i915_gem.c 111 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include <linux/swap.h>
  32. #include <linux/pci.h>
  33. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  34. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  35. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  37. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  38. int write);
  39. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  40. uint64_t offset,
  41. uint64_t size);
  42. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_get_pages(struct drm_gem_object *obj);
  44. static void i915_gem_object_put_pages(struct drm_gem_object *obj);
  45. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  46. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  47. unsigned alignment);
  48. static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
  49. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  50. static int i915_gem_evict_something(struct drm_device *dev);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file_priv);
  54. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  55. unsigned long end)
  56. {
  57. drm_i915_private_t *dev_priv = dev->dev_private;
  58. if (start >= end ||
  59. (start & (PAGE_SIZE - 1)) != 0 ||
  60. (end & (PAGE_SIZE - 1)) != 0) {
  61. return -EINVAL;
  62. }
  63. drm_mm_init(&dev_priv->mm.gtt_space, start,
  64. end - start);
  65. dev->gtt_total = (uint32_t) (end - start);
  66. return 0;
  67. }
  68. int
  69. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  70. struct drm_file *file_priv)
  71. {
  72. struct drm_i915_gem_init *args = data;
  73. int ret;
  74. mutex_lock(&dev->struct_mutex);
  75. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  76. mutex_unlock(&dev->struct_mutex);
  77. return ret;
  78. }
  79. int
  80. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  81. struct drm_file *file_priv)
  82. {
  83. struct drm_i915_gem_get_aperture *args = data;
  84. if (!(dev->driver->driver_features & DRIVER_GEM))
  85. return -ENODEV;
  86. args->aper_size = dev->gtt_total;
  87. args->aper_available_size = (args->aper_size -
  88. atomic_read(&dev->pin_memory));
  89. return 0;
  90. }
  91. /**
  92. * Creates a new mm object and returns a handle to it.
  93. */
  94. int
  95. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  96. struct drm_file *file_priv)
  97. {
  98. struct drm_i915_gem_create *args = data;
  99. struct drm_gem_object *obj;
  100. int handle, ret;
  101. args->size = roundup(args->size, PAGE_SIZE);
  102. /* Allocate the new object */
  103. obj = drm_gem_object_alloc(dev, args->size);
  104. if (obj == NULL)
  105. return -ENOMEM;
  106. ret = drm_gem_handle_create(file_priv, obj, &handle);
  107. mutex_lock(&dev->struct_mutex);
  108. drm_gem_object_handle_unreference(obj);
  109. mutex_unlock(&dev->struct_mutex);
  110. if (ret)
  111. return ret;
  112. args->handle = handle;
  113. return 0;
  114. }
  115. static inline int
  116. fast_shmem_read(struct page **pages,
  117. loff_t page_base, int page_offset,
  118. char __user *data,
  119. int length)
  120. {
  121. char __iomem *vaddr;
  122. int ret;
  123. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  124. if (vaddr == NULL)
  125. return -ENOMEM;
  126. ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  127. kunmap_atomic(vaddr, KM_USER0);
  128. return ret;
  129. }
  130. static inline int
  131. slow_shmem_copy(struct page *dst_page,
  132. int dst_offset,
  133. struct page *src_page,
  134. int src_offset,
  135. int length)
  136. {
  137. char *dst_vaddr, *src_vaddr;
  138. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  139. if (dst_vaddr == NULL)
  140. return -ENOMEM;
  141. src_vaddr = kmap_atomic(src_page, KM_USER1);
  142. if (src_vaddr == NULL) {
  143. kunmap_atomic(dst_vaddr, KM_USER0);
  144. return -ENOMEM;
  145. }
  146. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  147. kunmap_atomic(src_vaddr, KM_USER1);
  148. kunmap_atomic(dst_vaddr, KM_USER0);
  149. return 0;
  150. }
  151. /**
  152. * This is the fast shmem pread path, which attempts to copy_from_user directly
  153. * from the backing pages of the object to the user's address space. On a
  154. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  155. */
  156. static int
  157. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  158. struct drm_i915_gem_pread *args,
  159. struct drm_file *file_priv)
  160. {
  161. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  162. ssize_t remain;
  163. loff_t offset, page_base;
  164. char __user *user_data;
  165. int page_offset, page_length;
  166. int ret;
  167. user_data = (char __user *) (uintptr_t) args->data_ptr;
  168. remain = args->size;
  169. mutex_lock(&dev->struct_mutex);
  170. ret = i915_gem_object_get_pages(obj);
  171. if (ret != 0)
  172. goto fail_unlock;
  173. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  174. args->size);
  175. if (ret != 0)
  176. goto fail_put_pages;
  177. obj_priv = obj->driver_private;
  178. offset = args->offset;
  179. while (remain > 0) {
  180. /* Operation in this page
  181. *
  182. * page_base = page offset within aperture
  183. * page_offset = offset within page
  184. * page_length = bytes to copy for this page
  185. */
  186. page_base = (offset & ~(PAGE_SIZE-1));
  187. page_offset = offset & (PAGE_SIZE-1);
  188. page_length = remain;
  189. if ((page_offset + remain) > PAGE_SIZE)
  190. page_length = PAGE_SIZE - page_offset;
  191. ret = fast_shmem_read(obj_priv->pages,
  192. page_base, page_offset,
  193. user_data, page_length);
  194. if (ret)
  195. goto fail_put_pages;
  196. remain -= page_length;
  197. user_data += page_length;
  198. offset += page_length;
  199. }
  200. fail_put_pages:
  201. i915_gem_object_put_pages(obj);
  202. fail_unlock:
  203. mutex_unlock(&dev->struct_mutex);
  204. return ret;
  205. }
  206. /**
  207. * This is the fallback shmem pread path, which allocates temporary storage
  208. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  209. * can copy out of the object's backing pages while holding the struct mutex
  210. * and not take page faults.
  211. */
  212. static int
  213. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  214. struct drm_i915_gem_pread *args,
  215. struct drm_file *file_priv)
  216. {
  217. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  218. struct mm_struct *mm = current->mm;
  219. struct page **user_pages;
  220. ssize_t remain;
  221. loff_t offset, pinned_pages, i;
  222. loff_t first_data_page, last_data_page, num_pages;
  223. int shmem_page_index, shmem_page_offset;
  224. int data_page_index, data_page_offset;
  225. int page_length;
  226. int ret;
  227. uint64_t data_ptr = args->data_ptr;
  228. remain = args->size;
  229. /* Pin the user pages containing the data. We can't fault while
  230. * holding the struct mutex, yet we want to hold it while
  231. * dereferencing the user data.
  232. */
  233. first_data_page = data_ptr / PAGE_SIZE;
  234. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  235. num_pages = last_data_page - first_data_page + 1;
  236. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  237. if (user_pages == NULL)
  238. return -ENOMEM;
  239. down_read(&mm->mmap_sem);
  240. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  241. num_pages, 0, 0, user_pages, NULL);
  242. up_read(&mm->mmap_sem);
  243. if (pinned_pages < num_pages) {
  244. ret = -EFAULT;
  245. goto fail_put_user_pages;
  246. }
  247. mutex_lock(&dev->struct_mutex);
  248. ret = i915_gem_object_get_pages(obj);
  249. if (ret != 0)
  250. goto fail_unlock;
  251. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  252. args->size);
  253. if (ret != 0)
  254. goto fail_put_pages;
  255. obj_priv = obj->driver_private;
  256. offset = args->offset;
  257. while (remain > 0) {
  258. /* Operation in this page
  259. *
  260. * shmem_page_index = page number within shmem file
  261. * shmem_page_offset = offset within page in shmem file
  262. * data_page_index = page number in get_user_pages return
  263. * data_page_offset = offset with data_page_index page.
  264. * page_length = bytes to copy for this page
  265. */
  266. shmem_page_index = offset / PAGE_SIZE;
  267. shmem_page_offset = offset & ~PAGE_MASK;
  268. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  269. data_page_offset = data_ptr & ~PAGE_MASK;
  270. page_length = remain;
  271. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  272. page_length = PAGE_SIZE - shmem_page_offset;
  273. if ((data_page_offset + page_length) > PAGE_SIZE)
  274. page_length = PAGE_SIZE - data_page_offset;
  275. ret = slow_shmem_copy(user_pages[data_page_index],
  276. data_page_offset,
  277. obj_priv->pages[shmem_page_index],
  278. shmem_page_offset,
  279. page_length);
  280. if (ret)
  281. goto fail_put_pages;
  282. remain -= page_length;
  283. data_ptr += page_length;
  284. offset += page_length;
  285. }
  286. fail_put_pages:
  287. i915_gem_object_put_pages(obj);
  288. fail_unlock:
  289. mutex_unlock(&dev->struct_mutex);
  290. fail_put_user_pages:
  291. for (i = 0; i < pinned_pages; i++) {
  292. SetPageDirty(user_pages[i]);
  293. page_cache_release(user_pages[i]);
  294. }
  295. kfree(user_pages);
  296. return ret;
  297. }
  298. /**
  299. * Reads data from the object referenced by handle.
  300. *
  301. * On error, the contents of *data are undefined.
  302. */
  303. int
  304. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  305. struct drm_file *file_priv)
  306. {
  307. struct drm_i915_gem_pread *args = data;
  308. struct drm_gem_object *obj;
  309. struct drm_i915_gem_object *obj_priv;
  310. int ret;
  311. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  312. if (obj == NULL)
  313. return -EBADF;
  314. obj_priv = obj->driver_private;
  315. /* Bounds check source.
  316. *
  317. * XXX: This could use review for overflow issues...
  318. */
  319. if (args->offset > obj->size || args->size > obj->size ||
  320. args->offset + args->size > obj->size) {
  321. drm_gem_object_unreference(obj);
  322. return -EINVAL;
  323. }
  324. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  325. if (ret != 0)
  326. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  327. drm_gem_object_unreference(obj);
  328. return ret;
  329. }
  330. /* This is the fast write path which cannot handle
  331. * page faults in the source data
  332. */
  333. static inline int
  334. fast_user_write(struct io_mapping *mapping,
  335. loff_t page_base, int page_offset,
  336. char __user *user_data,
  337. int length)
  338. {
  339. char *vaddr_atomic;
  340. unsigned long unwritten;
  341. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  342. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  343. user_data, length);
  344. io_mapping_unmap_atomic(vaddr_atomic);
  345. if (unwritten)
  346. return -EFAULT;
  347. return 0;
  348. }
  349. /* Here's the write path which can sleep for
  350. * page faults
  351. */
  352. static inline int
  353. slow_kernel_write(struct io_mapping *mapping,
  354. loff_t gtt_base, int gtt_offset,
  355. struct page *user_page, int user_offset,
  356. int length)
  357. {
  358. char *src_vaddr, *dst_vaddr;
  359. unsigned long unwritten;
  360. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  361. src_vaddr = kmap_atomic(user_page, KM_USER1);
  362. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  363. src_vaddr + user_offset,
  364. length);
  365. kunmap_atomic(src_vaddr, KM_USER1);
  366. io_mapping_unmap_atomic(dst_vaddr);
  367. if (unwritten)
  368. return -EFAULT;
  369. return 0;
  370. }
  371. static inline int
  372. fast_shmem_write(struct page **pages,
  373. loff_t page_base, int page_offset,
  374. char __user *data,
  375. int length)
  376. {
  377. char __iomem *vaddr;
  378. unsigned long unwritten;
  379. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  380. if (vaddr == NULL)
  381. return -ENOMEM;
  382. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  383. kunmap_atomic(vaddr, KM_USER0);
  384. if (unwritten)
  385. return -EFAULT;
  386. return 0;
  387. }
  388. /**
  389. * This is the fast pwrite path, where we copy the data directly from the
  390. * user into the GTT, uncached.
  391. */
  392. static int
  393. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  394. struct drm_i915_gem_pwrite *args,
  395. struct drm_file *file_priv)
  396. {
  397. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  398. drm_i915_private_t *dev_priv = dev->dev_private;
  399. ssize_t remain;
  400. loff_t offset, page_base;
  401. char __user *user_data;
  402. int page_offset, page_length;
  403. int ret;
  404. user_data = (char __user *) (uintptr_t) args->data_ptr;
  405. remain = args->size;
  406. if (!access_ok(VERIFY_READ, user_data, remain))
  407. return -EFAULT;
  408. mutex_lock(&dev->struct_mutex);
  409. ret = i915_gem_object_pin(obj, 0);
  410. if (ret) {
  411. mutex_unlock(&dev->struct_mutex);
  412. return ret;
  413. }
  414. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  415. if (ret)
  416. goto fail;
  417. obj_priv = obj->driver_private;
  418. offset = obj_priv->gtt_offset + args->offset;
  419. while (remain > 0) {
  420. /* Operation in this page
  421. *
  422. * page_base = page offset within aperture
  423. * page_offset = offset within page
  424. * page_length = bytes to copy for this page
  425. */
  426. page_base = (offset & ~(PAGE_SIZE-1));
  427. page_offset = offset & (PAGE_SIZE-1);
  428. page_length = remain;
  429. if ((page_offset + remain) > PAGE_SIZE)
  430. page_length = PAGE_SIZE - page_offset;
  431. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  432. page_offset, user_data, page_length);
  433. /* If we get a fault while copying data, then (presumably) our
  434. * source page isn't available. Return the error and we'll
  435. * retry in the slow path.
  436. */
  437. if (ret)
  438. goto fail;
  439. remain -= page_length;
  440. user_data += page_length;
  441. offset += page_length;
  442. }
  443. fail:
  444. i915_gem_object_unpin(obj);
  445. mutex_unlock(&dev->struct_mutex);
  446. return ret;
  447. }
  448. /**
  449. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  450. * the memory and maps it using kmap_atomic for copying.
  451. *
  452. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  453. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  454. */
  455. static int
  456. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  457. struct drm_i915_gem_pwrite *args,
  458. struct drm_file *file_priv)
  459. {
  460. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  461. drm_i915_private_t *dev_priv = dev->dev_private;
  462. ssize_t remain;
  463. loff_t gtt_page_base, offset;
  464. loff_t first_data_page, last_data_page, num_pages;
  465. loff_t pinned_pages, i;
  466. struct page **user_pages;
  467. struct mm_struct *mm = current->mm;
  468. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  469. int ret;
  470. uint64_t data_ptr = args->data_ptr;
  471. remain = args->size;
  472. /* Pin the user pages containing the data. We can't fault while
  473. * holding the struct mutex, and all of the pwrite implementations
  474. * want to hold it while dereferencing the user data.
  475. */
  476. first_data_page = data_ptr / PAGE_SIZE;
  477. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  478. num_pages = last_data_page - first_data_page + 1;
  479. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  480. if (user_pages == NULL)
  481. return -ENOMEM;
  482. down_read(&mm->mmap_sem);
  483. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  484. num_pages, 0, 0, user_pages, NULL);
  485. up_read(&mm->mmap_sem);
  486. if (pinned_pages < num_pages) {
  487. ret = -EFAULT;
  488. goto out_unpin_pages;
  489. }
  490. mutex_lock(&dev->struct_mutex);
  491. ret = i915_gem_object_pin(obj, 0);
  492. if (ret)
  493. goto out_unlock;
  494. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  495. if (ret)
  496. goto out_unpin_object;
  497. obj_priv = obj->driver_private;
  498. offset = obj_priv->gtt_offset + args->offset;
  499. while (remain > 0) {
  500. /* Operation in this page
  501. *
  502. * gtt_page_base = page offset within aperture
  503. * gtt_page_offset = offset within page in aperture
  504. * data_page_index = page number in get_user_pages return
  505. * data_page_offset = offset with data_page_index page.
