue;
  550. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  551. struct input_dev *dev)
  552. {
  553. int i;
  554. for (; id->flags || id->driver_info; id++) {
  555. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  556. if (id->bustype != dev->id.bustype)
  557. continue;
  558. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  559. if (id->vendor != dev->id.vendor)
  560. continue;
  561. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  562. if (id->product != dev->id.product)
  563. continue;
  564. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  565. if (id->version != dev->id.version)
  566. continue;
  567. MATCH_BIT(evbit, EV_MAX);
  568. MATCH_BIT(keybit, KEY_MAX);
  569. MATCH_BIT(relbit, REL_MAX);
  570. MATCH_BIT(absbit, ABS_MAX);
  571. MATCH_BIT(mscbit, MSC_MAX);
  572. MATCH_BIT(ledbit, LED_MAX);
  573. MATCH_BIT(sndbit, SND_MAX);
  574. MATCH_BIT(ffbit, FF_MAX);
  575. MATCH_BIT(swbit, SW_MAX);
  576. return id;
  577. }
  578. return NULL;
  579. }
  580. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  581. {
  582. const struct input_device_id *id;
  583. int error;
  584. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  585. return -ENODEV;
  586. id = input_match_device(handler->id_table, dev);
  587. if (!id)
  588. return -ENODEV;
  589. error = handler->connect(handler, dev, id);
  590. if (error && error != -ENODEV)
  591. printk(KERN_ERR
  592. "input: failed to attach handler %s to device %s, "
  593. "error: %d\n",
  594. handler->name, kobject_name(&dev->dev.kobj), error);
  595. return error;
  596. }
  597. #ifdef CONFIG_PROC_FS
  598. static struct proc_dir_entry *proc_bus_input_dir;
  599. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  600. static int input_devices_state;
  601. static inline void input_wakeup_procfs_readers(void)
  602. {
  603. input_devices_state++;
  604. wake_up(&input_devices_poll_wait);
  605. }
  606. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  607. {
  608. poll_wait(file, &input_devices_poll_wait, wait);
  609. if (file->f_version != input_devices_state) {
  610. file->f_version = input_devices_state;
  611. return POLLIN | POLLRDNORM;
  612. }
  613. return 0;
  614. }
  615. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  616. {
  617. if (mutex_lock_interruptible(&input_mutex))
  618. return NULL;
  619. return seq_list_start(&input_dev_list, *pos);
  620. }
  621. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  622. {
  623. return seq_list_next(v, &input_dev_list, pos);
  624. }
  625. static void input_devices_seq_stop(struct seq_file *seq, void *v)
  626. {
  627. mutex_unlock(&input_mutex);
  628. }
  629. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  630. unsigned long *bitmap, int max)
  631. {
  632. int i;
  633. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  634. if (bitmap[i])
  635. break;
  636. seq_printf(seq, "B: %s=", name);
  637. for (; i >= 0; i--)
  638. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  639. seq_putc(seq, '\n');
  640. }
  641. static int input_devices_seq_show(struct seq_file *seq, void *v)
  642. {
  643. struct input_dev *dev = container_of(v, struct input_dev, node);
  644. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  645. struct input_handle *handle;
  646. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  647. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  648. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  649. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  650. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  651. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  652. seq_printf(seq, "H: Handlers=");
  653. list_for_each_entry(handle, &dev->h_list, d_node)
  654. seq_printf(seq, "%s ", handle->name);
  655. seq_putc(seq, '\n');
  656. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  657. if (test_bit(EV_KEY, dev->evbit))
  658. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  659. if (test_bit(EV_REL, dev->evbit))
  660. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  661. if (test_bit(EV_ABS, dev->evbit))
  662. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  663. if (test_bit(EV_MSC, dev->evbit))
  664. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  665. if (test_bit(EV_LED, dev->evbit))
  666. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  667. if (test_bit(EV_SND, dev->evbit))
  668. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  669. if (test_bit(EV_FF, dev->evbit))
  670. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  671. if (test_bit(EV_SW, dev->evbit))
  672. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  673. seq_putc(seq, '\n');
  674. kfree(path);
  675. return 0;
  676. }
  677. static const struct seq_operations input_devices_seq_ops = {
  678. .start = input_devices_seq_start,
  679. .next = input_devices_seq_next,
  680. .stop = input_devices_seq_stop,
  681. .show = input_devices_seq_show,
  682. };
  683. static int input_proc_devices_open(struct inode *inode, struct file *file)
  684. {
  685. return seq_open(file, &input_devices_seq_ops);
  686. }
  687. static const struct file_operations input_devices_fileops = {
  688. .owner = THIS_MODULE,
  689. .open = input_proc_devices_open,
  690. .poll = input_proc_devices_poll,
  691. .read = seq_read,
  692. .llseek = seq_lseek,
  693. .release = seq_release,
  694. };
  695. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  696. {
  697. if (mutex_lock_interruptible(&input_mutex))
  698. return NULL;
  699. seq->private = (void *)(unsigned long)*pos;
  700. return seq_list_start(&input_handler_list, *pos);
  701. }
  702. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  703. {
  704. seq->private = (void *)(unsigned long)(*pos + 1);
  705. return seq_list_next(v, &input_handler_list, pos);
  706. }
  707. static void input_handlers_seq_stop(struct seq_file *seq, void *v)
  708. {
  709. mutex_unlock(&input_mutex);
  710. }
  711. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  712. {
  713. struct input_handler *handler = container_of(v, struct input_handler, node);
  714. seq_printf(seq, "N: Number=%ld Name=%s",
  715. (unsigned long)seq->private, handler->name);
  716. if (handler->fops)
  717. seq_printf(seq, " Minor=%d", handler->minor);
  718. seq_putc(seq, '\n');
  719. return 0;
  720. }
  721. static const struct seq_operations input_handlers_seq_ops = {
  722. .start = input_handlers_seq_start,
  723. .next = input_handlers_seq_next,
  724. .stop = input_handlers_seq_stop,
  725. .show = input_handlers_seq_show,
  726. };
  727. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  728. {
  729. return seq_open(file, &input_handlers_seq_ops);
  730. }
  731. static const struct file_operations input_handlers_fileops = {
  732. .owner = THIS_MODULE,
  733. .open = input_proc_handlers_open,
  734. .read = seq_read,
  735. .llseek = seq_lseek,
  736. .release = seq_release,
  737. };
  738. static int __init input_proc_init(void)
  739. {
  740. struct proc_dir_entry *entry;
  741. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  742. if (!proc_bus_input_dir)
  743. return -ENOMEM;
  744. entry = proc_create("devices", 0, proc_bus_input_dir,
  745. &input_devices_fileops);
  746. if (!entry)
  747. goto fail1;
  748. entry = proc_create("handlers", 0, proc_bus_input_dir,
  749. &input_handlers_fileops);
  750. if (!entry)
  751. goto fail2;
  752. return 0;
  753. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  754. fail1: remove_proc_entry("bus/input", NULL);
  755. return -ENOMEM;
  756. }
  757. static void input_proc_exit(void)
  758. {
  759. remove_proc_entry("devices", proc_bus_input_dir);
  760. remove_proc_entry("handlers", proc_bus_input_dir);
  761. remove_proc_entry("bus/input", NULL);
  762. }
  763. #else /* !CONFIG_PROC_FS */
  764. static inline void input_wakeup_procfs_readers(void) { }
  765. static inline int input_proc_init(void) { return 0; }
  766. static inline void input_proc_exit(void) { }
  767. #endif
  768. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  769. static ssize_t input_dev_show_##name(struct device *dev, \
  770. struct device_attribute *attr, \
  771. char *buf) \
  772. { \
  773. struct input_dev *input_dev = to_input_dev(dev); \
  774. \
  775. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  776. input_dev->name ? input_dev->name : ""); \
  777. } \
  778. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  779. INPUT_DEV_STRING_ATTR_SHOW(name);
  780. INPUT_DEV_STRING_ATTR_SHOW(phys);
  781. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  782. static int input_print_modalias_bits(char *buf, int size,