  506. * page_length = bytes to copy for this page
  507. */
  508. gtt_page_base = offset & PAGE_MASK;
  509. gtt_page_offset = offset & ~PAGE_MASK;
  510. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  511. data_page_offset = data_ptr & ~PAGE_MASK;
  512. page_length = remain;
  513. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  514. page_length = PAGE_SIZE - gtt_page_offset;
  515. if ((data_page_offset + page_length) > PAGE_SIZE)
  516. page_length = PAGE_SIZE - data_page_offset;
  517. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  518. gtt_page_base, gtt_page_offset,
  519. user_pages[data_page_index],
  520. data_page_offset,
  521. page_length);
  522. /* If we get a fault while copying data, then (presumably) our
  523. * source page isn't available. Return the error and we'll
  524. * retry in the slow path.
  525. */
  526. if (ret)
  527. goto out_unpin_object;
  528. remain -= page_length;
  529. offset += page_length;
  530. data_ptr += page_length;
  531. }
  532. out_unpin_object:
  533. i915_gem_object_unpin(obj);
  534. out_unlock:
  535. mutex_unlock(&dev->struct_mutex);
  536. out_unpin_pages:
  537. for (i = 0; i < pinned_pages; i++)
  538. page_cache_release(user_pages[i]);
  539. kfree(user_pages);
  540. return ret;
  541. }
  542. /**
  543. * This is the fast shmem pwrite path, which attempts to directly
  544. * copy_from_user into the kmapped pages backing the object.
  545. */
  546. static int
  547. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  548. struct drm_i915_gem_pwrite *args,
  549. struct drm_file *file_priv)
  550. {
  551. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  552. ssize_t remain;
  553. loff_t offset, page_base;
  554. char __user *user_data;
  555. int page_offset, page_length;
  556. int ret;
  557. user_data = (char __user *) (uintptr_t) args->data_ptr;
  558. remain = args->size;
  559. mutex_lock(&dev->struct_mutex);
  560. ret = i915_gem_object_get_pages(obj);
  561. if (ret != 0)
  562. goto fail_unlock;
  563. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  564. if (ret != 0)
  565. goto fail_put_pages;
  566. obj_priv = obj->driver_private;
  567. offset = args->offset;
  568. obj_priv->dirty = 1;
  569. while (remain > 0) {
  570. /* Operation in this page
  571. *
  572. * page_base = page offset within aperture
  573. * page_offset = offset within page
  574. * page_length = bytes to copy for this page
  575. */
  576. page_base = (offset & ~(PAGE_SIZE-1));
  577. page_offset = offset & (PAGE_SIZE-1);
  578. page_length = remain;
  579. if ((page_offset + remain) > PAGE_SIZE)
  580. page_length = PAGE_SIZE - page_offset;
  581. ret = fast_shmem_write(obj_priv->pages,
  582. page_base, page_offset,
  583. user_data, page_length);
  584. if (ret)
  585. goto fail_put_pages;
  586. remain -= page_length;
  587. user_data += page_length;
  588. offset += page_length;
  589. }
  590. fail_put_pages:
  591. i915_gem_object_put_pages(obj);
  592. fail_unlock:
  593. mutex_unlock(&dev->struct_mutex);
  594. return ret;
  595. }
  596. /**
  597. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  598. * the memory and maps it using kmap_atomic for copying.
  599. *
  600. * This avoids taking mmap_sem for faulting on the user's address while the
  601. * struct_mutex is held.
  602. */
  603. static int
  604. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  605. struct drm_i915_gem_pwrite *args,
  606. struct drm_file *file_priv)
  607. {
  608. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  609. struct mm_struct *mm = current->mm;
  610. struct page **user_pages;
  611. ssize_t remain;
  612. loff_t offset, pinned_pages, i;
  613. loff_t first_data_page, last_data_page, num_pages;
  614. int shmem_page_index, shmem_page_offset;
  615. int data_page_index, data_page_offset;
  616. int page_length;
  617. int ret;
  618. uint64_t data_ptr = args->data_ptr;
  619. remain = args->size;
  620. /* Pin the user pages containing the data. We can't fault while
  621. * holding the struct mutex, and all of the pwrite implementations
  622. * want to hold it while dereferencing the user data.
  623. */
  624. first_data_page = data_ptr / PAGE_SIZE;
  625. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  626. num_pages = last_data_page - first_data_page + 1;
  627. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  628. if (user_pages == NULL)
  629. return -ENOMEM;
  630. down_read(&mm->mmap_sem);
  631. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  632. num_pages, 0, 0, user_pages, NULL);
  633. up_read(&mm->mmap_sem);
  634. if (pinned_pages < num_pages) {
  635. ret = -EFAULT;
  636. goto fail_put_user_pages;
  637. }
  638. mutex_lock(&dev->struct_mutex);
  639. ret = i915_gem_object_get_pages(obj);
  640. if (ret != 0)
  641. goto fail_unlock;
  642. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  643. if (ret != 0)
  644. goto fail_put_pages;
  645. obj_priv = obj->driver_private;
  646. offset = args->offset;
  647. obj_priv->dirty = 1;
  648. while (remain > 0) {
  649. /* Operation in this page
  650. *
  651. * shmem_page_index = page number within shmem file
  652. * shmem_page_offset = offset within page in shmem file
  653. * data_page_index = page number in get_user_pages return
  654. * data_page_offset = offset with data_page_index page.
  655. * page_length = bytes to copy for this page
  656. */
  657. shmem_page_index = offset / PAGE_SIZE;
  658. shmem_page_offset = offset & ~PAGE_MASK;
  659. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  660. data_page_offset = data_ptr & ~PAGE_MASK;
  661. page_length = remain;
  662. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  663. page_length = PAGE_SIZE - shmem_page_offset;
  664. if ((data_page_offset + page_length) > PAGE_SIZE)
  665. page_length = PAGE_SIZE - data_page_offset;
  666. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  667. shmem_page_offset,
  668. user_pages[data_page_index],
  669. data_page_offset,
  670. page_length);
  671. if (ret)
  672. goto fail_put_pages;
  673. remain -= page_length;
  674. data_ptr += page_length;
  675. offset += page_length;
  676. }
  677. fail_put_pages:
  678. i915_gem_object_put_pages(obj);
  679. fail_unlock:
  680. mutex_unlock(&dev->struct_mutex);
  681. fail_put_user_pages:
  682. for (i = 0; i < pinned_pages; i++)
  683. page_cache_release(user_pages[i]);
  684. kfree(user_pages);
  685. return ret;
  686. }
  687. /**
  688. * Writes data to the object referenced by handle.
  689. *
  690. * On error, the contents of the buffer that were to be modified are undefined.
  691. */
  692. int
  693. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  694. struct drm_file *file_priv)
  695. {
  696. struct drm_i915_gem_pwrite *args = data;
  697. struct drm_gem_object *obj;
  698. struct drm_i915_gem_object *obj_priv;
  699. int ret = 0;
  700. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  701. if (obj == NULL)
  702. return -EBADF;
  703. obj_priv = obj->driver_private;
  704. /* Bounds check destination.
  705. *
  706. * XXX: This could use review for overflow issues...
  707. */
  708. if (args->offset > obj->size || args->size > obj->size ||
  709. args->offset + args->size > obj->size) {
  710. drm_gem_object_unreference(obj);
  711. return -EINVAL;
  712. }
  713. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  714. * it would end up going through the fenced access, and we'll get
  715. * different detiling behavior between reading and writing.
  716. * pread/pwrite currently are reading and writing from the CPU
  717. * perspective, requiring manual detiling by the client.
  718. */
  719. if (obj_priv->phys_obj)
  720. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  721. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  722. dev->gtt_total != 0) {
  723. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  724. if (ret == -EFAULT) {
  725. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  726. file_priv);
  727. }
  728. } else {
  729. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  730. if (ret == -EFAULT) {
  731. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  732. file_priv);
  733. }
  734. }
  735. #if WATCH_PWRITE
  736. if (ret)
  737. DRM_INFO("pwrite failed %d\n", ret);
  738. #endif
  739. drm_gem_object_unreference(obj);
  740. return ret;
  741. }
  742. /**
  743. * Called when user space prepares to use an object with the CPU, either
  744. * through the mmap ioctl's mapping or a GTT mapping.
  745. */
  746. int
  747. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  748. struct drm_file *file_priv)
  749. {
  750. struct drm_i915_gem_set_domain *args = data;
  751. struct drm_gem_object *obj;
  752. uint32_t read_domains = args->read_domains;
  753. uint32_t write_domain = args->write_domain;
  754. int ret;
  755. if (!(dev->driver->driver_features & DRIVER_GEM))
  756. return -ENODEV;
  757. /* Only handle setting domains to types used by the CPU. */
  758. if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  759. return -EINVAL;
  760. if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  761. return -EINVAL;
  762. /* Having something in the write domain implies it's in the read
  763. * domain, and only that read domain. Enforce that in the request.
  764. */
  765. if (write_domain != 0 && read_domains != write_domain)
  766. return -EINVAL;
  767. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  768. if (obj == NULL)
  769. return -EBADF;
  770. mutex_lock(&dev->struct_mutex);
  771. #if WATCH_BUF
  772. DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
  773. obj, obj->size, read_domains, write_domain);
  774. #endif
  775. if (read_domains & I915_GEM_DOMAIN_GTT) {
  776. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  777. /* Silently promote "you're not bound, there was nothing to do"
  778. * to success, since the client was just asking us to
  779. * make sure everything was done.
  780. */
  781. if (ret == -EINVAL)
  782. ret = 0;
  783. } else {
  784. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  785. }
  786. drm_gem_object_unreference(obj);
  787. mutex_unlock(&dev->struct_mutex);
  788. return ret;
  789. }
  790. /**
  791. * Called when user space has done writes to this buffer
  792. */
  793. int
  794. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  795. struct drm_file *file_priv)
  796. {
  797. struct drm_i915_gem_sw_finish *args = data;
  798. struct drm_gem_object *obj;
  799. struct drm_i915_gem_object *obj_priv;
  800. int ret = 0;
  801. if (!(dev->driver->driver_features & DRIVER_GEM))
  802. return -ENODEV;
  803. mutex_lock(&dev->struct_mutex);
  804. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  805. if (obj == NULL) {
  806. mutex_unlock(&dev->struct_mutex);
  807. return -EBADF;
  808. }
  809. #if WATCH_BUF
  810. DRM_INFO("%s: sw_finish %d (%p %d)\n",
  811. __func__, args->handle, obj, obj->size);
  812. #endif
  813. obj_priv = obj->driver_private;
  814. /* Pinned buffers may be scanout, so flush the cache */
  815. if (obj_priv->pin_count)
  816. i915_gem_object_flush_cpu_write_domain(obj);
  817. drm_gem_object_unreference(obj);
  818. mutex_unlock(&dev->struct_mutex);
  819. return ret;
  820. }
  821. /**
  822. * Maps the contents of an object, returning the address it is mapped
  823. * into.
  824. *
  825. * While the mapping holds a reference on the contents of the object, it doesn't
  826. * imply a ref on the object itself.
  827. */
  828. int
  829. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  830. struct drm_file *file_priv)
  831. {
  832. struct drm_i915_gem_mmap *args = data;
  833. struct drm_gem_object *obj;
  834. loff_t offset;
  835. unsigned long addr;
  836. if (!(dev->driver->driver_features & DRIVER_GEM))
  837. return -ENODEV;
  838. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  839. if (obj == NULL)
  840. return -EBADF;
  841. offset = args->offset;
  842. down_write(&current->mm->mmap_sem);
  843. addr = do_mmap(obj->filp, 0, args->size,
  844. PROT_READ | PROT_WRITE, MAP_SHARED,
  845. args->offset);
  846. up_write(&current->mm->mmap_sem);
  847. mutex_lock(&dev->struct_mutex);
  848. drm_gem_object_unreference(obj);
  849. mutex_unlock(&dev->struct_mutex);
  850. if (IS_ERR((void *)addr))
  851. return addr;
  852. args->addr_ptr = (uint64_t) addr;
  853. return 0;
  854. }
  855. /**
  856. * i915_gem_fault - fault a page into the GTT
  857. * vma: VMA in question
  858. * vmf: fault info
  859. *
  860. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  861. * from userspace. The fault handler takes care of binding the object to
  862. * the GTT (if needed), allocating and programming a fence register (again,
  863. * only if needed based on whether the old reg is still valid or the object
  864. * is tiled) and inserting a new PTE into the faulting process.
  865. *
  866. * Note that the faulting process may involve evicting existing objects
  867. * from the GTT and/or fence registers to make room. So performance may
  868. * suffer if the GTT working set is large or there are few fence registers
  869. * left.
  870. */
  871. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  872. {
  873. struct drm_gem_object *obj = vma->vm_private_data;
  874. struct drm_device *dev = obj->dev;
  875. struct drm_i915_private *dev_priv = dev->dev_private;
  876. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  877. pgoff_t page_offset;
  878. unsigned long pfn;
  879. int ret = 0;
  880. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  881. /* We don't use vmf->pgoff since that has the fake offset */
  882. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  883. PAGE_SHIFT;
  884. /* Now bind it into the GTT if needed */
  885. mutex_lock(&dev->struct_mutex);
  886. if (!obj_priv->gtt_space) {
  887. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  888. if (ret) {
  889. mutex_unlock(&dev->struct_mutex);
  890. return VM_FAULT_SIGBUS;
  891. }
  892. list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
  893. }
  894. /* Need a new fence register? */
  895. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  896. obj_priv->tiling_mode != I915_TILING_NONE) {
  897. ret = i915_gem_object_get_fence_reg(obj, write);
  898. if (ret) {
  899. mutex_unlock(&dev->struct_mutex);
  900. return VM_FAULT_SIGBUS;
  901. }
  902. }
  903. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  904. page_offset;
  905. /* Finally, remap it using the new GTT offset */
  906. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  907. mutex_unlock(&dev->struct_mutex);
  908. switch (ret) {
  909. case -ENOMEM:
  910. case -EAGAIN:
  911. return VM_FAULT_OOM;
  912. case -EFAULT:
  913. case -EINVAL:
  914. return VM_FAULT_SIGBUS;
  915. default:
  916. return VM_FAULT_NOPAGE;
  917. }
  918. }
  919. /**
  920. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  921. * @obj: obj in question
  922. *
  923. * GEM memory mapping works by handing back to userspace a fake mmap offset
  924. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  925. * up the object based on the offset and sets up the various memory mapping
  926. * structures.
  927. *
  928. * This routine allocates and attaches a fake offset for @obj.
  929. */
  930. static int
  931. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  932. {
  933. struct drm_device *dev = obj->dev;
  934. struct drm_gem_mm *mm = dev->mm_private;
  935. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  936. struct drm_map_list *list;
  937. struct drm_local_map *map;
  938. int ret = 0;
  939. /* Set the object up for mmap'ing */
  940. list = &obj->map_list;
  941. list->map = drm_calloc(1, sizeof(struct drm_map_list),
  942. DRM_MEM_DRIVER);
  943. if (!list->map)
  944. return -ENOMEM;
  945. map = list->map;
  946. map->type = _DRM_GEM;
  947. map->size = obj->size;
  948. map->handle = obj;
  949. /* Get a DRM GEM mmap offset allocated... */
  950. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  951. obj->size / PAGE_SIZE, 0, 0);
  952. if (!list->file_offset_node) {
  953. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  954. ret = -ENOMEM;
  955. goto out_free_list;
  956. }
  957. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  958. obj->size / PAGE_SIZE, 0);
  959. if (!list->file_offset_node) {
  960. ret = -ENOMEM;
  961. goto out_free_list;
  962. }
  963. list->hash.key = list->file_offset_node->start;
  964. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  965. DRM_ERROR("failed to add to map hash\n");
  966. goto out_free_mm;
  967. }
  968. /* By now we should be all set, any drm_mmap request on the offset
  969. * below will get to our mmap & fault handler */
  970. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  971. return 0;
  972. out_free_mm:
  973. drm_mm_put_block(list->file_offset_node);
  974. out_free_list:
  975. drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
  976. return ret;
  977. }
  978. static void
  979. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  980. {
  981. struct drm_device *dev = obj->dev;
  982. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  983. struct drm_gem_mm *mm = dev->mm_private;
  984. struct drm_map_list *list;
  985. list = &obj->map_list;
  986. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  987. if (list->file_offset_node) {
  988. drm_mm_put_block(list->file_offset_node);
  989. list->file_offset_node = NULL;
  990. }
  991. if (list->map) {
  992. drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
  993. list->map = NULL;
  994. }
  995. obj_priv->mmap_offset = 0;
  996. }
  997. /**
  998. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  999. * @obj: object to check
  1000. *
  1001. * Return the required GTT alignment for an object, taking into account
  1002. * potential fence register mapping if needed.