  783. char name, unsigned long *bm,
  784. unsigned int min_bit, unsigned int max_bit)
  785. {
  786. int len = 0, i;
  787. len += snprintf(buf, max(size, 0), "%c", name);
  788. for (i = min_bit; i < max_bit; i++)
  789. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  790. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  791. return len;
  792. }
  793. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  794. int add_cr)
  795. {
  796. int len;
  797. len = snprintf(buf, max(size, 0),
  798. "input:b%04Xv%04Xp%04Xe%04X-",
  799. id->id.bustype, id->id.vendor,
  800. id->id.product, id->id.version);
  801. len += input_print_modalias_bits(buf + len, size - len,
  802. 'e', id->evbit, 0, EV_MAX);
  803. len += input_print_modalias_bits(buf + len, size - len,
  804. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  805. len += input_print_modalias_bits(buf + len, size - len,
  806. 'r', id->relbit, 0, REL_MAX);
  807. len += input_print_modalias_bits(buf + len, size - len,
  808. 'a', id->absbit, 0, ABS_MAX);
  809. len += input_print_modalias_bits(buf + len, size - len,
  810. 'm', id->mscbit, 0, MSC_MAX);
  811. len += input_print_modalias_bits(buf + len, size - len,
  812. 'l', id->ledbit, 0, LED_MAX);
  813. len += input_print_modalias_bits(buf + len, size - len,
  814. 's', id->sndbit, 0, SND_MAX);
  815. len += input_print_modalias_bits(buf + len, size - len,
  816. 'f', id->ffbit, 0, FF_MAX);
  817. len += input_print_modalias_bits(buf + len, size - len,
  818. 'w', id->swbit, 0, SW_MAX);
  819. if (add_cr)
  820. len += snprintf(buf + len, max(size - len, 0), "\n");
  821. return len;
  822. }
  823. static ssize_t input_dev_show_modalias(struct device *dev,
  824. struct device_attribute *attr,
  825. char *buf)
  826. {
  827. struct input_dev *id = to_input_dev(dev);
  828. ssize_t len;
  829. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  830. return min_t(int, len, PAGE_SIZE);
  831. }
  832. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  833. static struct attribute *input_dev_attrs[] = {
  834. &dev_attr_name.attr,
  835. &dev_attr_phys.attr,
  836. &dev_attr_uniq.attr,
  837. &dev_attr_modalias.attr,
  838. NULL
  839. };
  840. static struct attribute_group input_dev_attr_group = {
  841. .attrs = input_dev_attrs,
  842. };
  843. #define INPUT_DEV_ID_ATTR(name) \
  844. static ssize_t input_dev_show_id_##name(struct device *dev, \
  845. struct device_attribute *attr, \
  846. char *buf) \
  847. { \
  848. struct input_dev *input_dev = to_input_dev(dev); \
  849. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  850. } \
  851. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  852. INPUT_DEV_ID_ATTR(bustype);
  853. INPUT_DEV_ID_ATTR(vendor);
  854. INPUT_DEV_ID_ATTR(product);
  855. INPUT_DEV_ID_ATTR(version);
  856. static struct attribute *input_dev_id_attrs[] = {
  857. &dev_attr_bustype.attr,
  858. &dev_attr_vendor.attr,
  859. &dev_attr_product.attr,
  860. &dev_attr_version.attr,
  861. NULL
  862. };
  863. static struct attribute_group input_dev_id_attr_group = {
  864. .name = "id",
  865. .attrs = input_dev_id_attrs,
  866. };
  867. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  868. int max, int add_cr)
  869. {
  870. int i;
  871. int len = 0;
  872. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  873. if (bitmap[i])
  874. break;
  875. for (; i >= 0; i--)
  876. len += snprintf(buf + len, max(buf_size - len, 0),
  877. "%lx%s", bitmap[i], i > 0 ? " " : "");
  878. if (add_cr)
  879. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  880. return len;
  881. }
  882. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  883. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  884. struct device_attribute *attr, \
  885. char *buf) \
  886. { \
  887. struct input_dev *input_dev = to_input_dev(dev); \
  888. int len = input_print_bitmap(buf, PAGE_SIZE, \
  889. input_dev->bm##bit, ev##_MAX, 1); \
  890. return min_t(int, len, PAGE_SIZE); \
  891. } \
  892. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  893. INPUT_DEV_CAP_ATTR(EV, ev);
  894. INPUT_DEV_CAP_ATTR(KEY, key);
  895. INPUT_DEV_CAP_ATTR(REL, rel);
  896. INPUT_DEV_CAP_ATTR(ABS, abs);
  897. INPUT_DEV_CAP_ATTR(MSC, msc);
  898. INPUT_DEV_CAP_ATTR(LED, led);
  899. INPUT_DEV_CAP_ATTR(SND, snd);
  900. INPUT_DEV_CAP_ATTR(FF, ff);
  901. INPUT_DEV_CAP_ATTR(SW, sw);
  902. static struct attribute *input_dev_caps_attrs[] = {
  903. &dev_attr_ev.attr,
  904. &dev_attr_key.attr,
  905. &dev_attr_rel.attr,
  906. &dev_attr_abs.attr,
  907. &dev_attr_msc.attr,
  908. &dev_attr_led.attr,
  909. &dev_attr_snd.attr,
  910. &dev_attr_ff.attr,
  911. &dev_attr_sw.attr,
  912. NULL
  913. };
  914. static struct attribute_group input_dev_caps_attr_group = {
  915. .name = "capabilities",
  916. .attrs = input_dev_caps_attrs,
  917. };
  918. static struct attribute_group *input_dev_attr_groups[] = {
  919. &input_dev_attr_group,
  920. &input_dev_id_attr_group,
  921. &input_dev_caps_attr_group,
  922. NULL
  923. };
  924. static void input_dev_release(struct device *device)
  925. {
  926. struct input_dev *dev = to_input_dev(device);
  927. input_ff_destroy(dev);
  928. kfree(dev);
  929. module_put(THIS_MODULE);
  930. }
  931. /*
  932. * Input uevent interface - loading event handlers based on
  933. * device bitfields.
  934. */
  935. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  936. const char *name, unsigned long *bitmap, int max)
  937. {
  938. int len;
  939. if (add_uevent_var(env, "%s=", name))
  940. return -ENOMEM;
  941. len = input_print_bitmap(&env->buf[env->buflen - 1],
  942. sizeof(env->buf) - env->buflen,
  943. bitmap, max, 0);
  944. if (len >= (sizeof(env->buf) - env->buflen))
  945. return -ENOMEM;
  946. env->buflen += len;
  947. return 0;
  948. }
  949. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  950. struct input_dev *dev)
  951. {
  952. int len;
  953. if (add_uevent_var(env, "MODALIAS="))
  954. return -ENOMEM;
  955. len = input_print_modalias(&env->buf[env->buflen - 1],
  956. sizeof(env->buf) - env->buflen,
  957. dev, 0);
  958. if (len >= (sizeof(env->buf) - env->buflen))
  959. return -ENOMEM;
  960. env->buflen += len;
  961. return 0;
  962. }
  963. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  964. do { \
  965. int err = add_uevent_var(env, fmt, val); \
  966. if (err) \
  967. return err; \
  968. } while (0)
  969. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  970. do { \
  971. int err = input_add_uevent_bm_var(env, name, bm, max); \
  972. if (err) \
  973. return err; \
  974. } while (0)
  975. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  976. do { \
  977. int err = input_add_uevent_modalias_var(env, dev); \
  978. if (err) \
  979. return err; \
  980. } while (0)
  981. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  982. {
  983. struct input_dev *dev = to_input_dev(device);
  984. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  985. dev->id.bustype, dev->id.vendor,
  986. dev->id.product, dev->id.version);
  987. if (dev->name)
  988. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  989. if (dev->phys)
  990. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  991. if (dev->uniq)
  992. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  993. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  994. if (test_bit(EV_KEY, dev->evbit))
  995. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  996. if (test_bit(EV_REL, dev->evbit))
  997. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  998. if (test_bit(EV_ABS, dev->evbit))
  999. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1000. if (test_bit(EV_MSC, dev->evbit))
  1001. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1002. if (test_bit(EV_LED, dev->evbit))
  1003. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1004. if (test_bit(EV_SND, dev->evbit))
  1005. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1006. if (test_bit(EV_FF, dev->evbit))
  1007. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1008. if (test_bit(EV_SW, dev->evbit))
  1009. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1010. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1011. return 0;
  1012. }
  1013. static struct device_type input_dev_type = {
  1014. .groups = input_dev_attr_groups,
  1015. .release = input_dev_release,
  1016. .uevent = input_dev_uevent,
  1017. };
  1018. struct class input_class = {
  1019. .name = "input",
  1020. };
  1021. EXPORT_SYMBOL_GPL(input_class);
  1022. /**
  1023. * input_allocate_device - allocate memory for new input device
  1024. *
  1025. * Returns prepared struct input_dev or NULL.