  1003. */
  1004. static uint32_t
  1005. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1006. {
  1007. struct drm_device *dev = obj->dev;
  1008. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1009. int start, i;
  1010. /*
  1011. * Minimum alignment is 4k (GTT page size), but might be greater
  1012. * if a fence register is needed for the object.
  1013. */
  1014. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1015. return 4096;
  1016. /*
  1017. * Previous chips need to be aligned to the size of the smallest
  1018. * fence register that can contain the object.
  1019. */
  1020. if (IS_I9XX(dev))
  1021. start = 1024*1024;
  1022. else
  1023. start = 512*1024;
  1024. for (i = start; i < obj->size; i <<= 1)
  1025. ;
  1026. return i;
  1027. }
  1028. /**
  1029. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1030. * @dev: DRM device
  1031. * @data: GTT mapping ioctl data
  1032. * @file_priv: GEM object info
  1033. *
  1034. * Simply returns the fake offset to userspace so it can mmap it.
  1035. * The mmap call will end up in drm_gem_mmap(), which will set things
  1036. * up so we can get faults in the handler above.
  1037. *
  1038. * The fault handler will take care of binding the object into the GTT
  1039. * (since it may have been evicted to make room for something), allocating
  1040. * a fence register, and mapping the appropriate aperture address into
  1041. * userspace.
  1042. */
  1043. int
  1044. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1045. struct drm_file *file_priv)
  1046. {
  1047. struct drm_i915_gem_mmap_gtt *args = data;
  1048. struct drm_i915_private *dev_priv = dev->dev_private;
  1049. struct drm_gem_object *obj;
  1050. struct drm_i915_gem_object *obj_priv;
  1051. int ret;
  1052. if (!(dev->driver->driver_features & DRIVER_GEM))
  1053. return -ENODEV;
  1054. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1055. if (obj == NULL)
  1056. return -EBADF;
  1057. mutex_lock(&dev->struct_mutex);
  1058. obj_priv = obj->driver_private;
  1059. if (!obj_priv->mmap_offset) {
  1060. ret = i915_gem_create_mmap_offset(obj);
  1061. if (ret) {
  1062. drm_gem_object_unreference(obj);
  1063. mutex_unlock(&dev->struct_mutex);
  1064. return ret;
  1065. }
  1066. }
  1067. args->offset = obj_priv->mmap_offset;
  1068. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1069. /* Make sure the alignment is correct for fence regs etc */
  1070. if (obj_priv->agp_mem &&
  1071. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1072. drm_gem_object_unreference(obj);
  1073. mutex_unlock(&dev->struct_mutex);
  1074. return -EINVAL;
  1075. }
  1076. /*
  1077. * Pull it into the GTT so that we have a page list (makes the
  1078. * initial fault faster and any subsequent flushing possible).
  1079. */
  1080. if (!obj_priv->agp_mem) {
  1081. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1082. if (ret) {
  1083. drm_gem_object_unreference(obj);
  1084. mutex_unlock(&dev->struct_mutex);
  1085. return ret;
  1086. }
  1087. list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
  1088. }
  1089. drm_gem_object_unreference(obj);
  1090. mutex_unlock(&dev->struct_mutex);
  1091. return 0;
  1092. }
  1093. static void
  1094. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1095. {
  1096. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1097. int page_count = obj->size / PAGE_SIZE;
  1098. int i;
  1099. BUG_ON(obj_priv->pages_refcount == 0);
  1100. if (--obj_priv->pages_refcount != 0)
  1101. return;
  1102. for (i = 0; i < page_count; i++)
  1103. if (obj_priv->pages[i] != NULL) {
  1104. if (obj_priv->dirty)
  1105. set_page_dirty(obj_priv->pages[i]);
  1106. mark_page_accessed(obj_priv->pages[i]);
  1107. page_cache_release(obj_priv->pages[i]);
  1108. }
  1109. obj_priv->dirty = 0;
  1110. drm_free(obj_priv->pages,
  1111. page_count * sizeof(struct page *),
  1112. DRM_MEM_DRIVER);
  1113. obj_priv->pages = NULL;
  1114. }
  1115. static void
  1116. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1117. {
  1118. struct drm_device *dev = obj->dev;
  1119. drm_i915_private_t *dev_priv = dev->dev_private;
  1120. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1121. /* Add a reference if we're newly entering the active list. */
  1122. if (!obj_priv->active) {
  1123. drm_gem_object_reference(obj);
  1124. obj_priv->active = 1;
  1125. }
  1126. /* Move from whatever list we were on to the tail of execution. */
  1127. spin_lock(&dev_priv->mm.active_list_lock);
  1128. list_move_tail(&obj_priv->list,
  1129. &dev_priv->mm.active_list);
  1130. spin_unlock(&dev_priv->mm.active_list_lock);
  1131. obj_priv->last_rendering_seqno = seqno;
  1132. }
  1133. static void
  1134. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1135. {
  1136. struct drm_device *dev = obj->dev;
  1137. drm_i915_private_t *dev_priv = dev->dev_private;
  1138. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1139. BUG_ON(!obj_priv->active);
  1140. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1141. obj_priv->last_rendering_seqno = 0;
  1142. }
  1143. static void
  1144. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1145. {
  1146. struct drm_device *dev = obj->dev;
  1147. drm_i915_private_t *dev_priv = dev->dev_private;
  1148. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1149. i915_verify_inactive(dev, __FILE__, __LINE__);
  1150. if (obj_priv->pin_count != 0)
  1151. list_del_init(&obj_priv->list);
  1152. else
  1153. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1154. obj_priv->last_rendering_seqno = 0;
  1155. if (obj_priv->active) {
  1156. obj_priv->active = 0;
  1157. drm_gem_object_unreference(obj);
  1158. }
  1159. i915_verify_inactive(dev, __FILE__, __LINE__);
  1160. }
  1161. /**
  1162. * Creates a new sequence number, emitting a write of it to the status page
  1163. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1164. *
  1165. * Must be called with struct_lock held.
  1166. *
  1167. * Returned sequence numbers are nonzero on success.
  1168. */
  1169. static uint32_t
  1170. i915_add_request(struct drm_device *dev, uint32_t flush_domains)
  1171. {
  1172. drm_i915_private_t *dev_priv = dev->dev_private;
  1173. struct drm_i915_gem_request *request;
  1174. uint32_t seqno;
  1175. int was_empty;
  1176. RING_LOCALS;
  1177. request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
  1178. if (request == NULL)
  1179. return 0;
  1180. /* Grab the seqno we're going to make this request be, and bump the
  1181. * next (skipping 0 so it can be the reserved no-seqno value).
  1182. */
  1183. seqno = dev_priv->mm.next_gem_seqno;
  1184. dev_priv->mm.next_gem_seqno++;
  1185. if (dev_priv->mm.next_gem_seqno == 0)
  1186. dev_priv->mm.next_gem_seqno++;
  1187. BEGIN_LP_RING(4);
  1188. OUT_RING(MI_STORE_DWORD_INDEX);
  1189. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1190. OUT_RING(seqno);
  1191. OUT_RING(MI_USER_INTERRUPT);
  1192. ADVANCE_LP_RING();
  1193. DRM_DEBUG("%d\n", seqno);
  1194. request->seqno = seqno;
  1195. request->emitted_jiffies = jiffies;
  1196. was_empty = list_empty(&dev_priv->mm.request_list);
  1197. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1198. /* Associate any objects on the flushing list matching the write
  1199. * domain we're flushing with our flush.
  1200. */
  1201. if (flush_domains != 0) {
  1202. struct drm_i915_gem_object *obj_priv, *next;
  1203. list_for_each_entry_safe(obj_priv, next,
  1204. &dev_priv->mm.flushing_list, list) {
  1205. struct drm_gem_object *obj = obj_priv->obj;
  1206. if ((obj->write_domain & flush_domains) ==
  1207. obj->write_domain) {
  1208. obj->write_domain = 0;
  1209. i915_gem_object_move_to_active(obj, seqno);
  1210. }
  1211. }
  1212. }
  1213. if (was_empty && !dev_priv->mm.suspended)
  1214. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1215. return seqno;
  1216. }
  1217. /**
  1218. * Command execution barrier
  1219. *
  1220. * Ensures that all commands in the ring are finished
  1221. * before signalling the CPU
  1222. */
  1223. static uint32_t
  1224. i915_retire_commands(struct drm_device *dev)
  1225. {
  1226. drm_i915_private_t *dev_priv = dev->dev_private;
  1227. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1228. uint32_t flush_domains = 0;
  1229. RING_LOCALS;
  1230. /* The sampler always gets flushed on i965 (sigh) */
  1231. if (IS_I965G(dev))
  1232. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1233. BEGIN_LP_RING(2);
  1234. OUT_RING(cmd);
  1235. OUT_RING(0); /* noop */
  1236. ADVANCE_LP_RING();
  1237. return flush_domains;
  1238. }
  1239. /**
  1240. * Moves buffers associated only with the given active seqno from the active
  1241. * to inactive list, potentially freeing them.
  1242. */
  1243. static void
  1244. i915_gem_retire_request(struct drm_device *dev,
  1245. struct drm_i915_gem_request *request)
  1246. {
  1247. drm_i915_private_t *dev_priv = dev->dev_private;
  1248. /* Move any buffers on the active list that are no longer referenced
  1249. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1250. */
  1251. spin_lock(&dev_priv->mm.active_list_lock);
  1252. while (!list_empty(&dev_priv->mm.active_list)) {
  1253. struct drm_gem_object *obj;
  1254. struct drm_i915_gem_object *obj_priv;
  1255. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1256. struct drm_i915_gem_object,
  1257. list);
  1258. obj = obj_priv->obj;
  1259. /* If the seqno being retired doesn't match the oldest in the
  1260. * list, then the oldest in the list must still be newer than
  1261. * this seqno.
  1262. */
  1263. if (obj_priv->last_rendering_seqno != request->seqno)
  1264. goto out;
  1265. #if WATCH_LRU
  1266. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1267. __func__, request->seqno, obj);
  1268. #endif
  1269. if (obj->write_domain != 0)
  1270. i915_gem_object_move_to_flushing(obj);
  1271. else
  1272. i915_gem_object_move_to_inactive(obj);
  1273. }
  1274. out:
  1275. spin_unlock(&dev_priv->mm.active_list_lock);
  1276. }
  1277. /**
  1278. * Returns true if seq1 is later than seq2.
  1279. */
  1280. static int
  1281. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1282. {
  1283. return (int32_t)(seq1 - seq2) >= 0;
  1284. }
  1285. uint32_t
  1286. i915_get_gem_seqno(struct drm_device *dev)
  1287. {
  1288. drm_i915_private_t *dev_priv = dev->dev_private;
  1289. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1290. }
  1291. /**
  1292. * This function clears the request list as sequence numbers are passed.
  1293. */
  1294. void
  1295. i915_gem_retire_requests(struct drm_device *dev)
  1296. {
  1297. drm_i915_private_t *dev_priv = dev->dev_private;
  1298. uint32_t seqno;
  1299. if (!dev_priv->hw_status_page)
  1300. return;
  1301. seqno = i915_get_gem_seqno(dev);
  1302. while (!list_empty(&dev_priv->mm.request_list)) {
  1303. struct drm_i915_gem_request *request;
  1304. uint32_t retiring_seqno;
  1305. request = list_first_entry(&dev_priv->mm.request_list,
  1306. struct drm_i915_gem_request,
  1307. list);
  1308. retiring_seqno = request->seqno;
  1309. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1310. dev_priv->mm.wedged) {
  1311. i915_gem_retire_request(dev, request);
  1312. list_del(&request->list);
  1313. drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
  1314. } else
  1315. break;
  1316. }
  1317. }
  1318. void
  1319. i915_gem_retire_work_handler(struct work_struct *work)
  1320. {
  1321. drm_i915_private_t *dev_priv;
  1322. struct drm_device *dev;
  1323. dev_priv = container_of(work, drm_i915_private_t,
  1324. mm.retire_work.work);
  1325. dev = dev_priv->dev;
  1326. mutex_lock(&dev->struct_mutex);
  1327. i915_gem_retire_requests(dev);
  1328. if (!dev_priv->mm.suspended &&
  1329. !list_empty(&dev_priv->mm.request_list))
  1330. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1331. mutex_unlock(&dev->struct_mutex);
  1332. }
  1333. /**
  1334. * Waits for a sequence number to be signaled, and cleans up the
  1335. * request and object lists appropriately for that event.
  1336. */
  1337. static int
  1338. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1339. {
  1340. drm_i915_private_t *dev_priv = dev->dev_private;
  1341. int ret = 0;
  1342. BUG_ON(seqno == 0);
  1343. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1344. dev_priv->mm.waiting_gem_seqno = seqno;
  1345. i915_user_irq_get(dev);
  1346. ret = wait_event_interruptible(dev_priv->irq_queue,
  1347. i915_seqno_passed(i915_get_gem_seqno(dev),
  1348. seqno) ||
  1349. dev_priv->mm.wedged);
  1350. i915_user_irq_put(dev);
  1351. dev_priv->mm.waiting_gem_seqno = 0;
  1352. }
  1353. if (dev_priv->mm.wedged)
  1354. ret = -EIO;
  1355. if (ret && ret != -ERESTARTSYS)
  1356. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1357. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1358. /* Directly dispatch request retiring. While we have the work queue
  1359. * to handle this, the waiter on a request often wants an associated
  1360. * buffer to have made it to the inactive list, and we would need
  1361. * a separate wait queue to handle that.
  1362. */
  1363. if (ret == 0)
  1364. i915_gem_retire_requests(dev);
  1365. return ret;
  1366. }
  1367. static void
  1368. i915_gem_flush(struct drm_device *dev,
  1369. uint32_t invalidate_domains,
  1370. uint32_t flush_domains)
  1371. {
  1372. drm_i915_private_t *dev_priv = dev->dev_private;
  1373. uint32_t cmd;
  1374. RING_LOCALS;
  1375. #if WATCH_EXEC
  1376. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1377. invalidate_domains, flush_domains);
  1378. #endif
  1379. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1380. drm_agp_chipset_flush(dev);
  1381. if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
  1382. I915_GEM_DOMAIN_GTT)) {
  1383. /*
  1384. * read/write caches:
  1385. *
  1386. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1387. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1388. * also flushed at 2d versus 3d pipeline switches.
  1389. *
  1390. * read-only caches:
  1391. *
  1392. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1393. * MI_READ_FLUSH is set, and is always flushed on 965.
  1394. *
  1395. * I915_GEM_DOMAIN_COMMAND may not exist?
  1396. *
  1397. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1398. * invalidated when MI_EXE_FLUSH is set.
  1399. *
  1400. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1401. * invalidated with every MI_FLUSH.
  1402. *
  1403. * TLBs:
  1404. *
  1405. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1406. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1407. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1408. * are flushed at any MI_FLUSH.
  1409. */
  1410. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1411. if ((invalidate_domains|flush_domains) &
  1412. I915_GEM_DOMAIN_RENDER)
  1413. cmd &= ~MI_NO_WRITE_FLUSH;
  1414. if (!IS_I965G(dev)) {
  1415. /*
  1416. * On the 965, the sampler cache always gets flushed
  1417. * and this bit is reserved.