  1026. *
  1027. * NOTE: Use input_free_device() to free devices that have not been
  1028. * registered; input_unregister_device() should be used for already
  1029. * registered devices.
  1030. */
  1031. struct input_dev *input_allocate_device(void)
  1032. {
  1033. struct input_dev *dev;
  1034. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1035. if (dev) {
  1036. dev->dev.type = &input_dev_type;
  1037. dev->dev.class = &input_class;
  1038. device_initialize(&dev->dev);
  1039. mutex_init(&dev->mutex);
  1040. spin_lock_init(&dev->event_lock);
  1041. INIT_LIST_HEAD(&dev->h_list);
  1042. INIT_LIST_HEAD(&dev->node);
  1043. __module_get(THIS_MODULE);
  1044. }
  1045. return dev;
  1046. }
  1047. EXPORT_SYMBOL(input_allocate_device);
  1048. /**
  1049. * input_free_device - free memory occupied by input_dev structure
  1050. * @dev: input device to free
  1051. *
  1052. * This function should only be used if input_register_device()
  1053. * was not called yet or if it failed. Once device was registered
  1054. * use input_unregister_device() and memory will be freed once last
  1055. * reference to the device is dropped.
  1056. *
  1057. * Device should be allocated by input_allocate_device().
  1058. *
  1059. * NOTE: If there are references to the input device then memory
  1060. * will not be freed until last reference is dropped.
  1061. */
  1062. void input_free_device(struct input_dev *dev)
  1063. {
  1064. if (dev)
  1065. input_put_device(dev);
  1066. }
  1067. EXPORT_SYMBOL(input_free_device);
  1068. /**
  1069. * input_set_capability - mark device as capable of a certain event
  1070. * @dev: device that is capable of emitting or accepting event
  1071. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1072. * @code: event code
  1073. *
  1074. * In addition to setting up corresponding bit in appropriate capability
  1075. * bitmap the function also adjusts dev->evbit.
  1076. */
  1077. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1078. {
  1079. switch (type) {
  1080. case EV_KEY:
  1081. __set_bit(code, dev->keybit);
  1082. break;
  1083. case EV_REL:
  1084. __set_bit(code, dev->relbit);
  1085. break;
  1086. case EV_ABS:
  1087. __set_bit(code, dev->absbit);
  1088. break;
  1089. case EV_MSC:
  1090. __set_bit(code, dev->mscbit);
  1091. break;
  1092. case EV_SW:
  1093. __set_bit(code, dev->swbit);
  1094. break;
  1095. case EV_LED:
  1096. __set_bit(code, dev->ledbit);
  1097. break;
  1098. case EV_SND:
  1099. __set_bit(code, dev->sndbit);
  1100. break;
  1101. case EV_FF:
  1102. __set_bit(code, dev->ffbit);
  1103. break;
  1104. case EV_PWR:
  1105. /* do nothing */
  1106. break;
  1107. default:
  1108. printk(KERN_ERR
  1109. "input_set_capability: unknown type %u (code %u)\n",
  1110. type, code);
  1111. dump_stack();
  1112. return;
  1113. }
  1114. __set_bit(type, dev->evbit);
  1115. }
  1116. EXPORT_SYMBOL(input_set_capability);
  1117. /**
  1118. * input_register_device - register device with input core
  1119. * @dev: device to be registered
  1120. *
  1121. * This function registers device with input core. The device must be
  1122. * allocated with input_allocate_device() and all it's capabilities
  1123. * set up before registering.
  1124. * If function fails the device must be freed with input_free_device().
  1125. * Once device has been successfully registered it can be unregistered
  1126. * with input_unregister_device(); input_free_device() should not be
  1127. * called in this case.
  1128. */
  1129. int input_register_device(struct input_dev *dev)
  1130. {
  1131. static atomic_t input_no = ATOMIC_INIT(0);
  1132. struct input_handler *handler;
  1133. const char *path;
  1134. int error;
  1135. __set_bit(EV_SYN, dev->evbit);
  1136. /*
  1137. * If delay and period are pre-set by the driver, then autorepeating
  1138. * is handled by the driver itself and we don't do it in input.c.
  1139. */
  1140. init_timer(&dev->timer);
  1141. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1142. dev->timer.data = (long) dev;
  1143. dev->timer.function = input_repeat_key;
  1144. dev->rep[REP_DELAY] = 250;
  1145. dev->rep[REP_PERIOD] = 33;
  1146. }
  1147. if (!dev->getkeycode)
  1148. dev->getkeycode = input_default_getkeycode;
  1149. if (!dev->setkeycode)
  1150. dev->setkeycode = input_default_setkeycode;
  1151. dev_set_name(&dev->dev, "input%ld",
  1152. (unsigned long) atomic_inc_return(&input_no) - 1);
  1153. error = device_add(&dev->dev);
  1154. if (error)
  1155. return error;
  1156. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1157. printk(KERN_INFO "input: %s as %s\n",
  1158. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1159. kfree(path);
  1160. error = mutex_lock_interruptible(&input_mutex);
  1161. if (error) {
  1162. device_del(&dev->dev);
  1163. return error;
  1164. }
  1165. list_add_tail(&dev->node, &input_dev_list);
  1166. list_for_each_entry(handler, &input_handler_list, node)
  1167. input_attach_handler(dev, handler);
  1168. input_wakeup_procfs_readers();
  1169. mutex_unlock(&input_mutex);
  1170. return 0;
  1171. }
  1172. EXPORT_SYMBOL(input_register_device);
  1173. /**
  1174. * input_unregister_device - unregister previously registered device
  1175. * @dev: device to be unregistered
  1176. *
  1177. * This function unregisters an input device. Once device is unregistered
  1178. * the caller should not try to access it as it may get freed at any moment.
  1179. */
  1180. void input_unregister_device(struct input_dev *dev)
  1181. {
  1182. struct input_handle *handle, *next;
  1183. input_disconnect_device(dev);
  1184. mutex_lock(&input_mutex);
  1185. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1186. handle->handler->disconnect(handle);
  1187. WARN_ON(!list_empty(&dev->h_list));
  1188. del_timer_sync(&dev->timer);
  1189. list_del_init(&dev->node);
  1190. input_wakeup_procfs_readers();
  1191. mutex_unlock(&input_mutex);
  1192. device_unregister(&dev->dev);
  1193. }
  1194. EXPORT_SYMBOL(input_unregister_device);
  1195. /**
  1196. * input_register_handler - register a new input handler
  1197. * @handler: handler to be registered
  1198. *
  1199. * This function registers a new input handler (interface) for input
  1200. * devices in the system and attaches it to all input devices that
  1201. * are compatible with the handler.
  1202. */
  1203. int input_register_handler(struct input_handler *handler)
  1204. {
  1205. struct input_dev *dev;
  1206. int retval;
  1207. retval = mutex_lock_interruptible(&input_mutex);
  1208. if (retval)
  1209. return retval;
  1210. INIT_LIST_HEAD(&handler->h_list);
  1211. if (handler->fops != NULL) {
  1212. if (input_table[handler->minor >> 5]) {
  1213. retval = -EBUSY;
  1214. goto out;
  1215. }
  1216. input_table[handler->minor >> 5] = handler;
  1217. }
  1218. list_add_tail(&handler->node, &input_handler_list);
  1219. list_for_each_entry(dev, &input_dev_list, node)
  1220. input_attach_handler(dev, handler);
  1221. input_wakeup_procfs_readers();
  1222. out:
  1223. mutex_unlock(&input_mutex);
  1224. return retval;
  1225. }
  1226. EXPORT_SYMBOL(input_register_handler);
  1227. /**
  1228. * input_unregister_handler - unregisters an input handler
  1229. * @handler: handler to be unregistered
  1230. *
  1231. * This function disconnects a handler from its input devices and
  1232. * removes it from lists of known handlers.
  1233. */
  1234. void input_unregister_handler(struct input_handler *handler)
  1235. {
  1236. struct input_handle *handle, *next;
  1237. mutex_lock(&input_mutex);
  1238. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1239. handler->disconnect(handle);
  1240. WARN_ON(!list_empty(&handler->h_list));
  1241. list_del_init(&handler->node);
  1242. if (handler->fops != NULL)
  1243. input_table[handler->minor >> 5] = NULL;
  1244. input_wakeup_procfs_readers();
  1245. mutex_unlock(&input_mutex);
  1246. }
  1247. EXPORT_SYMBOL(input_unregister_handler);
  1248. /**
  1249. * input_register_handle - register a new input handle
  1250. * @handle: handle to register
  1251. *
  1252. * This function puts a new input handle onto device's
  1253. * and handler's lists so that events can flow through
  1254. * it once it is opened using input_open_device().