  1418. */
  1419. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1420. cmd |= MI_READ_FLUSH;
  1421. }
  1422. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1423. cmd |= MI_EXE_FLUSH;
  1424. #if WATCH_EXEC
  1425. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1426. #endif
  1427. BEGIN_LP_RING(2);
  1428. OUT_RING(cmd);
  1429. OUT_RING(0); /* noop */
  1430. ADVANCE_LP_RING();
  1431. }
  1432. }
  1433. /**
  1434. * Ensures that all rendering to the object has completed and the object is
  1435. * safe to unbind from the GTT or access from the CPU.
  1436. */
  1437. static int
  1438. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1439. {
  1440. struct drm_device *dev = obj->dev;
  1441. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1442. int ret;
  1443. /* This function only exists to support waiting for existing rendering,
  1444. * not for emitting required flushes.
  1445. */
  1446. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1447. /* If there is rendering queued on the buffer being evicted, wait for
  1448. * it.
  1449. */
  1450. if (obj_priv->active) {
  1451. #if WATCH_BUF
  1452. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1453. __func__, obj, obj_priv->last_rendering_seqno);
  1454. #endif
  1455. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1456. if (ret != 0)
  1457. return ret;
  1458. }
  1459. return 0;
  1460. }
  1461. /**
  1462. * Unbinds an object from the GTT aperture.
  1463. */
  1464. int
  1465. i915_gem_object_unbind(struct drm_gem_object *obj)
  1466. {
  1467. struct drm_device *dev = obj->dev;
  1468. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1469. loff_t offset;
  1470. int ret = 0;
  1471. #if WATCH_BUF
  1472. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1473. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1474. #endif
  1475. if (obj_priv->gtt_space == NULL)
  1476. return 0;
  1477. if (obj_priv->pin_count != 0) {
  1478. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1479. return -EINVAL;
  1480. }
  1481. /* Move the object to the CPU domain to ensure that
  1482. * any possible CPU writes while it's not in the GTT
  1483. * are flushed when we go to remap it. This will
  1484. * also ensure that all pending GPU writes are finished
  1485. * before we unbind.
  1486. */
  1487. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1488. if (ret) {
  1489. if (ret != -ERESTARTSYS)
  1490. DRM_ERROR("set_domain failed: %d\n", ret);
  1491. return ret;
  1492. }
  1493. if (obj_priv->agp_mem != NULL) {
  1494. drm_unbind_agp(obj_priv->agp_mem);
  1495. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1496. obj_priv->agp_mem = NULL;
  1497. }
  1498. BUG_ON(obj_priv->active);
  1499. /* blow away mappings if mapped through GTT */
  1500. offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
  1501. if (dev->dev_mapping)
  1502. unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
  1503. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1504. i915_gem_clear_fence_reg(obj);
  1505. i915_gem_object_put_pages(obj);
  1506. if (obj_priv->gtt_space) {
  1507. atomic_dec(&dev->gtt_count);
  1508. atomic_sub(obj->size, &dev->gtt_memory);
  1509. drm_mm_put_block(obj_priv->gtt_space);
  1510. obj_priv->gtt_space = NULL;
  1511. }
  1512. /* Remove ourselves from the LRU list if present. */
  1513. if (!list_empty(&obj_priv->list))
  1514. list_del_init(&obj_priv->list);
  1515. return 0;
  1516. }
  1517. static int
  1518. i915_gem_evict_something(struct drm_device *dev)
  1519. {
  1520. drm_i915_private_t *dev_priv = dev->dev_private;
  1521. struct drm_gem_object *obj;
  1522. struct drm_i915_gem_object *obj_priv;
  1523. int ret = 0;
  1524. for (;;) {
  1525. /* If there's an inactive buffer available now, grab it
  1526. * and be done.
  1527. */
  1528. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1529. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1530. struct drm_i915_gem_object,
  1531. list);
  1532. obj = obj_priv->obj;
  1533. BUG_ON(obj_priv->pin_count != 0);
  1534. #if WATCH_LRU
  1535. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1536. #endif
  1537. BUG_ON(obj_priv->active);
  1538. /* Wait on the rendering and unbind the buffer. */
  1539. ret = i915_gem_object_unbind(obj);
  1540. break;
  1541. }
  1542. /* If we didn't get anything, but the ring is still processing
  1543. * things, wait for one of those things to finish and hopefully
  1544. * leave us a buffer to evict.
  1545. */
  1546. if (!list_empty(&dev_priv->mm.request_list)) {
  1547. struct drm_i915_gem_request *request;
  1548. request = list_first_entry(&dev_priv->mm.request_list,
  1549. struct drm_i915_gem_request,
  1550. list);
  1551. ret = i915_wait_request(dev, request->seqno);
  1552. if (ret)
  1553. break;
  1554. /* if waiting caused an object to become inactive,
  1555. * then loop around and wait for it. Otherwise, we
  1556. * assume that waiting freed and unbound something,
  1557. * so there should now be some space in the GTT
  1558. */
  1559. if (!list_empty(&dev_priv->mm.inactive_list))
  1560. continue;
  1561. break;
  1562. }
  1563. /* If we didn't have anything on the request list but there
  1564. * are buffers awaiting a flush, emit one and try again.
  1565. * When we wait on it, those buffers waiting for that flush
  1566. * will get moved to inactive.
  1567. */
  1568. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1569. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1570. struct drm_i915_gem_object,
  1571. list);
  1572. obj = obj_priv->obj;
  1573. i915_gem_flush(dev,
  1574. obj->write_domain,
  1575. obj->write_domain);
  1576. i915_add_request(dev, obj->write_domain);
  1577. obj = NULL;
  1578. continue;
  1579. }
  1580. DRM_ERROR("inactive empty %d request empty %d "
  1581. "flushing empty %d\n",
  1582. list_empty(&dev_priv->mm.inactive_list),
  1583. list_empty(&dev_priv->mm.request_list),
  1584. list_empty(&dev_priv->mm.flushing_list));
  1585. /* If we didn't do any of the above, there's nothing to be done
  1586. * and we just can't fit it in.
  1587. */
  1588. return -ENOMEM;
  1589. }
  1590. return ret;
  1591. }
  1592. static int
  1593. i915_gem_evict_everything(struct drm_device *dev)
  1594. {
  1595. int ret;
  1596. for (;;) {
  1597. ret = i915_gem_evict_something(dev);
  1598. if (ret != 0)
  1599. break;
  1600. }
  1601. if (ret == -ENOMEM)
  1602. return 0;
  1603. return ret;
  1604. }
  1605. static int
  1606. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1607. {
  1608. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1609. int page_count, i;
  1610. struct address_space *mapping;
  1611. struct inode *inode;
  1612. struct page *page;
  1613. int ret;
  1614. if (obj_priv->pages_refcount++ != 0)
  1615. return 0;
  1616. /* Get the list of pages out of our struct file. They'll be pinned
  1617. * at this point until we release them.
  1618. */
  1619. page_count = obj->size / PAGE_SIZE;
  1620. BUG_ON(obj_priv->pages != NULL);
  1621. obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
  1622. DRM_MEM_DRIVER);
  1623. if (obj_priv->pages == NULL) {
  1624. DRM_ERROR("Faled to allocate page list\n");
  1625. obj_priv->pages_refcount--;
  1626. return -ENOMEM;
  1627. }
  1628. inode = obj->filp->f_path.dentry->d_inode;
  1629. mapping = inode->i_mapping;
  1630. for (i = 0; i < page_count; i++) {
  1631. page = read_mapping_page(mapping, i, NULL);
  1632. if (IS_ERR(page)) {
  1633. ret = PTR_ERR(page);
  1634. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1635. i915_gem_object_put_pages(obj);
  1636. return ret;
  1637. }
  1638. obj_priv->pages[i] = page;
  1639. }
  1640. return 0;
  1641. }
  1642. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1643. {
  1644. struct drm_gem_object *obj = reg->obj;
  1645. struct drm_device *dev = obj->dev;
  1646. drm_i915_private_t *dev_priv = dev->dev_private;
  1647. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1648. int regnum = obj_priv->fence_reg;
  1649. uint64_t val;
  1650. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1651. 0xfffff000) << 32;
  1652. val |= obj_priv->gtt_offset & 0xfffff000;
  1653. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1654. if (obj_priv->tiling_mode == I915_TILING_Y)
  1655. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1656. val |= I965_FENCE_REG_VALID;
  1657. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1658. }
  1659. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1660. {
  1661. struct drm_gem_object *obj = reg->obj;
  1662. struct drm_device *dev = obj->dev;
  1663. drm_i915_private_t *dev_priv = dev->dev_private;
  1664. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1665. int regnum = obj_priv->fence_reg;
  1666. int tile_width;
  1667. uint32_t fence_reg, val;
  1668. uint32_t pitch_val;
  1669. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1670. (obj_priv->gtt_offset & (obj->size - 1))) {
  1671. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1672. __func__, obj_priv->gtt_offset, obj->size);
  1673. return;
  1674. }
  1675. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1676. HAS_128_BYTE_Y_TILING(dev))
  1677. tile_width = 128;
  1678. else
  1679. tile_width = 512;
  1680. /* Note: pitch better be a power of two tile widths */
  1681. pitch_val = obj_priv->stride / tile_width;
  1682. pitch_val = ffs(pitch_val) - 1;
  1683. val = obj_priv->gtt_offset;
  1684. if (obj_priv->tiling_mode == I915_TILING_Y)
  1685. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1686. val |= I915_FENCE_SIZE_BITS(obj->size);
  1687. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1688. val |= I830_FENCE_REG_VALID;
  1689. if (regnum < 8)
  1690. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1691. else
  1692. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1693. I915_WRITE(fence_reg, val);
  1694. }
  1695. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1696. {
  1697. struct drm_gem_object *obj = reg->obj;
  1698. struct drm_device *dev = obj->dev;
  1699. drm_i915_private_t *dev_priv = dev->dev_private;
  1700. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1701. int regnum = obj_priv->fence_reg;
  1702. uint32_t val;
  1703. uint32_t pitch_val;
  1704. uint32_t fence_size_bits;
  1705. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1706. (obj_priv->gtt_offset & (obj->size - 1))) {
  1707. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1708. __func__, obj_priv->gtt_offset);
  1709. return;
  1710. }
  1711. pitch_val = (obj_priv->stride / 128) - 1;
  1712. WARN_ON(pitch_val & ~0x0000000f);
  1713. val = obj_priv->gtt_offset;
  1714. if (obj_priv->tiling_mode == I915_TILING_Y)
  1715. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1716. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1717. WARN_ON(fence_size_bits & ~0x00000f00);
  1718. val |= fence_size_bits;
  1719. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1720. val |= I830_FENCE_REG_VALID;
  1721. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1722. }
  1723. /**
  1724. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1725. * @obj: object to map through a fence reg
  1726. * @write: object is about to be written
  1727. *
  1728. * When mapping objects through the GTT, userspace wants to be able to write
  1729. * to them without having to worry about swizzling if the object is tiled.
  1730. *
  1731. * This function walks the fence regs looking for a free one for @obj,
  1732. * stealing one if it can't find any.
  1733. *
  1734. * It then sets up the reg based on the object's properties: address, pitch
  1735. * and tiling format.
  1736. */
  1737. static int
  1738. i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
  1739. {
  1740. struct drm_device *dev = obj->dev;
  1741. struct drm_i915_private *dev_priv = dev->dev_private;
  1742. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1743. struct drm_i915_fence_reg *reg = NULL;
  1744. struct drm_i915_gem_object *old_obj_priv = NULL;
  1745. int i, ret, avail;
  1746. switch (obj_priv->tiling_mode) {
  1747. case I915_TILING_NONE:
  1748. WARN(1, "allocating a fence for non-tiled object?\n");
  1749. break;
  1750. case I915_TILING_X:
  1751. if (!obj_priv->stride)
  1752. return -EINVAL;
  1753. WARN((obj_priv->stride & (512 - 1)),
  1754. "object 0x%08x is X tiled but has non-512B pitch\n",
  1755. obj_priv->gtt_offset);
  1756. break;
  1757. case I915_TILING_Y:
  1758. if (!obj_priv->stride)
  1759. return -EINVAL;
  1760. WARN((obj_priv->stride & (128 - 1)),
  1761. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1762. obj_priv->gtt_offset);
  1763. break;
  1764. }
  1765. /* First try to find a free reg */
  1766. try_again:
  1767. avail = 0;
  1768. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1769. reg = &dev_priv->fence_regs[i];
  1770. if (!reg->obj)
  1771. break;
  1772. old_obj_priv = reg->obj->driver_private;
  1773. if (!old_obj_priv->pin_count)
  1774. avail++;
  1775. }
  1776. /* None available, try to steal one or wait for a user to finish */
  1777. if (i == dev_priv->num_fence_regs) {
  1778. uint32_t seqno = dev_priv->mm.next_gem_seqno;
  1779. loff_t offset;
  1780. if (avail == 0)
  1781. return -ENOMEM;
  1782. for (i = dev_priv->fence_reg_start;
  1783. i < dev_priv->num_fence_regs; i++) {
  1784. uint32_t this_seqno;
  1785. reg = &dev_priv->fence_regs[i];
  1786. old_obj_priv = reg->obj->driver_private;
  1787. if (old_obj_priv->pin_count)
  1788. continue;
  1789. /* i915 uses fences for GPU access to tiled buffers */
  1790. if (IS_I965G(dev) || !old_obj_priv->active)
  1791. break;
  1792. /* find the seqno of the first available fence */
  1793. this_seqno = old_obj_priv->last_rendering_seqno;
  1794. if (this_seqno != 0 &&
  1795. reg->obj->write_domain == 0 &&
  1796. i915_seqno_passed(seqno, this_seqno))
  1797. seqno = this_seqno;
  1798. }
  1799. /*
  1800. * Now things get ugly... we have to wait for one of the
  1801. * objects to finish before trying again.
  1802. */
  1803. if (i == dev_priv->num_fence_regs) {
  1804. if (seqno == dev_priv->mm.next_gem_seqno) {
  1805. i915_gem_flush(dev,
  1806. I915_GEM_GPU_DOMAINS,
  1807. I915_GEM_GPU_DOMAINS);
  1808. seqno = i915_add_request(dev,
  1809. I915_GEM_GPU_DOMAINS);
  1810. if (seqno == 0)
  1811. return -ENOMEM;
  1812. }
  1813. ret = i915_wait_request(dev, seqno);
  1814. if (ret)
  1815. return ret;
  1816. goto try_again;
  1817. }
  1818. BUG_ON(old_obj_priv->active ||
  1819. (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
  1820. /*
  1821. * Zap this virtual mapping so we can set up a fence again
  1822. * for this object next time we need it.
  1823. */
  1824. offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
  1825. if (dev->dev_mapping)
  1826. unmap_mapping_range(dev->dev_mapping, offset,
  1827. reg->obj->size, 1);
  1828. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1829. }
  1830. obj_priv->fence_reg = i;
  1831. reg->obj = obj;
  1832. if (IS_I965G(dev))
  1833. i965_write_fence_reg(reg);
  1834. else if (IS_I9XX(dev))
  1835. i915_write_fence_reg(reg);
  1836. else
  1837. i830_write_fence_reg(reg);
  1838. return 0;
  1839. }
  1840. /**
  1841. * i915_gem_clear_fence_reg - clear out fence register info
  1842. * @obj: object to clear
  1843. *
  1844. * Zeroes out the fence register itself and clears out the associated
  1845. * data structures in dev_priv and obj_priv.
  1846. */
  1847. static void
  1848. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1849. {
  1850. struct drm_device *dev = obj->dev;
  1851. drm_i915_private_t *dev_priv = dev->dev_private;
  1852. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1853. if (IS_I965G(dev))
  1854. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  1855. else {
  1856. uint32_t fence_reg;
  1857. if (obj_priv->fence_reg < 8)
  1858. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  1859. else
  1860. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  1861. 8) * 4;
  1862. I915_WRITE(fence_reg, 0);
  1863. }
  1864. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  1865. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1866. }
  1867. /**
  1868. * Finds free space in the GTT aperture and binds the object there.
  1869. */
  1870. static int
  1871. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  1872. {
  1873. struct drm_device *dev = obj->dev;
  1874. drm_i915_private_t *dev_priv = dev->dev_private;
  1875. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1876. struct drm_mm_node *free_space;
  1877. int page_count, ret;
  1878. if (dev_priv->mm.suspended)
  1879. return -EBUSY;
  1880. if (alignment == 0)
  1881. alignment = i915_gem_get_gtt_alignment(obj);
  1882. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  1883. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  1884. return -EINVAL;
  1885. }
  1886. search_free:
  1887. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  1888. obj->size, alignment, 0);
  1889. if (free_space != NULL) {
  1890. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  1891. alignment);
  1892. if (obj_priv->gtt_space != NULL) {
  1893. obj_priv->gtt_space->private = obj;
  1894. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  1895. }
  1896. }
  1897. if (obj_priv->gtt_space == NULL) {
  1898. bool lists_empty;
  1899. /* If the gtt is empty and we're still having trouble
  1900. * fitting our object in, we're out of memory.
  1901. */
  1902. #if WATCH_LRU
  1903. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  1904. #endif
  1905. spin_lock(&dev_priv->mm.active_list_lock);
  1906. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  1907. list_empty(&dev_priv->mm.flushing_list) &&
  1908. list_empty(&dev_priv->mm.active_list));
  1909. spin_unlock(&dev_priv->mm.active_list_lock);
  1910. if (lists_empty) {
  1911. DRM_ERROR("GTT full, but LRU list empty\n");
  1912. return -ENOMEM;
  1913. }
  1914. ret = i915_gem_evict_something(dev);
  1915. if (ret != 0) {
  1916. if (ret != -ERESTARTSYS)
  1917. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  1918. return ret;
  1919. }
  1920. goto search_free;
  1921. }
  1922. #if WATCH_BUF
  1923. DRM_INFO("Binding object of size %d at 0x%08x\n",
  1924. obj->size, obj_priv->gtt_offset);
  1925. #endif
  1926. ret = i915_gem_object_get_pages(obj);
  1927. if (ret) {
  1928. drm_mm_put_block(obj_priv->gtt_space);
  1929. obj_priv->gtt_space = NULL;
  1930. return ret;
  1931. }
  1932. page_count = obj->size / PAGE_SIZE;
  1933. /* Create an AGP memory structure pointing at our pages, and bind it
  1934. * into the GTT.
  1935. */
  1936. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  1937. obj_priv->pages,
  1938. page_count,
  1939. obj_priv->gtt_offset,
  1940. obj_priv->agp_type);
  1941. if (obj_priv->agp_mem == NULL) {
  1942. i915_gem_object_put_pages(obj);
  1943. drm_mm_put_block(obj_priv->gtt_space);
  1944. obj_priv->gtt_space = NULL;
  1945. return -ENOMEM;
  1946. }
  1947. atomic_inc(&dev->gtt_count);
  1948. atomic_add(obj->size, &dev->gtt_memory);
  1949. /* Assert that the object is not currently in any GPU domain. As it
  1950. * wasn't in the GTT, there shouldn't be any way it could have been in
  1951. * a GPU cache
  1952. */
  1953. BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  1954. BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  1955. return 0;
  1956. }
  1957. void
  1958. i915_gem_clflush_object(struct drm_gem_object *obj)
  1959. {
  1960. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1961. /* If we don't have a page list set up, then we're not pinned
  1962. * to GPU, and we can ignore the cache flush because it'll happen
  1963. * again at bind time.
  1964. */
  1965. if (obj_priv->pages == NULL)
  1966. return;
  1967. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  1968. }
  1969. /** Flushes any GPU write domain for the object if it's dirty. */
  1970. static void
  1971. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  1972. {
  1973. struct drm_device *dev = obj->dev;
  1974. uint32_t seqno;
  1975. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  1976. return;
  1977. /* Queue the GPU write cache flushing we need. */
  1978. i915_gem_flush(dev, 0, obj->write_domain);
  1979. seqno = i915_add_request(dev, obj->write_domain);
  1980. obj->write_domain = 0;
  1981. i915_gem_object_move_to_active(obj, seqno);
  1982. }
  1983. /** Flushes the GTT write domain for the object if it's dirty. */
  1984. static void
  1985. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  1986. {
  1987. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  1988. return;
  1989. /* No actual flushing is required for the GTT write domain. Writes
  1990. * to it immediately go to main memory as far as we know, so there's
  1991. * no chipset flush. It also doesn't land in render cache.
  1992. */
  1993. obj->write_domain = 0;
  1994. }
  1995. /** Flushes the CPU write domain for the object if it's dirty. */
  1996. static void
  1997. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  1998. {
  1999. struct drm_device *dev = obj->dev;
  2000. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2001. return;
  2002. i915_gem_clflush_object(obj);
  2003. drm_agp_chipset_flush(dev);
  2004. obj->write_domain = 0;
  2005. }
  2006. /**
  2007. * Moves a single object to the GTT read, and possibly write domain.
  2008. *
  2009. * This function returns when the move is complete, including waiting on
  2010. * flushes to occur.
  2011. */
  2012. int
  2013. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2014. {
  2015. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2016. int ret;
  2017. /* Not valid to be called on unbound objects. */
  2018. if (obj_priv->gtt_space == NULL)
  2019. return -EINVAL;
  2020. i915_gem_object_flush_gpu_write_domain(obj);
  2021. /* Wait on any GPU rendering and flushing to occur. */
  2022. ret = i915_gem_object_wait_rendering(obj);
  2023. if (ret != 0)
  2024. return ret;
  2025. /* If we're writing through the GTT domain, then CPU and GPU caches
  2026. * will need to be invalidated at next use.
  2027. */
  2028. if (write)
  2029. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2030. i915_gem_object_flush_cpu_write_domain(obj);
  2031. /* It should now be out of any other write domains, and we can update
  2032. * the domain values for our changes.
  2033. */
  2034. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2035. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2036. if (write) {
  2037. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2038. obj_priv->dirty = 1;
  2039. }
  2040. return 0;
  2041. }
  2042. /**
  2043. * Moves a single object to the CPU read, and possibly write domain.
  2044. *
  2045. * This function returns when the move is complete, including waiting on
  2046. * flushes to occur.
  2047. */
  2048. static int
  2049. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2050. {
  2051. int ret;
  2052. i915_gem_object_flush_gpu_write_domain(obj);
  2053. /* Wait on any GPU rendering and flushing to occur. */
  2054. ret = i915_gem_object_wait_rendering(obj);
  2055. if (ret != 0)
  2056. return ret;
  2057. i915_gem_object_flush_gtt_write_domain(obj);
  2058. /* If we have a partially-valid cache of the object in the CPU,
  2059. * finish invalidating it and free the per-page flags.
  2060. */
  2061. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2062. /* Flush the CPU cache if it's still invalid. */
  2063. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2064. i915_gem_clflush_object(obj);
  2065. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2066. }
  2067. /* It should now be out of any other write domains, and we can update
  2068. * the domain values for our changes.
  2069. */
  2070. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2071. /* If we're writing through the CPU, then the GPU read domains will
  2072. * need to be invalidated at next use.
  2073. */
  2074. if (write) {
  2075. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2076. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2077. }
  2078. return 0;
  2079. }
  2080. /*
  2081. * Set the next domain for the specified object. This
  2082. * may not actually perform the necessary flushing/invaliding though,
  2083. * as that may want to be batched with other set_domain operations
  2084. *
  2085. * This is (we hope) the only really tricky part of gem. The goal
  2086. * is fairly simple -- track which caches hold bits of the object
  2087. * and make sure they remain coherent. A few concrete examples may
  2088. * help to explain how it works. For shorthand, we use the notation
  2089. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2090. * a pair of read and write domain masks.
  2091. *
  2092. * Case 1: the batch buffer
  2093. *
  2094. * 1. Allocated
  2095. * 2. Written by CPU
  2096. * 3. Mapped to GTT
  2097. * 4. Read by GPU
  2098. * 5. Unmapped from GTT
  2099. * 6. Freed
  2100. *
  2101. * Let's take these a step at a time
  2102. *
  2103. * 1. Allocated
  2104. * Pages allocated from the kernel may still have
  2105. * cache contents, so we set them to (CPU, CPU) always.
  2106. * 2. Written by CPU (using pwrite)
  2107. * The pwrite function calls set_domain (CPU, CPU) and
  2108. * this function does nothing (as nothing changes)
  2109. * 3. Mapped by GTT
  2110. * This function asserts that the object is not
  2111. * currently in any GPU-based read or write domains
  2112. * 4. Read by GPU
  2113. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2114. * As write_domain is zero, this function adds in the
  2115. * current read domains (CPU+COMMAND, 0).
  2116. * flush_domains is set to CPU.
  2117. * invalidate_domains is set to COMMAND
  2118. * clflush is run to get data out of the CPU caches
  2119. * then i915_dev_set_domain calls i915_gem_flush to
  2120. * emit an MI_FLUSH and drm_agp_chipset_flush
  2121. * 5. Unmapped from GTT
  2122. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2123. * flush_domains and invalidate_domains end up both zero
  2124. * so no flushing/invalidating happens
  2125. * 6. Freed
  2126. * yay, done
  2127. *
  2128. * Case 2: The shared render buffer
  2129. *
  2130. * 1. Allocated
  2131. * 2. Mapped to GTT
  2132. * 3. Read/written by GPU
  2133. * 4. set_domain to (CPU,CPU)
  2134. * 5. Read/written by CPU
  2135. * 6. Read/written by GPU
  2136. *
  2137. * 1. Allocated
  2138. * Same as last example, (CPU, CPU)
  2139. * 2. Mapped to GTT
  2140. * Nothing changes (assertions find that it is not in the GPU)
  2141. * 3. Read/written by GPU
  2142. * execbuffer calls set_domain (RENDER, RENDER)
  2143. * flush_domains gets CPU
  2144. * invalidate_domains gets GPU
  2145. * clflush (obj)
  2146. * MI_FLUSH and drm_agp_chipset_flush
  2147. * 4. set_domain (CPU, CPU)
  2148. * flush_domains gets GPU
  2149. * invalidate_domains gets CPU
  2150. * wait_rendering (obj) to make sure all drawing is complete.
  2151. * This will include an MI_FLUSH to get the data from GPU
  2152. * to memory
  2153. * clflush (obj) to invalidate the CPU cache
  2154. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2155. * 5. Read/written by CPU
  2156. * cache lines are loaded and dirtied
  2157. * 6. Read written by GPU
  2158. * Same as last GPU access
  2159. *
  2160. * Case 3: The constant buffer
  2161. *
  2162. * 1. Allocated
  2163. * 2. Written by CPU
  2164. * 3. Read by GPU
  2165. * 4. Updated (written) by CPU again
  2166. * 5. Read by GPU
  2167. *
  2168. * 1. Allocated
  2169. * (CPU, CPU)
  2170. * 2. Written by CPU
  2171. * (CPU, CPU)
  2172. * 3. Read by GPU
  2173. * (CPU+RENDER, 0)
  2174. * flush_domains = CPU
  2175. * invalidate_domains = RENDER
  2176. * clflush (obj)
  2177. * MI_FLUSH
  2178. * drm_agp_chipset_flush
  2179. * 4. Updated (written) by CPU again
  2180. * (CPU, CPU)
  2181. * flush_domains = 0 (no previous write domain)
  2182. * invalidate_domains = 0 (no new read domains)
  2183. * 5. Read by GPU
  2184. * (CPU+RENDER, 0)
  2185. * flush_domains = CPU
  2186. * invalidate_domains = RENDER
  2187. * clflush (obj)
  2188. * MI_FLUSH
  2189. * drm_agp_chipset_flush
  2190. */
  2191. static void
  2192. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2193. {
  2194. struct drm_device *dev = obj->dev;
  2195. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2196. uint32_t invalidate_domains = 0;
  2197. uint32_t flush_domains = 0;
  2198. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2199. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2200. #if WATCH_BUF
  2201. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2202. __func__, obj,
  2203. obj->read_domains, obj->pending_read_domains,
  2204. obj->write_domain, obj->pending_write_domain);
  2205. #endif
  2206. /*
  2207. * If the object isn't moving to a new write domain,
  2208. * let the object stay in multiple read domains
  2209. */
  2210. if (obj->pending_write_domain == 0)
  2211. obj->pending_read_domains |= obj->read_domains;
  2212. else
  2213. obj_priv->dirty = 1;
  2214. /*
  2215. * Flush the current write domain if
  2216. * the new read domains don't match. Invalidate
  2217. * any read domains which differ from the old
  2218. * write domain
  2219. */
  2220. if (obj->write_domain &&
  2221. obj->write_domain != obj->pending_read_domains) {
  2222. flush_domains |= obj->write_domain;
  2223. invalidate_domains |=
  2224. obj->pending_read_domains & ~obj->write_domain;
  2225. }
  2226. /*
  2227. * Invalidate any read caches which may have
  2228. * stale data. That is, any new read domains.
  2229. */
  2230. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2231. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2232. #if WATCH_BUF
  2233. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2234. __func__, flush_domains, invalidate_domains);
  2235. #endif
  2236. i915_gem_clflush_object(obj);
  2237. }
  2238. /* The actual obj->write_domain will be updated with
  2239. * pending_write_domain after we emit the accumulated flush for all
  2240. * of our domain changes in execbuffers (which clears objects'
  2241. * write_domains). So if we have a current write domain that we
  2242. * aren't changing, set pending_write_domain to that.
  2243. */
  2244. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2245. obj->pending_write_domain = obj->write_domain;
  2246. obj->read_domains = obj->pending_read_domains;
  2247. dev->invalidate_domains |= invalidate_domains;
  2248. dev->flush_domains |= flush_domains;
  2249. #if WATCH_BUF
  2250. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2251. __func__,
  2252. obj->read_domains, obj->write_domain,
  2253. dev->invalidate_domains, dev->flush_domains);
  2254. #endif
  2255. }
  2256. /**
  2257. * Moves the object from a partially CPU read to a full one.
  2258. *
  2259. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2260. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2261. */
  2262. static void
  2263. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2264. {
  2265. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2266. if (!obj_priv->page_cpu_valid)
  2267. return;
  2268. /* If we're partially in the CPU read domain, finish moving it in.
  2269. */
  2270. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2271. int i;
  2272. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2273. if (obj_priv->page_cpu_valid[i])
  2274. continue;
  2275. drm_clflush_pages(obj_priv->pages + i, 1);
  2276. }
  2277. }
  2278. /* Free the page_cpu_valid mappings which are now stale, whether
  2279. * or not we've got I915_GEM_DOMAIN_CPU.
  2280. */
  2281. drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
  2282. DRM_MEM_DRIVER);
  2283. obj_priv->page_cpu_valid = NULL;
  2284. }
  2285. /**
  2286. * Set the CPU read domain on a range of the object.
  2287. *
  2288. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2289. * not entirely valid. The page_cpu_valid member of the object flags which
  2290. * pages have been flushed, and will be respected by
  2291. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2292. * of the whole object.
  2293. *
  2294. * This function returns when the move is complete, including waiting on
  2295. * flushes to occur.
  2296. */
  2297. static int
  2298. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2299. uint64_t offset, uint64_t size)
  2300. {
  2301. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2302. int i, ret;
  2303. if (offset == 0 && size == obj->size)
  2304. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2305. i915_gem_object_flush_gpu_write_domain(obj);
  2306. /* Wait on any GPU rendering and flushing to occur. */
  2307. ret = i915_gem_object_wait_rendering(obj);
  2308. if (ret != 0)
  2309. return ret;
  2310. i915_gem_object_flush_gtt_write_domain(obj);
  2311. /* If we're already fully in the CPU read domain, we're done. */
  2312. if (obj_priv->page_cpu_valid == NULL &&
  2313. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2314. return 0;
  2315. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2316. * newly adding I915_GEM_DOMAIN_CPU
  2317. */
  2318. if (obj_priv->page_cpu_valid == NULL) {
  2319. obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
  2320. DRM_MEM_DRIVER);
  2321. if (obj_priv->page_cpu_valid == NULL)
  2322. return -ENOMEM;
  2323. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2324. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2325. /* Flush the cache on any pages that are still invalid from the CPU's
  2326. * perspective.