  1255. *
  1256. * This function is supposed to be called from handler's
  1257. * connect() method.
  1258. */
  1259. int input_register_handle(struct input_handle *handle)
  1260. {
  1261. struct input_handler *handler = handle->handler;
  1262. struct input_dev *dev = handle->dev;
  1263. int error;
  1264. /*
  1265. * We take dev->mutex here to prevent race with
  1266. * input_release_device().
  1267. */
  1268. error = mutex_lock_interruptible(&dev->mutex);
  1269. if (error)
  1270. return error;
  1271. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1272. mutex_unlock(&dev->mutex);
  1273. synchronize_rcu();
  1274. /*
  1275. * Since we are supposed to be called from ->connect()
  1276. * which is mutually exclusive with ->disconnect()
  1277. * we can't be racing with input_unregister_handle()
  1278. * and so separate lock is not needed here.
  1279. */
  1280. list_add_tail(&handle->h_node, &handler->h_list);
  1281. if (handler->start)
  1282. handler->start(handle);
  1283. return 0;
  1284. }
  1285. EXPORT_SYMBOL(input_register_handle);
  1286. /**
  1287. * input_unregister_handle - unregister an input handle
  1288. * @handle: handle to unregister
  1289. *
  1290. * This function removes input handle from device's
  1291. * and handler's lists.
  1292. *
  1293. * This function is supposed to be called from handler's
  1294. * disconnect() method.
  1295. */
  1296. void input_unregister_handle(struct input_handle *handle)
  1297. {
  1298. struct input_dev *dev = handle->dev;
  1299. list_del_init(&handle->h_node);
  1300. /*
  1301. * Take dev->mutex to prevent race with input_release_device().
  1302. */
  1303. mutex_lock(&dev->mutex);
  1304. list_del_rcu(&handle->d_node);
  1305. mutex_unlock(&dev->mutex);
  1306. synchronize_rcu();
  1307. }
  1308. EXPORT_SYMBOL(input_unregister_handle);
  1309. static int input_open_file(struct inode *inode, struct file *file)
  1310. {
  1311. struct input_handler *handler;
  1312. const struct file_operations *old_fops, *new_fops = NULL;
  1313. int err;
  1314. lock_kernel();
  1315. /* No load-on-demand here? */
  1316. handler = input_table[iminor(inode) >> 5];
  1317. if (!handler || !(new_fops = fops_get(handler->fops))) {
  1318. err = -ENODEV;
  1319. goto out;
  1320. }
  1321. /*
  1322. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1323. * not "no device". Oh, well...
  1324. */
  1325. if (!new_fops->open) {
  1326. fops_put(new_fops);
  1327. err = -ENODEV;
  1328. goto out;
  1329. }
  1330. old_fops = file->f_op;
  1331. file->f_op = new_fops;
  1332. err = new_fops->open(inode, file);
  1333. if (err) {
  1334. fops_put(file->f_op);
  1335. file->f_op = fops_get(old_fops);
  1336. }
  1337. fops_put(old_fops);
  1338. out:
  1339. unlock_kernel();
  1340. return err;
  1341. }
  1342. static const struct file_operations input_fops = {
  1343. .owner = THIS_MODULE,
  1344. .open = input_open_file,
  1345. };
  1346. static int __init input_init(void)
  1347. {
  1348. int err;
  1349. err = class_register(&input_class);
  1350. if (err) {
  1351. printk(KERN_ERR "input: unable to register input_dev class\n");
  1352. return err;
  1353. }
  1354. err = input_proc_init();
  1355. if (err)
  1356. goto fail1;
  1357. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1358. if (err) {
  1359. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1360. goto fail2;
  1361. }
  1362. return 0;
  1363. fail2: input_proc_exit();
  1364. fail1: class_unregister(&input_class);
  1365. return err;
  1366. }
  1367. static void __exit input_exit(void)
  1368. {
  1369. input_proc_exit();
  1370. unregister_chrdev(INPUT_MAJOR, "input");
  1371. class_unregister(&input_class);
  1372. }
  1373. subsys_initcall(input_init);
  1374. module_exit(input_exit);