  2327. */
  2328. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2329. i++) {
  2330. if (obj_priv->page_cpu_valid[i])
  2331. continue;
  2332. drm_clflush_pages(obj_priv->pages + i, 1);
  2333. obj_priv->page_cpu_valid[i] = 1;
  2334. }
  2335. /* It should now be out of any other write domains, and we can update
  2336. * the domain values for our changes.
  2337. */
  2338. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2339. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2340. return 0;
  2341. }
  2342. /**
  2343. * Pin an object to the GTT and evaluate the relocations landing in it.
  2344. */
  2345. static int
  2346. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2347. struct drm_file *file_priv,
  2348. struct drm_i915_gem_exec_object *entry,
  2349. struct drm_i915_gem_relocation_entry *relocs)
  2350. {
  2351. struct drm_device *dev = obj->dev;
  2352. drm_i915_private_t *dev_priv = dev->dev_private;
  2353. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2354. int i, ret;
  2355. void __iomem *reloc_page;
  2356. /* Choose the GTT offset for our buffer and put it there. */
  2357. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2358. if (ret)
  2359. return ret;
  2360. entry->offset = obj_priv->gtt_offset;
  2361. /* Apply the relocations, using the GTT aperture to avoid cache
  2362. * flushing requirements.
  2363. */
  2364. for (i = 0; i < entry->relocation_count; i++) {
  2365. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2366. struct drm_gem_object *target_obj;
  2367. struct drm_i915_gem_object *target_obj_priv;
  2368. uint32_t reloc_val, reloc_offset;
  2369. uint32_t __iomem *reloc_entry;
  2370. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2371. reloc->target_handle);
  2372. if (target_obj == NULL) {
  2373. i915_gem_object_unpin(obj);
  2374. return -EBADF;
  2375. }
  2376. target_obj_priv = target_obj->driver_private;
  2377. /* The target buffer should have appeared before us in the
  2378. * exec_object list, so it should have a GTT space bound by now.
  2379. */
  2380. if (target_obj_priv->gtt_space == NULL) {
  2381. DRM_ERROR("No GTT space found for object %d\n",
  2382. reloc->target_handle);
  2383. drm_gem_object_unreference(target_obj);
  2384. i915_gem_object_unpin(obj);
  2385. return -EINVAL;
  2386. }
  2387. if (reloc->offset > obj->size - 4) {
  2388. DRM_ERROR("Relocation beyond object bounds: "
  2389. "obj %p target %d offset %d size %d.\n",
  2390. obj, reloc->target_handle,
  2391. (int) reloc->offset, (int) obj->size);
  2392. drm_gem_object_unreference(target_obj);
  2393. i915_gem_object_unpin(obj);
  2394. return -EINVAL;
  2395. }
  2396. if (reloc->offset & 3) {
  2397. DRM_ERROR("Relocation not 4-byte aligned: "
  2398. "obj %p target %d offset %d.\n",
  2399. obj, reloc->target_handle,
  2400. (int) reloc->offset);
  2401. drm_gem_object_unreference(target_obj);
  2402. i915_gem_object_unpin(obj);
  2403. return -EINVAL;
  2404. }
  2405. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2406. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2407. DRM_ERROR("reloc with read/write CPU domains: "
  2408. "obj %p target %d offset %d "
  2409. "read %08x write %08x",
  2410. obj, reloc->target_handle,
  2411. (int) reloc->offset,
  2412. reloc->read_domains,
  2413. reloc->write_domain);
  2414. drm_gem_object_unreference(target_obj);
  2415. i915_gem_object_unpin(obj);
  2416. return -EINVAL;
  2417. }
  2418. if (reloc->write_domain && target_obj->pending_write_domain &&
  2419. reloc->write_domain != target_obj->pending_write_domain) {
  2420. DRM_ERROR("Write domain conflict: "
  2421. "obj %p target %d offset %d "
  2422. "new %08x old %08x\n",
  2423. obj, reloc->target_handle,
  2424. (int) reloc->offset,
  2425. reloc->write_domain,
  2426. target_obj->pending_write_domain);
  2427. drm_gem_object_unreference(target_obj);
  2428. i915_gem_object_unpin(obj);
  2429. return -EINVAL;
  2430. }
  2431. #if WATCH_RELOC
  2432. DRM_INFO("%s: obj %p offset %08x target %d "
  2433. "read %08x write %08x gtt %08x "
  2434. "presumed %08x delta %08x\n",
  2435. __func__,
  2436. obj,
  2437. (int) reloc->offset,
  2438. (int) reloc->target_handle,
  2439. (int) reloc->read_domains,
  2440. (int) reloc->write_domain,
  2441. (int) target_obj_priv->gtt_offset,
  2442. (int) reloc->presumed_offset,
  2443. reloc->delta);
  2444. #endif
  2445. target_obj->pending_read_domains |= reloc->read_domains;
  2446. target_obj->pending_write_domain |= reloc->write_domain;
  2447. /* If the relocation already has the right value in it, no
  2448. * more work needs to be done.
  2449. */
  2450. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2451. drm_gem_object_unreference(target_obj);
  2452. continue;
  2453. }
  2454. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2455. if (ret != 0) {
  2456. drm_gem_object_unreference(target_obj);
  2457. i915_gem_object_unpin(obj);
  2458. return -EINVAL;
  2459. }
  2460. /* Map the page containing the relocation we're going to
  2461. * perform.
  2462. */
  2463. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2464. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2465. (reloc_offset &
  2466. ~(PAGE_SIZE - 1)));
  2467. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2468. (reloc_offset & (PAGE_SIZE - 1)));
  2469. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2470. #if WATCH_BUF
  2471. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2472. obj, (unsigned int) reloc->offset,
  2473. readl(reloc_entry), reloc_val);
  2474. #endif
  2475. writel(reloc_val, reloc_entry);
  2476. io_mapping_unmap_atomic(reloc_page);
  2477. /* The updated presumed offset for this entry will be
  2478. * copied back out to the user.
  2479. */
  2480. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2481. drm_gem_object_unreference(target_obj);
  2482. }
  2483. #if WATCH_BUF
  2484. if (0)
  2485. i915_gem_dump_object(obj, 128, __func__, ~0);
  2486. #endif
  2487. return 0;
  2488. }
  2489. /** Dispatch a batchbuffer to the ring
  2490. */
  2491. static int
  2492. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2493. struct drm_i915_gem_execbuffer *exec,
  2494. struct drm_clip_rect *cliprects,
  2495. uint64_t exec_offset)
  2496. {
  2497. drm_i915_private_t *dev_priv = dev->dev_private;
  2498. int nbox = exec->num_cliprects;
  2499. int i = 0, count;
  2500. uint32_t exec_start, exec_len;
  2501. RING_LOCALS;
  2502. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2503. exec_len = (uint32_t) exec->batch_len;
  2504. if ((exec_start | exec_len) & 0x7) {
  2505. DRM_ERROR("alignment\n");
  2506. return -EINVAL;
  2507. }
  2508. if (!exec_start)
  2509. return -EINVAL;
  2510. count = nbox ? nbox : 1;
  2511. for (i = 0; i < count; i++) {
  2512. if (i < nbox) {
  2513. int ret = i915_emit_box(dev, cliprects, i,
  2514. exec->DR1, exec->DR4);
  2515. if (ret)
  2516. return ret;
  2517. }
  2518. if (IS_I830(dev) || IS_845G(dev)) {
  2519. BEGIN_LP_RING(4);
  2520. OUT_RING(MI_BATCH_BUFFER);
  2521. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2522. OUT_RING(exec_start + exec_len - 4);
  2523. OUT_RING(0);
  2524. ADVANCE_LP_RING();
  2525. } else {
  2526. BEGIN_LP_RING(2);
  2527. if (IS_I965G(dev)) {
  2528. OUT_RING(MI_BATCH_BUFFER_START |
  2529. (2 << 6) |
  2530. MI_BATCH_NON_SECURE_I965);
  2531. OUT_RING(exec_start);
  2532. } else {
  2533. OUT_RING(MI_BATCH_BUFFER_START |
  2534. (2 << 6));
  2535. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2536. }
  2537. ADVANCE_LP_RING();
  2538. }
  2539. }
  2540. /* XXX breadcrumb */
  2541. return 0;
  2542. }
  2543. /* Throttle our rendering by waiting until the ring has completed our requests
  2544. * emitted over 20 msec ago.
  2545. *
  2546. * This should get us reasonable parallelism between CPU and GPU but also
  2547. * relatively low latency when blocking on a particular request to finish.
  2548. */
  2549. static int
  2550. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2551. {
  2552. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2553. int ret = 0;
  2554. uint32_t seqno;
  2555. mutex_lock(&dev->struct_mutex);
  2556. seqno = i915_file_priv->mm.last_gem_throttle_seqno;
  2557. i915_file_priv->mm.last_gem_throttle_seqno =
  2558. i915_file_priv->mm.last_gem_seqno;
  2559. if (seqno)
  2560. ret = i915_wait_request(dev, seqno);
  2561. mutex_unlock(&dev->struct_mutex);
  2562. return ret;
  2563. }
  2564. static int
  2565. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2566. uint32_t buffer_count,
  2567. struct drm_i915_gem_relocation_entry **relocs)
  2568. {
  2569. uint32_t reloc_count = 0, reloc_index = 0, i;
  2570. int ret;
  2571. *relocs = NULL;
  2572. for (i = 0; i < buffer_count; i++) {
  2573. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2574. return -EINVAL;
  2575. reloc_count += exec_list[i].relocation_count;
  2576. }
  2577. *relocs = drm_calloc(reloc_count, sizeof(**relocs), DRM_MEM_DRIVER);
  2578. if (*relocs == NULL)
  2579. return -ENOMEM;
  2580. for (i = 0; i < buffer_count; i++) {
  2581. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2582. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2583. ret = copy_from_user(&(*relocs)[reloc_index],
  2584. user_relocs,
  2585. exec_list[i].relocation_count *
  2586. sizeof(**relocs));
  2587. if (ret != 0) {
  2588. drm_free(*relocs, reloc_count * sizeof(**relocs),
  2589. DRM_MEM_DRIVER);
  2590. *relocs = NULL;
  2591. return ret;
  2592. }
  2593. reloc_index += exec_list[i].relocation_count;
  2594. }
  2595. return ret;
  2596. }
  2597. static int
  2598. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2599. uint32_t buffer_count,
  2600. struct drm_i915_gem_relocation_entry *relocs)
  2601. {
  2602. uint32_t reloc_count = 0, i;
  2603. int ret;
  2604. for (i = 0; i < buffer_count; i++) {
  2605. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2606. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2607. if (ret == 0) {
  2608. ret = copy_to_user(user_relocs,
  2609. &relocs[reloc_count],
  2610. exec_list[i].relocation_count *
  2611. sizeof(*relocs));
  2612. }
  2613. reloc_count += exec_list[i].relocation_count;
  2614. }
  2615. drm_free(relocs, reloc_count * sizeof(*relocs), DRM_MEM_DRIVER);
  2616. return ret;
  2617. }
  2618. int
  2619. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2620. struct drm_file *file_priv)
  2621. {
  2622. drm_i915_private_t *dev_priv = dev->dev_private;
  2623. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2624. struct drm_i915_gem_execbuffer *args = data;
  2625. struct drm_i915_gem_exec_object *exec_list = NULL;
  2626. struct drm_gem_object **object_list = NULL;
  2627. struct drm_gem_object *batch_obj;
  2628. struct drm_i915_gem_object *obj_priv;
  2629. struct drm_clip_rect *cliprects = NULL;
  2630. struct drm_i915_gem_relocation_entry *relocs;
  2631. int ret, ret2, i, pinned = 0;
  2632. uint64_t exec_offset;
  2633. uint32_t seqno, flush_domains, reloc_index;
  2634. int pin_tries;
  2635. #if WATCH_EXEC
  2636. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2637. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2638. #endif
  2639. if (args->buffer_count < 1) {
  2640. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2641. return -EINVAL;
  2642. }
  2643. /* Copy in the exec list from userland */
  2644. exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
  2645. DRM_MEM_DRIVER);
  2646. object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
  2647. DRM_MEM_DRIVER);
  2648. if (exec_list == NULL || object_list == NULL) {
  2649. DRM_ERROR("Failed to allocate exec or object list "
  2650. "for %d buffers\n",
  2651. args->buffer_count);
  2652. ret = -ENOMEM;
  2653. goto pre_mutex_err;
  2654. }
  2655. ret = copy_from_user(exec_list,
  2656. (struct drm_i915_relocation_entry __user *)
  2657. (uintptr_t) args->buffers_ptr,
  2658. sizeof(*exec_list) * args->buffer_count);
  2659. if (ret != 0) {
  2660. DRM_ERROR("copy %d exec entries failed %d\n",
  2661. args->buffer_count, ret);
  2662. goto pre_mutex_err;
  2663. }
  2664. if (args->num_cliprects != 0) {
  2665. cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
  2666. DRM_MEM_DRIVER);
  2667. if (cliprects == NULL)
  2668. goto pre_mutex_err;
  2669. ret = copy_from_user(cliprects,
  2670. (struct drm_clip_rect __user *)
  2671. (uintptr_t) args->cliprects_ptr,
  2672. sizeof(*cliprects) * args->num_cliprects);
  2673. if (ret != 0) {
  2674. DRM_ERROR("copy %d cliprects failed: %d\n",
  2675. args->num_cliprects, ret);
  2676. goto pre_mutex_err;
  2677. }
  2678. }
  2679. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2680. &relocs);
  2681. if (ret != 0)
  2682. goto pre_mutex_err;
  2683. mutex_lock(&dev->struct_mutex);
  2684. i915_verify_inactive(dev, __FILE__, __LINE__);
  2685. if (dev_priv->mm.wedged) {
  2686. DRM_ERROR("Execbuf while wedged\n");
  2687. mutex_unlock(&dev->struct_mutex);
  2688. ret = -EIO;
  2689. goto pre_mutex_err;
  2690. }
  2691. if (dev_priv->mm.suspended) {
  2692. DRM_ERROR("Execbuf while VT-switched.\n");
  2693. mutex_unlock(&dev->struct_mutex);
  2694. ret = -EBUSY;
  2695. goto pre_mutex_err;
  2696. }
  2697. /* Look up object handles */
  2698. for (i = 0; i < args->buffer_count; i++) {
  2699. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2700. exec_list[i].handle);
  2701. if (object_list[i] == NULL) {
  2702. DRM_ERROR("Invalid object handle %d at index %d\n",
  2703. exec_list[i].handle, i);
  2704. ret = -EBADF;
  2705. goto err;
  2706. }
  2707. obj_priv = object_list[i]->driver_private;
  2708. if (obj_priv->in_execbuffer) {
  2709. DRM_ERROR("Object %p appears more than once in object list\n",
  2710. object_list[i]);
  2711. ret = -EBADF;
  2712. goto err;
  2713. }
  2714. obj_priv->in_execbuffer = true;
  2715. }
  2716. /* Pin and relocate */
  2717. for (pin_tries = 0; ; pin_tries++) {
  2718. ret = 0;
  2719. reloc_index = 0;
  2720. for (i = 0; i < args->buffer_count; i++) {
  2721. object_list[i]->pending_read_domains = 0;
  2722. object_list[i]->pending_write_domain = 0;
  2723. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2724. file_priv,
  2725. &exec_list[i],
  2726. &relocs[reloc_index]);
  2727. if (ret)
  2728. break;
  2729. pinned = i + 1;
  2730. reloc_index += exec_list[i].relocation_count;
  2731. }
  2732. /* success */
  2733. if (ret == 0)
  2734. break;
  2735. /* error other than GTT full, or we've already tried again */
  2736. if (ret != -ENOMEM || pin_tries >= 1) {
  2737. if (ret != -ERESTARTSYS)
  2738. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2739. goto err;
  2740. }
  2741. /* unpin all of our buffers */
  2742. for (i = 0; i < pinned; i++)
  2743. i915_gem_object_unpin(object_list[i]);
  2744. pinned = 0;
  2745. /* evict everyone we can from the aperture */
  2746. ret = i915_gem_evict_everything(dev);
  2747. if (ret)
  2748. goto err;
  2749. }
  2750. /* Set the pending read domains for the batch buffer to COMMAND */
  2751. batch_obj = object_list[args->buffer_count-1];
  2752. batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
  2753. batch_obj->pending_write_domain = 0;
  2754. i915_verify_inactive(dev, __FILE__, __LINE__);
  2755. /* Zero the global flush/invalidate flags. These
  2756. * will be modified as new domains are computed
  2757. * for each object
  2758. */
  2759. dev->invalidate_domains = 0;
  2760. dev->flush_domains = 0;
  2761. for (i = 0; i < args->buffer_count; i++) {
  2762. struct drm_gem_object *obj = object_list[i];
  2763. /* Compute new gpu domains and update invalidate/flush */
  2764. i915_gem_object_set_to_gpu_domain(obj);
  2765. }
  2766. i915_verify_inactive(dev, __FILE__, __LINE__);
  2767. if (dev->invalidate_domains | dev->flush_domains) {
  2768. #if WATCH_EXEC
  2769. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2770. __func__,
  2771. dev->invalidate_domains,
  2772. dev->flush_domains);
  2773. #endif
  2774. i915_gem_flush(dev,
  2775. dev->invalidate_domains,
  2776. dev->flush_domains);
  2777. if (dev->flush_domains)
  2778. (void)i915_add_request(dev, dev->flush_domains);
  2779. }
  2780. for (i = 0; i < args->buffer_count; i++) {
  2781. struct drm_gem_object *obj = object_list[i];
  2782. obj->write_domain = obj->pending_write_domain;
  2783. }
  2784. i915_verify_inactive(dev, __FILE__, __LINE__);
  2785. #if WATCH_COHERENCY
  2786. for (i = 0; i < args->buffer_count; i++) {
  2787. i915_gem_object_check_coherency(object_list[i],
  2788. exec_list[i].handle);
  2789. }
  2790. #endif
  2791. exec_offset = exec_list[args->buffer_count - 1].offset;
  2792. #if WATCH_EXEC
  2793. i915_gem_dump_object(object_list[args->buffer_count - 1],
  2794. args->batch_len,
  2795. __func__,
  2796. ~0);
  2797. #endif
  2798. /* Exec the batchbuffer */
  2799. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  2800. if (ret) {
  2801. DRM_ERROR("dispatch failed %d\n", ret);
  2802. goto err;
  2803. }
  2804. /*
  2805. * Ensure that the commands in the batch buffer are
  2806. * finished before the interrupt fires
  2807. */
  2808. flush_domains = i915_retire_commands(dev);
  2809. i915_verify_inactive(dev, __FILE__, __LINE__);
  2810. /*
  2811. * Get a seqno representing the execution of the current buffer,
  2812. * which we can wait on. We would like to mitigate these interrupts,
  2813. * likely by only creating seqnos occasionally (so that we have
  2814. * *some* interrupts representing completion of buffers that we can
  2815. * wait on when trying to clear up gtt space).
  2816. */
  2817. seqno = i915_add_request(dev, flush_domains);
  2818. BUG_ON(seqno == 0);
  2819. i915_file_priv->mm.last_gem_seqno = seqno;
  2820. for (i = 0; i < args->buffer_count; i++) {
  2821. struct drm_gem_object *obj = object_list[i];
  2822. i915_gem_object_move_to_active(obj, seqno);
  2823. #if WATCH_LRU
  2824. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  2825. #endif
  2826. }
  2827. #if WATCH_LRU
  2828. i915_dump_lru(dev, __func__);
  2829. #endif
  2830. i915_verify_inactive(dev, __FILE__, __LINE__);
  2831. err:
  2832. for (i = 0; i < pinned; i++)
  2833. i915_gem_object_unpin(object_list[i]);
  2834. for (i = 0; i < args->buffer_count; i++) {
  2835. if (object_list[i]) {
  2836. obj_priv = object_list[i]->driver_private;
  2837. obj_priv->in_execbuffer = false;
  2838. }
  2839. drm_gem_object_unreference(object_list[i]);
  2840. }
  2841. mutex_unlock(&dev->struct_mutex);
  2842. if (!ret) {
  2843. /* Copy the new buffer offsets back to the user's exec list. */
  2844. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  2845. (uintptr_t) args->buffers_ptr,
  2846. exec_list,
  2847. sizeof(*exec_list) * args->buffer_count);
  2848. if (ret)
  2849. DRM_ERROR("failed to copy %d exec entries "
  2850. "back to user (%d)\n",
  2851. args->buffer_count, ret);
  2852. }
  2853. /* Copy the updated relocations out regardless of current error
  2854. * state. Failure to update the relocs would mean that the next
  2855. * time userland calls execbuf, it would do so with presumed offset
  2856. * state that didn't match the actual object state.
  2857. */
  2858. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  2859. relocs);
  2860. if (ret2 != 0) {
  2861. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  2862. if (ret == 0)
  2863. ret = ret2;
  2864. }
  2865. pre_mutex_err:
  2866. drm_free(object_list, sizeof(*object_list) * args->buffer_count,
  2867. DRM_MEM_DRIVER);
  2868. drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
  2869. DRM_MEM_DRIVER);
  2870. drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
  2871. DRM_MEM_DRIVER);
  2872. return ret;
  2873. }
  2874. int
  2875. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  2876. {
  2877. struct drm_device *dev = obj->dev;
  2878. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2879. int ret;
  2880. i915_verify_inactive(dev, __FILE__, __LINE__);
  2881. if (obj_priv->gtt_space == NULL) {
  2882. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  2883. if (ret != 0) {
  2884. if (ret != -EBUSY && ret != -ERESTARTSYS)
  2885. DRM_ERROR("Failure to bind: %d\n", ret);
  2886. return ret;
  2887. }
  2888. }
  2889. /*
  2890. * Pre-965 chips need a fence register set up in order to
  2891. * properly handle tiled surfaces.
  2892. */
  2893. if (!IS_I965G(dev) &&
  2894. obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  2895. obj_priv->tiling_mode != I915_TILING_NONE) {
  2896. ret = i915_gem_object_get_fence_reg(obj, true);
  2897. if (ret != 0) {
  2898. if (ret != -EBUSY && ret != -ERESTARTSYS)
  2899. DRM_ERROR("Failure to install fence: %d\n",
  2900. ret);
  2901. return ret;
  2902. }
  2903. }
  2904. obj_priv->pin_count++;
  2905. /* If the object is not active and not pending a flush,
  2906. * remove it from the inactive list
  2907. */
  2908. if (obj_priv->pin_count == 1) {
  2909. atomic_inc(&dev->pin_count);
  2910. atomic_add(obj->size, &dev->pin_memory);
  2911. if (!obj_priv->active &&
  2912. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  2913. I915_GEM_DOMAIN_GTT)) == 0 &&
  2914. !list_empty(&obj_priv->list))
  2915. list_del_init(&obj_priv->list);
  2916. }
  2917. i915_verify_inactive(dev, __FILE__, __LINE__);
  2918. return 0;
  2919. }
  2920. void
  2921. i915_gem_object_unpin(struct drm_gem_object *obj)
  2922. {
  2923. struct drm_device *dev = obj->dev;
  2924. drm_i915_private_t *dev_priv = dev->dev_private;
  2925. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2926. i915_verify_inactive(dev, __FILE__, __LINE__);
  2927. obj_priv->pin_count--;
  2928. BUG_ON(obj_priv->pin_count < 0);
  2929. BUG_ON(obj_priv->gtt_space == NULL);
  2930. /* If the object is no longer pinned, and is
  2931. * neither active nor being flushed, then stick it on
  2932. * the inactive list
  2933. */
  2934. if (obj_priv->pin_count == 0) {
  2935. if (!obj_priv->active &&
  2936. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  2937. I915_GEM_DOMAIN_GTT)) == 0)
  2938. list_move_tail(&obj_priv->list,
  2939. &dev_priv->mm.inactive_list);
  2940. atomic_dec(&dev->pin_count);
  2941. atomic_sub(obj->size, &dev->pin_memory);
  2942. }
  2943. i915_verify_inactive(dev, __FILE__, __LINE__);
  2944. }
  2945. int
  2946. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2947. struct drm_file *file_priv)
  2948. {
  2949. struct drm_i915_gem_pin *args = data;
  2950. struct drm_gem_object *obj;
  2951. struct drm_i915_gem_object *obj_priv;
  2952. int ret;
  2953. mutex_lock(&dev->struct_mutex);
  2954. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  2955. if (obj == NULL) {
  2956. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  2957. args->handle);
  2958. mutex_unlock(&dev->struct_mutex);
  2959. return -EBADF;
  2960. }
  2961. obj_priv = obj->driver_private;
  2962. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  2963. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2964. args->handle);
  2965. drm_gem_object_unreference(obj);
  2966. mutex_unlock(&dev->struct_mutex);
  2967. return -EINVAL;
  2968. }
  2969. obj_priv->user_pin_count++;
  2970. obj_priv->pin_filp = file_priv;
  2971. if (obj_priv->user_pin_count == 1) {
  2972. ret = i915_gem_object_pin(obj, args->alignment);
  2973. if (ret != 0) {
  2974. drm_gem_object_unreference(obj);
  2975. mutex_unlock(&dev->struct_mutex);
  2976. return ret;
  2977. }
  2978. }
  2979. /* XXX - flush the CPU caches for pinned objects
  2980. * as the X server doesn't manage domains yet
  2981. */
  2982. i915_gem_object_flush_cpu_write_domain(obj);
  2983. args->offset = obj_priv->gtt_offset;
  2984. drm_gem_object_unreference(obj);
  2985. mutex_unlock(&dev->struct_mutex);
  2986. return 0;
  2987. }
  2988. int
  2989. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2990. struct drm_file *file_priv)
  2991. {
  2992. struct drm_i915_gem_pin *args = data;
  2993. struct drm_gem_object *obj;
  2994. struct drm_i915_gem_object *obj_priv;
  2995. mutex_lock(&dev->struct_mutex);
  2996. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  2997. if (obj == NULL) {
  2998. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  2999. args->handle);
  3000. mutex_unlock(&dev->struct_mutex);
  3001. return -EBADF;
  3002. }
  3003. obj_priv = obj->driver_private;
  3004. if (obj_priv->pin_filp != file_priv) {
  3005. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3006. args->handle);
  3007. drm_gem_object_unreference(obj);
  3008. mutex_unlock(&dev->struct_mutex);
  3009. return -EINVAL;
  3010. }
  3011. obj_priv->user_pin_count--;
  3012. if (obj_priv->user_pin_count == 0) {
  3013. obj_priv->pin_filp = NULL;
  3014. i915_gem_object_unpin(obj);
  3015. }
  3016. drm_gem_object_unreference(obj);
  3017. mutex_unlock(&dev->struct_mutex);
  3018. return 0;
  3019. }
  3020. int
  3021. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3022. struct drm_file *file_priv)
  3023. {
  3024. struct drm_i915_gem_busy *args = data;
  3025. struct drm_gem_object *obj;
  3026. struct drm_i915_gem_object *obj_priv;
  3027. mutex_lock(&dev->struct_mutex);
  3028. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3029. if (obj == NULL) {
  3030. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3031. args->handle);
  3032. mutex_unlock(&dev->struct_mutex);
  3033. return -EBADF;
  3034. }
  3035. /* Update the active list for the hardware's current position.
  3036. * Otherwise this only updates on a delayed timer or when irqs are
  3037. * actually unmasked, and our working set ends up being larger than
  3038. * required.
  3039. */
  3040. i915_gem_retire_requests(dev);
  3041. obj_priv = obj->driver_private;
  3042. /* Don't count being on the flushing list against the object being
  3043. * done. Otherwise, a buffer left on the flushing list but not getting
  3044. * flushed (because nobody's flushing that domain) won't ever return
  3045. * unbusy and get reused by libdrm's bo cache. The other expected
  3046. * consumer of this interface, OpenGL's occlusion queries, also specs
  3047. * that the objects get unbusy "eventually" without any interference.
  3048. */
  3049. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3050. drm_gem_object_unreference(obj);
  3051. mutex_unlock(&dev->struct_mutex);
  3052. return 0;
  3053. }
  3054. int
  3055. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3056. struct drm_file *file_priv)
  3057. {
  3058. return i915_gem_ring_throttle(dev, file_priv);
  3059. }
  3060. int i915_gem_init_object(struct drm_gem_object *obj)
  3061. {
  3062. struct drm_i915_gem_object *obj_priv;
  3063. obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
  3064. if (obj_priv == NULL)
  3065. return -ENOMEM;
  3066. /*
  3067. * We've just allocated pages from the kernel,
  3068. * so they've just been written by the CPU with
  3069. * zeros. They'll need to be clflushed before we
  3070. * use them with the GPU.
  3071. */
  3072. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3073. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3074. obj_priv->agp_type = AGP_USER_MEMORY;
  3075. obj->driver_private = obj_priv;
  3076. obj_priv->obj = obj;
  3077. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3078. INIT_LIST_HEAD(&obj_priv->list);
  3079. return 0;
  3080. }
  3081. void i915_gem_free_object(struct drm_gem_object *obj)
  3082. {
  3083. struct drm_device *dev = obj->dev;
  3084. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3085. while (obj_priv->pin_count > 0)
  3086. i915_gem_object_unpin(obj);
  3087. if (obj_priv->phys_obj)
  3088. i915_gem_detach_phys_object(dev, obj);
  3089. i915_gem_object_unbind(obj);
  3090. i915_gem_free_mmap_offset(obj);
  3091. drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
  3092. drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
  3093. }
  3094. /** Unbinds all objects that are on the given buffer list. */
  3095. static int
  3096. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3097. {
  3098. struct drm_gem_object *obj;
  3099. struct drm_i915_gem_object *obj_priv;
  3100. int ret;
  3101. while (!list_empty(head)) {
  3102. obj_priv = list_first_entry(head,
  3103. struct drm_i915_gem_object,
  3104. list);
  3105. obj = obj_priv->obj;
  3106. if (obj_priv->pin_count != 0) {
  3107. DRM_ERROR("Pinned object in unbind list\n");
  3108. mutex_unlock(&dev->struct_mutex);
  3109. return -EINVAL;
  3110. }
  3111. ret = i915_gem_object_unbind(obj);
  3112. if (ret != 0) {
  3113. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3114. ret);
  3115. mutex_unlock(&dev->struct_mutex);
  3116. return ret;
  3117. }
  3118. }
  3119. return 0;
  3120. }
  3121. int
  3122. i915_gem_idle(struct drm_device *dev)
  3123. {
  3124. drm_i915_private_t *dev_priv = dev->dev_private;
  3125. uint32_t seqno, cur_seqno, last_seqno;
  3126. int stuck, ret;
  3127. mutex_lock(&dev->struct_mutex);
  3128. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3129. mutex_unlock(&dev->struct_mutex);
  3130. return 0;
  3131. }
  3132. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3133. * We need to replace this with a semaphore, or something.
  3134. */
  3135. dev_priv->mm.suspended = 1;
  3136. /* Cancel the retire work handler, wait for it to finish if running
  3137. */
  3138. mutex_unlock(&dev->struct_mutex);
  3139. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3140. mutex_lock(&dev->struct_mutex);
  3141. i915_kernel_lost_context(dev);
  3142. /* Flush the GPU along with all non-CPU write domains
  3143. */
  3144. i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
  3145. ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  3146. seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
  3147. if (seqno == 0) {
  3148. mutex_unlock(&dev->struct_mutex);
  3149. return -ENOMEM;
  3150. }
  3151. dev_priv->mm.waiting_gem_seqno = seqno;
  3152. last_seqno = 0;
  3153. stuck = 0;
  3154. for (;;) {
  3155. cur_seqno = i915_get_gem_seqno(dev);
  3156. if (i915_seqno_passed(cur_seqno, seqno))
  3157. break;
  3158. if (last_seqno == cur_seqno) {
  3159. if (stuck++ > 100) {
  3160. DRM_ERROR("hardware wedged\n");
  3161. dev_priv->mm.wedged = 1;
  3162. DRM_WAKEUP(&dev_priv->irq_queue);
  3163. break;
  3164. }
  3165. }
  3166. msleep(10);
  3167. last_seqno = cur_seqno;
  3168. }
  3169. dev_priv->mm.waiting_gem_seqno = 0;
  3170. i915_gem_retire_requests(dev);
  3171. spin_lock(&dev_priv->mm.active_list_lock);
  3172. if (!dev_priv->mm.wedged) {
  3173. /* Active and flushing should now be empty as we've
  3174. * waited for a sequence higher than any pending execbuffer
  3175. */
  3176. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3177. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3178. /* Request should now be empty as we've also waited
  3179. * for the last request in the list
  3180. */
  3181. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3182. }
  3183. /* Empty the active and flushing lists to inactive. If there's
  3184. * anything left at this point, it means that we're wedged and
  3185. * nothing good's going to happen by leaving them there. So strip
  3186. * the GPU domains and just stuff them onto inactive.
  3187. */
  3188. while (!list_empty(&dev_priv->mm.active_list)) {
  3189. struct drm_i915_gem_object *obj_priv;
  3190. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3191. struct drm_i915_gem_object,
  3192. list);
  3193. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3194. i915_gem_object_move_to_inactive(obj_priv->obj);
  3195. }
  3196. spin_unlock(&dev_priv->mm.active_list_lock);
  3197. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3198. struct drm_i915_gem_object *obj_priv;
  3199. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3200. struct drm_i915_gem_object,
  3201. list);
  3202. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3203. i915_gem_object_move_to_inactive(obj_priv->obj);
  3204. }
  3205. /* Move all inactive buffers out of the GTT. */
  3206. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3207. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3208. if (ret) {
  3209. mutex_unlock(&dev->struct_mutex);
  3210. return ret;
  3211. }
  3212. i915_gem_cleanup_ringbuffer(dev);
  3213. mutex_unlock(&dev->struct_mutex);
  3214. return 0;
  3215. }
  3216. static int
  3217. i915_gem_init_hws(struct drm_device *dev)
  3218. {
  3219. drm_i915_private_t *dev_priv = dev->dev_private;
  3220. struct drm_gem_object *obj;
  3221. struct drm_i915_gem_object *obj_priv;
  3222. int ret;
  3223. /* If we need a physical address for the status page, it's already
  3224. * initialized at driver load time.
  3225. */
  3226. if (!I915_NEED_GFX_HWS(dev))
  3227. return 0;
  3228. obj = drm_gem_object_alloc(dev, 4096);
  3229. if (obj == NULL) {
  3230. DRM_ERROR("Failed to allocate status page\n");
  3231. return -ENOMEM;
  3232. }
  3233. obj_priv = obj->driver_private;
  3234. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3235. ret = i915_gem_object_pin(obj, 4096);
  3236. if (ret != 0) {
  3237. drm_gem_object_unreference(obj);
  3238. return ret;
  3239. }
  3240. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3241. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3242. if (dev_priv->hw_status_page == NULL) {
  3243. DRM_ERROR("Failed to map status page.\n");
  3244. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3245. i915_gem_object_unpin(obj);
  3246. drm_gem_object_unreference(obj);
  3247. return -EINVAL;
  3248. }
  3249. dev_priv->hws_obj = obj;
  3250. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3251. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3252. I915_READ(HWS_PGA); /* posting read */
  3253. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3254. return 0;
  3255. }
  3256. static void
  3257. i915_gem_cleanup_hws(struct drm_device *dev)
  3258. {
  3259. drm_i915_private_t *dev_priv = dev->dev_private;
  3260. struct drm_gem_object *obj;
  3261. struct drm_i915_gem_object *obj_priv;
  3262. if (dev_priv->hws_obj == NULL)
  3263. return;
  3264. obj = dev_priv->hws_obj;
  3265. obj_priv = obj->driver_private;
  3266. kunmap(obj_priv->pages[0]);
  3267. i915_gem_object_unpin(obj);
  3268. drm_gem_object_unreference(obj);
  3269. dev_priv->hws_obj = NULL;
  3270. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3271. dev_priv->hw_status_page = NULL;
  3272. /* Write high address into HWS_PGA when disabling. */
  3273. I915_WRITE(HWS_PGA, 0x1ffff000);
  3274. }
  3275. int
  3276. i915_gem_init_ringbuffer(struct drm_device *dev)
  3277. {
  3278. drm_i915_private_t *dev_priv = dev->dev_private;
  3279. struct drm_gem_object *obj;
  3280. struct drm_i915_gem_object *obj_priv;
  3281. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3282. int ret;
  3283. u32 head;
  3284. ret = i915_gem_init_hws(dev);
  3285. if (ret != 0)
  3286. return ret;
  3287. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3288. if (obj == NULL) {
  3289. DRM_ERROR("Failed to allocate ringbuffer\n");
  3290. i915_gem_cleanup_hws(dev);
  3291. return -ENOMEM;
  3292. }
  3293. obj_priv = obj->driver_private;
  3294. ret = i915_gem_object_pin(obj, 4096);
  3295. if (ret != 0) {
  3296. drm_gem_object_unreference(obj);
  3297. i915_gem_cleanup_hws(dev);
  3298. return ret;
  3299. }
  3300. /* Set up the kernel mapping for the ring. */
  3301. ring->Size = obj->size;
  3302. ring->tail_mask = obj->size - 1;
  3303. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3304. ring->map.size = obj->size;
  3305. ring->map.type = 0;
  3306. ring->map.flags = 0;
  3307. ring->map.mtrr = 0;
  3308. drm_core_ioremap_wc(&ring->map, dev);
  3309. if (ring->map.handle == NULL) {
  3310. DRM_ERROR("Failed to map ringbuffer.\n");
  3311. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3312. i915_gem_object_unpin(obj);
  3313. drm_gem_object_unreference(obj);
  3314. i915_gem_cleanup_hws(dev);
  3315. return -EINVAL;
  3316. }
  3317. ring->ring_obj = obj;
  3318. ring->virtual_start = ring->map.handle;
  3319. /* Stop the ring if it's running. */
  3320. I915_WRITE(PRB0_CTL, 0);
  3321. I915_WRITE(PRB0_TAIL, 0);
  3322. I915_WRITE(PRB0_HEAD, 0);
  3323. /* Initialize the ring. */
  3324. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3325. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3326. /* G45 ring initialization fails to reset head to zero */
  3327. if (head != 0) {
  3328. DRM_ERROR("Ring head not reset to zero "
  3329. "ctl %08x head %08x tail %08x start %08x\n",
  3330. I915_READ(PRB0_CTL),
  3331. I915_READ(PRB0_HEAD),
  3332. I915_READ(PRB0_TAIL),
  3333. I915_READ(PRB0_START));
  3334. I915_WRITE(PRB0_HEAD, 0);
  3335. DRM_ERROR("Ring head forced to zero "
  3336. "ctl %08x head %08x tail %08x start %08x\n",
  3337. I915_READ(PRB0_CTL),
  3338. I915_READ(PRB0_HEAD),
  3339. I915_READ(PRB0_TAIL),
  3340. I915_READ(PRB0_START));
  3341. }
  3342. I915_WRITE(PRB0_CTL,
  3343. ((obj->size - 4096) & RING_NR_PAGES) |
  3344. RING_NO_REPORT |
  3345. RING_VALID);
  3346. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3347. /* If the head is still not zero, the ring is dead */
  3348. if (head != 0) {
  3349. DRM_ERROR("Ring initialization failed "
  3350. "ctl %08x head %08x tail %08x start %08x\n",
  3351. I915_READ(PRB0_CTL),
  3352. I915_READ(PRB0_HEAD),
  3353. I915_READ(PRB0_TAIL),
  3354. I915_READ(PRB0_START));
  3355. return -EIO;
  3356. }
  3357. /* Update our cache of the ring state */
  3358. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3359. i915_kernel_lost_context(dev);
  3360. else {
  3361. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3362. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3363. ring->space = ring->head - (ring->tail + 8);
  3364. if (ring->space < 0)
  3365. ring->space += ring->Size;
  3366. }
  3367. return 0;
  3368. }
  3369. void
  3370. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3371. {
  3372. drm_i915_private_t *dev_priv = dev->dev_private;
  3373. if (dev_priv->ring.ring_obj == NULL)
  3374. return;
  3375. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3376. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3377. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3378. dev_priv->ring.ring_obj = NULL;
  3379. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3380. i915_gem_cleanup_hws(dev);
  3381. }
  3382. int
  3383. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3384. struct drm_file *file_priv)
  3385. {
  3386. drm_i915_private_t *dev_priv = dev->dev_private;
  3387. int ret;
  3388. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3389. return 0;
  3390. if (dev_priv->mm.wedged) {
  3391. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3392. dev_priv->mm.wedged = 0;
  3393. }
  3394. mutex_lock(&dev->struct_mutex);
  3395. dev_priv->mm.suspended = 0;
  3396. ret = i915_gem_init_ringbuffer(dev);
  3397. if (ret != 0)
  3398. return ret;
  3399. spin_lock(&dev_priv->mm.active_list_lock);
  3400. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3401. spin_unlock(&dev_priv->mm.active_list_lock);
  3402. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3403. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3404. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3405. mutex_unlock(&dev->struct_mutex);
  3406. drm_irq_install(dev);
  3407. return 0;
  3408. }
  3409. int
  3410. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3411. struct drm_file *file_priv)
  3412. {
  3413. int ret;
  3414. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3415. return 0;
  3416. ret = i915_gem_idle(dev);
  3417. drm_irq_uninstall(dev);
  3418. return ret;
  3419. }
  3420. void
  3421. i915_gem_lastclose(struct drm_device *dev)
  3422. {
  3423. int ret;
  3424. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3425. return;
  3426. ret = i915_gem_idle(dev);
  3427. if (ret)
  3428. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3429. }
  3430. void
  3431. i915_gem_load(struct drm_device *dev)
  3432. {
  3433. drm_i915_private_t *dev_priv = dev->dev_private;
  3434. spin_lock_init(&dev_priv->mm.active_list_lock);
  3435. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3436. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3437. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3438. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3439. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3440. i915_gem_retire_work_handler);
  3441. dev_priv->mm.next_gem_seqno = 1;
  3442. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3443. dev_priv->fence_reg_start = 3;
  3444. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3445. dev_priv->num_fence_regs = 16;
  3446. else
  3447. dev_priv->num_fence_regs = 8;
  3448. i915_gem_detect_bit_6_swizzle(dev);
  3449. }
  3450. /*
  3451. * Create a physically contiguous memory object for this object
  3452. * e.g. for cursor + overlay regs
  3453. */
  3454. int i915_gem_init_phys_object(struct drm_device *dev,
  3455. int id, int size)
  3456. {
  3457. drm_i915_private_t *dev_priv = dev->dev_private;
  3458. struct drm_i915_gem_phys_object *phys_obj;
  3459. int ret;
  3460. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3461. return 0;
  3462. phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3463. if (!phys_obj)
  3464. return -ENOMEM;
  3465. phys_obj->id = id;
  3466. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3467. if (!phys_obj->handle) {
  3468. ret = -ENOMEM;
  3469. goto kfree_obj;
  3470. }
  3471. #ifdef CONFIG_X86
  3472. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3473. #endif
  3474. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3475. return 0;
  3476. kfree_obj:
  3477. drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3478. return ret;
  3479. }
  3480. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3481. {
  3482. drm_i915_private_t *dev_priv = dev->dev_private;
  3483. struct drm_i915_gem_phys_object *phys_obj;
  3484. if (!dev_priv->mm.phys_objs[id - 1])
  3485. return;
  3486. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3487. if (phys_obj->cur_obj) {
  3488. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3489. }
  3490. #ifdef CONFIG_X86
  3491. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3492. #endif
  3493. drm_pci_free(dev, phys_obj->handle);
  3494. kfree(phys_obj);
  3495. dev_priv->mm.phys_objs[id - 1] = NULL;
  3496. }
  3497. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3498. {
  3499. int i;
  3500. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3501. i915_gem_free_phys_object(dev, i);
  3502. }
  3503. void i915_gem_detach_phys_object(struct drm_device *dev,
  3504. struct drm_gem_object *obj)
  3505. {
  3506. struct drm_i915_gem_object *obj_priv;
  3507. int i;
  3508. int ret;
  3509. int page_count;
  3510. obj_priv = obj->driver_private;
  3511. if (!obj_priv->phys_obj)
  3512. return;
  3513. ret = i915_gem_object_get_pages(obj);
  3514. if (ret)
  3515. goto out;
  3516. page_count = obj->size / PAGE_SIZE;
  3517. for (i = 0; i < page_count; i++) {
  3518. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3519. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3520. memcpy(dst, src, PAGE_SIZE);
  3521. kunmap_atomic(dst, KM_USER0);
  3522. }
  3523. drm_clflush_pages(obj_priv->pages, page_count);
  3524. drm_agp_chipset_flush(dev);
  3525. out:
  3526. obj_priv->phys_obj->cur_obj = NULL;
  3527. obj_priv->phys_obj = NULL;
  3528. }
  3529. int
  3530. i915_gem_attach_phys_object(struct drm_device *dev,
  3531. struct drm_gem_object *obj, int id)
  3532. {
  3533. drm_i915_private_t *dev_priv = dev->dev_private;
  3534. struct drm_i915_gem_object *obj_priv;
  3535. int ret = 0;
  3536. int page_count;
  3537. int i;
  3538. if (id > I915_MAX_PHYS_OBJECT)
  3539. return -EINVAL;
  3540. obj_priv = obj->driver_private;
  3541. if (obj_priv->phys_obj) {
  3542. if (obj_priv->phys_obj->id == id)
  3543. return 0;
  3544. i915_gem_detach_phys_object(dev, obj);
  3545. }
  3546. /* create a new object */
  3547. if (!dev_priv->mm.phys_objs[id - 1]) {
  3548. ret = i915_gem_init_phys_object(dev, id,
  3549. obj->size);
  3550. if (ret) {
  3551. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3552. goto out;
  3553. }
  3554. }
  3555. /* bind to the object */
  3556. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3557. obj_priv->phys_obj->cur_obj = obj;
  3558. ret = i915_gem_object_get_pages(obj);
  3559. if (ret) {
  3560. DRM_ERROR("failed to get page list\n");
  3561. goto out;
  3562. }
  3563. page_count = obj->size / PAGE_SIZE;
  3564. for (i = 0; i < page_count; i++) {
  3565. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3566. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3567. memcpy(dst, src, PAGE_SIZE);
  3568. kunmap_atomic(src, KM_USER0);
  3569. }
  3570. return 0;
  3571. out:
  3572. return ret;
  3573. }
  3574. static int
  3575. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3576. struct drm_i915_gem_pwrite *args,
  3577. struct drm_file *file_priv)
  3578. {
  3579. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3580. void *obj_addr;
  3581. int ret;
  3582. char __user *user_data;
  3583. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3584. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3585. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3586. ret = copy_from_user(obj_addr, user_data, args->size);
  3587. if (ret)
  3588. return -EFAULT;
  3589. drm_agp_chipset_flush(dev);
  3590. return 0;
  3591. }